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1 Introduction

Continued fractions offer a means of concrete representation for arbitrary real numbers. The
continued fraction expansion of a real number is an alternative to the representation of such a
number as a (possibly infinite) decimal.

The reasons for including this topic in the course on Classical Algebra are:

(i) The subject provides many applications of the method of recursion.
(ii) It is closely related to the Euclidean algorithm and, in particular, to “Bezout’s Identity”.
(iii) It provides an opportunity to introduce the subject of group theory via the 2-dimensional

unimodular group GL2(Z).



2 The continued fraction expansion of a real number

Every real number x is represented by a point on the real line and, as such, falls between two
integers. For example, if n is an integer and

n ≤ x < n + 1 ,

x falls between n and n + 1, and there is one and only one such integer n for any given real x.
In the case where x itself is an integer, one has n = x. The integer n is sometimes called the
floor of x, and one often introduces a notation for the floor of x such as

n = [x] .

Examples:

1.
−2 = [−1.5]

2.
3 = [π]

For any real x with n = [x] the number u = x − n falls in the unit interval I consisting of
all real numbers u for which 0 ≤ u < 1.

Thus, for given real x there is a unique decomposition

x = n + u

where n is an integer and u is in the unit interval. Moreover, u = 0 if and only if x is an
integer. This decomposition is sometimes called the mod one decomposition of a real number.
It is the first step in the process of expanding x as a continued fraction.

The process of finding the continued fraction expansion of a real number is a recursive process
that procedes one step at a time. Given x one begins with the mod one decomposition

x = n1 + u1 ,

where n1 is an integer and 0 ≤ u1 < 1.

If u1 = 0, which happens if and only if x is an integer, the recursive process terminates with
this first step. The idea is to obtain a sequence of integers that give a precise determination
of x.

If u1 > 0, then the reciprocal 1/u1 of u1 satisfies 1/u1 > 1 since u1 is in I and, therefore,
u1 < 1. In this case the second step in the recursive determination of the continued fraction
expansion of x is to apply the mod one decomposition to 1/u1. One writes

1/u1 = n2 + u2 ,

where n2 is an integer and 0 ≤ u2 < 1. Combining the equations that represent the first two
steps, one may write

x = n1 +
1

n2 + u2
.
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Either u2 = 0, in which case the process ends with the expansion

x = n1 +
1
n2

,

or u2 > 0. In the latter case one does to u2 what had just been done to u1 above under the
assumption u1 > 0. One writes

1/u2 = n3 + u3 ,

where n3 is an integer and 0 ≤ u3 < 1. Then combining the equations that represent the first
three steps, one may write

x = n1 +
1

n2 + 1
n3+u3

.

After k steps, if the process has gone that far, one has integers n1, n2, . . . , nk and real numbers
u1, u2, . . . , uk that are members of the unit interval I with u1, u2, . . . , uk−1 all positive. One
may write

x = n1 +
1

n2 + 1
n3+

1
...+ 1

nk+uk

.

Alternatively, one may write

x = [n1, n2, n3, . . . , nk + uk] .

If uk = 0, the process ends after k steps. Otherwise, the process continues at least one more
step with

1/uk = nk+1 + uk+1 .

In this way one associates with any real number x a sequence, which could be either finite or
infinite, n1, n2, . . . of integers. This sequence is called the continued fraction expansion of x.

Convention. When [n1, n2, ...] is called a continued fraction, it is understood that all of the
numbers nj are integers and that nj ≥ 1 for j ≥ 2.
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3 First examples

15
11

= 1 +
4
11

= 1 +
1
11
4

= 1 +
1

2 + 3
4

= 1 +
1

2 + 1
4
3

= 1 +
1

2 + 1
1+ 1

3

= [1, 2, 1, 3] .

√
10 = 3 +

1
1√

10−3

= 3 +
1√

10 + 3

= 3 +
1

6 + 1
1√

10−3

= 3 +
1

6 + 1√
10+3

= 3 +
1

6 + 1
6+ 1

...

= [3, 6, 6, 6, . . . ] .
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[2, 3, 5, 2] = 2 +
1

[3, 5, 2]

= 2 +
1

3 + 1
[5,2]

= 2 +
1

3 + 1
5+ 1

2

= 2 +
1

3 + 1
11
2

= 2 +
1

3 + 2
11

= 2 +
1
35
11

= 2 +
11
35

=
81
35

.

