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•  Harmonic Analysis has over the last 60 years focused on the 
relationship between geometry , and appropriate representations, as a 
tool to understand and prove estimates on operators .  In particular 
kernels of operators restricted to subsets of Euclidean space have 
played a fundamental role in understanding the geometry and 
combinatorics of the set.  

• We claim that these methodologies open the door to organization of 
matrices viewed as either databases, or as linear transformations. 

The challenge is to organize a database or a matrix without any a 
priori knowledge of its internal model, in particular can we find 
data anomalies, fill in missing entries build classifiers and in 
general build  data agnostic, analytic mathematics for processing 
any kind data.  

• Agnostic data geometerization, enables automation of data 
organization and fusion +analytical intelligence.  
Like a good memory organization, we would have the first step to ab 
initio learning, learning in which we  have a feedback mechanism to 
reorganize the data according to the inferences we wish to achieve. 



•  The	  main	  analy,cal	  challenge	  is	  to	  simultaneously	  build	  a	  graph	  of	  
columns	  and	  a	  graph	  of	  rows	  so	  that	  the	  matrix	  entries	  are	  as	  
smooth	  (or	  predictable	  )as	  possible,	  rela,ve	  to	  the	  tensor	  product	  
of	  these	  geometries.	  	  This	  smoothness	  is	  measured	  in	  terms	  of	  an	  
appropriate	  	  tensor	  Besov	  norm	  or	  entropy	  .	  

•  	  	  	  	  The	  next	  challenge	  is	  to	  enable	  simple	  reorganiza,on	  to	  achieve	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  regression	  or	  machine	  learning,	  or	  fast	  numerical	  analysis.	  

We	  illustrate	  the	  outcome	  of	  	  such	  organiza,on	  on	  the	  MMPI	  
(	  Minnesota	  Mul,phasic	  Psychological	  Inventory)	  ques,onnaire	  .	  	  

The	  underlying	  analy,cal	  methods	  enables	  filtering	  out	  anomalous	  
responses	  ,	  and	  provides	  detailed	  quan,ta,ve	  assessments	  of	  
consistency	  of	  responses	  .	  

The	  analysis-‐synthesis	  tools,	  that	  enable	  the	  geometric	  construc,on,	  
are	  useful	  to	  provide	  a	  metric	  to	  assess	  success	  in	  organizing	  the	  
data	  base.	  	  



     We extend ideas of Harmonic Analysis and approximation 
theory to the study of general matrices , whether the goal is 
organization of a data base to extract knowledge, or to build a 
representation relative to which a matrix is efficiently 
described.  
We illustrate the outcome of  such organization on the MMPI 
( Minnesota Multiphasic Psychological Inventory) 
questionnaire .  
The Tensor Haar Bases enable filtering out anomalous 
responses , and provide detailed “analysis”  (pun intended) . 

Stromberg’s observations about the efficiency of 
approximation of functions of bounded mixed variation in the 
tensor Haar basis  is particularly useful in the statistical data 
analysis context of analysing a data base  



  Start by considerimg the problem of unraveling the 
geometric structure in a matrix. We view the columns or 
the rows as collections of points in high dimension whose 
geometry we need to define. 

The matrix on the left is a 
permutation in rows and columns 
of the matrix  below it .  

The challenge is to unravel the 
various simple submatrices . 



More generally 
assume that the 
function 
represents a 
probability field 
which has be 
garbled by 
permuting rows 
and columns. 
At each pixel 
we toss a coin 
with 
corresponding 
probability . 

The Challenge 
is to recover the 
underlying field 
with some 
accuracy  
control. 



A permutation of the rows and 
columns of the matrix  sin(kx). 
On the left we recover the one 
dimensional geometry of x (which 
is oversampled  ), while on the 
right we recover the one 
dimensional geometry 
 of k . 
More generally we can build a dual 
geometry of eigenvectors of 
Laplace Beltrami  operators on 
manifolds 



       The simplest joint organization is achieved as follows   

Assuming an initial  hierarchical organization of the columns of the database 
(see later) into contextual folders ( for example groups of responders which 
are similar at different “scales” )  use these folders to assign new response 
coordinates to each row (question), for example an average response of the 
demographic group.   

Use the augmented  response coordinates to organize responses into a 
conceptual hierarchy of folders of rows which are similar across the 
population of columns.   

We then use the conceptual folders to augment the response of the columns 
and to reorganize them into  a more precise contextual hierarchy .  

 This process is iterated as long as an  “entropy “ of the database is being 
reduced . 



