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Abstract. An iterative method is proposed to solve the Schr�odinger eigenvalue problem in a

wavelet framework. Orthonormal wavelets are used to represent the corresponding operator as a

sparse band matrix. This representation, called the Non Standard form, is obtained by means of the

B.C.R. algorithm and brings simpli�cations in the numerical calculations. Problems due to the 1D

mathematical model and to the discretization process receive special attention.
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1. Introduction. Most often, ab initio calculations in molecular quantum

chemistry mean solving the time-independent Schr�odinger equation H	

i

= E

i

	

i

,

where H is the Hamiltonian of the model molecular system, 	

i

is the i

th

wave

function (stationary state), and E

i

the corresponding eigenvalue [1]. However, except

for a few simple systems, exact solutions to this equation are not accessible and

therefore only approximate solutions are known. The mathematical di�culties due

to the nature of the electrostatic interactions are such that explicit solutions for

this problem are not obtainable even if its complexity is reduced by considering

the motion of only the electrons in a �xed nuclear framework (Born-Oppenheimer

approximation) [2].

Finding suitable but manageable approximate solutions to the electronic

Schr�odinger equation has thus been a major preoccupation of quantum chemists. The

procedure most widely used to solve the equations consists in writing the molecular

orbitals as a Linear Combination of Atomic Orbitals (LCAO approximation) which

belong to a given complete set of the Sobolev space H

1

(IR

3

). Computations with

in�nite bases are impracticable in actual calculations and, to obtain accurate results,

truncated, but large basis set expansions are necessary. Because of computer limi-

tations, these basis sets are rarely large enough to provide the required accuracy in

molecules of chemical interest. The error resulting from this truncation is di�cult to

assess, and the way it a�ects the results largely depends on the physical properties

under calculation.

Furthermore, within the traditional LCAO framework, basis sets have a tendency

toward linear dependence as the size of the molecule increases. This is why, during the

last three decades the �nite element method has been explored to solve the Schr�odinger

equation. It has provided very accurate results to solve time-independent problems

for simple systems [3, 4, 5, 6] or even time-dependent problems [7]. However there

are two problems which prevent e�cient application of the �nite element method

to large molecules. The �rst is the large storage requirement for the �nite element

matrices when extended to three dimensional systems. The second is to remove the

singularities inherent to the nuclear potentials.
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Recently, it was pointed out that this last restriction can be removed in momen-

tum space (using a Fourier transform), and attempts to solve numerically the equa-

tions in momentum space have been reported for atoms, diatomic and polyatomic

molecules, and even polymers [8, 9, 10, 11, 12].

However, this analysis, well known by chemists, can be usefully completed by

using a wavelet transform. Results obtained by the authors with continuous wavelets

to solve the Schr�odinger equation for hydrogenlike atoms were considered promising

enough to proceed further with investigations on wavelets in quantum chemistry [13,

14]. After this �rst work, it was natural to be interested by a matrix representation

of operators in order to make numerical computations in a more e�cient way (faster

algorithms requiring less storage) than what can be done with �nite element methods.

This representation has been obtained by means of a decomposition of the Schr�odinger

operator onto an orthonormal wavelet basis [15].

The method of decomposition, �rst proposed by Beylkin, Coifman and Rokhlin

(BCR) [16, 17], is based on the notion of multiresolution analysis [18, 19]. Orthonor-

mal wavelets, constructed by Daubechies [20, 21] are used as basis functions to rep-

resent some operators. These wavelets are compactly supported and lead to sparse

matrix representations. The study of the derivative and of the multiplicative (by a

function) operators allows to analyze the Schr�odinger equation whose wavelet trans-

form is performed by sorting out the operator in two parts which are treated indi-

vidually. The matrix coe�cients corresponding to the kinetic term are given by an

iterative process de�ned from relations existing between di�erent scales and those

related to the potential term are given by a quadrature formula constructed from a

Taylor expansion of the integral kernel corresponding to the operator.

An iterative method for the solution of the hydrogenic Schr�odinger equation,

and using this particular matrix representation, is presented in this paper. Results

obtained and problems related to the discretization are studied in details.

2. BCR Algorithm. Compactly supported wavelets with vanishing moments

constructed by Daubechies are used in this work. These wavelets lead to band matrices

with only few nonzero values around the main diagonal. The numerical evaluation

of the corresponding coe�cients is not described in this paper but can be found in

[20, 21].

