NUMERICAL SOLUTION OF THE SCHRODINGER EQUATION IN
A WAVELET BASIS FOR HYDROGENLIKE ATOMS
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Abstract. An iterative method is proposed to solve the Schrodinger eigenvalue problem in a
wavelet framework. Orthonormal wavelets are used to represent the corresponding operator as a
sparse band matrix. This representation, called the Non Standard form, is obtained by means of the
B.C.R. algorithm and brings simplifications in the numerical calculations. Problems due to the 1D
mathematical model and to the discretization process receive special attention.
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1. Introduction. Most often, ab initio calculations in molecular quantum
chemistry mean solving the time-independent Schrodinger equation HY; = E;¥,,
where H is the Hamiltonian of the model molecular system, ¥; is the i** wave
function (stationary state), and E; the corresponding eigenvalue [1]. However, except
for a few simple systems, exact solutions to this equation are not accessible and
therefore only approximate solutions are known. The mathematical difficulties due
to the nature of the electrostatic interactions are such that explicit solutions for
this problem are not obtainable even if its complexity is reduced by considering
the motion of only the electrons in a fixed nuclear framework (Born-Oppenheimer
approximation) [2].

Finding suitable but manageable approximate solutions to the electronic
Schrédinger equation has thus been a major preoccupation of quantum chemists. The
procedure most widely used to solve the equations consists in writing the molecular
orbitals as a Linear Combination of Atomic Orbitals (LCAO approximation) which
belong to a given complete set of the Sobolev space H'(IR*). Computations with
infinite bases are impracticable in actual calculations and, to obtain accurate results,
truncated, but large basis set expansions are necessary. Because of computer limi-
tations, these basis sets are rarely large enough to provide the required accuracy in
molecules of chemical interest. The error resulting from this truncation is difficult to
assess, and the way it affects the results largely depends on the physical properties
under calculation.

Furthermore, within the traditional LCAO framework, basis sets have a tendency
toward linear dependence as the size of the molecule increases. This is why, during the
last three decades the finite element method has been explored to solve the Schrédinger
equation. It has provided very accurate results to solve time-independent problems
for simple systems [3, 4, 5, 6] or even time-dependent problems [7]. However there
are two problems which prevent efficient application of the finite element method
to large molecules. The first is the large storage requirement for the finite element
matrices when extended to three dimensional systems. The second is to remove the
singularities inherent to the nuclear potentials.
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Recently, it was pointed out that this last restriction can be removed in momen-
tum space (using a Fourier transform), and attempts to solve numerically the equa-
tions in momentum space have been reported for atoms, diatomic and polyatomic
molecules, and even polymers [8, 9, 10, 11, 12].

However, this analysis, well known by chemists, can be usefully completed by
using a wavelet transform. Results obtained by the authors with continuous wavelets
to solve the Schréodinger equation for hydrogenlike atoms were considered promising
enough to proceed further with investigations on wavelets in quantum chemistry [13,
14]. After this first work, it was natural to be interested by a matrix representation
of operators in order to make numerical computations in a more efficient way (faster
algorithms requiring less storage) than what can be done with finite element methods.
This representation has been obtained by means of a decomposition of the Schrédinger
operator onto an orthonormal wavelet basis [15].

The method of decomposition, first proposed by Beylkin, Coifman and Rokhlin
(BCR) [16, 17], is based on the notion of multiresolution analysis [18, 19]. Orthonor-
mal wavelets, constructed by Daubechies [20, 21] are used as basis functions to rep-
resent some operators. These wavelets are compactly supported and lead to sparse
matrix representations. The study of the derivative and of the multiplicative (by a
function) operators allows to analyze the Schrodinger equation whose wavelet trans-
form is performed by sorting out the operator in two parts which are treated indi-
vidually. The matrix coefficients corresponding to the kinetic term are given by an
iterative process defined from relations existing between different scales and those
related to the potential term are given by a quadrature formula constructed from a
Taylor expansion of the integral kernel corresponding to the operator.

