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Abstract

The first part of this work was devoted to the comparison of direct numeri-
cal methods for the computation of energy spectra in 2D turbulence. Here such
direct methods are mixed together and combined with adaptative algorithms
such as matching pursuit or orthogonal matching pursuit. It appears curiously
that the proper orthogonal decomposition basis is sometimes less adapted to
the reconstruction process than cosine or wavelet packets dictionaries.
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1 Introduction

In the first part of this work [1] various direct methods were applied to compute
energy spectra of 1D signals coming from direct numerical simulations of the 2D
turbulent flow behind arrays of cylinders [2]. Some of these direct methods, namely
the proper orthogonal decomposition (POD) and the cosine or wavelet packets de-
composition provide dictionaries which are used here in adaptative matching pursuit
(MP) or orthogonal matching pursuit (OMP) algorithms. After a brief presentation
of these algorithms, numerical results are provided using first the POD modes dic-
tionary, then wavelet or cosine packets dictionaries and finally mixed dictionaries to
analyse the same signals than in the first part.

2 Matching pursuit algorithms

The matching pursuit (MP) algorithm, introduced by S. Mallat [4, 5], allows for
a clever decomposition of a given signal s into a linear combination of functions
(also called atoms), which are selected from a redundant dictionary of signals with
normalized energy equal to 1. These atoms are selected in order to fit in the best
way the structure of the signal. The first selected atom d; is chosen so that the
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modulus |(s, dy)]| of its correlation coefficient with s is maximal ; then ds is chosen
within the dictionary so that

‘<s— (s, d1>d1,d2>‘

is maximal, and so on.

The sequence of coefficients is decreasing and indicates the order in which the
corresponding atoms are selected. The same atom may be selected several times.
Thus, the final coefficient of an atom summarises its global contribution to the recon-
struction, its order of appearance being forgotten. To overcome this inconvenience,
the MP algorithm can be combined with the Gram-Schmidt process so that at any
step the partial reconstructed signal

n
D oy
k=1

is orthogonal to the (n+1)-th atom d,, 41 that is selected. When using this orthogonal
version of the algorithm (OMP), one may take away from the dictionary any atom
once it has been selected. In the OMP algorithm the coefficients give directly the
whole contribution of the corresponding selected atoms. Moreover, the number of
iterations equals the number of atoms needed for a required ratio of reconstruction
as a new atom is selected at each iteration. The weakness of that OMP algorithm
lies in the fact that the Gram-Schmidt re-orthogonalization process might modify
the coefficients and eventually erase some of them. Therefore, to keep track of
the decomposition, it is necessary for each selected atom to take into account its
coefficient the first time the atom appears.

The MP algorithm is a nonlinear procedure that selects the components of the
signal that are coherent with respect to a given dictionary. It also provides a decom-
position of the signal with such coherent structures as atoms. Whenever a segment
of the signal is badly correlated with any element of the dictionary, it is cut into
many pieces and thus its content is spread out. The MP algorithm can be compared
to the wavelet packets method as follows [4] :

e on one hand, wavelet packets decompositions are not well adapted to the anal-
ysis of highly non-stationary signals since entropy criteria exploit global prop-
erties of the signal. Indeed, wavelet packets correspond to precise frequency
ranges that are directly connected with the selection tree of the algorithm. In
contrast, in the greedy approach of the MP algorithm, the choice of the atoms
is completely free.

e on the other hand, the best basis algorithm is more efficient when applied to
stationary signals.

Therefore, as soon as the dictionary contains enough irregular functions, the MP
algorithm should give better results than wavelet packets decompositions since it
isolates non-stationary components.
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3 Matching pursuit with POD modes dictionaries

Given a signal s, a natural dictionary V for the MP algorithm could be the POD
modes V1, ..., V, computed from a set of snapshots corresponding to successive over-
lapping or not segments partitioning the signal. The more redundant the segmen-
tation of s with snapshots is, the more efficient the MP algorithm realized with
corresponding POD modes will be. Let us take, for example, the four dictionaries
corresponding to the segmentation of the signals of the pressure p, the two compo-
nents of the velocity u and v, and the vorticity w with 39 non-overlapping segments.
The MP algorithm is applied to each of the four signals p, u,v,w with the four dic-
tionaries and the crossed reconstruction ratio after 25 iterations of the algorithm is
given in Table 1. Of course, the best results are obtained on the diagonal as the
used dictionary corresponds to the signal. Moreover, due to the nature of the signal,
which is very different for the vorticity as we have seen in [1], the crossed results
with the vorticity are the worst. We see also that after only 25 iterations we get
more than 99% of the L? norm whereas the 33 first POD modes were necessary to
get the same amount of the norm with the POD decomposition [1].

