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Abstra
t

The simple Lan
zos pro
ess is very eÆ
ient for �nding a few extreme eigen-

values of a large symmetri
 matrix. The main task in ea
h iteration step 
onsists

in evaluating a matrix-ve
tor produ
t. It is shown in this paper how to apply a

fast wavelet-based produ
t in order to speed up 
omputations. Some numeri
al

results are given for three di�erent monodimensional 
ases: the Harmoni
 Os-


illator 
ase, the hydrogenlike atoms and a problem with a pseudo-double well

potential.

1 Introdu
tion

For many appli
ations in Quantum Chemistry, a few smallest eigenvalues of a large

matrix are requested (e.g. �rst ex
ited states above the ground state of a 
hemi
al sys-

tem) [1, 2, 3℄. In these 
ases, the dire
t methods, as Givens or Householder methods,

whi
h employ expli
it similarity transformations on the matrix are useless and itera-

tive methods, as the Conjugate Gradient or the Lan
zos algorithm, are more eÆ
ient

[4℄. The only way the matrix enters these latter agorithms is through a matrix-ve
tor

produ
t. It is then strongly re
ommended to exploit sparseness and 
ompa
t storage

in the 
oding of the program.

The method des
ribed in this paper is based on the wavelet transform whi
h pro-

vides sparse representations of many operators. This transform 
onsists in expanding

a given fun
tion or an operator over a set of basis fun
tions obtained by dilations

and translations of an elementary fun
tion, 
alled the mother wavelet, lo
alized in

both dire
t and Fourier spa
es [5℄. Wavelet de
ompositions, well known for providing

several advantages in the representation of many operators, seem to be parti
ularly

suitable to iterative algorithms.

Few results 
on
erning the Conjugate Gradient have already been published [6, 7℄,

and we want to present in this paper an appli
ation of wavelets de
omposition in a

Lan
zos 
omputation. In the worst 
ase, without any assumption on the data, the
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wavelet de
omposition lead to an algorithm of O(N) instead of O(N

2

) for usual meth-

ods (these orders 
orrespond to the 
ost of the matrix-ve
tor produ
t required in the

iterative algorithms). One of the main advantages of the wavelet methods is that

the wavelets adapt themselves automati
ally in the sense that only few 
oeÆ
ients

are needed to des
ribe smooth data and more 
oeÆ
ients are needed for the singular

points. So wavelet-based methods lead in general to 
omputations whose 
ost is less

than N .

Operators written as,

Hf(x) = Tf(x) + V f(x) (1)

where T denotes the kineti
 term and V the potential term are 
onsidered in this

paper. Three problems are parti
ularly studied:

� the 
omputation of the �rst ten eigenvalues of the simple Harmoni
 Os
illator,

Tf(x) + V f(x) = �

�f(x)

2

+

x

2

f(x); (2)

� the 
omputation of the ground state of the radial S
hr�odinger operator for the

hydrogen atom,

Tf(x) + V f(x) = �

�f(x)

2

�

f(x)

j x j

; (3)

� the 
omputation of the �fth ex
ited state of an operator with a pseudo-double

well potential,

Tf(x) + V f(x) = �

�f(x)

2

�

f(x)

p

(x � 1=2)

2

+ a

2

�

f(x)

p

(x+ 1=2)

2

+ a

2

; a = 0:01:

(4)

This last 
ase has been initially 
hosen by J. Modisette [8℄ in order to show the 
a-

pability of wavelets to separate 
lose eigenvalues (the �fth eigenvalue of this operator

is very 
lose to the sixth one) for this problem.

We refer to T. Arias for a general review of the appli
ation of wavelet theory to

the determination of ele
troni
 stru
ture [9℄. Theoreti
ally, \multiresolution analy-

sis provides the �rst pra
ti
al possibility for a uni�ed, systemati
 treatment of 
ore

and valen
e behavior in the ele
troni
 stru
ture of mole
ular and 
ondensed-matter

systems" (quoting T.A. Arias [9℄).

