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1 Decimal Expansions

How would you define a real number? It would seem that the easiest way is
to say that a real number is a decimal expansion of the form

N.dydyds...,

where N is one of 0,1,2,3,... and each digit dj is one of 0,...,9. You could
then say that the above decimal expansion represents the number
dy ds

da
N+ —+—=
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However, this is circular! What does this infinite sum mean in terms
of the supposed definition? You have to define the reals before you can
make sense of these kinds of sums. Alternatively, you could define the reals
in terms of decimal expansions, forget about the sum, and just work out
all their properties from the crazy algorithms you've already learned about
adding and multiplying decimal expansions. This is kind of a nightmare.

A better approach is to define the reals in some other way and then use
the decimal expansion as a way of naming one of the real numbers. The sum
then explains which real number the decimal expansion names.

The question remains: how do you define a real number? That is what
these notes are about. In the first part of the notes, I'll explain what we’d
want out of real numbers, and then in the second part, I'll explain how you
get what you want using something called Dedekind cuts.

The basic problem with the rational numbers is that the rational number
system has holes in it — missing numbers. The beauty of Dedekind cuts is
that it gives a formal way to talk about these holes purely in terms of rational
numbers.




2 What do We Want

First of all, we want the real numbers to retain all the basic arithmetic
operations defined on rational numbers. Precisely, the rationals satisfy the
following properties.

e There are operations + and X defined on the set of rational numbers.
ea+b=b+aandaxb=>bxa.

e a+(b+c)=(a+b)+cand (axb) xc=ax(bxc).
eax(b+c)=axb+axec.

e The 0 element has the property that a + 0 = a for all a.

e The 1 element has the property that a x 1 = a for all a.

e For any a there is some b such that a + b = 0.

e For any nonzero a there is some b such that a x b = 1.

We could also list properties of subtraction and division, but these are con-
sequences of what we’ve already listed. For instance, you could define a — b
to be a + 0 where V' is such that b+ ¢’ = 0.

A set which satisfies the above properties is called a field. So, basically
everything you learn in math until middle school, more or less, can be sum-
marized in the sentence that the rational numbers form a field. We want the
real numbers to form a field.

The rational numbers have their usual ordering on them, and it satisfies
two properties.

e For any rationals a and b we have either a < bora=>bor b < a.

e I[fa<band b < cthena<e.

The ordering on the rationals is compatible with the field operations. For
instance if a < b then a4 ¢ < b+ c. Likewise if a < b and ¢ > 0 then ac < bc.
All these properties make the rationals into an ordered field. We want the
reals to be an ordered field.

The one additional property that we want out of the real numbers is that
the real number system should not have any holes in it. Below I'll define what
this means, in terms of something called the least upper bound property.



3 A First Pass

Suppose that we already know about some real number z. When we could
define a pair of sets (A,, B,), where

e A, is the set of all rational numbers y such that y < x, and

e B, is the set of all rational numbers y such that y > x.

The way to think about this is that you are cutting the number line by an
infinitely thin knife, at x, and A, is all the numbers to the left of the knife
and B, is all the numbers to the right.

Part of this definition is very good: The sets A, and B, are both subsets
of rationals, so they do not directly refer to real numbers. However, the
problem with this definition is that it depends on us already knowing about
the number z.

The idea behind Dedekind cuts is to just work with the pairs (A, B),
without direct reference to any real number. Basically, we just look at all
the properties that (A,, B;) has and then make these “axioms” for what we
mean by a Dedekind cut.

4 The Main Definition

A Dedekind cut is a pair (A, B), where A and B are both subsets of rationals.
This pair has to satisfy the following properties.

1. A is nonempty.
2. B is nonempty.
3. If a € A and ¢ < a then c € A.
4. If b € B and ¢ > b then c € B.
If b€ B and a < b, then a € A.
Ifag Aand b > a, then b e B.

N o

For each a € A there is some b > a so that b € A.

8. For each b € B there is some a < b so that a € B.
That’s the definition. A real number is defined to be a Dedekind cut.



