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Abstract

The simple Lanczos process is very efficient for finding a few extreme eigen-
values of a large symmetric matrix. The main task in each iteration step consists
in evaluating a matrix-vector product. It is shown in this paper how to apply a
fast wavelet-based product in order to speed up computations. Some numerical
results are given for three different monodimensional cases: the Harmonic Os-
cillator case, the hydrogenlike atoms and a problem with a pseudo-double well
potential.

1 Introduction

For many applications in Quantum Chemistry, a few smallest eigenvalues of a large
matrix are requested (e.g. first excited states above the ground state of a chemical sys-
tem) [1, 2, 3]. In these cases, the direct methods, as Givens or Householder methods,
which employ explicit similarity transformations on the matrix are useless and itera-
tive methods, as the Conjugate Gradient or the Lanczos algorithm, are more efficient
[4]. The only way the matrix enters these latter agorithms is through a matrix-vector
product. It is then strongly recommended to exploit sparseness and compact storage
in the coding of the program.

The method described in this paper is based on the wavelet transform which pro-
vides sparse representations of many operators. This transform consists in expanding
a given function or an operator over a set of basis functions obtained by dilations
and translations of an elementary function, called the mother wavelet, localized in
both direct and Fourier spaces [5]. Wavelet decompositions, well known for providing
several advantages in the representation of many operators, seem to be particularly
suitable to iterative algorithms.

Few results concerning the Conjugate Gradient have already been published [6, 7],
and we want to present in this paper an application of wavelets decomposition in a
Lanczos computation. In the worst case, without any assumption on the data, the
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wavelet decomposition lead to an algorithm of O(N) instead of O(N?) for usual meth-
ods (these orders correspond to the cost of the matrix-vector product required in the
iterative algorithms). One of the main advantages of the wavelet methods is that
the wavelets adapt themselves automatically in the sense that only few coefficients
are needed to describe smooth data and more coefficients are needed for the singular
points. So wavelet-based methods lead in general to computations whose cost is less
than N.

Operators written as,

Hf(x) =Tf(x) +Vf(r) (1)

where T denotes the kinetic term and V the potential term are considered in this
paper. Three problems are particularly studied:

e the computation of the first ten eigenvalues of the simple Harmonic Oscillator,

Af(z) =
) @)

Tf(z)+Vi(r)=

e the computation of the ground state of the radial Schrodinger operator for the
hydrogen atom,

Tf(x)+Vi(z)=—

- (3)

e the computation of the fifth excited state of an operator with a pseudo-double
well potential,

Tf(@) +Vf@) = ~2L@) _ /(@) - /(@) ,a=0.0L.

2 Je-122+a® (@ +1/2)? +a?
(4)

This last case has been initially chosen by J. Modisette [8] in order to show the ca-
pability of wavelets to separate close eigenvalues (the fifth eigenvalue of this operator
is very close to the sixth one) for this problem.

We refer to T. Arias for a general review of the application of wavelet theory to
the determination of electronic structure [9]. Theoretically, “multiresolution analy-
sis provides the first practical possibility for a unified, systematic treatment of core
and valence behavior in the electronic structure of molecular and condensed-matter
systems” (quoting T.A. Arias [9]).

2 A review on wavelets

In Quantum Chemistry, equations and quantities are usually expressed with position
coordinates, r, where electrons are referenced by the components of their position
in the three-dimensional configuration space. Any classical physical quantity can be



defined from pairs of canonically conjugated variables from which the correspond-
ing quantum mechanical hamiltonian can be constructed [10]. Since momentum, p
is canonically conjugated to r, an alternative representation can be obtained using
momentum coordinates where electrons are referenced by the components of their mo-
mentum in the three-dimensional momentum space. The momentum representation
is obtained by means of a Fourier Transform. It allows to obtain momentum densities
and as such yields a direct interpretation of experimental results such as Compton
profiles [11] and cross section from (e,2e) spectroscopy [12].

However in this representation, one cannot directly describe local properties, such as
singularities, from spectral properties.

