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Abstract

The widely accepted theory of two-dimensional turbulence predicts a di-
rect enstrophy cascade with an energy spectrum that behaves in terms of the
frequency range k as k=3 and an inverse energy cascade with a k=%/3 decay.
However, the graphic representation of the energy spectrum (even its shape)
is closely related to the tool which is used to perform the numerical computa-
tion. With the same initial flow, eventually treated thanks to different tools
such as wavelet decompositions or POD representations, the energy spectra are
computed using direct various methods : FFT, auto-covariance function, auto
regressive model, and wavelet transform. Numerical results are compared to
each other and confronted with theoretical predictions. In a forthcoming part
IT some adaptative methods combined with the above direct ones will be devel-
oped.
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1 Introduction

The study of two-dimensional turbulence theory was initiated by Kolmogorov [16,
17], Batchelor [3], and Kraichnan [18]-[20]. The theoretical prediction of two inertial
ranges is a consequence of both energy and enstrophy conservation laws in the two-
dimensional Navier-Stokes (NS) equations. Observing these two ranges in numerical
or physical experiments remains a still up-to-date challenge within the frame of
turbulence studies.

It follows from the works of Kraichnan and Batchelor that a local cascade of
enstrophy from the injection scale to the smaller scales leads to a value of —3 for the
slope in the representation of the logarithm of the energy spectrum in terms of the
logarithm of the wave number. According to Saffman [32], the dominant contribu-
tion in the energy spectrum comes from effects resulting from the discontinuities of
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vorticity. The value of the slope is then predicted to be —4. However, the rough value
that is obtained by numerical simulations is in general located between these two
theoretical values. Vassilicos and Hunt [37] demonstrated that accumulating spirals
above vortices make the flow more singular so that the slope is attenuated down to
the value of —5/3. The creation of vorticity filaments leading to these accumulating
spirals occurs during the vortices merging process [15]. This process transfers energy
to larger scales, thus creating the inverse energy cascade. The overall energy spec-
trum is depicted in Figure 1. While several numerical simulations and experiments
have shown results, which agree in some relative way the theoretical predictions,
few have really materialised the coexistence of both cascades [21, 6, 34, 35]. The
experiment by Rutgers [31], using fast flowing soap films, remains one among such
few realisations.

Starting from Direct Numerical Simulations (DNS) of Navier-Stokes (NS) equa-
tions that reveal the coexistence of both slopes, the main goal of this paper is to
point out the difficulties encountered when analysing the results. Indeed, most of
the methods are very sensitive to the various parameters and thus the same method
can lead to significantly different results according to the choice of the parame-
ters. Therefore, for each method we specify the adequate range of values to obtain
relevant results.

We consider the flow behind an array of cylinders in a channel with rows of small
cylinders along the vertical edges of the channel (Figure 2). We will compare numer-
ical methods (based on Fourier, wavelets, and/or statistical models) that one can
use to materialise (and then compute) energy spectra from numerical data (Section
3). The section 4 will be devoted to decomposition/reconstruction methods based
on the Karhunen-Loeve [24, 33] decomposition and cosine or wavelet packets. In the
forthcoming part II such decomposition/reconstruction methods will be combined
with a matching pursuit algorithm [26]. A complementary study of two-dimensional
turbulence based on the velocity and the vorticity analysis will be addressed in an-
other publication. Those interested in two-dimensional turbulence theory should
refer to Lesieur [22], Frisch [10], or Tabeling [36] for a complete overview on the
topic.

Figure 1: Theoretical spectrum cascades in 2D turbulence
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2 Description of the experiments and numerical results

The numerical simulation of a two-dimensional channel flow perturbed by arrays
of cylindersis performed, as shown in Figure 2 . The length of the channel € is
four times its width L ; the Reynolds number based on the diameter of the bigger
cylinders (equal to 0.1 x L) is Re = 50000.

The experiment consists in solving numerically the NS/Brinkman model described
below (1) in Q = Q, U Qf where 2, (the "obstacle” subset) is the union of the five
horizontal disks together with 18 small disks (with diameter equal to 0.05 x L) and
1y is the fluid domain as shown on Figure 2.