An iterative method for the solution of the hydrogenic Schriédinger equation,
and using this particular matrix representation, is presented in this paper. Results
obtained and problems related to the discretization are studied in details.

2. BCR Algorithm. Compactly supported wavelets with vanishing moments
constructed by Daubechies are used in this work. These wavelets lead to band matrices
with only few nonzero values around the main diagonal. The numerical evaluation
of the corresponding coefficients is not described in this paper but can be found in
[20, 21].

2.1. Wavelet decomposition of a function. We denote the scaling function
by ¢(x) and the wavelet mother by ¢ (z). The corresponding wavelet bases are then
given by:

(2.1) pr(e) =27 02 e —k), kjeZ,
(2.2) Yh() =292z —k), kjeZ.

The wavelet mother corresponding to the chosen wavelet basis verifies:
(2.3) /dazz/)(az)mmzo, m=0,...,M -1,
R

which means that it has M vanishing moments.
The scaling function (), and the wavelet mother () then verify the following
scaling relations:

L—1
(2.4) p(x) = V2 hipRe—k), T =(p, 0 14),
k=0
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L—1
(2.5) (@) =v2Y giee—k), gr=(-1FhLs 1,
k=0

where the number L of coefficients is connected to the number M of vanishing mo-
ments and is also connected to other properties that can be imposed to ¢(x). Func-
tions verifying (2.4) have their support included in [0,...,L — 1]. Furthermore, if
there exists a coarsest scale, j = n, and a finest one, j = 0, the bases can be rewritten
as:

L1

(2.6) @ik(@) =D Mg 1oku(r), j=1,...,n,
1=0

and
L1

(2.7) Yjk(z) = Zgl pj-12641(2), J=1,...,n.
1=0

The wavelet transform of a function f(z) is then given by two sets of coefficients
defined as

(2.8) %=Lmﬂmwmm
and
(2.9) %=@mﬂmwmm

Starting with an initial set of coefficients s}, and using (2.8) and (2.9), coefficients di
and s; can be computed by means of the following recursive relations:

L—-1

(2.10) di =Y 0sh
=0

and
L-1

(2.11) st=) hish .
=0

Coefficients di, and si are considered in (2.10) and (2.11) as periodic sequences with
the period 2777, The set di, is composed by coefficients corresponding to the decom-
position of f(z) on the basis ¢, and sfc may be interpreted as the set of averages
between scales.

2.2. Non Standard form of integral operators. Let us consider operators
that can be written in an integral form,

(2.12) waﬁiédWﬁwa@%

where K (z,y) is the integral kernel associated to the operator 7. In order to carry out
computations, the representation of an operator consists in writing the corresponding
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kernel as a matrix. The Non Standard (NS) form related to a wavelet basis decompo-
sition leads to sparse matrices and, as a result, speeds up calculations. It is obtained
by developing the kernel on the following two dimensional basis:

(2.13) {%‘,k(ff) Vi (Y), Vik(@) 0 (Y), k() sk (y)}

Gk EZ

Hence, the three sets of coefficients,

(2.14) ol = / / dz dy K (2, y) y.0(2) V0 ()
B?

(2.15) Bl = / / do dy K (z,y) bj.(2) 0500 ()
R2

(2.16) e = / / dz dy K (2,9) 0 (2) i ()
R2

have to be computed. By applying formulae (2.8) and (2.9), equations (2.14), (2.15),
and (2.16) may be rewritten as:

L—1
i j—1
(2.17) Qg = Z GLIU Mok 2k 1 o
L,I'=0
L—1
i j—1
(2.18) B = Z gl oy ok g s
L,I'=0
L—1
i J—1
(2.19) Vi = Z b gu o ok o s

1,I'=0

where Ti,k’ is a fourth set of coefficients defined as,
(2.20) e = [[ dedy K@) pia@ i)
Bz

which verifies the recursive rule:

L—-1

J _ Jj—1
(2.21) Tkt = Z by hye Tokt1,2k +17 >
1,k'=0

where k, k' =0,...,2" 7 —~1,j=1,...,n.