2.1. Wavelet decomposition of a function. We denote the scaling function

by '(x) and the wavelet mother by  (x). The corresponding wavelet bases are then

given by:

'

j

k

(x) = 2

�j=2

'(2

�j

x� k); k; j 2 ZZ ;(2.1)

 

j

k

(x) = 2

�j=2

 (2

�j

x� k); k; j 2 ZZ :(2.2)

The wavelet mother corresponding to the chosen wavelet basis veri�es:

Z

IR

dx (x)x

m

= 0; m = 0; : : : ;M � 1 ;(2.3)

which means that it has M vanishing moments.

The scaling function '(x), and the wavelet mother  (x) then verify the following

scaling relations:

'(x) =

p

2

L�1

X

k=0

h

k

'(2x� k); h

k

= h'; '

�1;k

i ;(2.4)
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 (x) =

p

2

L�1

X

k=0

g

k

'(2x� k); g

k

= (�1)

k

h

L�k�1

;(2.5)

where the number L of coe�cients is connected to the number M of vanishing mo-

ments and is also connected to other properties that can be imposed to '(x). Func-

tions verifying (2.4) have their support included in [0; : : : ; L � 1]. Furthermore, if

there exists a coarsest scale, j = n, and a �nest one, j = 0, the bases can be rewritten

as:

'

j;k

(x) =

L�1

X

l=0

h

l

'

j�1;2k+l

(x); j = 1; : : : ; n ;(2.6)

and

 

j;k

(x) =

L�1

X

l=0

g

l

'

j�1;2k+l

(x); j = 1; : : : ; n :(2.7)

The wavelet transform of a function f(x) is then given by two sets of coe�cients

de�ned as

d

j

k

=

Z

IR

dx f(x) 

j;k

(x) ;(2.8)

and

s

j

k

=

Z

IR

dx f(x)'

j;k

(x) :(2.9)

Starting with an initial set of coe�cients s

0

k

, and using (2.8) and (2.9), coe�cients d

j

k

and s

j

k

can be computed by means of the following recursive relations:

d

j

k

=

L�1

X

l=0

g

l

s

j�1

2k+l

;(2.10)

and

s

j

k

=

L�1

X

l=0

h

l

s

j�1

2k+l

:(2.11)

Coe�cients d

j

k

, and s

j

k

are considered in (2.10) and (2.11) as periodic sequences with

the period 2

n�j

. The set d

j

k

, is composed by coe�cients corresponding to the decom-

position of f(x) on the basis  

j;k

and s

j

k

may be interpreted as the set of averages

between scales.

2.2. Non Standard form of integral operators. Let us consider operators

that can be written in an integral form,

Tf(x) =

Z

IR

dy K(x; y) f(y) ;(2.12)

whereK(x; y) is the integral kernel associated to the operator T . In order to carry out

computations, the representation of an operator consists in writing the corresponding
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kernel as a matrix. The Non Standard (NS) form related to a wavelet basis decompo-

sition leads to sparse matrices and, as a result, speeds up calculations. It is obtained

by developing the kernel on the following two dimensional basis:

n

 

j;k

(x) 

j;k

0

(y);  

j;k

(x)'

j;k

0

(y); '

j;k

(x) 

j;k

0

(y)

o

j;k;k

0

2ZZ

:(2.13)

Hence, the three sets of coe�cients,

�

j

k;k

0

=

ZZ

IR

2

dx dyK(x; y) 

j;k

(x) 

j;k

0

(y) ;(2.14)

�

j

k;k

0

=

ZZ

IR

2

dx dyK(x; y) 

j;k

(x)'

j;k

0

(y) ;(2.15)




j

k;k

0

=

ZZ

IR

2

dx dyK(x; y)'

j;k

(x) 

j;k

0

(y) ;(2.16)

have to be computed. By applying formulae (2.8) and (2.9), equations (2.14), (2.15),

and (2.16) may be rewritten as:

�

j

k;k

0

=

L�1

X

l;l

0

=0

g

l

g

l

0

r

j�1

2k+l;2k

0

+l

0

;(2.17)

�

j

k;k

0

=

L�1

X

l;l

0

=0

g

l

h

l

0

r

j�1

2k+l;2k

0

+l

0

;(2.18)




j

k;k

0

=

L�1

X

l;l

0

=0

h

l

g

l

0

r

j�1

2k+l;2k

0

+l

0

;(2.19)

where r

j

k;k

0

is a fourth set of coe�cients de�ned as,

r

j

k;k

0

=

ZZ

IR

2

dx dyK(x; y)'

j;k

(x)'

j;k

0

(y) ;(2.20)

which veri�es the recursive rule:

r

j

k;k

0

=

L�1

X

l;k

0

=0

h

l

h

l

0

r

j�1

2k+l;2k

0

+l

0

;(2.21)

where k; k

0

= 0; : : : ; 2

n�j

� 1, j = 1; : : : ; n.