The evolutions in time of the velocity (two components), of the vorticity, and of
the pressure have been recorded at a monitoring point located at (1 = 3L/8,z9 =
13L/16) sufficiently far away from the horizontal cylinders to take into account the
developed turbulent events. These 1D temporal signals are then analysed and used
to compute the energy spectra.

Numerical results obtained through such DNS can be compared to those obtained
in the experiments realised thanks to physical devices by Hamid Kellay in [7] : a
soap film in a rectangular channel is disturbed by five big cylinders together with
two rows of smaller cylinders.

Let €24 be the fluid domain; its boundary is defined by 02y = 0Q,UTI' pUT'y Ul
(see Figure 2). A non-homogeneous Poiseuille flow is imposed on the boundary I'p
as well as a no-slip boundary condition is imposed on the pieces of the boundary
T'yw. The obstacles are taken into account by a penalisation procedure that adds
a mass term in the equations, which are now specified on the whole domain §2 as
in [2]. Thus, we are looking for the solution of the following initial boundary value
problem :

BtU—i—(U-V)U—diVU(U,p)—i—%U = 0in Qr =02 x(0,7)
divU = 0in Qp
U(-,0) = UpinQ
U = UponTpx(0,7T)
U = 0onTw x(0,7T)

1
U(U,p)-n—i—i(U-n)*(U—Umf) = o(U™ p"f) .non 'y
(1)

where o (U, p) is the stress tensor, U = (u,v) is the velocity vector, p is the pressure,
Uy is the initial datum, Up the Poiseuille flow at the entrance section of the channel,
Uref and p"¢f a reference flow used to write non-reflecting boundary conditions on
the artificial exit section of the channel [8]. In this NS/Brinkman model, the scalar
function K can be considered as the permeability of the porous medium.
Numerical simulations are performed on rectangular meshes (1280 x 320 or 2560 x
640 points) with a multi-grid approach. The two previous meshes correspond to
grids 7 and 8, respectively. The time process lasts 40 units of non-dimensional time
with a step of 1073 leading to 40000 output data for each temporal signal (pressure,
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components of the velocity, and vorticity) at the monitoring point in Q. We see
in Figure 3 that the velocity signals have roughly the same properties whereas the
pressure and the vorticity signals exhibit huge picks corresponding to the convection
of the coherent structures through the point position. In the following sections, the
Taylor hypothesis is used to convert time scales to length scales. This hypothesis
has been thoroughly tested in such flows [4] and assumes that the flow structures
are convected through the monitoring point without much deformation.
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Figure 2: Computational domain

3 Energy spectrum computation

3.1 The basic FFT method

The simplest way to visualise the energy spectrum corresponding to a given signal
consists in computing the power spectrum of the first component of the velocity
u. We are allowed to consider only the transverse velocity component since the
flow perturbations are mainly isotropic and thus the power spectral densities of
both velocity components are essentially the same. So they represent correctly
the energy spectrum. A first naive attempt to perform such a computation has
been done directly, applying the well-known discrete Fourier transform to the whole
velocity signal. Although this signal is not periodic, a windowed version of the FFT
method with functions such that Bartlett’s or Hanning’s is useless due to the large
size of the signal. One can see immediately that graphical representations of the
logarithms of the power spectra in terms of the logarithm of the wave number &
(as represented on Figure 4 for the first component of the velocity signal) obtained
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Figure 3: Signals of the physical quantities at the monitoring point



174 Ch.H. BRUNEAU, P. FISCHER, Z. PETER, AND A. YGER

that way provide a very noisy graph. Despite the thick aspect of the graph, it is
possible to determine the slopes of both cascades through a first order least square
approximation. Their value fits more or less with the theoretical values.

