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Using Petersen’s theorem, that every regular graph of even degree is 
Zfactorable, it is proved that every connected regular graph of even degree is 
isomorphic to a Schreier coset graph. The method used is a special application 
of the permutation voltage graph construction developed by the author and 
Tucker. This work is related to graph imbedding theory, because a Schreier 
coset graph is a covering space of a bouquet of circles. 

I. INTRODUCTION 

This paper proves that every connected regular graph of even degree is 
isomorphic to a Schreier coset graph and indicates the importance of t&s 
result to the study of surface imbeddings of graphs. 

A Schreier coset graph is a generalization of a CayBey “color” graph using 
cosets of some specified subgroup as vertices instead of group elements. 
Appropriate definitions are provided in Section 2, along with some examples 
of Schreier coset graphs to show how much more general they are than Cayley 
graphs. Section 3 employs the theorem of Petersen [6], which states that every 
regular graph is II-factorable, to prove the title theorem. The method nsed is 
based on the permutation voltage graph construction of Gross and Tucker [4], 
which the reader need not now know or learn. Although Sections 2 and 3 
are entirely self-contained, the reader may want to read more about graph 
factoring, for which Harary [5] is recommended, or more about graphs and 
groups, for which White [8] is suggested. Both these sources cite other works 
of possible interest. 

Understanding of Section 4 depends on prior knowledge of some graph 
imbedding theory, covering spaces, and voltage graphs (or current graphs) 
in particular. 

* The author is an Alfred P. Sloan Fellow. This research was partially supporteci by 
NSF Contract MPS74-05481-A01 at Columbia University. 
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2. ON SCHREIER COSET GRAPHS 

In this paper, a graph has finitely many vertices and edges. Sometimes, 
an edge might adjoin a vertex to itself, or two or more edges might adjoin 
the same pair of vertices. 

The degree of a vertex is the number of edges incident on that vertex. 
A graph is called regular if all vertices have the same degree. 

Let G be a group, let H be a subgroup of G, and let g, ,..., g, be a sequence 
in G whose members generate G. The (right) Schveier coset graph for that 
group, subgroup, and generating sequence is defined as follows. Its vertex 
set is the set of right cosets of H in G. For each right coset Hi and each 
generator gj there is an edge from Hi to the right coset Hi gj . It is sometimes 
convenient, as when stating the title theorem, to ignore the implicit edge 
directions. 

When r generators are specified, the in-degree and out-degree of each 
vertex of a Schreier coset graph are both r, so the graph is regular of degree 2. 
The definition of edges via right multiplication by generators assures that a 
Schreier coset graph is connected. 

Let G be a group and g1 ,..., g, a sequence in G whose members generate G. 
The (right) Cayley graph for that group and generating sequence has as 
vertices the elements of 6. For each g E G and each generator gj there is an 
edge from the vertex g to the vertex ggj . This construction corresponds to the 
special case when the identity subgroup (e} is used for H in our definition 
of a Schreier coset graph. 

Figures II and 2 show Schreier coset graphs that cannot be isomorphic 
to any Cayley graphs. Both figures are later used to illustrate the method 
devised for proving the title theorem. 

H(I 3) 

(I 2 

2 31 

FIG. 1. A Schreier graph for the subgroup H of permutations in the symmetric group 
,X3 that fix the symbol 1, The generators for 2, are the cyclic permutations (2 3) and (1 2 3). 
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H(I 5) H(I 2) 

FIG. 2. The group G is the subgroup of the symmetric group Z; generated by the 
permutations n = (1 2 5)(3 4) and y  = (1)(2 3 5 4). Take B to be the subgroup of G that 
fixes the symbol 1. 

In our dehnition of a Cayley graph, it is clear that if b and c are any two 
elements of the group G, then the permutation g + cb-lg on the elements 
of G induces a Cayley graph automorphism taking the vertex b into the 
vertex c. The underlying graph of Fig. 1 cannot possibly be a Cayley graph 
because it has no automorphism taking the vertex labeled H into the vertex. 
labeled H(1 2). 

3. ON ~-FACTORS ANI PI~RMUTATIONS 

An s-factor of a graph K is a subgraph of K which is regular of degree 2 
and which contains every vertex of K. For instance, a ~arn~~to~ia~ circuit 
is a Zfactor, but in general, a 2-factor (or s-factor) need not be connected. 
When the edges of K can be partitioned into s-factors, we say that K 3 
s-factorable. 

THEOREM 1. Every regular graph (connected or not) of evefi degree is 
~-f~cto~~b~e. 

ProoJ This is Petersen’s theorem [6]. His proof is elegant and elementary. 

THEOREM 2. Every connected regular graph of even degree is ~sorno~~~~~ 
to a Schreier coset graph. 

j82b/22!3-3 
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Proof. Let K be a connected regular graph of degree 2r with p vertices, 
labeled 1 ,..., p. By Theorem 1 the edges of K can be partitioned into r 
2-factors Fl ,,.., F, . Assign an arbitrary orientation to each cycle of the 
2-factors (thereby making K a directed graph). To each oriented 2-factor Fi , 
we associate a permutation 7ri on the symbols I,..., p as follows. 