If one denotes P; the projection operator from L?(IR) on the subspace spanned
by the basis {¢;r}rez, and @Q; the projection operator on the subspace spanned by
the basis {¢;k }rez, then {og v iwez, By terez Miptrez, Ty tekez
represent the operators A; = Q;17Q;, Bj = Q;TF;, G; = P;TQj, and T; = P;TP;,
respectively. The discretization Ty of the operator T' on the finest scale j = 0 may be
written as:

(2.22) Ty=> Aj+Bj+G;+T,.
j=1
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The matrix representation of an operator applied to a function is then depicted by:

Ay By d* d'"*
Gl 81 Sll
(2.23) * =
Ao By d? d"”
Gz 82 812
As Bs d? d"
G3 T3 83 8,3

3. Counstruction of an iterative process. In the case of hydrogenlike atoms,
the Schrédinger equation presents spherical symmetry properties which allow to con-
sider only the radial dependence of the problem. Using this property, it is then
possible to transform the usual expression into a one-dimensional equation which can
be studied more easily. The 1D Schrédinger equation is defined by:

z
]

The 3D-1D transformation leads to consider only functions f(z) which can be written
as:

(3.2) fz)==z9(z), zecR,

(3.1) Hi(z) = —5Af(r) ~ /@), weR.

where g(z) is a “physically acceptable” function [22, 23, 24, 25].

3.1. Iterative process. Starting with an initial function f(®(z), the ground
state of the eigenvalue problem,

(3.3) Hf(x) =ef(x) ,
can be approximated by using the following iterative scheme:
A tz
() (p) = — [ =2 (n) Z £(n)
P == (G 4]

(3.4) = A, f"(z) .

The function is normalized at the end of each iteration step, and the energy value is
computed in order to be used at the next iteration.

3.2. Convergence. The scheme (3.4) is closely related to the so-called Power
Method allowing to determine the highest (or the lowest) eigenvalue of an operator
[26, 27]. This kind of method can be written as:

(3.5) ft) = 40
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Using process (3.5), the ratio of two successive iterations leads to the highest eigen-
value. Although being similar, scheme (3.4) cannot be written as (3.5) because the
matrix A, in the process (3.4) changes at each iteration step. Furthermore, the goal
of the computation is not to determine the lowest eigenvalue of A,, but the lowest one
of the problem (3.3).

However, it is possible to obtain arguments about the convergence of (3.4) from
the convergence of (3.5). Details about this result can be found in [28].

4. Implementation. The NS form given by the BCR algorithm is used to com-
pute the matrix-vector products entering (3.4). The first step to obtain a NS form
is to determine the coefficients corresponding to a discretization at the scale j = 0.
The coefficients corresponding to the other scales can be obtained from these ones by
using relations (2.10), (2.11), (2.17), (2.18), (2.19), and (2.21).

Both techniques described in [15] are used to build the NS decomposition corre-
sponding to the operator,

(4.1) 2w
2

This matrix is then inverted and the result is also expressed in a NS form. A quadra-
ture formula is used to determine the decompositions of the potential term and of
) (z), and their NS forms are used to compute their product (the result is recon-
structed and decomposed in a NS form). The result of the last product between the
inverse matrix and Z f(™) /|z| is then reconstructed. The corresponding energy is com-
puted to estimate the convergence of the process and to be used at the next iteration
step. A test to stop the process is introduced after the energy evaluation.

The various calculations which have to be done to perform one iteration of the
process can be summarized as follows:

1. Determination of the NS form of % + e,

Inversion of the matrix of % + & using its NS decomposition.
Determination of the NS form of ‘TZ‘

Determination of the NS form of f(")(x).
Multiplication of result 4 by result 5: FZ‘ ) ().
Reconstruction and determination of the NS form of result 5.
Multiplication of result 2 by result 6: (5 + 5(”))71 %f(n) (z).
Reconstruction and determination of the NS form of result 7.