2 A review on wavelets

In Quantum Chemistry, equations and quantities are usually expressed with position


oordinates, r, where ele
trons are referen
ed by the 
omponents of their position

in the three-dimensional 
on�guration spa
e. Any 
lassi
al physi
al quantity 
an be
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de�ned from pairs of 
anoni
ally 
onjugated variables from whi
h the 
orrespond-

ing quantum me
hani
al hamiltonian 
an be 
onstru
ted [10℄. Sin
e momentum, p

is 
anoni
ally 
onjugated to r, an alternative representation 
an be obtained using

momentum 
oordinates where ele
trons are referen
ed by the 
omponents of their mo-

mentum in the three-dimensional momentum spa
e. The momentum representation

is obtained by means of a Fourier Transform. It allows to obtain momentum densities

and as su
h yields a dire
t interpretation of experimental results su
h as Compton

pro�les [11℄ and 
ross se
tion from (e,2e) spe
tros
opy [12℄.

However in this representation, one 
annot dire
tly des
ribe lo
al properties, su
h as

singularities, from spe
tral properties.

Therefore the possibility of a simultaneous visualization of position and momentum

densities seems a ne
essary improvement to apprehend better 
hemi
al stru
tures.

Some investigations in signal or image analyses have led s
ientists to swit
h from

Fourier analysis to some more spe
i�
 algorithms better suited to analyse abrupt


hanges in signals whenever tri
ky intera
tions between events o

uring at di�erent

s
ales appear. Among these new methods, the wavelet transform allows to keep ad-

vantages from position and momentum representations thanks to the visualization

of wave fun
tions in both spa
es. The building blo
k fun
tions of the Fourier anal-

ysis, whi
h depend only on a momentum parameter, are repla
ed by wavelets, the

building blo
k fun
tions of the wavelet analysis, whi
h depend on both position and

momentum parameters.

2.1 Continuous wavelets

Sin
e all the results presented in the sequel are one dimensional, only 1D wavelets

theory is introdu
ed in this part. The generalization to higher dimension is relatively

easy and is based on tensor produ
ts of basis fun
tions.

Fun
tions depending on two variables a and b respe
tively linked to momentum and

position are used to de�ne the mathemati
al transformation:

d

a

b

=

Z

dx f(x) 

a;b

(x); (5)

where  

a;b

(x) play the same part than the exponential fun
tions in the Fourier trans-

form. A possibility is to 
onstru
t f 

a;b

(x)g

a;b

from a fun
tion g(x) by translating

and modulating it:

 

a;b

(x) = g(x� b) e

iax

; a; b 2 R (6)

where g(x) is a window fun
tion. In spite of the improvement brought by this \pseudo-

spe
tral" representation, this transformation is not perfe
t and in parti
ular it is not

adapted to des
ribe a

urately fun
tions whi
h exhibit high variations. This kind of

phenomenon is generally very lo
alized in spa
e whereas low variations often spread

over a large area. To over
ome this disadvantage (a �xed size window fun
tion),

analysing fun
tions with position support widths adapted to their momentum need

obviously to be de�ned.
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The idea is to apply dilations on top of translations previously introdu
ed. Start-

ing with a fun
tion  well lo
alized in position and momentum spa
es, a family of

analysing fun
tions 
an be 
onstru
ted:

 

a;b

(x) = jaj

1=2

 

�

x� b

a

�

; a 2 R�; b 2 R: (7)

The initial fun
tion is 
alled the mother wavelet. Here b is a position parameter

and 1=a is homogeneous to a momentum.

The 
ontinuous wavelet transform is an isometry from L

2

(R) into L

2

(R�R; a

�2

dadb).

Similar to the de�nition of the inverse Fourier transform, it is possible to de�ne a

re
onstru
tion formula that allows to rewrite f(x) as an expansion. The following

theorem spe
i�es few 
hara
teristi
s of 
ontinuous wavelet theory:

Theorem 1 Let  be a normalized fun
tion belonging to L

1

(R)\L

2

(R), of whi
h the

Fourier transform

^

 veri�es the following equality:

Z

d�

j

^

 j

2

j�j

= K <1: (8)

Then, the 
onservation of the norm de�ned by,

1

K

Z Z

dadb

a

2

jd

a

b

j

2

=

Z

dx jf(x)j

2

; (9)

and the possibility to re
over the fun
tion f(x) using the re
onstru
tion formula de-

�ned as follows:

f(x) =

1

K

Z Z

dadb

a

2

d

a

b

 

a;b

(x); (10)

are ensured.