5 Commentary

Here is some commentary on the definition: Property 3 informally says that
Ais a “ray” pointing to the left. Property 4 informally says that B is a “ray”
poonting to the right. Properties 5 and 6 informally say that the the two
rays “come together” in some sense. Proerties 7 and 8 say that the rays do
not include their “endpoints”. This commentary is just meant to give you
an intuitive feel for what is going on. Notice that the 8 properties above do
not mention real numbers.

6 Examples

We already know what rational numbers are. If z is any rational number,
then the sets A, and B, defined above make sense.

Problem 1: Prove that the pair (A,, B,) is a Dedekind cut.

I'll start you off with a proof of the first property. Certainly there is some
a < z. By definition a € A,. Therefore A, is nonempty. That takes care of
the first property. The other 7 properties are similar.

You might wonder if there are any other examples of Dedekind cuts.
Here’s an example. Let A denote the set of rational numbers x such that
either < 0 or 22 < 2. Let B denote the set of rational numbers z such that
x>0 and z? > 2. Here’s a partial check that (A, B) is a Dedekind cut.

Property 1: 0 € A, so A is nonempty.
Property 2: 2 € B, because 22 =4 > 2. So B is nonempty.

Property 3: Suppose that a € A and ¢ < a. There are two cases:
e [f ¢ < 0 then ¢ € A by definition.

e If ¢ >0 then a > 0 as well, and ¢? < a® < 2. So, again ¢ € A.



Property 7: Suppose that a € A. If a < 0 then we could take b = 0 and
get b € A. If @ > 0 then we have a? < 2. Let’s write a = p/q. We can take
p>0and g > 0. We know that

p? < 24°.
Consider the new rational number

Np+1 1

b S
Nq q Ng

Here N is some positive integer. Note that a < b. (Intuitively, b is just a
little larger than a.) We win the game if b?> < 2. This is the same as

(Np+1)>—2(Ng)* <0

Let’s call this number Zy. So, we want to choose N so that Zy < 0. Since
N is positive, the numbers Zy and Zy/N have the same sign. So, we want
to choose N so that Zy/N < 0.

We compute
ZN - 9 9

The number p, — 2¢? is an integer less than 0. Therefore
N(p* - 2¢*) < —N.

Also 1/N < 1. Therefore

ZN
— <—-N+2p+1
N +2p+

If we choose N = 2p + 2 then we get Zy/N < 0. That’s it.
Problem 2: Check the rest of the properties for the pair (A, B).

Property 7 turned out to be something of a nightmare, but I hope that
you can use this as a template for establishing the other properties. Since
you've already got Properties 1,2,3,7, you can get Properties 4 and 8 pretty
easily. Then you just have to get Properties 5 and 6. These two properties
have the same kind of proof, so really the main new input is that you need
an idea for Property 5.



7 Arithmetic with Dedekind Cuts

The Dedekind cut from Problem 2 is the real number /2. Notice that we
managed to define v/2 without reference to any real numbers. The number
V2 is really just a certain pair of subsets of rational numbers. To really make
sense of the statement that our pair (A, B) from problem has the property
that (A, B) x (A, B) = 2 (the Dedekind cut representing 2) we have to define
the basic arithmetic operations with Dedekind cuts.

Addition: Suppose that (A;, By) and (As, By) are both Dedekind cuts.
Then (Ai, By) + (Asg, Bs) is defined to be the pair (As, Bs) where As is the
set of all rationals of the form a; + ay where a; € A; and ay € A,. Like-
wise Bs is the set of all rationals of the form by + by with by € By and by € Bs.

Problem 3: Prove that (A;, By) + (A, By) is a Dedekind cut.

Negation: Given any set X of rational numbers, let —X denote the set
of the negatives of those rational numbers. That is € X if and only if
—x € —X. If (A, B) is a Dedekind cut, then —(A, B) is defined to be
(—B,—A). This is pretty clearly a Dedekind cut.

The Sign: A Dedekind cut (A, B) is called positive if 0 € A and nega-
tive if 0 € B. If (A, B) is neither positive nor negative, then (A, B) is the cut
representing 0. If (A, B) is positive, then —(A, B) is negative. Likewise, if
(A, B) is negative, then —(A, B) is positive. The cut (A, B) is non-negative
if it is either positive or 0.