Now, let D be the dictionary with the 39 POD modes constructed from the 39
non-overlapping snapshots of the vorticity signal. The OMP algorithm is applied to
the family of 305 segments of length 1024 that are obtained by translation of 128
points. In Figure 1, the number of times a given POD mode V; is selected as the
first atom d; is plotted. We can see that the first POD mode V; is chosen 31 times
as di, the second mode 25 times, and so on. The first four modes are more often
selected whereas the last ones are sometimes not even selected once.

This is in accordance with the construction of the POD modes although the
modes have been constructed only with 39 snapshots. In Figure 2(a) the absolute
values of the OMP coefficients (from dark grey for the biggest ones to light grey for
the smallest ones) obtained when decomposing each of the 305 segments are plotted.
Let us point out that the clear vertical strips show the intermittencies of the signal.
In addition, Figure 2(b) shows that in these strips, taking away the 39 snapshots,
the reconstruction rate is much lower.

Finally in this subsection, we would like to point out how the POD modes can
be very well adapted to a segment of the original signal since the first coefficient of
the MP algorithm may induce a reconstruction up to 58%. This is better than what
can be obtained for some segments with the whole reconstruction as we have seen
for Ss in the previous section. Indeed, if we carry out a point by point translation
of a window of 1024 points over the entire original vorticity signal of 39936 points,
one will have a total of 38913 windows. Then, we proceed the MP algorithm on
each window and pick up the segment for which the reconstruction after the first
iteration is the best. In the Figure 3 one can see the correspondence between the
shape of this original segment and its reconstruction.



274 CH.H. BRUNEAU, P. FISCHER, Z. PETER, AND A. YGER

u v p w
u POD set | 99.73% | 96.18% | 92.42% | 79.47%
v POD set | 94.81% | 99.87% | 93.40% | 80.40%
p POD set | 93.11% | 96.35% | 99.81% | 83.24%
w POD set | 78.20% | 81.36% | 80.19% | 99.44%

Table 1: Crossed reconstruction ratio for various physical quantities after 25 iterations of
the matching pursuit algorithm with POD dictionary
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Figure 1: Number of times a POD mode is chosen as d;
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Figure 2: Influence of the position of the segments on the OMP decomposition with the
POD modes dictionary

300 T T T 300

200 200 -

100 | 100 |

~100 | -100 -

-200

-200 -

-300 " y . -300
38913 39169 39425 39681 39937 256 512 768 1024
(a) the selected segment (b) the 58% reconstruction after the

first iteration of the MP algorithm

Figure 3: The part of the original vorticity signal which gives the best correlation with a
POD dictionary atom
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4 Matching Pursuit with wavelet packets or cosine pack-
ets dictionaries

Wavelet packets and cosine packets described in [1] can also be used as dictionaries,
as implemented in [3]. We decide to decompose both segments S; and Sy of the
vorticity signal with such dictionaries in order to see how many atoms are necessary
to get a reconstruction up to 99% of the L? norm. Table 2 indicates the number
of atoms required for four different wavelet packets basis and cosine packets. Once
again, less atoms are required to approximate segment S; than segment S5. In
addition, we see that the number of atoms is lower than the number of atoms
which is involved in the split and merge algorithm based on the minimisation of the
entropy given on Table 3 (quoted from part I). This is due to the fact that in the
MP algorithm there is no selection tree to explore the correlation of the signal with
the dictionary atoms.

Then, we perform the same experiment on the whole signal s and compute
the slopes of the energy and enstrophy cascades by basic Fourier method for the
reconstructed signals. The results are reported in Table 4. The computed slope of
the inverse cascade remains in the same range whatever the dictionary is and fits
the slope computed in the previous sections with other methods. On the contrary,
the results for the enstrophy cascade are very different from one basis to another as
the slope varies from —4.36 to —3.09.

Basis type | # elements for S | # elements for S
Haar 33 106
Daubechies6 20 7
Coiflet2 13 76
Symmlet8 18 68
Cosine 23 72

Table 2: Number of atoms needed to reconstruct S; and Sy up to 99% of the L? norm with
the matching pursuit algorithm

Basis type | # elements for S | # elements for Sy
Haar 47 143
Daubechies6 22 121
Coiflet2 24 101
Symmlet8 21 100
Cosine 33 156

Table 3: Number of elements necessary to reconstruct signals S; and Ss up to 99% of the
L? norm with the best basis algorithm
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Basis type | # elements | enstrophy cascade | inverse cascade
Haar 1150 -3.09 -1.82
Daubechies6 639 -3.60 -1.76
Coiflet2 594 -4.06 -1.83
Symmlet8 573 -4.36 -1.86
Cosine 701 -3.50 -1.78