The 
ondition (8) means that any os
illating fun
tion lo
alized in both spa
es and

whose integral over the whole spa
e R is null 
an be used as a mother wavelet. A

typi
al 
hoi
e for  is,

 (x) = (1� x

2

)e

�

x

2

2

(11)

the se
ond derivative of the Gaussian fun
tion, sometimes 
alled the mexi
an hat

fun
tion.

2.2 Dis
rete and orthonormal wavelets

Dis
rete wavelets 
orrespond to the 
hoi
es a = a

m

0

; b = nb

0

a

m

0

, indi
ating that the

translation parameter b depends on the 
hosen dilation rate. The family of wavelets

be
omes, then, for m;n 2 Z,

 

m;n

= a

�m=2

0

 (a

�m

0

x� nb

0

): (12)
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The dilation step a

0

is generally taken greater than one and the translation step b

0

di�erent from zero. It is also possible to de�ne wavelets that 
onstitute an orthonormal

basis. They are de�ned as the 
olle
tion,

 

j;k

= 2

�j=2

 (2

�j

x� k); j; k 2 Z: (13)

The simplest and most famous example of orthonormal wavelet basis is the Haar

system already known at the beginning of the 
entury [13℄:

 (x) =

8

<

:

1 0 � x < 1=2

�1 1=2 � x < 1

0 otherwise

The 
onstru
tion of orthonormal wavelet bases is presented in the next part de-

s
ribing the BCR algorithm.

3 BCR Algorithm

The method of de
omposition, �rst proposed by Beylkin, Coifman and Rokhlin (BCR)

[14, 15℄, is based on the notion of multiresolution analysis [16, 17℄. Orthonormal
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wavelets, 
onstru
ted by Daube
hies [18, 19℄ are used as basis fun
tions to represent

some operators. These wavelets are 
ompa
tly supported and lead to sparse matrix

representations. The study of the derivative and of the multipli
ative (by a fun
tion)

operators allows to analyze operators like (1) whose wavelet transform is performed

by sorting out the operator in two parts whi
h are treated individually. The matrix


oeÆ
ients 
orresponding to the kineti
 term are given by an iterative pro
ess de�ned

from relations existing between di�erent s
ales and those related to the potential term

are given by a quadrature formula 
onstru
ted from a Taylor expansion of the integral

kernel 
orresponding to the potential.

3.1 Multiresolution analysis

The theoreti
al 
onstru
tion of orthogonal wavelet families is intimately related to

the notion of multiresolution analysis:

De�nition:

A MultiResolution Analysis is a de
omposition of the Hilbert spa
e L

2

(R) of physi
ally

admissible fun
tions (i.e square integrable fun
tions) into a 
hain of 
losed subspa
es,

: : : � V

2

� V

1

� V

0

� V

�1

� V

�2

: : :

su
h that

�

\

j2Z

V

j

= f0g and

[

j2Z

V

j

is dense in L

2

(R)

� f(x) 2 V

j

, f(2x) 2 V

j�1

� f(x) 2 V

0

, f(x� k) 2 V

0

� There is a fun
tion ' 2 V

0

su
h that f'(x � k)g

k2Z

is an orthonormal basis of

V

0

Let W

j

be the orthogonal 
omplementary subspa
e of V

j

in V

j�1

:

V

j

�W

j

= V

j�1

(14)

This spa
e 
ontains the di�eren
e in information between V

j

and V

j�1

, and allows

the de
omposition of L

2

(R) as a dire
t form:

L

2

(R) = �

j2Z

W

j

(15)

Then, there exists a fun
tion  2 W

0

, 
alled the mother wavelet, su
h that f (x �

k)g

k2Z

is an orthonormal basis of W

0

. The 
orresponding wavelet bases are then


hara
terized by:

'

j;k

(x) = 2

�j=2

'(2

�j

x� k); k; j 2 Z; (16)

 

j;k

(x) = 2

�j=2

 (2

�j

x� k); k; j 2 Z: (17)
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The mother wavelet 
orresponding to the 
hosen wavelet basis veri�es:

Z

R

dx (x)x

m

= 0; m = 0; : : : ;M � 1 ; (18)

whi
h means that it has M vanishing moments.

