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Introduction

As suggested by the title, this paper is about Ham Sandwich Theo-

rem; whose original statement is: given any 3 bounded objects in 3-

dimensional space, they can be cut into half simultaneously with one

cut only. Although this can be proved by elementary method, it is hard

to generalize to higher dimension. So we choose to use Borsuk-Ulam

Theorem. Borsuk-Ulam Theorem is an interesting theorem on its own,

because of its numerous applications and admits many kinds of proof.

Here we choose to appeal to 2 big machinery in algebraic topology,

namely: covering space and homology theory. Starting from a cute lit-

tle theorem, we end out with some big tools, and so it justifies the term

”adventure”.

It is not necessary to use all these big tools, however, we use it because

of 2 reasons:

1. These tools are interesting on its own.

2. They give a more conceptual proof.
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6 CONTENTS

These tools are introduced in the general forms, which is in algebraic

nature. The topology will only return to our sight when we try to apply

these tools to our problems. We make some efforts in clearly distin-

guishing the roles played by algebra and topology, not always success-

ful. Perhaps this is a good place to quote G.H.Hardy on what is a good

proof, one of my favourite mathematician,

...there is a very high degree of unexpectedness, combined

with inevitability and economy. The arguments take so odd

and suprising form; the weapons used seem to be childishly

simple when compared with the far-reaching results; but

there is no escape from the conclution.

The proof here is not that good by this very standard, however I think

that this is not an uncommon situation where the weapon is more use-

ful than the theorem.



Chapter 1

Borsuk-Ulam Theorem

Like many great theorems, Borsuk-Ulam Theorem comes in a simple

form: For every continuous mapping f : Sn - Rn there exist a point

x ∈ Sn with f(x) = f(−x), understandable to even the high school

students, and yet it admits many non-trivial generalizations and in-

spires numerous other results. This paper is a justification to the claim

above.

It is always a good idea to get some intuition about the theorem, and

the Borsuk-Ulam Theorem has this interesting interpretation1: given

a ball, deflate, crumple, and lay it flat,

1This example is taken from the book [Mat03]
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8 CHAPTER 1. BORSUK-ULAM THEOREM

then there is a pair of antipodal points that lies on top of another.

Notice that the same result hold for maps Sn f- Rm where m ≤ n

because we can extend the range of the function, f = (f1, ..., fm),

to Rn by letting f = (f1, ..., fm, cm+1, ..., cn) where ci are constants.

However, the result is false if m > n. To see this, consider a rotating

sphere, its velocity field is simply a continuous function S2 f - R2

Obviously all the antipodal points, x,−x, are heading opposite direc-

tion, except a and (-a). Now let us colour the sphere continuously,

says, black at the north pole and gradually tone down to the white

at the south pole. Then the result obviously doesn’t hold for function

f(x) = (velocity, colour)
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10 CHAPTER 1. BORSUK-ULAM THEOREM

1.1 Equivalent Formulations

This section is devoted to the following theorem:

Theorem For every n, the followings are equivalent:

1. (Borsuk Theorem) For every continuous mapping f : Sn - Rn

there exist a point x ∈ Sn with f(x) = f(−x)

2. For every antipodal mapping f : Sn - Rn, ie: f is continu-

ous and f(−x) = −f(x), there exist a point x ∈ Sn satisfying

f(x) = 0

3. There is no antipodal mapping f : Sn - Sn−1

4. There is no continuous mapping f : Bn - Sn−1 that is antipo-

dal on the boundary.

Proof

• (1)⇒ (2) Apply (1) to the antipodal map in (2). Then we have a a

such that f(−a) = −f(a) = −f(−a), which implies f(a) = 0

• (2)⇒ (1) Apply (2) to g(x) = f(x)− f(−x)

• (2)⇒ (3) Suppose there is an antipodal mapping Sn - Sn−1,

then it is also an antipodal mapping Sn - Rn. Apply (2), the



1.2. TYPES OF PROOFS 11

mapping has a zero point, which is impossible, since the codomain

of the mapping is a sphere.

• (3) ⇒ (2) Suppose there is no x such that f(x) = 0, then the

function g = f
|f | : Sn - Sn−1 is well defined. This contradicts

(3).

• (4)⇒ (3) Let π be the homeomorphism of the upper hemisphere

of Sn with Bn. So any antipodal map f : Sn - Sn−1 induces

the antipodal map fπ−1 : Bn - Sn−1.

• (3) ⇒ (4) Conversely, given any f : Bn - Sn−1 that is an-

tipodal on the boundary, we can define g : Sn - Sn−1 by

g(x) = fπ(X) and g(−x) = −fπ(x).