One difficulty is the determination of the slope of the cascades as some parts of
the spectrum have no physical or numerical meaning; namely, the frequencies corre-
sponding to a size bigger than the channel width and the frequencies corresponding
to the unresolved scales. Let the unity be the channel width; then the diameter of
the horizontal cylinders is %0. Due to that scaling, k ~ 10 is the main frequency
of injection. The diameter of the smaller cylinders in the two vertical arrays is 2—10,
which corresponds to an injection frequency of k =~ 20. Moreover, the numerical
simulation is performed on an uniform grid of mesh size h = ﬁ or h = %. As-
suming that for the representation of an oscillation generally we need 4 or 5 points,
we expect to obtain significant scales between the wave numbers corresponding to
the half size of the channel k = 2 and k = 5Lh or k= ﬁ. Thus, it should be possible
to determine correctly the two cascade slopes as following;:

e for the inverse cascade (sl 1) between the frequencies k = 2 and k = 10

e for the enstrophy cascade (sl 2) between the frequencies 10 and k = 5Lh or
k= 4.

To confirm this assumption we perform numerous slopes computation on the
energy spectrum obtained from simulation grids 7 (h = 3—%0) and 8 (h = 6T10)‘ In
the Figure 5 the enstrophy cascade slopes (on the vertical axis) are determined
always between the wave number k£ = 10 and the wave numbers represented in the
horizontal axis. We can observe an almost constant behaviour in the vicinity of the
wave number k = 65, while the first part of the curve is due to the influence of
the injection scales and the last part is due to the dissipative tail. The same slopes
computation for h = ﬁ gives the same behaviour with an almost constant value
around k = 130. This fact shows that by increasing the numerical simulation of
the flow by a factor 2, we double the range of the enstrophy cascade. However, due
to the thickness of the energy spectra, an accurate estimation of the slope is quite

W Ww

10°

-3.99

Iy
il WH'HHH‘
\l

"

10 P
10"

|
| J L |

10 |
-1.86

i
M\ | .
10°

Figure 4: Energy spectrum obtained for the first component of the velocity with Fourier
method
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Figure 5: Determination of the upper bound to evaluate the enstrophy cascade slope

3.2 The periodogram method

In order to overcome the difficulty arising in this naive approach, one can combine
it with statistical ideas by computing the discrete Fourier transform of the digital
signals [s(l),...,s(l + p—1)] for I =1 : g : 40000 — p and averaging the graphic
representations obtained for the logarithm of the energy spectrum. We still treat
the first component of the velocity. The graphical representations obtained from the
Bartlett windowed Fast Fourier Transform algorithm with the window size p = 2048
and the translation step ¢ = 8 are plotted in Figure 6. Note that the thickness of
the energy spectra is drastically attenuated, though the time-frequency information
is of course lost since one uses a statistical process. Of course, when the size p of the
window increases up to the size of the signal, one recovers the thick energy spectra
plotted in Figure 4.

Figure 7 shows the evolution of the estimated slopes with respect to the size p
(between 103 and the extreme value 39 x 10%) of the window when ¢ is kept equal to
10. The slope within the inverse cascade range remains essentially located around
—1.8, while the slope within the enstrophy cascade range takes values around —4,
as in the previous subsection.

Let us point out to the reader that when the size p of the window is small it is
necessary to use windowed Fast Fourier Transform to reduce the effect of the side
lobs that introduce high frequencies and so modify the slope in the high frequency
part of the spectrum. This is illustrated in Figure 8 where the slopes of the spectra
obtained without windowing are about the same than those of Figure 7 except for
small sizes p < 10000 in the enstrophy cascade.

3.3 The correlation method

One can determine the power spectral density of a signal as being the Fourier trans-
form of the auto-covariance function. By the indirect (or the Blackman-Tukey)
method, in a first stage one estimates the auto-covariance function and then, by
taking the Bartlett windowed Fourier transform of this function, one calculates the
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Figure 6: Energy spectrum obtained by the periodogram method with p = 2048 and ¢ = 8
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power spectral density. Let z,,, (n = 0,1,2..., N —1) be the studied signal containing
N samples. A biased estimate of the auto-covariance function is given by