Sin
e the s
aling fun
tion '(x), and the mother wavelet  (x) belong to V

�1

, they

admit the following expansions:

'(x) =

p

2

L�1

X

k=0

h

k

'(2x� k); h

k

= h'; '

�1;k

i ; (19)

 (x) =

p

2

L�1

X

k=0

g

k

'(2x� k); g

k

= (�1)

k

h

L�k�1

; (20)

where the number L of 
oeÆ
ients is 
onne
ted to the number M of vanishing mo-

ments and is also 
onne
ted to other properties that 
an be imposed to '(x). Fun
-

tions verifying (19) or (20) have their support in
luded in [0; : : : ; L�1℄. Furthermore,

if there exists a 
oarsest s
ale, j = n, and a �nest one, j = 0, the bases 
an be rewrit-

ten as:

'

j;k

(x) =

L�1

X

l=0

h

l

'

j�1;2k+l

(x); j = 1; : : : ; n ; (21)

and

 

j;k

(x) =

L�1

X

l=0

g

l

'

j�1;2k+l

(x); j = 1; : : : ; n : (22)

The wavelet transform of a fun
tion f(x) is then given by two sets of 
oeÆ
ients

de�ned as

d

j

k

=

Z

R

dx f(x) 

j;k

(x) ; (23)

and

s

j

k

=

Z

R

dx f(x)'

j;k

(x) : (24)

Starting with an initial set of 
oeÆ
ients s

0

k

, and using (21) and (22), 
oeÆ
ients

d

j

k

and s

j

k


an be 
omputed by means of the following re
ursive relations:

d

j

k

=

L�1

X

l=0

g

l

s

j�1

2k+l

; (25)
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and

s

j

k

=

L�1

X

l=0

h

l

s

j�1

2k+l

: (26)

CoeÆ
ients d

j

k

, and s

j

k

are 
onsidered in (25) and (26) as periodi
 sequen
es with the

period 2

n�j

. The set d

j

k

, is 
omposed by 
oeÆ
ients 
orresponding to the de
ompo-

sition of f(x) on the basis  

j;k

and s

j

k

may be interpreted as the set of averages at

various s
ales.

3.2 Non Standard form of integral operators

Let us 
onsider operators that 
an be written in an integral form,

Tf(x) =

Z

R

dyK(x; y) f(y) (27)

whereK(x; y) is the integral kernel asso
iated to the operator T . In order to 
arry out


omputations, the representation of an operator 
onsists in writing the 
orresponding

kernel as a matrix. The Non Standard (NS) form related to a wavelet basis de
ompo-

sition leads to sparse matri
es and, as a result, speeds up 
al
ulations. It is obtained

by developing the kernel on the following two dimensional family:

n

 

j;k

(x) 

j;k

0

(y);  

j;k

(x)'

j;k

0

(y); '

j;k

(x) 

j;k

0

(y)

o

j;k;k

0

2Z

: (28)

(the Standard Form is obtained by tensor produ
ts of the 1D basis fun
tions [14, 15℄).