�

1.2 Types of Proofs

There are many proofs of Borsuk-Ulam Theorem. For completeness,

we summarize those proofs that are known to us and provide the refer-

ences:
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1. In Bourgin’s book [Bou63], Borsuk-Ulam Theorem is a particular

application of Smith Theory.

2. The most common proof uses the notion of degree, see Hatcher

[Hat02].

3. A more advance proof using cohomology ring is given by J.P.May

[May99].

4. An elementary proof using Tucker Lemma can be found in [GD03].

5. Another elementary proof using homotopy extension argument

can be found in [Mat03].

The proof that we are going to show here is essentially the second kind

of proof, but we have discard the idea of degree of map.



Chapter 2

Covering Space

2.1 Definitions

Definition A map p : E - B is a covering if (i) p is surjective, (ii)

for each b ∈ B, there is a neighborhood N of b such that p−1(N) is

the disjoint union of open sets Ui such that p maps each Ui homeomor-

phically into N . Ui is called fundamental neighborhood if it is a path

connected open set. We call E the total space, B the base space, and

Fb := p−1(b) a fiber of the covering where b ∈ B.

Lemma (Uniqueness of Lifting)

Let p : E - B be a covering, X a connected space, f : X - B a

continuous mapping, g, g′ : X - E such that pg = pg′ = f . If g, g′

agree on one point then they agree on the whole X.

13



14 CHAPTER 2. COVERING SPACE

Proof Let W be the subset of X where g, g′ agree on, we just have

to prove that W is both open and close for the only not empty subset

that is both close and open in a connected space is the whole space

itself[Mun75]. Let w ∈ W , N a fundamental neighborhood of f(w).

By continuity, g, g′ must map some neighborhood of w into the same

open set of p−1(f(w)). Thus g, g′ must agree on that neighborhood.

Similarly, if g, g′ disagree on a point, they must disagree on some

neighborhood of that point. So W is both open and close. �

Lemma Let p : E - B be a covering, b ∈ B, and e ∈ Fb

1. (Path Lifting Lemma) A path f : I - B with f(0) = b lift

uniquely to a path g : I - E such that g(0) = e and pg = f .

2. (Homotopy Lifting Lemma) Homotopical paths f ∼= f ′ that

start at b lift up homotopical path that start at e, hence g(1) =

g′(1)

Proof

1. Since I is compact, by Lebesgue Lemma, we can subdivide I into

subintervals such that each is map into fundamental neighbor-

hood of B. Then we can lift the path inductively by using the

homeomorphisms between the open sets of E and the fundamen-

tal neighborhood of B.
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2. Let h : I×I - B be the homotopy of paths f, f ′ and divide the

square I × I into subsquares that are mapped into fundamental

neighborhood of B. Then we can lift h to H : I × I - E. By

considering g as the lifting of h along the bottom of the square,

and the uniqueness of lifting, H is the homotopy of g, g′

�

2.2 Fundamental Theorem of covering space

Definition Given a space E and a point e ∈ E, the star of e, de-

noted by St(e), is the set of all paths that start at e, up to homotopical

equivalence.

With the definiton above, we can rephrase the unique path lifting prop-

erty as: the covering p : E - B induces an isomorphism St(e) - St(p(e))

for all e ∈ E. Now we are ready to state the main theorem in this chap-

ter:

Theorem (Fundamental Theorem of Covering Spaces [May99])

Given a covering p : E - B and a mapping f : X - B, where

X is path-connected, and choose a base point x0 ∈ X. Let b0 = f(x0)

and choose e0 ∈ Fb0. Then there exist a mapping g : X - E such

that g(x0) = e0 and pg = f if and only if

f∗(π(X,x0)) ⊂ p∗(π(E, e0))
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in π(B, b0), where f∗, g∗ are the induced mapping of f, g by the ho-

motopy group functor. When this condition holds, the mapping g is

unique.

Proof (Necessity)The lifting g ensures that imf ⊂ imp, so we have

f∗(π(X,x0)) ⊂ p∗(π(E, e0)) by functoriality.

(Sufficiency) Let x ∈ X be an arbitrary point, [α] : x0
- x be an

equivalence class of path from x0 to x. Let [β] be the unique element in

St(e0) such that p([β]) = f([α]). We define g(x) to be the endpoint of

path β. To show that g is well defined, let [α′] be a distinct equivalence

class of paths from x0 to x. We want to show that the corresponding

[β′] has the same end point as [β]. Since [α−1α′] ∈ π(X,x0) we have

some l ∈ π(E, e0) such that p(l) = f(α−1α′) = f−1(α)f(α′). So we

have p(βl) = f(α)f−1(α)f(α′) = f(α′). That is, β′ = βl, and its end

point is same as β, as required.