Therefore the possibility of a simultaneous visualization of position and momentum
densities seems a necessary improvement to apprehend better chemical structures.
Some investigations in signal or image analyses have led scientists to switch from
Fourier analysis to some more specific algorithms better suited to analyse abrupt
changes in signals whenever tricky interactions between events occuring at different
scales appear. Among these new methods, the wavelet transform allows to keep ad-
vantages from position and momentum representations thanks to the visualization
of wave functions in both spaces. The building block functions of the Fourier anal-
ysis, which depend only on a momentum parameter, are replaced by wavelets, the
building block functions of the wavelet analysis, which depend on both position and
momentum parameters.

2.1 Continuous wavelets

Since all the results presented in the sequel are one dimensional, only 1D wavelets
theory is introduced in this part. The generalization to higher dimension is relatively
easy and is based on tensor products of basis functions.

Functions depending on two variables a and b respectively linked to momentum and
position are used to define the mathematical transformation:

0 = / 0 £ () o (2), (5)

where 945 (z) play the same part than the exponential functions in the Fourier trans-
form. A possibility is to construct {14,5(z)}q,s from a function g(z) by translating
and modulating it:

Yap(z) = g(z —b) e a,beR (6)

where g(z) is a window function. In spite of the improvement brought by this “pseudo-
spectral” representation, this transformation is not perfect and in particular it is not
adapted to describe accurately functions which exhibit high variations. This kind of
phenomenon is generally very localized in space whereas low variations often spread
over a large area. To overcome this disadvantage (a fixed size window function),
analysing functions with position support widths adapted to their momentum need
obviously to be defined.



The idea is to apply dilations on top of translations previously introduced. Start-
ing with a function ¢ well localized in position and momentum spaces, a family of
analysing functions can be constructed:

¢a,b(w) — |a|1/2¢ <l' a— b

>,ae]R*,be]R. (7

The initial function is called the mother wavelet. Here b is a position parameter
and 1/a is homogeneous to a momentum.
The continuous wavelet transform is an isometry from L?(R) into L?(Rx R, a2 dadb).
Similar to the definition of the inverse Fourier transform, it is possible to define a
reconstruction formula that allows to rewrite f(x) as an expansion. The following
theorem specifies few characteristics of continuous wavelet theory:

Theorem 1 Let ) be a normalized function belonging to L*(R) N L?(R), of which the
Fourier transform v verifies the following equality:

2
/df |1|/;|| _ K < 0. (8)

Then, the conservation of the norm defined by,

< | ]S ap = [ i@, Q

and the possibility to recover the function f(x) using the reconstruction formula de-

fined as follows:
dadb
0= [ [ i), (10)

The condition (8) means that any oscillating function localized in both spaces and
whose integral over the whole space R is null can be used as a mother wavelet. A
typical choice for 9 is,

are ensured.

M)

z

P(r) = (1—a")e = (11)
the second derivative of the Gaussian function, sometimes called the mexican hat
function.

2.2 Discrete and orthonormal wavelets

Discrete wavelets correspond to the choices a = af*,b = nboag’, indicating that the
translation parameter b depends on the chosen dilation rate. The family of wavelets
becomes, then, for m,n € Z,

Yo = ag "2 (ag ™z — nbo). (12)
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The dilation step ag is generally taken greater than one and the translation step by
different from zero. It is also possible to define wavelets that constitute an orthonormal
basis. They are defined as the collection,

Vi =272z —k),j,k € L. (13)

The simplest and most famous example of orthonormal wavelet basis is the Haar
system already known at the beginning of the century [13]:

1 0<z<1/2
Ppx)y=<¢ -1 1/2<z<1
0 otherwise

The construction of orthonormal wavelet bases is presented in the next part de-
scribing the BCR algorithm.

3 BCR Algorithm

The method of decomposition, first proposed by Beylkin, Coifman and Rokhlin (BCR)
[14, 15], is based on the notion of multiresolution analysis [16, 17]. Orthonormal



wavelets, constructed by Daubechies [18, 19] are used as basis functions to represent
some operators. These wavelets are compactly supported and lead to sparse matrix
representations. The study of the derivative and of the multiplicative (by a function)
operators allows to analyze operators like (1) whose wavelet transform is performed
by sorting out the operator in two parts which are treated individually. The matrix
coefficients corresponding to the kinetic term are given by an iterative process defined
from relations existing between different scales and those related to the potential term
are given by a quadrature formula constructed from a Taylor expansion of the integral
kernel corresponding to the potential.