Suppose the 2-factor 3? has m component circuits C, ,..., C, . Let v1 be a 
vertex on circuit Cj , let v2 be the next vertex, and so on, so that the cyclic 
permutation (vl *.. v&) = T~,~ corresponds to the cyclic order in which the 
oriented circuit Cj passes through vertices of the graph K. Then the permu- 
tation 7ri corresponding to the 2-factor Fi is the product of the (disjoint) 
cyclic permutations ri,l ,..., ni,, . 

Let G be the group of permutations on the symbols l,...,p generated by 
the permutations 7rl ,,.., nr corresponding to the 2-factors Fl ,..., F, . Let H be 
the subgroup of G which fixes the symbol 1. Then the graph K is isomorphic 
to the Schreier coset graph for the group G, subgroup H, and generators 
s-r1 )...) 5-T . 

To see the isomorphism, let J; be a permutation in G such that A(l) = j, 
for j = 2,..., p. (Group G acts transitively because graph K is connected.) 
Relabel vertices 1 ,..., p by the right cosets H, Hfz ,..., Hf$ , respectively. 
Then for i = l,..., r label every edge of the 2-factor Fi by the permutation 7~~ . 

EXAMPLE 1. Returning to Fig. 1, we observe that every edge of one 
2-factor of the graph shown is labeled by the permutation (2 3), while every 
edge of the other 2-factor is labeled (1 2 3). 

EXAMPLE 2. In Fig. 2, every edge of one 2-factor is labeled by the 
permutation x = (1 2 5)(3 4), while every edge of the other 2-factor is 
labeled y = (1)(2 3 5 4). 

Remark. A given connected regular graph of even degree may have 
several different 2-factorizations, so the group G for which it is a Schreier 
graph is not unique. 

4. ON GRAPH IMBEDDINGS 

The proof of Theorem 2 is based on the permutation voltage graph con- 
struction of Gross and Tucker [4], where it is proved that every covering 
space of a graph is obtainable as the derived graph from a permutation 
voltage assignment. 

Gross and Alpert [2] have established that the most common present 
means of building a surface imbedding of a large graph, the so-called current 
graph techniques, are really covering space constructions. It is slightly 
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easier to explain such methods in their dual formulation, the ordinary voltage 
graphs of Gross [l], of which permutation voltage graphs are a generalization. 

In voltage graph theory, one builds an imbedding of a given large graph K 
by finding a smaller graph L of which K is a covering space, by imbedding 
the smaller graph L in a surface, and by then lifting the imbedding of L so 
that its covering graph K is imbedded in a surface (see [3]). 

A bouquet af n circles is a graph with one vertex and n edges. 

THEOREM 3. A connected regular p vertex graph of degree 2r is a p-sheeted 
covering space of the bouquet of r circles, 

Puosf. This is an immediate corollary of Theorem 2 and the fact (see 
[4, Theorem 61) that a Schreier Goset graph covers a bouquet of circles. 

Part of the significance of Theorem 3 is that it suggests that voltage graph 
or current graph techniques might be used to find the germs or solve other 
imbedding problems for a connected regular graph of even degree or, as we 
now observe, for certain other graphs as well. 

Suppose that the edges of a graph K can be partitioned into l-factors and 
2-factors. Take K’ to be the supergraph of K obtained by doubling all the 
l-factors. (“Doubling” an edge between vertices u and 11 means adding an 
extra edge between them.) Doubling a l-factor transforms it into a special 
kind of 2-factor, whose associated permutation in the method of Section 3 
is the product of disjoint transpositions. If an imbedding of K’ is constructed 
(e.g., by covering space methods) so that each edge from one of the l-factors 
of K and its double bound a digon, then we can obtain an imbedding of K 
by discarding such digons and sewing up the holes, matching an edge to its 
double. 

In this connection we notice the following result of Tutte [‘?I and state an 
obvious corollary. 

THEOREM 4. Let K be an (r - I)-connected regular graph of degree r with 
cllz even ~~~~ber oj-vertices. TRen K has a E-factor. 

COROLLARY. Let K be a 2r-connected regular graph of degree 2r T 1 with 
an even number of vertices. Then the edges of K can be pmtitiooned into a 
1 -factor and r 2-factors. 

REFERENCES 

1. J. L. GROSS, Voltage graphs, Discrete Math. 9 (1974), 239-246. 
2. J. L. GROSS AND S. R. ALPERT, The topological theory of current graphs, J. Cow- 

binatorial Theory Ser. B 17 (1974), 218-233. 
3. J. L. Gross AND T. W. TUCKER, Quotients of complete graphs: Revisiting the Heawood 

map-coloring problem, Pacific J. Math. 55 (1974), 391-42. 



232 JONATHAN L. GROSS 

4. J. L. GROSS AND T. W. TUCKER, Generating all graph coverings by permutation voltage 
assignments, Discrete Math., to appear. 

5. F. HARARY, “Graph Theory,” Addison-Wesley, Reading, Mass., 1969. 
6. J. PETERSEN, Die Theorie de regul%ren Graphen, Acta Math. 15 (1891), 193-220. 
7. W. TUTTE, The factorizations of linear graphs, J. London M&z. Sot; 22 (1947), 107-l 11. 
8. A. T. WHITE, “Graphs, Groups and Surfaces,” North-Holland, Amsterdam, 1973. 