Hen
e, the three sets of 
oeÆ
ients,

�

j

k;k

0

=

ZZ

R

2

dx dyK(x; y) 

j;k

(x) 

j;k

0

(y) ; (29)

�

j

k;k

0

=

ZZ

R

2

dx dy K(x; y) 

j;k

(x)'

j;k

0

(y) ; (30)




j

k;k

0

=

ZZ

R

2

dx dy K(x; y)'

j;k

(x) 

j;k

0

(y) ; (31)

have to be 
omputed. By applying formulae (21) and (22), equations (29), (30), and

(31) may be rewritten as:

�

j

k;k

0

=

L�1

X

l;l

0

=0

g

l

g

l

0

r

j�1

2k+l;2k

0

+l

0

; (32)

�

j

k;k

0

=

L�1

X

l;l

0

=0

g

l

h

l

0

r

j�1

2k+l;2k

0

+l

0

; (33)




j

k;k

0

=

L�1

X

l;l

0

=0

h

l

g

l

0

r

j�1

2k+l;2k

0

+l

0

; (34)
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where r

j

k;k

0

is a fourth set of 
oeÆ
ients de�ned as,

r

j

k;k

0

=

ZZ

R

2

dx dy K(x; y)'

j;k

(x)'

j;k

0

(y) ; (35)

whi
h veri�es the re
ursive rule:

r

j

k;k

0

=

L�1

X

l;k

0

=0

h

l

h

l

0

r

j�1

2k+l;2k

0

+l

0

; (36)

where k; k

0

= 0; : : : ; 2

n�j

� 1, j = 1; : : : ; n.

If one denotes by P

j

the proje
tion operator from L

2

(R) on the subspa
e spanned

by the basis f�

j;k

g

k2Z

, and by R

j

the proje
tion operator on the subspa
e spanned

by the basis f 

j;k

g

k2Z

, then f�

j

k;k

0

g

k;k

0

2Z

, f�

j

k;k

0

g

k;k

0

2Z

, f


j

k;k

0

g

k;k

0

2Z

, fr

j

k;k

0

g

k;k

0

2Z

represent the operators A

j

= R

j

TR

j

, B

j

= R

j

TP

j

, G

j

= P

j

TR

j

, and T

j

= P

j

TP

j

,

respe
tively. The dis
retization T

0

of the operator T on the �nest s
ale j = 0 may be

written as:

T

0

=

n

X

j=1

(A

j

+B

j

+G

j

) + T

n

: (37)

The matrix representation of an operator applied to a fun
tion is then depi
ted by:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

A

1

B

1

G

1

A

2

B

2

G

2

A

3

B

3

G

3

T

3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

d

1

s

1

d

2

s

2

d

3

s

3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

d

01

s

01

d

02

s

02

d

03

s

03

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: (38)

After applying the NS form to a ve
tor, the result is obtained with the following

re
onstru
tion formula:

T

0

f(x) =

n

X

j=1

2

n�j

X

k=0

d

0

j

k

 

j;k

(x) + s

0

j

k

'

j;k

(x): (39)
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4 The Lan
zos algorithm

Simple pro
esses, like the Power Method, require, in prin
iple, an in�nite number of

matrix-ve
tor produ
ts to 
onverge to an eigenve
tor. On the other hand, the Lan
zos

iterations expands ea
h eigenve
tor in a 
onvergent series with a �nite number of terms

[4℄. The Lan
zos method 
an be viewed as a pro
ess of 
omputing a tridiagonal matrix

T orthogonally 
ongruent to A (i.e. T = Q

�

AQ;Q = (q

1

; q

2

; : : : ; q

n

); Q

�

= Q

�1

). The

algorithm need not to go the whole way; it builds up Q

j

= (q

1

; q

2

; : : : ; q

j

) and T

j

=

Q

�

j

AQ

j

by step j and 
an often be stopped at values of j as small as 2

p

n. To 
ompete

in a

ura
y the Lan
zos has to be supplemented with the expli
it orthogonalization

of the Lan
zos ve
tors whi
h, in exa
t arithmeti
, would be orthogonal automati
ally.

Roundo� errors at ea
h iteration step lead to the loss of orthogonality and make

the Lan
zos algorithm very unstable. The version used in this paper in
ludes a

reorthogonalization routine whose detailed features 
an be found in [20℄. Our purpose

here being not to dis
uss or to 
ompare the various orthogonalization strategies, we

refer to the original papers for more details [21, 22, 23, 24℄.