If one denotes P

j

the projection operator from L

2

(IR) on the subspace spanned

by the basis f�

j;k

g

k2ZZ

, and Q

j

the projection operator on the subspace spanned by

the basis f 

j;k

g

k2ZZ

, then f�

j

k;k

0

g

k;k

0

2ZZ

, f�

j

k;k

0

g

k;k

0

2ZZ

, f


j

k;k

0

g

k;k

0

2ZZ

, fr

j

k;k

0

g

k;k

0

2ZZ

represent the operators A

j

= Q

j

TQ

j

, B

j

= Q

j

TP

j

, G

j

= P

j

TQ

j

, and T

j

= P

j

TP

j

,

respectively. The discretization T

0

of the operator T on the �nest scale j = 0 may be

written as:

T

0

=

n

X

j=1

A

j

+B

j

+G

j

+ T

n

:(2.22)
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The matrix representation of an operator applied to a function is then depicted by:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

A

1

B

1

G

1

A

2

B

2

G

2

A

3

B

3

G

3

T

3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

d

1

s

1

d

2

s

2

d

3

s

3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

d

01

s

01

d

02

s

02

d

03

s

03

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:(2.23)

3. Construction of an iterative process. In the case of hydrogenlike atoms,

the Schr�odinger equation presents spherical symmetry properties which allow to con-

sider only the radial dependence of the problem. Using this property, it is then

possible to transform the usual expression into a one-dimensional equation which can

be studied more easily. The 1D Schr�odinger equation is de�ned by:

Hf(x) = �

1

2

�f(x)�

Z

jxj

f(x); x 2 IR :(3.1)

The 3D-1D transformation leads to consider only functions f(x) which can be written

as:

f(x) = x g(x); x 2 IR ;(3.2)

where g(x) is a \physically acceptable" function [22, 23, 24, 25].

3.1. Iterative process. Starting with an initial function f

(0)

(x), the ground

state of the eigenvalue problem,

Hf(x) = "f(x) ;(3.3)

can be approximated by using the following iterative scheme:

f

(n+1)

(x) = �

�

�

2

+ "

(n)

�

�1

Z

jxj

f

(n)

(x)

= A

n

f

(n)

(x) :(3.4)

The function is normalized at the end of each iteration step, and the energy value is

computed in order to be used at the next iteration.

3.2. Convergence. The scheme (3.4) is closely related to the so-called Power

Method allowing to determine the highest (or the lowest) eigenvalue of an operator

[26, 27]. This kind of method can be written as:

f

(n+1)

= Af

(n)

:(3.5)
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Using process (3.5), the ratio of two successive iterations leads to the highest eigen-

value. Although being similar, scheme (3.4) cannot be written as (3.5) because the

matrix A

n

in the process (3.4) changes at each iteration step. Furthermore, the goal

of the computation is not to determine the lowest eigenvalue of A

n

but the lowest one

of the problem (3.3).

However, it is possible to obtain arguments about the convergence of (3.4) from

the convergence of (3.5). Details about this result can be found in [28].

4. Implementation. The NS form given by the BCR algorithm is used to com-

pute the matrix-vector products entering (3.4). The �rst step to obtain a NS form

is to determine the coe�cients corresponding to a discretization at the scale j = 0.

The coe�cients corresponding to the other scales can be obtained from these ones by

using relations (2.10), (2.11), (2.17), (2.18), (2.19), and (2.21).

Both techniques described in [15] are used to build the NS decomposition corre-

sponding to the operator,

�

2

+ "

(n)

:(4.1)

This matrix is then inverted and the result is also expressed in a NS form. A quadra-

ture formula is used to determine the decompositions of the potential term and of

f

(n)

(x), and their NS forms are used to compute their product (the result is recon-

structed and decomposed in a NS form). The result of the last product between the

inverse matrix and Zf

(n)

=jxj is then reconstructed. The corresponding energy is com-

puted to estimate the convergence of the process and to be used at the next iteration

step. A test to stop the process is introduced after the energy evaluation.