Table 4: Number of atoms needed to reconstruct the whole signal up to 99% of the L2
norm with the matching pursuit algorithm and cascades slopes of the reconstructed signal

5 Matching pursuit with mixed dictionaries

It was shown in the previous sections that POD modes are not enough to reconstruct
the two segments S; and Sy up to 99% of the L? norm, whereas this was possible
with wavelet packets or cosine packets dictionaries. Therefore it is interesting to
see what happens when dealing with a mixed POD modes and packets dictionary
in order to compare the contribution of the atoms in both classes to the reconstruc-
tion of the segments. The new dictionary D; consists of the 39 POD modes, and
approximately 341 cosine packets and 314 wavelet packets chosen in such a way
that they represent properly the different scale and frequency ranges. Using the
matching pursuit algorithm, it is then possible to determine the importance of each
atom of that mixed dictionary in the reconstruction. In Figure 4 the coefficients of
the selected atoms that are necessary to reconstruct the two segments with more
than 99% of the L? norm are represented. The reconstruction requires 54 atoms for
S1 and 203 atoms for Sy respectively; the bigger number for S5 could be expected
from the previous numerical experiments. We see that in both cases the atoms are
selected among the three sub-dictionaries separated on the figure by dotted vertical
lines and their repartition is directly linked to the shape of the original segments.
We notice that the values of the coeflicients are bigger for S than for S5 so that the
selected atoms better correlate with the first than with the second segment. This
explains why we need many more atoms to reconstruct Ss. Although the difference
between the two segments is clear, it is not so easy to compare the number of se-
lected atoms with those obtained in Table 2. On one hand, the values presented in
that table are the results of the matching pursuit performed on the entire packet
dictionary while D; is not so rich. On the other hand, the mixing of POD modes and
packets which are not correlated in the same way to the original segments induces
extra corrections of the algorithm to smooth the difference. Besides it is interesting
to remark that, although the POD sub-dictionary contains few atoms, its weight in
the reconstruction process is significant for segments such as S; and S5 and not only
for the snapshots. For S, which is smoother, the algorithm chooses at first cosine
packets and POD modes whereas for So, which contains more high frequencies the
algorithm, selects first wavelet packets and POD modes.

Even if each snapshot can be exactly reconstructed using all the available POD
modes, it is also possible to use on it the MP or OMP algorithms with D; dictionary.
The results in Figure 5 show that for almost half of them the first selected atom is
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not a POD mode as it is located above the dotted horizontal line which indicates the
limit of the first sub-dictionary. Even when POD modes are selected as first atoms,
some atoms are chosen later in the other sub-dictionaries. For example for the
first snapshot, the MP algorithm selects 10 POD modes at the beginning and then
chooses a Symmlet8 packet as 11** atom as shown in Figure 6(a). To understand
this choice, we plot in Figure 6(b) the graph of the remainder after 10 iterations
of the MP algorithm and the selected wavelet atom times its coefficient. We see
that this atom approximates precisely the L? norm but ignores the high frequencies.
Nevertheless, it has been selected instead of the other POD modes.

Now, we construct two new reduced dictionaries Do; and Dag, respectively,
adapted to S and S5 by adding to the POD modes the sub-dictionaries consist-
ing of the 23 or 72 cosine packets and the 18 or 68 Symmlet8 wavelet packets, which
have been selected in the decomposition of S; or Se (Table 2). Applying the OMP
algorithm, we see in Figure 7 that this time we get the reconstruction with only 20
atoms without any POD modes for S; and 81 atoms with only 5 POD modes with
small coefficients for S5. So, it appears that for segments which do not correspond
to the snapshots the adapted packets are better correlated than the POD modes.
Finally, the POD modes are not so relevant, although they are constructed from the
snapshots of the original signal. This is due to the fact that they represent a mean
behaviour and not the instantaneous behaviour. These numerical tests show that
the choice of the dictionary plays a major role.
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Figure 4: The coefficients of the atoms, selected by the matching pursuit algorithm with
the mixed dictionary Dj, used to reconstruct the two segments with more than 99% of the
L? norm

6 Conclusions

Several dictionaries are constructed with the POD modes and with cosine or wavelet
packets. Compared to the best basis algorithm developped in part I, the matching
pursuit is less efficient for regular parts of the signal but is very well adapted to
highly oscillating segments. Surprisingly, when using mixed dictionaries involving
POD modes, wavelet, and cosine packets, the POD modes are less selected than the
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packets and even some segments, which have not been chosen as snapshots, can be
reconstructed without using POD modes.
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