The 
omputation of the eigenvalues from the tridiagonal matrix obtained from the

Lan
zos pro
ess is then performed using a basi
 Givens bise
tion [4℄ whi
h gives, in

some 
ases, better results than the usual QR algorithm. Indeed, for problems whose

eigenvalues are very 
lose to ea
h other, the 
onvergen
e fa
tor of the QR algorithm

is 
lose to 1 whereas it remains bounded by 1/2 for the bise
tion method.

4.1 The theoreti
al Lan
zos iteration

The simple Lan
zos pro
ess for a symmetri
 n�nmatrix A (if A is not hermitian then

a variant exists and is 
alled the Arnoldi pro
ess) 
omputes a sequen
e of Lan
zos

ve
tors q

j

and s
alars �

j

; �

j

as follows:

1. 
hoose a starting ve
tor r

1

6= 0, set q

0

� 0; �

1

= kr

1

k

2. for j = 1; 2; : : : ; do

q

j

= r

j

=�

j

u

j

= Aq

j

� �

j

q

j�1

�

j

= u

�

j

q

j

r

j+1

= u

j

� �

j

q

j

�

j+1

= kr

j+1

k

One pass through step 2 is a Lan
zos step. The equation for one Lan
zos step 
an be

written as:

�

j+1

q

j+1

= Aq

j

� �

j

q

j

� �

j

q

j�1

(40)

In exa
t arithmeti
, the Lan
zos ve
tors q

j

are orthogonal:

jq

�

i

q

k

j = 0; (41)

for i = 1; : : : ; j; k = 1; : : : ; j; k 6= j.

10



4.2 Orthogonalization methods

Whereas in general, the loss of orthogonality is simply 
redited to an a

umulation

of roundo� and 
an
ellation errors, it has been shown that this phenomena is just an

ampli�
ation of the lo
al errors whi
h 
an be explained through re
urren
e formulas.

A theorem quanti�es how the lo
al error is propagated in the algorithm [20℄. Let the

j � j matrix N

j

= (!

ik

) be de�ned by,

N

j

= Q

�

j

Q

j

: (42)

If the Lan
zos ve
tors are orthogonal then N

j

= I

j

(the j � j identity matrix).

Theorem 2 The elements of the matrix N

j

satisfy the following re
urren
e:

!

kk

= 1 for k = 1, : : : ,j,

!

kk�1

= �

k

for k = 2 , : : : ,j,

�

j+1

!

j+1k

= �

k+1

!

jk+1

+ (�

k

� �

j

)!

jk

+ �

k

!

jk�1

� �

j

!

j�1k

+ q

�

j

f

k

� q

�

f

j

,

!

jk+1

= !

k+1j

,

where !

k0

= 0; �

k

= q

�

k

q

k�1

, and f

k

denotes the lo
al roundo� errors at step k.

If the �rst j Lan
zos ve
tors satisfy,

jq

�

i

q

k

j � !

j

; (43)

for i = 1; : : : ; j; k = 1; : : : ; j; k 6= j, then the smallest !

j

will be 
alled the level of

orthogonality. If !

j

=

p

�, where � 
an be the ma
hine roundo� unit or any threshold

given by the user, then the Lan
zos ve
tors are 
alled semiorthogonal.

Simon then showed that the Lan
zos algorithm leads to a

urate results as far as

semiorthogonality is maintained among the Lan
zos ve
tors. He also showed that

both partial reorthogonalization and sele
tive orthogonalization introdu
ed by Parlett

and S
ott [21℄ or himself [24℄ are semiorthogonalization strategies. A

ording to the

result established by Simon, an adapted Gram-S
hmidt orthogonalization routine has

been in
luded in the Lan
zos step in order to keep the semiorthogonality among the

Lan
zos ve
tors during the pro
ess.

5 E�e
tive implementation of the Non Standard

Form

The two parts of the operators under study are separately treated with two di�erents

te
hniques. The NS form of the Lapla
ian term is worked out in an iterative pro
ess

and the potential term by a quadrature formula.

11



5.1 Representation of the Lapla
ian term

The analysis of the operator,

Lf = �

�f

2

; (44)

is, in fa
t, a parti
ular 
ase of the representation of the derivative operator d

p

=dx

p

.