The various calculations which have to be done to perform one iteration of the

process can be summarized as follows:

1. Determination of the NS form of

�

2

+ "

(n)

.

2. Inversion of the matrix of

�

2

+ "

(n)

using its NS decomposition.

3. Determination of the NS form of

Z

jxj

.

4. Determination of the NS form of f

(n)

(x).

5. Multiplication of result 4 by result 5:

Z

jxj

f

(n)

(x).

6. Reconstruction and determination of the NS form of result 5.

7. Multiplication of result 2 by result 6:

�

�

2

+ "

(n)

�

�1

Z

jxj

f

(n)

(x).

8. Reconstruction and determination of the NS form of result 7.

9. Computation of the energy from the function obtained in 8.

In fact, steps 3, 4, 5 and 6, performed during the computation of step 9 of iteration

n� 1, are essential intermediate steps to determine the contribution of the potential

term in the total energy at iteration n. In practice, it is su�cient to store the vector

corresponding to the NS form of the potential term from one iteration to the next

one.

These various steps require O(N) operations (using the quadrature formula at

step 3). The inversion in step 2 is performed by using the Schultz method, with a fast

matrix multiplication algorithm [9]. The inverse, namely the operator A

n

, is sym-

metric and the corresponding matrix representation is sparse. In particular, it can be

speci�ed that 29% of the coe�cients are greater than 10

�14

and only 11% are greater

than 10

�6

(localized in a band structure around the main diagonal). The sparsity of

the representation of the wave function itself is quite fussy to assess since it depends

on the discretization step size. Indeed, for a given number of discretization points,
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it has already been shown in [15] that the accuracy can be signi�cantly improved by

reducing the size of the discretization interval (leading also to a dense representation).

Using this trick, a compromise between the sparsity and the accuracy has to be done.

The importance of the discretization step size is emphasized in the next part.

5. Applications. The number L of coe�cients fh

k

g is equal to 3M , and the

results presented in the sequel have been obtained with M = 4. The results do not

present signi�cant di�erences with those obtained withM = 6. The program has been

run for several values of N (number of discretization points), and the results given in

this paper correspond to N = 256. It will be shown in the sequel that the size of the

discretization step is a determining factor for the convergence of the process.

The graphs of the evolution of the energy with the number of iterations for two

values of the nucleus charge Z (Z = 1; 2) are shown in Figs. 5.1 and 5.2. These �gures

show the �rst 30 iterations, and have been obtained with a size of discretization step

leading to the best total energy for the initial function, i.e. a single optimized Gaussian

function.

In both cases a �rst convergence plateau around the theoretical expectation value

is followed by a strong energy decrease. Then, another convergence regime sets up

around a second plateau located at a much lower energy value than the �rst one. The

problem is then to give a physical interpretation of this second plateau.

0 5 10 15 20 25 30
Iteration steps

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

En
erg

y

Fig. 5.1. Evolution of the energy with the number of iterations; H : Z = 1.

5.1. Mathematical origin of the second plateau. This phenomenon has its

origin in the use of a quadrature formula to determine the NS form of the potential

term which transforms the Coulombic singularity into a \pseudo-potential" without

singularity. Hence, the second plateau corresponds exactly to the real ground state

related to this pseudo-potential [29].

This hypothesis is veri�ed by modifying the pseudo-potential in order to follow the

behavior of the second plateau. This is done by changing the size of the discretization
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0 5 10 15 20 25 30
Iteration steps

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0
En

erg
y

Fig. 5.2. Evolution of the energy with the number of iterations; He

+

: Z = 2.

step. In order to keep a good accuracy in the results, the number of discretization

points is kept equal to 256, but the size of the interval is modi�ed. The graphs

corresponding to various sizes of interval are shown in Fig. 5.3 for the case Z = 1 (the

same analysis can be done for other values of Z;Z > 0).

It can be noticed that the �rst plateau remains located around the exact energy

value for the ground state of H and He

+

(" = �0:5 for H , and " = �2:0 for He

+

)

while the value of the second strongly depends on the point density.

The energy values achieved on the �rst plateau for the various discretization step

sizes are summarized in the table 1, and can be compared to the theoretical energy.