To show that g is continuous. let U ⊂ E be an open set. We can find a

smaller open set U ′ ⊂ U such that p(U ′) is some open set in B for p is

a local homeomorphism. Then g−1(U ′) = f−1(p(U ′)) is open, hence g

is continuous. �

To justify the effort we have make, we prove the following:

Theorem (2-dimensional Borsuk Ulam Theorem) There is no antipo-

dal mapping f : S2 - S1
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Proof Suppose there is an antipodal map f : S2 - S1. Let q

be the canonical projection map, and p : S1 - S1, the map defined

by z 7→ z2. Then we can define g by g(±x) := f2(x) such that the

diagram below commutes.

S2 f- S1

RP 2

q
?

g- S1

p
?

(2.1)

Since π1(RP 2) = Z/2, and π1(S1) = Z 1, g∗(Z/2) = 0 for it is a torsion

subgroup of Z.By the Fundamental Theorem of Covering Spaces above

there is a lifting g̃ : RP 2 - S1. By construction, g̃q and f agree on

either x or −x and they are both lifting of g̃ hence by the uniquness of

lifting lemma above g̃q = f . It follows that

f(x) = g̃q(x) = g̃q(−x) = f(−x) = −f(x)

This will force f(x) to be zero, which is imposible since the codomain

of f is a sphere. �

1For the calculation of homotopy group, see [DP97]



18 CHAPTER 2. COVERING SPACE



Chapter 3

Homological Algebra

This chapter provides us with the elementary algebraic tools to be ap-

plied to topological problems later. Although homological algebra is

itself an interesting topic, with the goal to introduce homology functor1

and long exact sequence in mind, it’s presentation here is not only in-

complete but also highly compact. To separate the algebra from topol-

ogy does not diminish their intimate connection, but enables us to see

clearly in which parts they play in this vast subject: Algebraic topology.

3.1 Definitions

To define the homology functor, we introduce the categories of graded

modules and chain complexes in this section. We assume familiarity

1For reference to category theory , see [BK00a]
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20 CHAPTER 3. HOMOLOGICAL ALGEBRA

with rings and modules2 here and let Λ denote a fixed, but otherwise

arbitrary, ring through out this chapter.

Definition The category of graded Λ-modules, MODZ
Λ, is given by

the following data:

• An object in the category, C, is a family Λ-module, {Cn}, where

n ∈ Z.

• A morphism of degree p,C φ- D, is a family of Λ-homomorphisms,

{φn : Cn - Dn+p}

Definition The category of Chain Complexes over Λ is given by the

following data:

• An object in the category is a pair (C, ∂), where C is a graded Λ -

modules and ∂ : C - C is an endomorphism of degree -1 with

∂n∂n+1 = 0

• A morphism Φ : (C, ∂) - (C̃, ∂̃) is a graded morphism of

degree 0 such that ∂nΦn−1 = Φn∂̃n, ie: the following diagram

commutes, for every n :

... - Cn
∂n- Cn−1

- ...

... - C̃n

Φn
?

∂̃n- C̃n−1

Φn−1
?

- ...

(3.1)

2For reference to ring theory, see [BK00b]
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Terminology and convention:

• The morphism ∂ (as well as its components) is called a differential

operator, or boundary operator in most topological settings.

• For simplicity, we follow the standard practice of dropping the

subscripts in module homomorphisms ∂n and Φn whenever the

context makes it clear. For example, we shall only write ∂Φ = Φ∂

to express the commutativity of the diagram above.

• Furthermore, we shall write the boundary operator of all chain

complexes as ∂

To facilitate the definition of the homology functor, we need the follow-

ing easy and yet important lemma.

Lemma (Chain Map Lemma): Let ψ : (C, ∂) - (D, ∂′) be a

chain map. Then ψn induces:

1. ψ′ : Im∂n+1
- Im∂′n+1

2. ψ′′ : Ker∂n - Ker∂′n

3. ψ∗ : Ker∂n/Im∂n+1
- Ker∂′n/Im∂

′
n+1

Proof Ker∂n and Im∂n+1 are both submodule ofCn. Thusψn|Ker∂n

and ψn|Im∂n+1
are module homomorphisms toDn. All we have to prove

is the the codomain of the 2 homomorphism are Ker∂′n and Im∂′n+1

respectively.
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1. Let x ∈ Im∂n+1, ie: x = ∂n+1(y) for some y ∈ Cn+1.Then

ψn(x) = ∂′n+1ψn+1(y) ∈ Im∂′n+1 by commutativity of the dia-

gram 1.1.

2. Let x ∈ Ker∂n. Then ∂′nφn(x) = φn+1∂n(x) = 0 by commuta-

tivity of the diagram 1.1.

3. We have Ker∂n
ψ′′- Ker∂′n

ε-- Ker∂′n/Im∂n+1. And since

ψ′′(Im∂n+1) = 0, by the universal property of quotient map,

there is a unique map Ker∂n/Im∂
Ψ- Ker∂′n. Then the com-

position map, εΨ is the required homomorphism.