N—-Q-1
~ 1
R(Q) =+ > pygrn with @=0,1,...,N -1 (2)
n=0

The values of this function for the negative arguments can be deduced, beginning
with the estimates obtained for the positive arguments by the relation

R(-Q) = R(Q). (3)

In our case, N = 40000 and we will calculate the power spectral density of the
signal using M < N correlation coefficients. The results obtained for the energy
spectrum for the first component of the velocity are displayed in Figure 9. When
M is small the slopes are underestimated with an error up to 14%, whereas the
results are coherent with those obtained in the previous subsections for A > 10000.
In Figure 10 we represent on the vertical axis the various values of the slopes for
the variation of the correlation coefficients in the auto-covariance method. One can
see the decreasing behaviour, especially on the level of enstrophy cascade, while the
slope of the inverse cascade remains roughly unchanged except for M = 1000. These
graphs can justify the choice of the needed correlation coefficients in the calculation
of the slopes of the power spectrum. An insufficient number of coefficients can yield
more than 10% of error. However, in this computation the choice of the windowing
function is very important as the same study with Hanning function gives much
better results, especially for the direct cascade.

Like in the periodogram, we can calculate the power spectral densities on some
smaller windows and, taking the mean, obtain the estimated energy spectra (Welch
method with no overlaps). Let z,, (n = 0,1,2..., N — 1) be a digital signal (in-
terpreted as a stationary process) with length N, we choose a window size p. Let
us set the number of parameters M = E|[p/2]; an unbiased estimate for the auto
covariance function is given by

p—1—k

1-
ke{0,...M -1} — Eaverage [ Z T pi+kTnxp+
=0

where the averaging process is taken over values of n between 0 and E[N/p|. In
Figure 11 the results obtained with 20 windows of length 2000 are pridicted. For each
such window we determine 1000 correlation coefficients and then the estimation of
the energy spectrum is obtained by taking the mean of the power spectral densities.
Here again the results are not correct as the size of the window is too small. Indeed,
the estimated slopes obtained when one interprets energy spectra as power spectral
densities of stationary processes depend on the value of the size p. Figure 12 shows
the evolution of the two estimated slopes in terms of the value of such a size p when
p increases from 1000 up to 20000. Once again a size at least p > 5000 is required
to obtain reliable results. This is coherent with the fact that the validity of the
correlation method lies on the assumption that the signal remains stationary on
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windows of size p. Indeed, we can check the correlation matrix given in Figure 13
such that the stationary assumption is much more fulfilled for p = 20000 than for
p = 1000.

In conclusion, there is a significant variation of the slopes with respect to the size
p of the window that is used to compute the auto correlation. Relatively large values
of p better verify that the stationary assumption holds and thus that the resulting
slope is in very good accordance with the slopes obtained with the periodogram
method in subsection 3.2.
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Figure 9: Energy spectrum obtained by the correlation method
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Figure 10: Slope estimates computed with the correlation method in terms of M

3.4 The method based on the auto regressive model

Let us consider again the digital real signal (z,),, n = 0,..., N — 1, corresponding,
for example, to the measurements of the first component of the velocity, as a discrete
stationary process. The search for an optimal auto regressive model with an a priori
prescribed number of parameters (m < N) contains the determination of estimators
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Figure 11: Cascades slopes computed with the correlation method using Welch method
with 20 non overlapping windows of size p = 2000
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Figure 12: Slope estimates computed with the Welch correlation method in terms of the
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Figure 13: The correlation matrices for different time windows calculated for the first
component of the velocity
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1y Q1 ,...,Qy such that

Sy 01y ey ty) + = Z 22

= Z [(xn_ﬂ)_al(xn—l_,U')_"'_am(xn—m_ﬂ) i

is minimal. In order to seek such estimators, the use of the least squares criterion
takes its justification from the a prior: assumption that the residual process

m
Zp 1= (xn—u)—Zal(xn,l—u), n=m,..N—1, (4)
1=1

is Gaussian with mean value 0 and variance o2, which means that u corresponds
essentially to the mean value of the digital process. Optimal values a7, ..., a,, for
the coefficients aj, ..., ay;, are then computed through the Yule-Walker method [30,
14], and the corresponding numerical model for the power spectral density of the
stationary process realised by the digital signal (z;,), is