It can be noticed that the best initial interval size does not lead to the best accuracy

after the convergence. This can be easily explained by the fact that the exact solution

(i.e. the so-called Slater function) is wider than the initial function.

As expected, to a higher density of points corresponds a deeper pseudo-potential

with a lower ground state. In the limit, the singular potential would be restored and

the ground state would have a negative in�nite energy [29]. However, this ground

state does not correspond to a physically acceptable state for hydrogenlike atoms.

Indeed, it will be outlined in the sequel that the corresponding probability density is

a delta function �(x).

5.2. Physical admissibility of the solutions. The evolution of the wave func-

tion itself instead of the energy is studied in this part. The graphs of the initial

function, the 11th iterate (�rst plateau of convergence) and the exact solution of the

problem are shown in Fig. 5.4. It must be born in mind that, due to condition (3.2),

functions are antisymmetric by construction.

It is obvious from Fig. 5.4 that to the �rst energy plateau corresponds a real

convergence towards the exact solution. Furthermore, Fig. 5.5 shows that the next

iterations distort the function and lead to a symmetrical behavior which is reminiscent

of a delta function. This function is exactly the ground state corresponding to the
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0 10 20 30 40 50 60 70 80 90 100
Iteration steps

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0
En

er
gy

 [-127,128]

 [-63.5,64]

 [-12.7,12.8]

 ~ [-8.5,8.5]

 ~ [-5.8,5.8]

Fig. 5.3. Evolution of the energy with the number of iterations for various intervals; atom

H(Z = 1).

Table 5.1

Energy values for the initial function and for the function achieved on the �rst plateau for

various interval sizes.

[-127:128] [-63.5:64] [-12.7:12.8] [-8.5:8.5] [-5.8:5.8]

"

(0)

-0.3199111 -0.4034546 -0.4236139 -0.4240615 -0.4242511

Error 3:60 10

�1

1:93 10

�1

1:53 10

�1

1:52 10

�1

1:51 10

�1

"

(n)

-0.3757223 -0.4484342 -0.4969135 -0.4985831 -0.4983637

Error 2:49 10

�1

1:03 10

�1

6:17 10

�3

2:83 10

�3

3:27 10

�3

pseudo-potential, but it does not verify the condition of physical admissibility (3.2).

This analysis points to the fact that the second plateau observed in Fig. 5.1 (or

in Fig. 5.2) corresponds to a \mathematical" solution of the 1D discretized problem.

A possible way to avoid this undesired solution is to constrain the antisymmetry of

the wave function at each iteration step. This can be easily achieved by means of the
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-7.06 -5.29 -3.53 -1.76 0.00 1.76 3.53 5.29 7.06
-0.15

-0.10

-0.05

0.00

0.05

0.10

Exact solution

Initial function

11th iteration

Fig. 5.4. Graphs of various functions: initial function, 11th iteration and exact solution.

-7.06 -5.29 -3.53 -1.76 0.00 1.76 3.53 5.29 7.06
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

11th iteration

12th iteration

13th iteration

14th iteration

15th iteration

35th iteration

Fig. 5.5. Graphs of various functions: 11th iteration, 12th iteration, 13th iteration, 14th

iteration, 15th iteration and 35th iteration.

following computational device:

f(x

i

)

n

=

f(x

i

)

0

� f(�x

i

)

0

2

;(5.1)

with f(x

i

)

0

: value of f in x

i

before antisymmetrization,

f(x

i

)

n

: value of f in x

i

after antisymmetrization.
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The physical ground state of the initial 3D problem can thus be obtained by

using the iterative method equipped with this antisymmetry requirement. It su�ces

to divide the positive part of the result by x to obtain the radial behavior of the exact

3D wave function corresponding to the ground state.

6. Conclusion. In this work, we have used orthonormal wavelets to decompose

the Schr�odinger operator in a NS form. This particular representation has been used

in an iterative method to solve the corresponding eigenvalue problem for hydrogenlike

atoms. Results have shown that this method is really suited to this kind of problem.

In particular, it has been shown that a particular attention is required when math-

ematical or numerical models are used to approximate a solution. This work opens

the prospect of applying wavelets to study polyatomic and extended systems which

are of interest to chemists.

Wavelets, mainly used in signal analysis are expected to be of interest in chemistry

and in physics. This work, and others [30, 31], show that wavelet-based methods have

a real promise to help solving physical problems.
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