3.1 Multiresolution analysis

The theoretical construction of orthogonal wavelet families is intimately related to
the notion of multiresolution analysis:

Definition:

A MultiResolution Analysis is a decomposition of the Hilbert space L?(RR) of physically
admissible functions (i.e square integrable functions) into a chain of closed subspaces,

L.V ViV Vo, C Vg, ..

such that

. ﬂ V; = {0} and U V; is dense in L*(R)
JEL JEL

o f(z) eV & f(2x) €V
o flz) eVo & f(x—Fk)€Vp

e There is a function ¢ € Vp such that {¢(z — k) }rez is an orthonormal basis of
Vo

Let W; be the orthogonal complementary subspace of V; in V;_y:
VieW; =Vja (14)

This space contains the difference in information between V; and V;_;, and allows
the decomposition of L?(R) as a direct form:

LZ(R) = @jezwj' (15)

Then, there exists a function ¢ € Wy, called the mother wavelet, such that {¢(z —
k)}rez is an orthonormal basis of Wy. The corresponding wavelet bases are then
characterized by:

Po(27e —k), k.jez, (16)
“IPy©2 e — k), k,jeL. (17)

pjk(x) =
Yjx(x) =



The mother wavelet corresponding to the chosen wavelet basis verifies:

/dm@b(m)xm:(), m=0,...,M—1, (18)
R

which means that it has M vanishing moments.
Since the scaling function ¢(z), and the mother wavelet ¥ (z) belong to V_1, they
admit the following expansions:

L-1

p(x) = V2 hipe—k), = (p. 0 14), (19)
k=0
L—-1

b(@) =V2Y gepRe—k), gi= (-1 hs 1, (20)
k=0

where the number L of coefficients is connected to the number M of vanishing mo-
ments and is also connected to other properties that can be imposed to ¢(z). Func-
tions verifying (19) or (20) have their support included in [0, ... , L —1]. Furthermore,
if there exists a coarsest scale, j = n, and a finest one, j = 0, the bases can be rewrit-
ten as:

L-1
k() = Z higj_1oki(x), j=1,...,n, (21)
1=0
and
L—1
Yjk(x) = Zgl Yi—12kt1(x), j=1,...,n. (22)
=0

The wavelet transform of a function f(z) is then given by two sets of coefficients
defined as

&= [ do @) viute) (23)
and
55, = /R dz f(z) pjk(z) . (24)

Starting with an initial set of coefficients s, and using (21) and (22), coefficients
dj. and s}, can be computed by means of the following recursive relations:

L-1
dy, = Z g S;I;il ) (25)
1=0



and
. Lil .
st= > hishiy (26)
=0

Coefficients df;, and sfc are considered in (25) and (26) as periodic sequences with the
period 2777, The set d},, is composed by coefficients corresponding to the decompo-

sition of f(x) on the basis ¥ and si may be interpreted as the set of averages at
various scales.

3.2 Non Standard form of integral operators

Let us consider operators that can be written in an integral form,
14() = [ dyK(a,0) 10) (21)
R

where K (x,y) is the integral kernel associated to the operator T'. In order to carry out
computations, the representation of an operator consists in writing the corresponding
kernel as a matrix. The Non Standard (NS) form related to a wavelet basis decompo-
sition leads to sparse matrices and, as a result, speeds up calculations. It is obtained
by developing the kernel on the following two dimensional family:

{@Uj,k(iv) Vi (Y)s Yjk(T) 0k (Y)s 0k (T) P g (y)}

(the Standard Form is obtained by tensor products of the 1D basis functions [14, 15]).
Hence, the three sets of coefficients,

. 28
kK€L (28)

odur = [[ oty Ko, biae) 030 0) (29
R2

/= / / dar dy K (2,y) 5 4(2) 0300 () (30)
R2

e = [[ dray Kw,v) os@)500) (31)
R2

have to be computed. By applying formulae (21) and (22), equations (29), (30), and
(31) may be rewritten as:

L—1
j o _ j—1
Qg = E : JLGU Topyy 2k 41 o (32)
1,I'=0
L—1
Jj Jj—1
ﬂm' = E : gi by Tok41,28 +1 > (33)
1I'=0
L1
Jj o _ Jj—1
Vi = E : b g Tok+1,2k +1 > (34)

1,l'=0



where 7, ., is a fourth set of coefficients defined as,

M = / / d dy K (2,) 95(2) 930 (4) (35)

R2
which verifies the recursive rule:

L—-1

J o j—1
Tha = Z hiha Top g opr 0 (36)
1,k'=0

where k, k' =0,...,2" 7 —1,j=1,...,n.