S2

w € [0,7] = Spz(w) = — . - . 5 (5)
|1 — a7 exp(—iw) — ... — Gy, exp(—imw)|

where s2 denotes an unbiased estimate for the residual variance o2, obtained when
m << N as

2= (RO) - Yo a RW)) (©

R being the auto covariance function of the digital process (zy,)n, that is

N-1
~ 1
R() = > (@n —T)(@py —T), 1=0,..,m,

n=m

where T denotes the mean value of (x,),. The number of parameters must be
carefully chosen since it highly influences the results. If this number is too low,
the algorithm suppresses frequency peaks and does not allow a precise frequencies
determination. If the number of parameters is too high, the method becomes very
sensitive to the signal-to-noise ratio, and a number of artificial and irrelevant fre-
quencies appear in the spectrum. If one applies this method to the digital velocity
signals treated before, one obtains smooth representations of the logarithm of en-
ergy spectra as functions of the wave number. The frequency set [0, 7] is rescaled
such that the graphics thus obtained fit with those which were obtained in the two
previous subsections.

It is underlined in [38] that auto regressive methods provide good results when
the filter length is of the same order than the number of samples per period (m =
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1000 in our case). In Figure 14 we can see that the spectra calculated with a low
number of auto regressive parameters is more smooth than the spectrum calculated
with many more parameters. In the second case, a breakdown is observed around
k = 10 and so the determination of the slopes is easier. The same results are obtained
with m = 1000 parameters except the curve is more oscillating. As soon as the
number of parameters is large enough, the results are consistent with those obtained
in the previous sections. However, various methods dealing with the detection of
the optimal number of parameters were tested but did not give reliable results.

10° 10°

1’ \ 409 10°

10" b 10"

10" N\ 10"

107 L N 10”

107 | 107

10" 10"
10° 10" 10° 10° 10" 10°
k 3

(a) with 44 parameters (b) with 200 parameters

Figure 14: Energy spectra obtained by the autoregressive method with different parameters

3.5 Wavelet based spectrum

Wavelet decomposition is the realization of a decomposition of the input signal s
into successive details d;, j = 1, ..., k, plus an approximation ry:

s=dy+dy+ - +di + rg. (7)

Such a decomposition is obtained performing orthogonal projections of s on sub-
spaces W) generated by the functions ¢(t2—;l), 7 < k for the details and on subspaces
Vi generated by functions <p(t2;kl) for the resumed version ri. The wavelet i is the
mother of the corresponding multiresolution analysis interpreted as a pass-band filter
while ¢, which plays the role of a low-band filter, is the father of the corresponding
multiresolution analysis.

Wavelet spectral densities are additive contributions to the total energy of the
signal in a Plancherel-like identity

IslI* = lldall® + lld2® + - - + lidil® + [l (8)

where ||| denotes the I? discrete norm.

The wavelet based spectrum obtained for Daubechies10 wavelet is shown in Fig-
ure 15. We can remark on the best quality fit of the spectra and the calculated
slopes, which have similar values as in the other methods. The wavelet analysis
depends on both the signal under study and the choice of the wavelet basis. For
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a complete presentation of the now classical multiresolution analysis and wavelet
theory, refer for example to [25], and for a detailed theoretical and numerical com-
parison between wavelet and Fourier spectra see the paper of Perrier, Philipovitch
and Basdevant [28].

It has been stated in [28] that “the behaviour of the wavelet spectrum at large
wave numbers depends strongly on the behaviour of the analysing wavelet at small
wave numbers.” This feature has been observed in our spectra, given in Figure 16,
where the number of vanishing moments of the mother wavelet slightly modifies the
slope of the spectra at large wave numbers can be observed. The obtained slope
values are summarised in Table 1.