�

Definition Given a chain complex C = (Cn, ∂n), the condition ∂2 =

0 ensures that Hn(C) := ker∂n/im∂n+1 is well defined for all n ∈ Z.

Therefore, we can associate with chain complex C the graded module

H(C) := {Hn(C)}. Furthermore a chain map φ : C - D induces

a graded morphism of degree 0, H(φ) = φ∗ : H(C) - H(D) by

chain map lemma. H(−) can now be precisely called a functor from

the category of chain complexes over Λ to the category of graded Λ-

modules.

Notation and Terminology Often in applications to topology,
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• an element in Cn is called n-chain

• Ker∂n is denoted as Zn = Zn(C), whose element is called n-

cycle

• Im∂n+1 is denoted as Bn = Bn(C) , whose element is called

n-boundary

• Two n− cycles which determine the same element inHn(C) are

called homologous

• The element inHn(C) determined by a n− cycle, c, is called the

homology class of c, denoted by [c].

3.2 Some Lemmas

Lemma ∂n : Cn - Cn−1 induces ∂̃n : coker∂n+1
- ker∂n−1

with ker∂̃n = Hn(C) and coker∂̃n = Hn−1(C)

Proof Since im∂n+1 ⊂ ker∂n and im∂n ⊂ ker∂n−1, ∂ induces ∂̃n

as follows:

coker∂n+1 = Cn/im∂n+1
- Cn/ker∂n ∼= im∂n ⊂ ker∂n−1

On the other hand, ker∂̃n = ker∂n/im∂n+1 = Hn(C),and coker∂̃n =

ker∂n−1/im∂n = Hn−1(C) �
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Lemma Let

A′
α1- A

α2- A′′

Σ1 Σ2

B′

ψ

?
β1- B

φ

?
β2- A′′

θ

?
(3.2)

be commutative diagram with exact rows. Then φ induces an isomor-

phism

Φ : kerθα2/(kerα2 + kerφ) - (Imφ ∩ Imβ1)/Imφα1

Proof To show that Φ is an isomorphism,

• Let x ∈ kerθα2, obviouslyφ(x) ∈ imφ. Since β2φ(x) = θα2(x) =

0, we have φ(x) ∈ kerβ2 = imβ1. Thus we have induced homo-

morphism kerφα2
- (Imφ ∩ Imβ1)

• If x ∈ kerα2, then x ∈ imα1, and hence φ(x) ∈ imφα1. If

x ∈ kerφ, then φ(x) = 0 ∈ imφα1. Thus Φ is well defined.

• To show that Φ is surjetive, let y ∈ imφ∩ imβ1, then there exist

x ∈ A with φ(x) = y. Since θα2(x) = β2φ(x) = β2(y) = (y ∈

imβ1 = kerβ2)0, so x ∈ kerθα2.

• To show that Φ is injective, let x ∈ kerθα2 such that φ(x) ∈

imφα1, ie φ(x) = φα1y for some y ∈ A′. Then x = α1(y) +m,

where m ∈ kerφ. That is, x ∈ kerα2 + kerφ.

�
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Notation

A′
α1- A

Σ

B′

ψ

?
β1- B

φ

?
(3.3)

Given the diagram above, we denote

imΣ = (imφ ∩ imβ)/imφβ

kerΣ = kerφα/kerα+ kerψ

Thus we can express the conclusion of the lemma above as kerΣ2 =

imΣ1.

Lemma (Snake Lemma) Let the following commutative diagram

have exacts rows 3

A
µ- B

ε- C - 0

0 - A′

α

?
µ′- B′

β

?
ε′- C′

γ

?
(3.4)

Then there is a homomorphism ω that makes the following sequence

exact:

kerα
µ∗- kerβ

ε∗- kerγ
ω- cokerα

µ′∗- cokerβ
ε′x- cokerγ

3The Snake Lemma is introduced in all homological algebra books, we give one
here [HS97]
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Proof By Chain Map Lemma, the sequences kerα µ∗- kerβ
ε∗- kerγ

and cokerα µ′∗- cokerβ
ε′x- cokerγ are exact. So we just have to

construct the connecting homomorphismω and prove that kerγ ω- cokerα

is exact. Now consider the diagram below:

kerβ
ε∗- kerγ

Σ1

A
µ - B

?
ε - C

?
- 0

Σ3 Σ2

0 - A′

α

?
µ′ - B′

β

?
ε′- C′

γ

?

Σ4

cokerα
?

µ′∗- cokerβ
?

