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6. Uniform distribution mod 1

§6.1 Uniform distribution and Weyl’s criterion

Let xn be a sequence of real numbers. We may decompose xn as the sum of
its integer part [xn] = sup{m ∈ Z | m ≤ xn} (i.e. the largest integer which
is less than or equal to xn) and its fractional part {xn} = xn− [xn]. Clearly,
0 ≤ {xn} < 1. The study of xn mod 1 is the study of the sequence {xn} in
[0, 1).

Definition. We say that the sequence xn is uniformly distributed mod 1
if for every a, b with 0 ≤ a < b < 1, we have that

1

n
card{j | 0 ≤ j ≤ n − 1, {xj} ∈ [a, b]} → b − a, as n → ∞.

(The condition is saying that the proportion of the sequence {xn} lying in
[a, b] converges to b − a, the length of the interval.)

Remark. We can replace [a, b] by [a, b), (a, b] or (a, b) with the same result.

Exercise 6.1
Show that if xn is uniformly distributed mod 1 then {xn} is dense in [0, 1).

The following result gives a necessary and sufficient condition for xn to
be uniformly distributed mod 1.

Theorem 6.1 (Weyl’s Criterion)
The following are equivalent:

(i) the sequence xn is uniformly distributed mod 1;

(ii) for each ` ∈ Z \ {0}, we have

1

n

n−1
∑

j=0

e2πi`xj → 0

as n → ∞.
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§6.2 The sequence xn = nα

The behaviour of the sequence xn = nα depends on whether α is rational
or irrational. If α ∈ Q, it is easy to see that {nα} can take on only finitely
many values in [0, 1): if α = p/q (p ∈ Z, q ∈ N, hcf(p, q) = 1) then {nα}
takes the q values

0,

{

p

q

}

,

{

2p

q

}

, . . . ,

{

(q − 1)p

q

}

.

In particular, {nα} is not uniformly distributed mod 1.
If α ∈ R \ Q then the situation is completely different. We shall apply

Weyl’s Criterion. For l ∈ Z \ {0}, e2πi`α 6= 1, so we have

1

n

n−1
∑

j=0

e2πi`jα =
1

n

e2πi`nα − 1

e2πi`α − 1
.

Hence
∣

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

e2πi`jα

∣

∣

∣

∣

∣

∣

≤
1

n

2

|e2πi`α − 1|
→ 0, as n → ∞.

Hence nα is uniformly distributed mod 1.

Remarks.

1. More generally, we could consider the sequence xn = nα + β. It is
easy to see by modifying the above arguments that xn is uniformly
distributed mod 1 if and only if α is irrational.

2. Fix α > 1 and consider the sequence xn = αnx, for some x ∈ (0, 1).
Then it is possible to show that for almost every x, the sequence xn

is uniformly distributed mod 1. We will prove this later in the course,
at least in the cases when α = 2, 3, 4, . . ..

3. Suppose in the above remark we fix x = 1 and consider the sequence
xn = αn. Then one can show that xn is uniformly distributed mod 1
for almost all α > 1. However, not a single example of such an α is
known! In fact, not a single example of an α for which αn mod 1 is
dense is known. (Even (3/2)n mod 1 is not known to be dense.)

Exercise 6.2
Calculate the frequency with which 2n has r (r = 1, . . . , 9) as the leading
digit of its base 10 representation. (You may assume that log10 2 is irra-
tional.)

(Hint: first show that 2n has leading digit r if and only if

r 10` ≤ 2n < (r + 1)10`

for some ` ∈ Z+.)
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Exercise 6.3
Calculate the frequency with which 2n has r (r = 0, 1, . . . , 9) as the second
digit of its base 10 representation.

§6.3 Proof of Weyl’s criterion

Remark. In the following proof of Weyl’s criterion, we assume some fa-
miliarity with properties of the Riemann integral. This was discussed in, for
example, MT2222 Real Analysis.

Proof. Since e2πixj = e2πi{xj}, we may suppose, without loss of generality,
that xj = {xj}.

(i) ⇒ (ii): Suppose that xj is uniformly distributed mod 1. If χ[a,b] is
the characteristic function of the interval [a, b], then we may rewrite the
definition of uniform distribution in the form

1

n

n−1
∑

j=0

χ[a,b](xj) →

∫ 1

0
χ[a,b](x) dx, as n → ∞.

From this we deduce that

1

n

n−1
∑

j=0

f(xj) →

∫ 1

0
f(x) dx, as n → ∞,

whenever f is a step function, i.e., a linear combination of characteristic
functions of intervals.

Now let g be a continuous function on [0, 1] (with g(0) = g(1)). Then,
given ε > 0, we can find a step function f with ‖g − f‖∞ ≤ ε. We have the
estimate

∣

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

g(xj) −

∫ 1

0
g(x) dx

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

(g(xj) − f(xj))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

f(xj) −

∫ 1

0
f(x) dx

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ 1

0
f(x) dx −

∫ 1

0
g(x) dx

∣

∣

∣

∣

≤ 2ε +

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

f(xj) −

∫ 1

0
f(x) dx

∣

∣

∣

∣

∣

.

Since the last term converges to zero, we thus obtain

lim sup
n→∞

∣

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

g(xj) −

∫ 1

0
g(x) dx

∣

∣

∣

∣

∣

∣

≤ 2ε.
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Since ε > 0 is arbitrary, this gives us that

1

n

n−1
∑

j=0

g(xj) →

∫ 1

0
g(x) dx,

as n → ∞, and this holds, in particular, for g(x) = e2πi`x. If ` 6= 0 then

∫ 1

0
e2πi`x dx = 0,

so the first implication is proved.
(ii) ⇒ (i): Suppose now that Weyl’s Criterion holds. Then

1

n

n−1
∑

j=0

g(xj) →

∫ 1

0
g(x) dx, as n → ∞,

whenever g(x) =
∑m

k=1 αke
2πi`kx is a trigonometric polynomial.

Let f be any continuous function on [0, 1] with f(0) = f(1). Given ε > 0
we can find a trigonometric polynomial g such that ‖f − g‖∞ ≤ ε. As in the
first part of the proof, we can conclude that

1

n

n−1
∑

j=0

f(xj) →

∫ 1

0
f(x) dx, as n → ∞.

Now consider the interval [a, b] ⊂ [0, 1). Given ε > 0, we can find
continuous functions f1, f2 (with f1(0) = f1(1), f2(0) = f2(1)) such that

f1 ≤ χ[a,b] ≤ f2

and
∫ 1

0
f2(x) − f1(x) dx ≤ ε.

We then have that

lim inf
n→∞

1

n

n−1
∑

j=0

χ[a,b](xj) ≥ lim inf
n→∞

1

n

n−1
∑

j=0

f1(xj) =

∫ 1

0
f1(x) dx

≥

∫ 1

0
f2(x) dx − ε ≥

∫ 1

0
χ[a,b](x) dx − ε

and

lim sup
n→∞

1

n

n−1
∑

j=0

χ[a,b](xj) ≤ lim sup
n→∞

1

n

n−1
∑

j=0

f2(xj) =

∫ 1

0
f2(x) dx

≤

∫ 1

0
f1(x) dx + ε ≤

∫ 1

0
χ[a,b](x) dx + ε.
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Since ε > 0 is arbitrary, we have shown that

lim
n→∞

1

n

n−1
∑

j=0

χ[a,b](xj) =

∫ 1

0
χ[a,b](x) dx = b − a,

so that xi is uniformly distributed mod 1. 2
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