To conclude this section, it can be said that the four methods described here lead
to results that are essentially similar. However, one must be very cautious as all the
methods are very sensitive to their parameters. For instance, we have found a slope
for the direct enstrophy cascade close to —4 but with some choices of the parameters
it would be possible to get a slope close to —3 in order to be consistent with the
two-dimensional turbulence theory. The results found in the literature often make
evident one of the two slopes but rarely both of them within the same experiment
[7].

Note that the method based on the wavelet decomposition provides the best
representation in terms of smoothness for the energy spectrum.

Figure 15: Energy spectra calculated with the wavelet based method using Daubechies10
wavelet

Wavelet type | Enstrophy cascade slope | Inverse cascade slope
Daubechies4 -3.94 -1.74
Daubechies10 -4.07 -1.77
Daubechies20 -4.11 -1.78

Table 1: Slopes obtained with different Daubechies type wavelets by wavelet based spectra
calculation
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Figure 16: Spectra calculated with the wavelet based method using different Daubechies
wavelets

4 Methods of decomposition — reconstruction

In this section, we compare different method of decompositions. Some of them take
into account the signal itself like proper orthogonal decomposition. The decompo-
sitions of other ones, e.g., wavelet packets or cosine packets, lie on a systematic use
of entropy criteria leading to the construction of the best basis.

4.1 Proper orthogonal decomposition (POD)

The POD, also called Karhunen-Loeve decomposition [24], is a classical method
developed in statistics. Given a random process U, the overall algorithm can be
summarised as follows :

1. Compute the auto-correlation matrix A of a set of realisations (also called
“snapshots”) of U, Uy, ..., U,.

2. Perform the Singular Value Decomposition of A, thus organising the eigenval-
ues of A in decreasing order : A\ > Ag > ---.

3. Take m < ¢ and select an orthonormal (in the L? sense) system of vectors
(aij)i<i<q, J = 1,...,m, such that (ay;); is an eigenvector respect to the eigen-
value A;.

4. Compute the POD modes
q
‘/j = ZaijUi, ] = 1,...,m.
i=1

This four-step process provides the best basis for the set of realisations {U1, ..., U, }
work respect to the L? norm when m = ¢. Thus, given a random process, the effec-
tive implementation of the POD requires a set of realisations or snapshots. Instead
of using several signals of length 40000 to create the set of snapshots, one will start
from a given signal s (with length 40000), such as the registration of the vorticity,
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the pressure, or one of the components of the velocity. We divide s(1 : 39936) in 39
consecutive non overlapping segments of length 1024. Each segment plays the role of
a snapshot, thus leading to a dictionary D of 39 snapshots and to an auto-correlation
matrix of size 39 x 39. The POD algorithm then provides 39 POD modes of length
1024, together with the coefficients one needs to rebuild each original segment as a
linear combination of the proper modes. For example, the vorticity signal has been
decomposed following this method and a few among the 39 proper modes multiplied
by their corresponding eigenvalue are displayed in Figure 17.

One can also construct a collection of snapshots by breaking the original signal
into overlapping segments with length 1024, thus leading to a redundant but richer
set of realisations and therefore to a new family of proper modes [29]. The length
of the segments used to realise snapshots can also be discussed since the quality of
the reconstruction depends on it. Table 2 shows, for example, the number of POD
modes that are necessary for the reconstruction, up to a given percentage of the
initial L? norm, beginning with 156 consecutive non-overlapping segments of 256
points, 78 consecutive non-overlapping segments of 512 points, or 39 consecutive
non-overlapping segments of 1024 points. In the following, we decide to use 39
snapshots as their length corresponds to the channel width for 6t = 1073,

On the other hand, a dictionary of snapshots may be reduced without any sig-
nificant effect on the efficiency of the atomic decomposition of a given signal s. This
can be done introducing, for example, the following Variance Criterion (VC) used
in [23] : a snapshot U; remains within the dictionary provided its variance (o("))?
exceeds the variance 2. For example, it can be seen in Figure 18 that from the
original dictionary D with 39 snapshots of 1024 introduced to analyse the vorticity
signal, only 17 snapshots fit the criterion. The new dictionary contains only 17
snapshots U;, which lead to the construction of 17 proper modes from an auto cor-
relation matrix 17 x 17. In fact, such a criterion allows us to reduce the dictionary
of snapshots, keeping track of the shape of the POD modes corresponding to the
most significant eigenvalues A1, Ao, .... One may check that the first POD modes
obtained that way from the reduced dictionary of 39 snapshots with length 1024
are very similar to those corresponding to POD modes computed from the complete
dictionary D (Figure 17).