Let
x = 1 +

1
2 + 1

3+ 1
2+ 1

3+ 1
2+...

.

In this case one finds that
x = 1 +

1
y

,

where
y = 2 +

1
3 + 1

2+ 1
3+ 1

2+...

.

Further reflection shows that the continued fraction structure for y is self-similar:

y = 2 +
1

3 + 1
y

.

This simplifies to

y =
7y + 2
3y + 1

and leads to the quadratic equation

3y2 − 6y − 2 = 0

with discriminant 60. Since y > 2, one of the two roots of the quadratic equation cannot be
y, and, therefore,

y =
3 +

√
15

3
.
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Finally,

x =
√

15− 1
2

.

The idea of the calculation above leads to the conclusion that any continued fraction [n1, n2, . . . ]
that eventually repeats is the solution of a quadratic equation with positive discriminant and
integer coefficients. The converse of this statement is also true, but a proof requires further
consideration.

4 The case of a rational number

The process of finding the continued fraction expansion of a rational number is essentially
identical to the process of applying the Euclidean algorithm to the pair of integers given by its
numerator and denominator.

Let x = a/b, b > 0, be a representation of a rational number x as a quotient of integers a and
b. The mod one decomposition

a

b
= n1 + u1 , u1 =

a− n1b

b

shows that u1 = r1/b, where r1 is the remainder for division of a by b. The case where
u1 = 0 is the case where x is an integer. Otherwise u1 > 0, and the mod one decomposition
of 1/u1 gives

b

r1
= n2 + u2 , u2 =

b− n2r1

r1
.

This shows that u2 = r2/r1, where r2 is the remainder for division of b by r1. Thus, the
successive quotients in Euclid’s algorithm are the integers n1, n2, . . . occurring in the continued
fraction. Euclid’s algorithm terminates after a finite number of steps with the appearance of a
zero remainder. Hence, the continued fraction expansion of every rational number is finite.

Theorem 1. The continued fraction expansion of a real number is finite if and only if the real
number is rational.

Proof. It has just been shown that if x is rational, then the continued fraction expansion of x is
finite because its calculation is given by application of the Euclidean algorithm to the numerator
and denominator of x. The converse statement is the statement that every finite continued
fraction represents a rational number. That statement will be demonstrated in the following
section.

5 The symbol [t1, t2, . . . , tr]

For arbitrary real numbers t1, t2, . . . , tr with each tj ≥ 1 for j ≥ 2 the symbol [t1, t2, . . . , tr]
is defined recursively by:

[t1] = t1

6



[t1, t2, . . . , tr] = t1 +
1

[t2, . . . , tr]
.(1)

In order for this definition to make sense one needs to know that the denominator in the
right-hand side of (1) is non-zero. The condition tj ≥ 1 for j ≥ 2 guarantees, in fact, that
[t2, . . . , tr] > 0, as one may prove using induction.

It is an easy consequence of mathematical induction that the symbol [t1, t2, . . . , tr] is a rational
number if each tj is rational. In particular, each finite continued fraction is a rational number.
(Note that the symbol [t1, t2, . . . , tr] is to be called a continued fraction, according to the
convention of the first section, only when each tj is an integer.)

Observe that the recursive nature of the symbol [t1, . . . , tr] suggests that the symbol should
be computed in a particular case working from right to left. Consider again, for example, the
computation above showing that [2, 3, 5, 2] = 81/35. Working from right to left one has:

[2] = 2

[5, 2] = 5 +
1
[2]

= 5 +
1
2

=
11
2

[3, 5, 2] = 3 +
1

[5, 2]
= 3 +

2
11

=
35
11

[2, 3, 5, 2] = 2 +
1

[3, 5, 2]
= 2 +

11
35

=
81
35

There is, however, another approach to computing [t1, t2, . . . , tr]. Let, in fact, t1, t2, . . . be
any (finite or infinite) sequence of real numbers. One uses the double recursion

pj = tjpj−1 + pj−2 , j ≥ 1 , p0 = 1 , p−1 = 0(2)

to define the sequence {pj} , j ≥ − 1. The double recursion, differently initialized,

qj = tjqj−1 + qj−2 , j ≥ 1 , q0 = 0 , q−1 = 1(3)

defines the sequence {qj} , j ≥ − 1. Note that p1 = t1, p2 = t1t2 + 1, . . . and q1 = 1,
q2 = t2, q3 = t2t3 + 1, . . . .