The method for �nding the NS form of this operator is entirely des
ribed by Beylkin

[15℄. Only the most important points of this pro
ess are re
alled. For the p

th

deriva-

tive, the 
omputations of the 
oeÆ
ients de�ned in (29), (30), (31) and (35) lead to

the following s
aling relations:

�

j

k;k

0

= 2

�pj

�

k�k

0

; (45)

�

j

k;k

0

= 2

�pj

�

k�k

0

; (46)




j

k;k

0

= 2

�pj




k�k

0

; (47)

r

j

k;k

0

= 2

�pj

r

k�k

0

; (48)

where

�

l

=

Z

R

dx (x� l) 

(p)

(x) (49)

�

l

=

Z

R

dx (x � l)'

(p)

(x) (50)




l

=

Z

R

dx'(x � l) 

(p)

(x) (51)

r

l

=

Z

R

dx'(x � l)'

(p)

(x) (52)

Using Equations (21) and (22), 
oeÆ
ients f�

l

g

l2Z

, f�

l

g

l2Z

, f


l

g

l2Z


an be written

as expressions involving the set fr

l

g

l2Z

whi
h veri�es itself an iterative rule:

�

l

= 2

p

L�1

X

m;m

0

=0

g

m

g

0

m

r

2l+m�m

0

; (53)

�

l

= 2

p

L�1

X

m;m

0

=0

g

m

h

0

m

r

2l+m�m

0

; (54)




l

= 2

p

L�1

X

m;m

0

=0

h

m

g

0

m

r

2l+m�m

0

; (55)

r

l

= 2

p

L�1

X

m;m

0

=0

h

m

h

0

m

r

2l+m�m

0

: (56)

Starting with an initial guessed set of 
oeÆ
ients, Equation (56) 
an be used in an

iterative way in order to 
ompute fr

l

g

l2Z

. The 
onvergen
e of this pro
ess is rea
hed

in less than ten iterations with a suÆ
ient a

ura
y.

12



5.2 Representation of the potential term

A quadrature formula proposed by Beylkin et al. [14℄ to 
ompute wavelet 
oeÆ
ients

of a smooth fun
tions is des
ribed in this subse
tion. If the s
aling fun
tion '(x)

veri�es the following 
ondition,

Z

R

dx'(x + �)x

m

= 0; m = 1; : : : ;M � 1; � 2 Z; (57)

Z

R

dx'(x) = 1 (58)

and if the fun
tion f(x) that need to be analyzed is smooth enough, then 
oeÆ
ients

s

j

k


an be 
omputed from an expansion of f(x) into a Taylor series around 2

j

(k+ �).

The result is,

s

j

k

= 2

j=2

f(2

j

(k + �)) +O(2

j(M+1=2)

): (59)

This formula is only used for the �nest s
ale where the dis
retization step size is

about 2

�n

, and then the relations (25), (26) are used to 
omputes the 
oarser s
ales


oeÆ
ients.

By applying the quadrature formula to ea
h variable of the kernel K(x; y) 
orre-

sponding to the potential term, the wavelet de
omposition 
an be easily obtained.

6 Numeri
al results

The Harmoni
 Os
illator 
ase is studied in details in order to point out the importan
e

of some parameters as the number of vanishing moments of the mother wavelet or

the dis
retization step size. The numeri
al results given for the pseudo-double well

problem and for the hydrogen atom have been obtained with parameters values leading

to a

eptable a

ura
ies.

6.1 The Harmoni
 Os
illator 
ase

In order to test the method, the �rst ten eigenvalues of the Harmoni
 Os
illator

have been 
omputed. The initial dis
retization 
ontains only 32 points sin
e no more

points were ne
essary to get a

urate results. However, it is obvious that more points

would lead to better results.