Subdivision | 50% | 99%
156 x 256 3 26
78 x 512 5 38
39 x 1024 6 33

Table 2: Number of POD modes necessary for the reconstruction of the signal with 50%
and 99% the L? norm
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Figure 17: POD modes for the vorticity signal
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Figure 18: Variance of the representations U; in D compared to the variance of the signal
(horizontal line)
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4.2 Qualitative aspects of the reconstruction process coupled with
the proper orthogonal decomposition

Any Proper Orthogonal Decomposition induces a reconstruction process. More
precisely, if (U;)1<i<q are the snapshots and V1, ..., V; the associated proper modes,
we denote, for k = 1,...,q, U; the orthogonal projection of U; on the subspace
generated by Vi,...,Vi. The speed with which mlln(HUzkH/HU,H) converges to 1

when k increases is a good indicator of the quality of the POD with respect to the
reconstruction of the snapshots. Such a speed also indicates the efficiency of the
reconstruction process.

Since reconstructing the snapshots leads to a restitution of the signal, a proper
orthogonal decomposition associated to such a segmentation is qualitatively efficient
provided the signal can be approximately reconstructed from the least number of
proper modes. In Figure 19, the evolution of the intermediate reconstruction ratio

39 9
2 Uil
1=1

T i= —/——
s>

is represented graphically as a function of & when Uy, ..., Usg are the 39 snapshots
of the dictionary D. Note for instance that the first 5 modes representing about
13% of the total number of modes are sufficient to recover the original signal up to
a relative energy of about 45%.

The reconstruction process does not behave equally well when applied to the
restitution of a randomly chosen segment of the signal. Each segment of s can
be modelled as a linear combination of the proper modes, which are enough to
reconstruct the segment up to the best possible relative energy error. Note that
there is no reasons to get the first proper modes as the most significant in the
decomposition of the segment. Two segments S; and Sy of length 1024 have been
randomly chosen in the vorticity signal s and plotted in Figure 20. The respective
reconstructions from the proper orthogonal decomposition attached to the dictionary
D are compared. Namely, the graphics of the functions:

IPrvs,. v [

k — Tk = HSlHZ
P iy (S22
e A

have been represented in Figure 21. The first evident fact is that the reconstruction
process is more efficient when applied to S; than to Se. Indeed, to recover a relative
energy of about 50%, 13 POD modes are requested for S; and all the POD modes
for So. Three reasons may explain such a crucial difference:

e The segment S is more regular than the segment S5, which makes the recon-
struction of S; with smooth signals such as the proper modes corresponding
to the most significant eigenvalues easier than that of S5 ;
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e On the one hand, the support of the segment S; almost fits the support of a
single snapshot, i.e., the 23"¢ snapshot that starts at the 22529t" point. Most
of the content of S7 has been used to build the POD modes. On the other
hand, the support of the segment Sy overlaps significantly the supports of two
snapshots (the 11*" and the 12t7) ;

e The 23"¢ snapshot has a variance which dominates the overall signal variance,
while the 11** and 12" snapshots have variances lying below the overall signal
variance. This implies that the segment S corresponds to a dominating part
within the signal, which is not the case for the segment S5.

rate of energy
o
o

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
number of POD modes

Figure 19: Quality of the reconstruction versus the number of POD modes
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Figure 20: Randomly chosen segments of the vorticity signal