(3.5)

By the lemma above, we have imΣ1 = kerΣ2 = imΣ3 = kerΣ4.

imΣ1 = (kerγ ∩ ε(B))/ε∗(kerβ) = kerγ/ε∗(kerβ) = cokerε∗ (

ε(B) = C as ε is surjective). Similarly, we have kerΣ4 = kerµ′∗.

Hence we have kerγ - cokerε∗ = kerµ′∗
- cokerα an exact

sequence and define the composite homomorphism as ω. �

Theorem (Long Exact Sequence) 4

Given a short exact sequence A ⊂ φ- B
ψ-- C of chain complexes,

then there is long exact sequence as follow:

...
ωn+1- Hn(A)

φ∗- Hn(B)
ψ∗- Hn(C)

ωn- Hn−1(A) ...
φ∗..- (3.6)

4This proof is suggested by the exercise in [HS97]
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Proof Consider the following diagram:

0 - ker∂n - ker∂n - ker∂n

An

?
φ - Bn

?
ψ - Cn

?

An−1

∂n

?
φ - Bn−1

∂n

?
ψ - Cn−1

∂n

?

coker∂n
?

- coker∂n
?

- coker∂n
?

- 0

(3.7)

By snake lemma, the top and bottom sequences are exact for all n.Then

by the first lemma in this section, we have the following diagram:

Hn(A) - Hn(B) - Hn(C)

coker∂n+1

?
φ- coker∂n+1

?
ψ- coker∂n+1

?
- 0

0 - ker∂n−1

∂̃n

?
- ker∂n−1

∂̃n

?
- ker∂n−1

∂̃n

?

Hn−1(A)
?

- Hn−1(B)
?

- Hn−1(C)
?

(3.8)

Applying the snake lemma again, we get the connecting morphism

ω : Hn(C) - Hn−1(A)

such that the sequence(3.6) is exact. �
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Chapter 4

Homology Theory

4.1 Axiomatic Homology theory

Definition Given an abelian group, π, a homology theory consists of

a functor H∗(X,A;π) from the category of pairs of space to the cate-

gory of graded abelian group together with the natural transformations

∂ : Hq(X,A;π) - Hq−1(A;π). This functor and natural trans-

formations satisfy and are characterized by the following axioms (see

[May99],[ES52] for other axioms.)

DIMENSION If p is a point, thenH0({p};π) = π andHq({p};π) = 0

for all integers q.

29
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EXACTNESS The following sequence is exact:

... - Hq(A;π) - Hq(X;π) - Hq(X,A;π)
∂- Hq−1(A;π) .......-

EXCISION If (X;A,B) is an excisive triad, ie: X is the union of the

interior ofA andB, then the inclusion (A,A∩B) - (X,B) induces

an isomorphism

H∗(A,A ∩B;π) - H∗(X,B;π)

.

ADDITIVITY If (X,A) is the disjoint union of a set of pairs (Xi, Ai)m

then the inclusions (Xi, Ai) - (X,A) induce an isomorphism

ΣiH∗(Xi, Ai;π) - H∗(X,A;π)

.

HOMOTOPY If f is homotopy to g then H∗(f) = H∗(g). We often

denote H∗(f) as f∗.

Definition A reduced homology group H̃q(X,A;π) is defined to be

the kernel of Hq(X,A;π) - Hq(point;π). Thus we have, by defi-

nition, Hq(X,A;π) = H̃q(X,A;π) for q > 0
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4.2 Singular Homology

We need to construct a concrete functor that satisfies the axioms. There

are many of them, which can be proved are essentially the same[May99].

However, in this paper, we are going to introduce just one of them,

namely singular homology.

Let ∆n be an n-simplex, ie: ∆n = {(x1, x2, ..., xn) ∈ Rn|Σxi = 1},

X be an arbitrary space and G some abelian group. Now we define

Cn(X;G) be the free abelian group generated by the mapping from

δ : ∆n - X tensoring with G. We shall omit the G from our nota-

tion by fixing it. To make {Ci(X)} a chain complex, we just have to

define ∂ : Ck(X) - Ck−1(X) such that ∂∂ = 0. This can be done

by define ∂ on the generator of the group since the group is free:

∂(δ) :=
∑
i

(−1)iδ|∆i

∆i is defined to be the subspace of ∆ such that its i-coordinate is 0. If

∆ is an n-simplex then ∆i can be regarded as an (n−1)-simplex, thus

∂ really maps into Cn−1(X). And we calculate as follow:

∂∂(δ) =
∑
j<i

(−1)i(−1)jδ|∆ji +
∑
j>i

(−1)i(−1)j−1δ|∆ij = 0

So we have show that for any spaceX we have a chain complex {Ci(X)}

and hence a homology functor by previous chapter. We will not attempt
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to show that this functor does satisfy the axioms for the task is tedious

and we need not use many of the axioms in the following proof. But

we do need the homology groups of some space to proceed, so we record

down the results that we want. For the detailed calculation, please

refer to [DP97],[Mun75]

• H∗(Bn;π) = 0 for all n and all ablelian group π since Bn is

contractible .