One now forms the matrix

Mj =
(

pj qj

pj−1 qj−1

)
for j ≥ 0 .(4)

Thus, for example,

M0 =
(

1 0
0 1

)
, and M1 =

(
t1 1
1 0

)
.

It is easy to see that the matrices Mj satisfy the double recursion

Mj =
(

tj 1
1 0

)
Mj−1 , j ≥ 1(5)
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as a consequence of the double recursion formulas for the pj and qj . Hence, a simple argument
by mathematical induction shows that

Mr =
(

tr 1
1 0

)
. . .

(
t2 1
1 0

) (
t1 1
1 0

)
, r ≥ 1 .(6)

This is summarized by:

Proposition 1. For any sequence {tj}, j ≥ 1 of real numbers, if {pj} and {qj} are the
sequences defined by the double recursions (2) and (3), then one has the matrix identity(

pr qr

pr−1 qr−1

)
=

(
tr 1
1 0

)
. . .

(
t2 1
1 0

) (
t1 1
1 0

)
(7)

for each integer r ≥ 1.

Corollary 1. One has the identity prqr−1 − qrpr−1 = (−1)r for each integer r ≥ 1.

Proof. The number prqr−1 − qrpr−1 is the determinant of the matrix Mr. From the formula
(6) the matrix Mr is the product of r matrix factors, each of which has determinant −1. Since
the determinant of the product of matrices is the product of the determinants of the factors, it
is clear that det(Mr) = (−1)r.

Corollary 2. One has the vector identity(
pr

qr

)
=

(
t1 1
1 0

) (
t2 1
1 0

)
. . .

(
tr 1
1 0

) (
1
0

)
(8)

for each integer r ≥ 1.

Proof. First recall (i) that the product of a matrix and a (column) vector is defined by the
relation (

a b
c d

) (
x
y

)
=

(
ax + by
cx + dy

)
,

(ii) that the transpose of a matrix is the matrix whose rows are the columns of the given matrix,
and (iii) that the transpose operation reverses matrix multiplication. One tranposes both sides
of the relation (7) to obtain:(

pr pr−1

qr qr−1

)
=

(
t1 1
1 0

) (
t2 1
1 0

)
. . .

(
tr 1
1 0

)
.(9)

To this relation one applies the principle that the first column of any 2×2 matrix is the product
of that matrix with the column (

1
0

)
in order to obtain the column identity (8).

Theorem 2. For any sequence {tj}, j ≥ 1 of real numbers, if {pj} and {qj} are the sequences
defined by the double recursions (2) and (3), and if tj ≥ 1 for j ≥ 2, then the value of the
symbol [t1, . . . , tr] is given by the formula

[t1, t2, . . . , tr] =
pr

qr
for r ≥ 1 .(10)
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Proof. What is slightly strange about this important result is that while the {pr} and the
{qr} are defined by the front end recursions, albeit double recursions, (2) and (3), the symbol
[t1, . . . , tr] is defined by the back end recursion (1). The proof begins with the comment that
the right-hand side of (10) does not make sense unless one can be sure that the denominator
qr 6= 0. One can show easily by induction on r that qr ≥ 1 for r ≥ 1 under the hypothesis
tj ≥ 1 for j ≥ 2.

The proof proceeds by induction on r. If r = 1, the assertion of the theorem is simply the
statement t1 = p1/q1, and, as noted above, p1 = t1 and q1 = 1. Assume now that r ≥ 2.
By induction we may assume the correctness of the statement (10) for symbols of length r− 1,
and, therefore, for the symbol [t2, . . . , tr]. That case of the statement says that [t2, . . . , tr]
must be equal to a/c , where by corollary 2(

a
c

)
=

(
a b
c d

) (
1
0

)
with (

a b
c d

)
=

(
t2 1
1 0

)
. . .

(
tr 1
1 0

)
.

Now by (1)

[t1, t2, . . . , tr] = t1 +
1

a/c
= t1 +

c

a
=

at1 + c

a
.