4.3 POD decomposition — reconstruction vs. numerical spectral
analysis

Let s be the signal corresponding to the first component of the velocity and Dy :=
{U;;i=1,..,39} the dictionary of snapshots corresponding to non-overlapping seg-
ments with length 1024, with corresponding proper modes Vi, ..., Vag. For each k
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Figure 21: Quality of the reconstruction versus the number of POD modes

between 1 and 39, one computes the energy spectrum of the partially reconstructed
signal using the basic FFT method described in section 3.1

sk :=[U1g Uz - Ui -+ Usgpl,

where U; ;, denotes the orthogonal projection of U; on the subspace (Vi,..., V).
Then, for each sj, the computation of estimated slopes for both cascades has been
carried out. Results obtained for the evolution of the two estimated slopes in terms
of k are quoted in Figure 22.
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(a) Inverse cascade (b) Enstrophy cascade

Figure 22: Evolution of the slopes in function of the number of POD modes in the recon-
struction

4.4 Wavelet and cosine packets decompositions

Given a signal s and a multiresolution analysis, the associated splitting lemma
leads to the selection of an orthonormal basis such that the Shannon entropy of
s respect to its decomposition in such a basis is minimal. The elements of this
kind of basis are wavelet packets ; such functions generalise compactly-supported
wavelets and constitute a redundant set of basis functions. In the same vein, the
windowed Fourier transform induces through Malvar’s decomposition the realisation
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of a split and merge algorithm, which leads (still through an entropy criterion) to
the construction of a best basis whose elements are cosine packets. More details
about the theory, together with numerical tests based on various entropy criteria,
can be found for example in [25, 39].

Wavelet packet decompositions are applied here to a signal (pressure, velocity,
or vorticity at one of the monitoring points) truncated in order to have length 212,
The Shannon entropy criterion governs the selection process of the best basis. Fur-
thermore, a second entropy criterion is used in order to select significant components
of s within its decomposition in such a basis (in order for example to recover the
original signal up to a relative energy error less than 1%). Combining the best basis
selection with this second entropy criterion leads to an approximated reconstruction
of the given signal s also in terms of cosine packets atoms, which essentially look
like rectangular windows times cosine functions. The energy spectrum of such an
approximation models the energy spectrum of s. Table 3 indicates both the number
of such atoms and the estimated values of the inverse and enstrophy cascades slopes
for the corresponding approximation.

It is also important to test the efficiency of the reconstruction process on random
segments of the signal. As for the POD reconstruction process, all segments do not
behave equally. In Table 4, such efficiency has been tested on segments S; and
S5. The number of atoms that are necessary to reconstruct Sy up to a relative
energy error less than 1% is at least three times the number of atoms one needs to
reconstruct Sy.

Basis type | # elements | enstrophy cascade | inverse cascade
Haar 1742 -3.10 -1.83
Daubechies6 910 -4.10 -1.82
Coiflet2 863 -4.23 -1.82
Symmlet8 766 -5.08 -1.81
Cosine 1147 -3.80 -1.80

Table 3: Number of elements necessary to reconstruct the signal up to 99% of the L? norm
with the best basis algorithm and cascades slopes of the global reconstructed signal

Basis type | # elements for S | # elements for S
Haar 47 143
Daubechies6 22 121
Coiflet2 24 101
Symmlet8 21 100
Cosine 33 156

Table 4: Number of elements necessary to reconstruct signals S; and Ss up to 99% of the
L? norm with the best basis algorithm
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5 Conclusions

Several conclusions can be drawn from this study on 2D turbulence. The shape of
the spectra is in agreement with the theory and with the results generally obtained
by other authors. The graphs are more or less thick depending on the method
used to compute the spectra. The smoothest results have been obtained with the
auto-regressive model and wavelet method.

Different methods of decomposition have also been studied : POD, wavelet, and
cosine packets with the best basis algorithm. For the computation of the POD
modes, the signal has been cut in several parts called snapshots. The method
appears to be efficient for the analysis of one of the snapshots but reveals to be less
adapted for a segment randomly chosen in the signal. On the contrary, the best basis
algorithm in a frame of a wavelet or cosine packets decomposition can reconstruct
any part of the signal with a reasonable number of elements. We shall see in the
forthcoming part II how one can benefit of combining such methods towards an
adaptative algorithm such as matching pursuit.
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