• Hn(Sn;π) = π

• Hi(S
n;π) = 0 for 0 < i < n

• Hn((RP n; Z/2) = Z/2

4.3 Proof of Borsuk-Ulam Theorem

In this section, we will use singular homology and fixed π to be Z/2 and

omit it in our homology group notation. For convenience, we restate the

theorem here, in the version that we want:

Theorem There is no antipode-preserving map f : Sn - Sn−1. 1

Proof If such mapping exist, then by restricting the mapping to

Sn−1, we will have the restriction map f ′ : Sn−1 - Sn−1. We claim

that f ′ induced an isomorphism f ′∗ : Hn−1(Sn−1) - Hn−1(Sn−1) on
1An antipode-preserving map f is a map that satisfies the equation fT = fT ,

where T : Sn - Sn is the antipodal map, ie: T (x) = −x
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the homology group. But since f ′ can be extended to f ′′ : Bn - Sn−1

and the homology group of Bn is zero, the induced isomorphism f ′∗ can

be factored through a zero group. This implies that f ′∗ is a zero map.

But this is impossible since f ′∗ is an isomorphism between 2 non-trivial

group. So what left is to prove that f ′∗ : Hn−1(Sn−1) - Hn−1(Sn−1)

is an isomorphism if f is antipodal. �

Lemma Let T : Sn - Sn be antipode-preserving map. Then f

induces an isomorphism f∗ : Hn(Sn) - Hn(Sn)

Proof First, we construct the following short exact sequence of chain

complex:

0 - C(RP n)
t∗- C(Sn)

π∗- C(RP n) - 0

Let k-chain, Γ : ∆k - RP n be in RP n. Since ∆k is simply con-

nected, it has trivial fundamental homotopy group. Then by the Fun-

damental Theorem of Covering Spaces2, there are exactly 2 lifting, say

: Λ1, T (Λ1) := Λ2 : ∆k - Sn, ie:C(Sn)
π∗- C(RP n) is surjec-

tive, where π : Sn - RP n is the covering map. Now we define the

map C(RP n)
t∗- C(Sn) on the generators since it is a free ggroup

by t∗(Γ) = Λ1 + Λ2, where Γ,Λi are defined as above. t∗ is injec-

tive because the sum of 2 distinct liftings of non-trivial chain is never

0. Since we are using coefficient Z/2, the kernel of π∗ is generated by
2see chapter 3
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{Λ+T (Λ)}, which is exactly the image if t∗.(Given π∗(Λ1 + ...+Λn) =

π∗(Λ1) + ...+π∗(Λn) = 0 where Λi are the generators of C(Sn), to be

zero in C(RP n) each π∗(Λi) must occur twice since they are non-zero

and Λi, T (Λi) must pair up to get the double occurance since the Λi

are distinct.) Hence the above sequence is exact.

Next we prove that the following diagram commutes:

0 - C(RP n)
t∗- C(Sn)

π∗- C(RP n) - 0

0 - C(RP n)

f ′∗
?

t∗- C(Sn)

f∗
?

π∗- C(RP n)

f ′∗
?

- 0

(4.1)

Since f is antipodal, we can define f ′ as the induced map satisfying

the diagram below:

Sn
f- Sn

RP n

π

?
f ′- RP n

π

?
(4.2)

Then the right hand side square commutes by functoriality. Let Γ be a

chain in C(RP n), and Λ1, T (Λ1) := Λ2 are its 2 lifting. Then we have

f∗t∗(Γ) = f∗(Λ1) + f∗(Λ2). On the other hand, fΛ1 and fΛ2 are the 2

lifting of f ′∗Γ, so t∗f ′∗(Γ) = f(Λ1) + f(Λ2) as well. Hence the left hand

site square commutes as well

We then have the following long exact sequence:[cf. chapter3 the sec-
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tion about long exact sequence]

0 - Hn(RP n)
t∗ - Hn(Sn)

π∗- Hn(RP n)
∂- Hn−1(RP n) - 0

- 0 - Hn−1(RP n)
∂- Hn−2(RP n) - 0 - ...

... - H1(RP n)
∂ - H0(RP n)

t∗ - H0(Sn)
π∗- H0(RP n) - 0

(4.3)

The initial term is zero because the higher dimensional homology group

of Sn and RP n vanish as they are n-dimensional CW-complex[May99].