But by corollary 2 again(
pr

qr

)
=

(
t1 1
1 0

) (
a b
c d

) (
1
0

)
=

(
at1 + c bt1 + d

a b

) (
1
0

)
=

(
at1 + c

a

)
.

Hence,
pr

qr
=

at1 + c

a
= [t1, t2, . . . , tr] .

6 Application to Continued Fractions

Recall that [n1, n2, . . . ] is called a continued fraction only when each nj is an integer and
nj ≥ 1 for j ≥ 2. The sequence n1, n2, . . . may be finite or infinite. The symbol cr =
[n1, n2, . . . , nr] formed with the first r terms of the sequence, is called the rth convergent of the
continued fraction. Associated with a given sequence n1, n2, . . . are two sequences p1, p2, . . .
and q1, q2, . . . that are given, according to the double recursions (2), (3) of the previous section
with tj = nj .

Proposition 2. If [n1, n2, . . . ] is a continued fraction, then the integers pr and qr are coprime
for each r ≥ 1.

Proof. By Corollary 1 of the previous section prqr−1 − qrpr−1 = (−1)r. Hence, any positive
divisor of both pr and qr must divide the left-hand side of this relation, and, therefore, must
also divide (−1)r.
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Proposition 3. The difference between successive convergents of the continued fraction [n1, n2, . . . ]
is given by the formula

cr − cr−1 =
(−1)r

qrqr−1
for r ≥ 2 .(11)

Proof. According to the theorem (formula 10) at the end of the last section the convergent cr

is given by
cr =

pr

qr
.

Hence,

cr − cr−1 =
pr

qr
− pr−1

qr−1

=
prqr−1 − pr−1qr

qrqr−1

=
(−1)r

qrqr−1
.

(The last step is by Corollary 1 above.)

Remark 1. The formula (11) remains true if cr = [t1, . . . , tr] where the tj are real numbers
subject to the assumption tj ≥ 1 for j ≥ 1.

Lemma. The sequence {qj} is a strictly increasing sequence for j ≥ 2.

Proof. This is easily proved by induction from the recursive definition (3) of the sequence.

Theorem 3. If [n1, n2, . . . ] is an infinite continued fraction, then the limit

lim
r→∞

pr

qr

always exists.

Proof. As one plots the convergents cr on the line of real numbers, one moves alternately right
and left. The formula (11) for the difference between successive convergents elucidates not only
the fact of alternate right and left movement but also the fact that each successive movement
is smaller than the one preceding. Therefore, one has

c1 < c3 < c5 < . . . < c6 < c4 < c2 .

Since any strictly increasing sequence of positive integers must have infinite limit, the seqence
qjqj−1 has infinite limit, and so the sequence of reciprocals 1/qjqj−1 must converge to zero.
Hence, the sequences of odd- and even-indexed convergents must have the same limit, which is
the limit of the sequence of all convergents.

Definition 1. The limit of the sequence of convergents of an infinite continued fraction is called
the value of that continued fraction.
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Theorem 4. If [n1, n2, . . . ] is the continued fraction expansion of an irrational number x, then

x = lim
r→∞

pr

qr
;

that is, the value of the continued fraction expansion of a real number is that real number.

Proof. For each r ≥ 1 the continued fraction expansion [n1, n2, . . . ] of x is characterized by
the identity

x = [n1, n2, . . . , nr + ur] ,(12)

where ur is a real number with 0 ≤ ur < 1. The sequences of p’s and q’s for the symbol
[n1, n2, . . . , nr + ur] agree with those for the symbol [n1, n2, . . . , nr] except for the rth terms.
One has by (10)

[n1, n2, . . . , nr + ur] =
Pr

Qr
,

where by (3)

qr = nrqr−1 + qr−2

Qr = (nr + ur)qr−1 + qr−2

Hence,
Qr = qr + urqr−1 .

Therefore, the displacement from cr−1 to x is by (11)

(−1)r

Qrqr−1
=

(−1)r

(qrqr−1 + urq2
r−1)

,

which is in the same direction but of smaller magnitude than the displacement from cr−1 to
cr. Therefore, x must be larger than every odd-indexed convergent and smaller than every
even-indexed convergent. But since all convergents have the same limit, that limit must be x.