If one denotes by P; the projection operator from L?(R) on the subspace spanned
by the basis {¢; r}rez, and by R; the projection operator on the subspace spanned
by the basis {t;r}rez, then {ag 1}k ez, {Bi g tibezs {Vip thkez, Tt thkez
represent the operators A; = R;TR;, B; = R;TP;, G; = P;TRj, and T; = P;TF;,
respectively. The discretization Ty of the operator T on the finest scale j = 0 may be
written as:

Ty=> (4 +B;+G;)+T, . (37)
j=1

The matrix representation of an operator applied to a function is then depicted by:

A B; d' d't

Gy Sl '
* = (38)

As By d? d?

G2 82 812

As Bs d? d?

Gs Ty 53 s

After applying the NS form to a vector, the result is obtained with the following
reconstruction formula:

n 2777

Tof(z) =3 S dfv(@) + s psu(x). (39)

j=1 k=0



4 The Lanczos algorithm

Simple processes, like the Power Method, require, in principle, an infinite number of
matrix-vector products to converge to an eigenvector. On the other hand, the Lanczos
iterations expands each eigenvector in a convergent series with a finite number of terms
[4]. The Lanczos method can be viewed as a process of computing a tridiagonal matrix
T orthogonally congruent to A (i.e. T = Q*AQ,Q = (q1,q2,--- ,qn), Q* = Q~1). The
algorithm need not to go the whole way; it builds up Q; = (¢1,92,... ,¢;) and T =
Q7 AQ); by step j and can often be stopped at values of j as small as 2y/n. To compete
in accuracy the Lanczos has to be supplemented with the explicit orthogonalization
of the Lanczos vectors which, in exact arithmetic, would be orthogonal automatically.
Roundoff errors at each iteration step lead to the loss of orthogonality and make
the Lanczos algorithm very unstable. The version used in this paper includes a
reorthogonalization routine whose detailed features can be found in [20]. Our purpose
here being not to discuss or to compare the various orthogonalization strategies, we
refer to the original papers for more details [21, 22, 23, 24].

The computation of the eigenvalues from the tridiagonal matrix obtained from the
Lanczos process is then performed using a basic Givens bisection [4] which gives, in
some cases, better results than the usual QR algorithm. Indeed, for problems whose
eigenvalues are very close to each other, the convergence factor of the QR algorithm
is close to 1 whereas it remains bounded by 1/2 for the bisection method.

4.1 The theoretical Lanczos iteration

The simple Lanczos process for a symmetric n X n matrix A (if A is not hermitian then
a variant exists and is called the Arnoldi process) computes a sequence of Lanczos
vectors ¢; and scalars a;, 3; as follows:

1. choose a starting vector ry # 0, set go = 0, 51 = ||r1]|

2. for j=1,2,... ,do

4 =1;/B;
uj = Aqj — Bjqi—1
o = u;qu

it = uj — ;g
Bir1 = |Irjsall

One pass through step 2 is a Lanczos step. The equation for one Lanczos step can be
written as:

Bij+14j+1 = Ag; — ajq; — Bigj—1 (40)
In exact arithmetic, the Lanczos vectors g; are orthogonal:
lai ax| = 0, (41)

fori=1,...,5,k=1,...,5.k#j.

10



4.2 Orthogonalization methods

Whereas in general, the loss of orthogonality is simply credited to an accumulation
of roundoff and cancellation errors, it has been shown that this phenomena is just an
amplification of the local errors which can be explained through recurrence formulas.
A theorem quantifies how the local error is propagated in the algorithm [20]. Let the
J x j matrix N; = (wi) be defined by,

N; = Q;Q;. (42)

If the Lanczos vectors are orthogonal then N; = I; (the j x j identity matrix).