9. Computation of the energy from the function obtained in 8.
In fact, steps 3, 4, 5 and 6, performed during the computation of step 9 of iteration
n — 1, are essential intermediate steps to determine the contribution of the potential
term in the total energy at iteration n. In practice, it is sufficient to store the vector
corresponding to the NS form of the potential term from one iteration to the next
one.

These various steps require O(NN) operations (using the quadrature formula at
step 3). The inversion in step 2 is performed by using the Schultz method, with a fast
matrix multiplication algorithm [9]. The inverse, namely the operator A,,, is sym-
metric and the corresponding matrix representation is sparse. In particular, it can be
specified that 29% of the coefficients are greater than 1071 and only 11% are greater
than 1075 (localized in a band structure around the main diagonal). The sparsity of
the representation of the wave function itself is quite fussy to assess since it depends
on the discretization step size. Indeed, for a given number of discretization points,

X N OtE L



Energy

NUMERICAL SOLUTION 7

it has already been shown in [15] that the accuracy can be significantly improved by
reducing the size of the discretization interval (leading also to a dense representation).
Using this trick, a compromise between the sparsity and the accuracy has to be done.
The importance of the discretization step size is emphasized in the next part.

5. Applications. The number L of coefficients {ht} is equal to 3M, and the
results presented in the sequel have been obtained with M = 4. The results do not
present significant differences with those obtained with M = 6. The program has been
run for several values of N (number of discretization points), and the results given in
this paper correspond to N = 256. It will be shown in the sequel that the size of the
discretization step is a determining factor for the convergence of the process.

The graphs of the evolution of the energy with the number of iterations for two
values of the nucleus charge Z (Z = 1, 2) are shown in Figs. 5.1 and 5.2. These figures
show the first 30 iterations, and have been obtained with a size of discretization step
leading to the best total energy for the initial function, i.e. a single optimized Gaussian
function.

In both cases a first convergence plateau around the theoretical expectation value
is followed by a strong energy decrease. Then, another convergence regime sets up
around a second plateau located at a much lower energy value than the first one. The
problem is then to give a physical interpretation of this second plateau.

0.0 [

-1.0 | E
-15 | :

2.0 [ .

-40 [ 1

-5.0 : ' .
o 5 10 15 20 25 30

Iteration steps

FiG. 5.1. Evolution of the energy with the number of iterations; H : Z = 1.

5.1. Mathematical origin of the second plateau. This phenomenon has its
origin in the use of a quadrature formula to determine the NS form of the potential
term which transforms the Coulombic singularity into a “pseudo-potential” without
singularity. Hence, the second plateau corresponds exactly to the real ground state
related to this pseudo-potential [29].

This hypothesis is verified by modifying the pseudo-potential in order to follow the
behavior of the second plateau. This is done by changing the size of the discretization
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FiG. 5.2. Ewvolution of the energy with the number of iterations; He™ : Z = 2.

step. In order to keep a good accuracy in the results, the number of discretization
points is kept equal to 256, but the size of the interval is modified. The graphs
corresponding to various sizes of interval are shown in Fig. 5.3 for the case Z = 1 (the
same analysis can be done for other values of Z, Z > 0).

It can be noticed that the first plateau remains located around the exact energy
value for the ground state of H and He™ (¢ = —0.5 for H, and ¢ = —2.0 for He™)
while the value of the second strongly depends on the point density.

The energy values achieved on the first plateau for the various discretization step
sizes are summarized in the table 1, and can be compared to the theoretical energy.
It can be noticed that the best initial interval size does not lead to the best accuracy
after the convergence. This can be easily explained by the fact that the exact solution
(i.e. the so-called Slater function) is wider than the initial function.