It is well-known that H0(Sn) = Hn(Sn) = Z/2, Hi(S
n) = 0 oth-

erwise, and Hi(RP n) = Z/2 for all i. Since Hn(RP n)
t∗- Hn(Sn)

is injective by exactness, therefore it is also surjective as an endomor-

phism of finite set. It implies that Hn(Sn)
π∗- Hn(RP n) is zero and

hence Hn(RP n)
∂- Hn−1(RP n) is an isomorphism. In conclusion,

we have ∂ : Hi(RP n) - Hi−1(RP n) isomorphism for i =1,2,3,...,n

Now by naturality of the long exact sequence, we have the following

diagrams:

Hn(RP n) - Hn(Sn)

Hn(RP n)

f ′∗
?

- Hn(Sn)

f∗
?

(4.4)

Hi(RP n)
∂- Hi−1(RP n)

Hi(RP n)

f ′∗
?

∂- Hi−1(RP n)

f ′∗
?

(4.5)
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Since f∗ : H0(Sn) - H0(Sn) is clearly an isomorphism , and hence

the induced f∗ : H0(RP n) - H0(RP n) is also an isomorphism. By

induction and the diagram (4.4), we see that f∗ : Hi(RP n) - Hi(RP n)

is an isomorphism for i =0,1,2,...,n Then by the diagram(4.3) we have

f∗ : Hn(Sn) - Hn(Sn) an isomorphism. �



Chapter 5

Applications

5.1 Ham Sandwich Theorem

Ham Sandwich Theorem is one of the classical applications of Borsuk

Ulam Theorem. It take its name from the case when n = 3(see be-

low), the 3 objects are suppose to be a ham and 2 breads. According

to Beyer and Zardecki[BZ04], the earliest known paper about the ham

sandwich theorem is by Steinhaus. It attributes the posing of the prob-

lem to Hugo Steinhaus, and credits Stefan Banach as the first to solve

the problem, by a reduction to the BorsukUlam theorem

37
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Theorem Let M1,M2, ...,Mn be n bounded measurable1 subsets of

Rn, then there exist an n − 1-dimensional hyperplane that cut them

into half of their measures.

Definition Inside affine space Rn, a hyperplane, P , is the zero set of

a non-trivial linear polynomial Fp =
∑n
i=1 aixi + a0 where ai ∈ R for

i = 0, 1, ..., n. All linear polynomials in R[x1, ..., xn] forms an n + 1-

dimensional vector space. Call H the set of all hyperplane.

Lemma Let Sn be the n-sphere, then there exist a surjective set map

T : Sn → H ∪ {∅}

Proof Let P = {(xi) ∈ Rn|∑n
i=1 aixi = an+1}. Since not all coeffi-

cients are zero, so P = {(xi) ∈ Rn|∑n
i=1 âixi = ân+1} where

âi =
ai√∑n+1
1 a2

i

i = 1, 2, ..., n+ 1

Observed that (â1, â2, ...., ân) ∈ Sn, so the map, T : Sn → H defined

by (a1, ...an+1) 7→ ∑n
i=1 aixi = an+1 is surjective. Because this map

is not defined on the point (0, ...., 1), we shall extend the definition by

assigning value to this point, which could be anything, here we choose

the empty set. �

N.B. Since Sn is a topological space, T induces a topology on H

1For reference of measure theory, see [Rud21]
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Definition Let p ∈ Sn and P = T (p), we define the positive side

of P, P+, as the set {(xi) ∈ Rn|∑n
i=1 aixi > an+1}.

Definition LetχS be the characteristic function of the set S, ie: χS(x)

is 1 if x ∈ S, 0, otherwise. Given a measurable set, M ⊂ Rn, the

measure of M on the positive side of a hyperplane, P , is given by the

integral
∫
Rn χMχP+dµ

Lemma Let p ∈ Sn, P = T (p), and M ⊂ Rn a measurable set, The

function f : Sn → R given by p 7→
∫
Rn χMχP+dµ is continuous.

Proof Let {pi} be a sequence converging to p in Sn, then {χP+
i
} con-

verges to χ+
P . Since |χMχP+

i
| < χM for all i, by Lebesgue’s dominated

convergence theorem[Rud21],
∫
Rn χMχP+

i
dµ converges to

∫
Rn χMχP+dµ

�

Now we can prove our main theorem,

Theorem (Ham Sandwich Theorem)

LetM1,M2, ...,Mn ben bounded measurable subsets in Rn, then there

exist an n−1-dimensional hyperplane that cuts them into half of their

measures.

Proof Let fi : Sn → R be the function in the lemma above, applying

to Mi, and F := (f1, f2, ...., fn) : Sn → Rn. F is continuous since

all its component functions are. So by Borsuk Ulam theorem, there is

a point p ∈ Sn such that F (p) = F (−p). Since (−P )+ is just the
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other side of P , this asserts that each Mi has equal measure on both

side of P . So P is the hyperplane that cut all n sets into half of their

measures. One technical point here is that if the point p here is the

point (0, ...1), then we could just change the coordinates, so that the

argument make sence. (Since we didn’t define what is the hyperplane

represented by empty set.) �

We give an interesting generalization, which is due to Gromov [Gro03]:

Theorem (Polynomial Ham Sandwich Theorem)

Let d ≥ 1, and letM1, ....,MC
n+d
d −1

2 be bounded measurable set in Rn.