Theorem 2 The elements of the matriz N; satisfy the following recurrence:
we =1 fork=1,...,5
Wigk—1 =€ for k=2, ... 7,
Bit1wjt1k = Brr1wik+1 + (o — aj)win + Brwjk—1 — Bjwj—1k + ¢} fe — ¢ f;,
Wik4+1 = Wk+1j,

where wro = 0, €, = qfqr—1, and f denotes the local roundoff errors at step k.

If the first j Lanczos vectors satisfy,

lg; qr| < wj, (43)

fori=1,...,5,k=1,...,45,k # j, then the smallest w; will be called the level of
orthogonality. If w; = \/€, where € can be the machine roundoff unit or any threshold
given by the user, then the Lanczos vectors are called semiorthogonal.

Simon then showed that the Lanczos algorithm leads to accurate results as far as
semiorthogonality is maintained among the Lanczos vectors. He also showed that
both partial reorthogonalization and selective orthogonalization introduced by Parlett
and Scott [21] or himself [24] are semiorthogonalization strategies. According to the
result established by Simon, an adapted Gram-Schmidt orthogonalization routine has
been included in the Lanczos step in order to keep the semiorthogonality among the
Lanczos vectors during the process.

5 Effective implementation of the Non Standard
Form
The two parts of the operators under study are separately treated with two differents

techniques. The NS form of the Laplacian term is worked out in an iterative process
and the potential term by a quadrature formula.

11



5.1 Representation of the Laplacian term

The analysis of the operator,
Af
2 )
is, in fact, a particular case of the representation of the derivative operator dP/dzP.
The method for finding the NS form of this operator is entirely described by Beylkin
[15]. Only the most important points of this process are recalled. For the p!* deriva-
tive, the computations of the coefficients defined in (29), (30), (31) and (35) lead to
the following scaling relations:

Lf=- (44)

aiw =27P Okt (45)

ﬂi,kz =27 By, (46)

Vg =27 yop, (47)

ri,k’ =27P Th—k, (48)

where

o= [ doulz - v x) (19)
R

b= [ dovte -1 p (@) (50)
R

o= / dz oz — 1) P () (51)

T = / dz p(x —1) <p(”) (x) (52)
R

Using Equations (21) and (22), coefficients {oq }iez, {81 }iez, {Vi}iez can be written
as expressions involving the set {r;};cz which verifies itself an iterative rule:

L—-1
ap =2°F Z Im g:n T2l4+m—m/, (53)
m,m’'=0
L—-1
By =2° Z Im h;n T2l+m—m/', (54)
m,m’'=0
L-1
Y= 2P Z hm g:n T204+m—m/, (55)
m,m'=0
L-1
r=2" 3 by Tt (56)

m,m’'=0

Starting with an initial guessed set of coefficients, Equation (56) can be used in an
iterative way in order to compute {r;};cz. The convergence of this process is reached
in less than ten iterations with a sufficient accuracy.

12



5.2 Representation of the potential term

A quadrature formula proposed by Beylkin et al. [14] to compute wavelet coefficients
of a smooth functions is described in this subsection. If the scaling function ¢(x)
verifies the following condition,

/d;z:(p(w+7'):1:m:0, m=1,..., M -1,7 €7, (57)
R

/ do o(z) = 1 (58)
R

and if the function f(z) that need to be analyzed is smooth enough, then coefficients
sy can be computed from an expansion of f(z) into a Taylor series around 27 (k + 7).
The result is,

sl =212 f(2I(k + 7)) + O(2/M+1/2)), (59)

This formula is only used for the finest scale where the discretization step size is
about 27", and then the relations (25), (26) are used to computes the coarser scales
coefficients.

By applying the quadrature formula to each variable of the kernel K (z,y) corre-
sponding to the potential term, the wavelet decomposition can be easily obtained.

6 Numerical results

The Harmonic Oscillator case is studied in details in order to point out the importance
of some parameters as the number of vanishing moments of the mother wavelet or
the discretization step size. The numerical results given for the pseudo-double well
problem and for the hydrogen atom have been obtained with parameters values leading
to acceptable accuracies.