Di�erent parameters 
onne
ted to the wavelet de
omposition have to be spe
i-

�ed, the most important being the number of vanishing moments, M , of the mother

wavelet. Numeri
al tests with various values for M have been performed, and only

those 
orresponding to M = 5 and M = 11 are reported in this paper. The 
ompar-

ison of the results 
orresponding to these two values emphasizes the importan
e of

this parameter: greater is the number of vanishing moments, better are the wavelets

representations of the di�erent mathemati
al obje
t. On
e the number of vanishing

moments is �xed, another important parameter is the dis
retization step size. For a

13
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−7
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E
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o
r

Harmonic oscillator

interval: [−4,4]

threshold: 10e−8

nber of points: 32

nber of vanishing moments: 5

given number of points, this parameter 
an be modi�ed by just 
hanging the interval

size. Results 
orresponding to three di�erent sizes are given.

A treshold is ne
essary in two pla
es in the algorithm. The �rst one 
on
erns

the thresholding of the wavelet de
omposition: any wavelet 
oeÆ
ient below a given

threshold � is dis
arded in order to sparsify the datas; and the se
ond one o

urs in

the semiorthogonalization keeping: the level of orthogonality is 
hosen to be equal to

�

3=4

as suggested by Simon in [24℄. The value of � has been �xed equal to 10

�8

. The

numeri
al results for the �rst ten eigenvalues are given in the �gures.

6.2 The Hydrogen atom and the pseudo-double well 
ases

The results and the di�erent parameters used for these problems are given in table

1. It 
an be noti
ed that more points (than for the Harmoni
 Os
illator 
ase) are

required to rea
h reasonable a

ura
ies. This is due to the fa
t that we are trying to

des
ribed singular potentials with non sigular fun
tions.

The result obtained for the pseudo-double well problem is a little bit worst than

those obtained by Modisette in [8℄ for the same problem. Modisette had used a mu
h

14
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interval: [−5,5]

threshold: 10e−8

nber of points: 32

nber of vanishing moments: 5

more 
ompli
ated quadrature than the one point quadrature used in our 
omputa-

tion. On the 
ontrary, the a

ura
y a
hieved for the hydrogen atom is better than

the one obtained by the author with another iterative s
heme in [25℄. These two

experiments show the 
apability of wavelets to give a good representation of a real

singular potential, and to separate 
lose eigenvalues in a spe
trum.

7 Comments

A �rst 
omment 
on
erning the number of vanishing moments 
an be done. As

already emphasized, this parameter a
ts dire
tly onto the a

ura
y. A large number

of vanishing moments leads to a better a

ura
y for the quadrature formula (in the

Taylor expansion, more terms will be exa
tly equal to zero). This parameter also

in
uen
es the quality of the Lapla
ian representation.

The importan
e of the dis
retization step size has already been pointed out in

[25℄, and we refer to this paper for more details about this point.

With a threshold of 10

�8

, the level of orthogonality is maintained around 10

�6

,
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and as stated by Simon [24, 20℄, it is largely suÆ
ient to get a

urate results with the

Lan
zos algorithm.

It should be also emphasized that the Lan
zos method is a very sensitive pro
ess,

and a good a

ura
y in the des
ription of the di�erent parts of the operator is required

to get good �nal results. The simple quadrature formula used for the potential term


an be repla
ed by a more sophisti
ated one in order to improve the �nal a

ura
ies.

Many detailed studies have already been 
arried out, and we refer to these publi
ations

for more details [26℄.

No CPU times are given sin
e the tests have been performed with a rudimentary


ode, and some te
hni
al improvements should be brought to make it 
ompetitive

with 
odes whi
h are running for many years. The aim of this paper was just to

show that a O(N) wavelet-based matrix-ve
tor produ
t 
an be used in any iterative

method instead of a regular produ
t in O(N

2

). The generalization of the method to

three-dimensional problems is in progress and the results will be published in another

issue.
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Table 1: Numeri
al results for operators with a (pseudo) singular potential term

Pseudo-double well Hydrogen Atom

5

th

ex
ited state ground state

Interval [-18,18℄ [-7,7℄

Threshold 10

�8

10

�8

Nber of points 512 512

Vanishing moments 5 5

Exa
t value -0.24825962 -0.5

Result -0.24825517 -0.499659345

Error 2:2� 10

�5

6:8� 10

�4
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