7 Bezout’s Identity and the double recursion

It has already been observed that the process of finding the continued fraction expansion of a
rational number a/b (b > 0), involves the same series of long divisions that are used in the
application of the Euclidean algorithm to the pair of integers a and b. Recall that at each
stage in the Euclidean algorithm the divisor for the current stage is the remainder from the
previous stage and the dividend for the current stage is the divisor from the previous stage, or,
equivalently, the dividend for the current stage is the remainder from the second previous stage.
The Euclidean algorithm may thus be viewed as a double recursion that is used to construct
the sequence of remainders. One starts the double recursion with

r−1 = a and r0 = b .

At the jth stage one performs long division of rj−2 by rj−1 to obtain the integer quotient nj

and the integer remainder rj that satisfies 0 ≤ rj < rj−1. Thus,

rj = rj−2 − njrj−1 .(13)
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The Euclidean algorithm admits an additional stage if rj > 0. Since

0 ≤ rj < rj−1 < . . . < r2 < r1 < r0 = b ,

there can be at most b stages.

One may use the sequence of successive quotients nj (j ≥ 1) to form sequences {pj} and {qj},
as in the previous section, according to the double recursions:

pj = njpj−1 + pj−2 , j ≥ 1 ; p0 = 1 , p−1 = 0 .(14)

qj = njqj−1 + qj−2 , j ≥ 1 ; q0 = 0 , q−1 = 1 .(15)

It has already been observed that qj ≥ 1 for j ≥ 1 and

[n1, n2, . . . , nj ] =
pj

qj
, j ≥ 1 .

Bezout’s Identity says not only that the greatest common divisor of a and b is an integer linear
combination of them but that the coefficents in that integer linear combination may be taken,
up to a sign, as q and p.

Theorem 5. If the application of the Euclidean algorithm to a and b (b > 0) ends with the
mth long division, i.e., rm = 0, then

rj = (−1)j−1 (qja− pjb) , 1 ≤ j ≤ m .(16)

Proof. One uses induction on j. For j = 1 the statement is r1 = q1a − p1b. Since by (14,
15) q1 = 1 and p1 = n1, this statement is simply the case j = 1 in (13). Assume j ≥ 2,
and that the formula (16) has been established for indices smaller than j. By (13) one has

rj = rj−2 − njrj−1 .

In this equation one may use (16) to expand the terms rj−2 and rj−1 to obtain:

rj =
{
(−1)j−3(qj−2a− pj−2b)

}
− nj

{
(−1)j−2(qj−1a− pj−1b)

}
=

{
(−1)j−1(qj−2a− pj−2b)

}
+ nj

{
(−1)j−1(qj−1a− pj−1b)

}
= (−1)j−1 {(qj−2a− pj−2b) + nj(qj−1a− pj−1b)}
= (−1)j−1 {(qj−2 + njqj−1)a− (pj−2 + njpj−1)b}
= (−1)j−1 {qja− pjb} .

Corollary 3. The greatest common divisor d of a and b is given by the formula

d = (−1)m(qm−1a − pm−1b) ,(17)

where m is the number of divisions required to obtain zero remainder in the Euclidean algorithm.
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Proof. One knows that d is the last non-zero remainder rm−1 in the Euclidean algorithm. This
formula for d is the case j = m− 1 in (16).

Corollary 4.

pm =
a

d
, qm =

b

d
.(18)

Proof. The last remainder rm = 0. The case j = m in (16) shows that a/b = pm/qm.
Since, by the first proposition of the preceding section, pm and qm have no common factor, this
corollary is evident.

8 The action of GL2(Z) on the projective line

If a, b, c, d are real numbers with ad− bc 6= 0 and

M =
(

a b
c d

)
is the matrix with entries a, b, c, and d, then M · z, for z real, will denote the expression

M · z =
az + b

cz + d
.(19)

One calls M · z the action of M on z.

M · z is a perfectly good function of z except for the case z = −d/c where the denominator
cz + d vanishes. If it were also true that az + b = 0 for the same z, then one would have
−b/a = −d/c, in contradiction of the assumption ad− bc 6= 0. Thus, when z = −d/c, the
value of |M ·w| increases beyond all bounds as w approaches z, and it is convenient to say that

M ·
(
−d

c

)
= ∞

where ∞ is regarded as large and signless. If further it is agreed to define

M · ∞ =
a

c
,

which is the limiting value of M · w as |w| increases without bound, then one may regard the
expression M · z as being defined always for all real z and for ∞. The set consisting of all real
numbers and also the object (not a number) ∞ is called the projective line. The projective line
is therefore the union of the (ordinary) affine line with a single point ∞.