6.1 The Harmonic Oscillator case

In order to test the method, the first ten eigenvalues of the Harmonic Oscillator
have been computed. The initial discretization contains only 32 points since no more
points were necessary to get accurate results. However, it is obvious that more points
would lead to better results.

Different parameters connected to the wavelet decomposition have to be speci-
fied, the most important being the number of vanishing moments, M, of the mother
wavelet. Numerical tests with various values for M have been performed, and only
those corresponding to M = 5 and M = 11 are reported in this paper. The compar-
ison of the results corresponding to these two values emphasizes the importance of
this parameter: greater is the number of vanishing moments, better are the wavelets
representations of the different mathematical object. Once the number of vanishing
moments is fixed, another important parameter is the discretization step size. For a

13



Harmonic oscillator

10" ¢ \ \
107" 3 interval: [-4,4]

3 threshold: 10e-8

[ nber of points: 32
1072k nber of vanishing moments: 5

Error

-7 | | | | | | | |

1 2 3 4 5 6 7 8 9 10
Eigenvalues

given number of points, this parameter can be modified by just changing the interval
size. Results corresponding to three different sizes are given.

A treshold is necessary in two places in the algorithm. The first one concerns
the thresholding of the wavelet decomposition: any wavelet coefficient below a given
threshold e is discarded in order to sparsify the datas; and the second one occurs in
the semiorthogonalization keeping: the level of orthogonality is chosen to be equal to
€3/* as suggested by Simon in [24]. The value of ¢ has been fixed equal to 10%. The
numerical results for the first ten eigenvalues are given in the figures.

6.2 The Hydrogen atom and the pseudo-double well cases

The results and the different parameters used for these problems are given in table
1. It can be noticed that more points (than for the Harmonic Oscillator case) are
required to reach reasonable accuracies. This is due to the fact that we are trying to
described singular potentials with non sigular functions.

The result obtained for the pseudo-double well problem is a little bit worst than
those obtained by Modisette in [8] for the same problem. Modisette had used a much

14



Harmonic oscillator

10 F T T
107 2 interval: [-5,5]
threshold: 10e-8
nber of points: 32
§ 10_3 i nber of vanishing moments: 5 |
| r ]

—4

10

1 2 3 4 5 6 7 8 9 10
Eigenvalues

more complicated quadrature than the one point quadrature used in our computa-
tion. On the contrary, the accuracy achieved for the hydrogen atom is better than
the one obtained by the author with another iterative scheme in [25]. These two
experiments show the capability of wavelets to give a good representation of a real
singular potential, and to separate close eigenvalues in a spectrum.

7 Comments

A first comment concerning the number of vanishing moments can be done. As
already emphasized, this parameter acts directly onto the accuracy. A large number
of vanishing moments leads to a better accuracy for the quadrature formula (in the
Taylor expansion, more terms will be exactly equal to zero). This parameter also
influences the quality of the Laplacian representation.

The importance of the discretization step size has already been pointed out in
[25], and we refer to this paper for more details about this point.

With a threshold of 10~8, the level of orthogonality is maintained around 106,
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Harmonic oscillator
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and as stated by Simon [24, 20], it is largely sufficient to get accurate results with the
Lanczos algorithm.

It should be also emphasized that the Lanczos method is a very sensitive process,
and a good accuracy in the description of the different parts of the operator is required
to get good final results. The simple quadrature formula used for the potential term
can be replaced by a more sophisticated one in order to improve the final accuracies.
Many detailed studies have already been carried out, and we refer to these publications
for more details [26].

No CPU times are given since the tests have been performed with a rudimentary
code, and some technical improvements should be brought to make it competitive
with codes which are running for many years. The aim of this paper was just to
show that a O(IN) wavelet-based matrix-vector product can be used in any iterative
method instead of a regular product in O(N?). The generalization of the method to
three-dimensional problems is in progress and the results will be published in another
issue.
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Harmonic oscillator
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Table 1: Numerical results for operators with a (pseudo) singular potential term

Pseudo-double well | Hydrogen Atom

5t excited state ground state
Interval [-18,18] [-7,7]
Threshold 1078 1078
Nber of points 512 512

Vanishing moments ) )

Exact value -0.24825962 -0.5

Result -0.24825517 -0.499659345

Error 2.2 x 107° 6.8 x 10~*
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