Positive Multiplication: If (A;, By) and (A, By) are both non-negative,
then we define (Ay, B1) X (As, Bs) to be the pair (A3, Bs) where

e Aj is the set of all products ajas where a; € A; and as € Ay and at
least one of the two numbers is non-negative.

e Bjis the set of all products of the form b;by where by € By and by € Bs.

Let’s take an example to see why we need the more complicated definition
for As. Suppose that (A, By) and (Ay, Bs) both represent the number 1.
Then we have —2 € A; and —2 € A,. But (—2)(—2) = 4 and we don’t want
4 € As.



General Multiplication: This is a bit painful.
o If (Al,Bl) is the 0 cut, then (Al, B1> X (AQ,BQ) = (Al, Bl)
o If (AQ, BQ) is the 0 cut, then (A17 Bl) X (AQ, Bg) = (AQ, Bg)

If (Ay, By) is negative and (As, By) is positive then

(A1, B1) x (A2, By) = —( = (A1, B1) X (A3, By)).

If (Ay, By) is positive and (A, By) is negative then

(A1, B1) x (A2, By) = —((A1, B1) x —(A2, By)).

If (Ay, By) is negative and (Ag, By) is negative then

(A1, B1) x (As, By) = (= (A1, By) x —(43, By)).

That takes care of all the cases. This is kind of a crazy scheme, and I guess
that there is probably a more efficient definition. But, this does the job.

Field Axioms: Now that we’ve defined addition and multiplication of
Dedekind cuts (i.e., real numbers), it is a tedious but routine matter to
check that these things satisfy all the field axioms. I'm not going to work
this out in these notes, but if you have a day to kill you can probably do it
yourself.

The Ordering: Now we’re doing to change notation. Since real numbers
are Dedekind cuts, we're going to denote them with variables in the usual
way. As I mentioned above, once you have the field axioms, you can define
subtraction and negation. So, we write a < b if and only if a — b is negative.
It is again a routine but tedious matter to check that this makes the reals
into an ordered field.

Notation: The set of real numbers is usually denoted by R. In summary,
R is the ordered field of Dedekind cuts, and R contains @ (the rationals) as
a subset.



8 Least Upper Bound Property

Now I'm going to explain why R doesn’t have any holes in it. Call a set
S C R bounded from abowve if there is some N such that s < N for all s € S.
For instance, the set of numbers less than 25 is bounded from above. In any
Dedekind cut (A, B), the set A is bounded from above.

Supposing that S is a set which is bounded from above, an upper bound
for S is some real number z such that s < z for all x € S. For instance 17
is an upper bound for the set of negative numbers. But 0 is also an upper
bound for the set of negative numbers.

A number z is called a least upper bound for S if x is an upper bound
for S but no y < x is an upper bound for S. You might say that the set S
“creeps right up to” its least upper bound.

Now let’s prove that every set S C R which is bounded from above has
a least upper bound. Define a Dedekind cut (A, B) like this:

e A consists of all rationals z such that x < s for some s € S.

e B consits of all rationals of the form z + y where s < x for all s € S
and y > 0. This definition is designed to “cut the endpoint oft” B.

It is a tedious but not difficult exercise to check that (A, B) really is a
Dedekind cut, and that (A, B) is the least upper bound for S. This is the
sense in which R has no holes:

So, if you define a real number to be a Dedekind cut then the set R of
real numbers is a complete ordered field with the least upper bound property.

9 Final Word

Why are the reals better than the rationals. They are both ordered fields
and we can make the least upper bound definition for the rationals. However,
there are sets of rationals which are bounded from above but do not have a
least upper bound (in the rationals).

Let’s take the set S of rationals x such that 22 < 2. We'd like that /2
is the least upper bound for S but v/2 is not a rational number. So, if we
choose a rational upper bound, it must be greater than v/2. But then we can
find some smaller upper bound. So, in the rationals, there is no least upper
bound to S.