Proposition 4. If [n1, n2, . . . ] is any continued fraction, then

[n1, n2, . . . , nr, nr+1, . . . ] = M · [nr+1, . . . ] .(20)

where

M =
(

n1 1
1 0

)
. . .

(
nr 1
1 0

)
.
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Proof. Let z = [nr+1, . . . ]. Then

[n1, n2, . . . , nr, nr+1, . . . ] = [n1, n2, . . . , nr, z] .

The statement of the proposition now becomes

[n1, n2, . . . , nr, z] = M · z .

This may be seen to follow by multiplying both sides in formula (9), after replacing tj with nj ,
by the column (

z
1

)
.

The matrix M in the preceding proposition is an integer matrix with determinant ±1. The
notation GL2(Z) denotes the set of all such matrices. (The 2 indicates the size of the matrices,
and the Z indicates that the entries in such matrices are numbers in the set Z of integers.) It
is easy to check that the product of two members of GL2(Z) is a member of GL2(Z) and that
the matrix inverse of a member of GL2(Z) is a member of GL2(Z). Thus, GL2(Z) forms
what is called a group. The formula (19) defines what is called the action of GL2(Z) on the
projective line.

One says that two points z and w of the projective line are rationally equivalent if there is a
matrix M in GL2(Z) for which w = M · z. Since (i) GL2(Z) is a group, (ii) M1 · (M2 · z) =
(M1M2) · z, and (iii) w = M · z if and only z = M−1 ·w, it is easy to see that every point of
the projective line belongs to one and only one rational equivalence class and that two points
rationally equivalent to a third must be rationally equivalent to each other.

Terminology. The rational equivalence of points on the projective line is said to be the equiv-
alence relation on the projective line defined by the action of GL2(Z).

Example 1. The set of real numbers rationally equivalent to the point ∞ is precisely the set
of rational numbers.

Example 2. The proposition above shows that any continued fraction is rationally equivalent
to each of its tails. It follows that all tails of a continued fraction are rationally equivalent to
each other.

9 Periodic continued fractions

In one of the first examples of a continued fraction expansion, it was shown that
√

10 =
[3, 6, 6, 6, . . . ]. This is an example of a periodic continued fraction. After a finite number of
terms the sequence of integers repeats cyclically. If a cyclic pattern is present from the very first
term, then the continued fraction is called purely periodic. Evidently, [6, 6, 6, . . . ] =

√
10 − 3

is an example of a purely periodic continued fraction.

Note that a periodic continued fraction cannot represent a rational number since the continued
fraction expansion of a rational number is finite.
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Theorem 6. Every periodic continued fraction is the continued fraction expansion of a real
quadratic irrational number.

Proof. For clarity: it is being asserted that every periodic continued fraction represent a number
of the form

a + b
√

m

c

where a, b, c, and m are all integers with m > 0, c 6= 0, and m not a perfect square.

Numbers of this form with fixed m but varying integers a, b, and c 6= 0 may be added, sub-
tracted, multiplied, and divided without leaving the class of such numbers. (The statement
here about division becomes clear if one remembers always to rationalize denominators.) Con-
sequently, for M in GL2(Z) the number M · z will be a number of this form or ∞ if and only
if z is in the same class.

Since a periodic continued fraction is rationally equivalent to a purely periodic continued frac-
tion, the question of whether any periodic continued fraction is a quadratic irrationality reduces
to the question of whether a purely periodic continued fraction is such. Let

x = [n1, . . . , nr, n1, . . . , nr, n1, . . . , nr, . . . ]

be a purely periodic continued fraction. By the proposition of the preceding section, x = M ·x
where M is notationally identical to the M in (20). Ignoring the computation (9) of M in
terms of convergents, let

M =
(

a b
c d

)
.

Then
x =

ax + b

cx + d
,

or, otherwise said, x is a solution of the quadratic equation

cx2 − (a− d)x− b = 0 .

Remark 2. It is conversely true that the continued fraction expansion of every real quadratic
irrationality is periodic.

This converse will not be proved here.
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