Then there exist a non-trivial polynomial,P ∈ R[x1, ..., xn] of at most

degree d such that the set P = 0 cuts them into half of their measures.

Proof Observe that the polynomial of at most d degree forms a real

vector space of dimension Cn+d
d .By the same argument of the first

lemma, the zero set of these polynomials can be parameterized by the

points of SC
n+d
d − 1. So again we can define a function fi that maps a

zero set to the measure of the part of Mi that intersects with the posi-

tive side of the zero set. This function is continuous by the same reason.

Thus the function F := (f1, ...., fCn+d
d
− 1) : SC

n+d
d −1 - RC

n+d
d −1 is

continuous and the result follows as before. �

2Cmn denotes the number of ways of choosing n items from m items
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5.2 Lyusternik Shnirelmann Theorem

In this section, we give another equivalent form of Borsuk-Ulam Theo-

rem, which is part of a more general theory called Lyusternik Shnirelmann

Category(for detail see [H.F41]

Theorem Let A1, ..., An+1 be covering of Sn by closed sets Ai. Then

there exists i such that Ai ∩ (−Ai) 6= ∅

Proof Define the continuous function f : Sn - Rn : x - (d(x,A1), ..., d(x,An)),

where d(x,Ai) is the distance from the point x to the Ai.(For conti-

nuity of d, see [Mun75]). According to Borsuk-Ulam Theorem, there

exists a pair of antipodal points, x0, (−x0), that are identified by f . If

d(x0, Ai) = 0 for some i, then x0, (−x0) ∈ Ai for Ai is closed. On the

other hand, if d(x0, Ai) > 0 for all i, then x0, (−x0) ∈ An+1 for Ai

form a cover. �

To prove the converse, we need the following result:

Lemma There exists a covering of Sn−1 by closed sets A1, ...., An+1

such that Ai ∩ (−Ai) = ∅ for all i.

Proof Simply consider the projection of the faces of n-simplex to the

sphere. Geometrically,
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�

Proof (Lyusternik Shnirelmann Theorem implies Borsuk Ulam The-

orem)

Suppose there exists an antipodal map f : Sn - Sn−1, then f−1(A1), ...., f−1(An+1)

is a closed covering of Sn such that f−1(Ai)∩ (−f−1(Ai) = ∅ for all i.

This is contradicted to Lyusternik Shnirelmann Theorem. �

For a direct proof of Lyusternik Shnirelmann Theorem, please refer to

[Mat03].

5.3 Further Development

We would like to end this paper by presenting to which direction the

material here can be further developed.

1. A natural generalization of Borsuk-Ulam Theorem is Knaster Con-

jecture: Given a continuous map f : Sn−1 → Rm and n−m + 1
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points p1, . . . , pn−m+1 ∈ Sn−1, does there exist a rotation % ∈

SO(n) such that f(%(p1)) = . . . = f(%(pn−m+1))?[Jer72].

2. Using Ham Sandwich Theorem in Kakeya Set Conjecture. [Gro03]

Theorem Let n > 1 , and letE ∈ Rn contain a unit line segment

in every direction (such sets are known as Kakeya sets or Besi-

covitch sets). Then E has Hausdorff dimension and Minkowski

dimension equal to n.

3. Borsuk-Ulam Theorem can be putted into a larger context, Lyusternik

Shnirelmann Category. [H.F41] The LyusternikSchnirelmann cat-

egory (or, LusternikSchnirelmann category, LS-category, or sim-

ply, category) of a topological space X is the topological invariant

defined to be the smallest cardinality of an index set I such that

there is an open coveringUi ofX with the property that for each i

, the inclusion map Ui - X is nullhomotopic. For example, if X

is the circle, this takes the value two. And Borsuk-Ilam Theorem

is just saying that the category of the projective space is 3.

4. Using Borsuk-Ulam Theorem in various combinatorial problems

like Kneser’s Conjecture. [Mat03] It states that whenever the n-

subsets of a (2n+ k)-set are divided into k + 1 classes, then two

disjoint subsets end up in the same class.
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These list is by no mean complete, but a few directions that I feel par-

ticularly inerested in.

I would like to close this paper with another quotation from G.H.Hardy,

The ”seriousness” of a mathematical theorem lies, not in its

practical consequences, which are usually negligible, but in

the significance of the mathematical ideas which it connects.

I do hope that the ideas I present here is serious enough.
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