As expected, to a higher density of points corresponds a deeper pseudo-potential
with a lower ground state. In the limit, the singular potential would be restored and
the ground state would have a negative infinite energy [29]. However, this ground
state does not correspond to a physically acceptable state for hydrogenlike atoms.
Indeed, it will be outlined in the sequel that the corresponding probability density is
a delta function d(z).

5.2. Physical admissibility of the solutions. The evolution of the wave func-
tion itself instead of the energy is studied in this part. The graphs of the initial
function, the 11th iterate (first plateau of convergence) and the exact solution of the
problem are shown in Fig. 5.4. It must be born in mind that, due to condition (3.2),
functions are antisymmetric by construction.

It is obvious from Fig. 5.4 that to the first energy plateau corresponds a real
convergence towards the exact solution. Furthermore, Fig. 5.5 shows that the next
iterations distort the function and lead to a symmetrical behavior which is reminiscent
of a delta function. This function is exactly the ground state corresponding to the
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Fi1Gc. 5.3. FEvolution of the energy with the number of iterations for various intervals; atom
H(Z=1).

TABLE 5.1

Energy values for the initial function and for the function achieved on the first plateau for
various interval sizes.

[127:128] | [-63.5:64] | [[12.7:12.8] | [-8.5:8.5] | [-5.8:5.8]
e© 1 -0.3199111 | -0.4034546 | -0.4236139 | -0.4240615 | -0.4242511

Error | 3.6010~' | 1.9310~' | 1.5310~! | 1.5210~' | 1.51107!
eM | 203757223 | -0.4484342 | -0.4969135 | -0.4985831 | -0.4983637

Error | 249107 | 1.03107! | 6.17107% | 2.8310=% | 3.271073

pseudo-potential, but it does not verify the condition of physical admissibility (3.2).

This analysis points to the fact that the second plateau observed in Fig. 5.1 (or
in Fig. 5.2) corresponds to a “mathematical” solution of the 1D discretized problem.
A possible way to avoid this undesired solution is to constrain the antisymmetry of
the wave function at each iteration step. This can be easily achieved by means of the
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—— Exact solution

0.00 s T e TS Initial function

---- 11th iteration
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Fi1G. 5.4. Graphs of various functions: initial function, 11th iteration and exact solution.

0.10 - B

0.05 1

0.00 —— 11thiteration
——————————— 12th iteration

-0.05 ¢ -~ -~ 13thiteration

-0.10 F 1 ——- 14thiteration
—-— 15thiteration

-0.15 ] . .
——— 35th iteration
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-7.06 -5.29 -3.53 -1.76 0.00 1.76 3.53 5.29 7.06

Fi1c. 5.5. Graphs of various functions: 11th iteration, 12th iteration, 13th iteration, 14th
iteration, 15th iteration and 35th iteration.

following computational device:

(5.1) F@i)n = f(i)o —2f(—$i)0 ,

with  f(x;)o:  value of f in x; before antisymmetrization,
flx;)n:  value of f in z; after antisymmetrization.
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The physical ground state of the initial 3D problem can thus be obtained by
using the iterative method equipped with this antisymmetry requirement. It suffices
to divide the positive part of the result by = to obtain the radial behavior of the exact
3D wave function corresponding to the ground state.

6. Conclusion. In this work, we have used orthonormal wavelets to decompose
the Schrédinger operator in a NS form. This particular representation has been used
in an iterative method to solve the corresponding eigenvalue problem for hydrogenlike
atoms. Results have shown that this method is really suited to this kind of problem.
In particular, it has been shown that a particular attention is required when math-
ematical or numerical models are used to approximate a solution. This work opens
the prospect of applying wavelets to study polyatomic and extended systems which
are of interest to chemists.

Wavelets, mainly used in signal analysis are expected to be of interest in chemistry
and in physics. This work, and others [30, 31], show that wavelet-based methods have
a real promise to help solving physical problems.
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