The challenge is to organize a data base by organizing both rows and columns 
simultaneously , if the columns are observations and the rows are features or 
responses. We organize observations “contextually” and responses 
“conceptually “ each organization informs the other iteratively. 



Consider the example of a database of documents , in which the coordinates of  
each document , are the frequency of occurrence of individual words in a lexicon. 
Usually the documents are assumed to be related if their vocabulary  distributions 
 are “close” to each other.   
The problem is that we should be able to interchange words having similar meaning  
and similarity of meaning should be part of the document comparison .  
By duality if we wish to compare two words by conceptual similarity we should look 
at similarity  of frequency of occurrence in documents, here again we should be able  
to interchange documents if their topical difference is small. 
 There are at least three challenges which we claim can be resolved through  
Harmonic Analysis ; 

1.  Define good document content flexible-distances , and 
simultaneously good conceptual vocabulary distances.  

2. Develop a method which is purely data driven and data agnostic , 

3. The complexity of calculations should scale linearly with data size. 

                                         We start by discussing metrics 



From Sameer Shirdhonkar and David W. Jacobs 
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                Dual metrics and EMD   
Consider  images Ii  to be sensed by correlation with a collection of 
sensors f, in a convex set B.

We can define a distance d
B* (Ii , I j ) = sup f∈B f (x)(

X
∫ Ii (x)− I j (x))dx

If  B is the unit ball in Holder classes we get the EMD distances , 
The point being that if B transforms nicely under certain distortions so 
does the dual metric.
The computation of the dual norm for standard classes of smoothness is 
linear in the number of samples. (Unlike the conventional EMD 
optimization or minimal distortion metrics)
This is applicable to general data sets , such as documents, or profiles .
Morever since dual norms are usually weighted combinations of lp  norms
at different scales, it is easy to adjust the weights to account for  noisy 
conditions.  (ie redefining smoothness).



 d
B* (Ii , I j ) = sup f∈B f (x)(

X
∫ Ii (x)− I j (x))  

if B is the unit ball in Holder α ,   then its obvious that the dual distance transforms well
under small perturbation of the identity h(x)=x+r(x) , where r<ε
In fact
Let  D(x)=I(h(x))h '− I(x)

Then       sup f∈B f (x)
X
∫ I(h(x))h '− I(x)dx = sup f∈B I(x)

X
∫ ( f (h(x))− f (x))dx < εα

This argument extends trivially to other metrics, dual to spaces in which changes of variables 
perform small perturbations in L∞ .



Unlike the direct EMD distance the dual distance , which is the dual norm of a 
Holder or Lipshitz class can easily be computed in a variety of ways , each of 
which has been proposed as a potential substitute for the EMD distance , and 
they all turn out to be equivalent . 
 The simplest way, starts with the observation that Holder functions are 
characterized by the boundedness of wavelet coefficients after rescaling so 
that the EMD corresponds to being integrable after dual rescaling .  An 
equivalent definition is given by the sum over different scales of histograms.    

A metric equivalent to Earth mover distance is obtained as follows 
consider blurrred versions of the image at several scales 

Pt (I )(x) = (1 / t)exp(| x − y |
2

/t)∫ I(y)dy

then 

dα (I1, I2 ) = tα−1

0

∞

∫ ( |
R2
∫ Pt (I1 − I2 )(x) | dx)dt < dα (x, y)

R2xR2
∫ | I1 − I2 | dxdy

is equivalent to EMD with distance Penalty |x-y|α 2 = cdα (x, y). 

dα (x, y) = tα−1

0

∞

∫ ( |∫ Pt (x,u)− Pt (y,u) | du)dt

 If Pt  is a more general diffusion process the same results hold.



Measuring distance between curves , 
becomes an easy exercise ,  finding the 
Median curve is quite easy, it is also 
easy to find a distribution best 
approximating all of the curves , simply 
take the median of wavelet coefficients 
of all given curves.  

 More generally this approach permits to build a transport between two 
probability measures , based on a multiscale histogram transport. 

We now return to our original database analysis , in which both 
wavelet analysis and Besov spaces arise naturally, and where both emd  
And dual bi-holder distances arise naturally 



Diffusion embedding of the graph of orbits of the standard map on the 
torus, each orbit is a measure , we  use the earth moving distance to 
define distances between orbits and organize in a graph. 





Demographic organization by earth mover distance among profiles of the population.  
The blue highlighted group  is on one extremity ,having problems.  



The red group is on the other end , being quite healthy . 



The demographic tree , where the previous red group is marked.  



 Conceptual organization of the questions into a geometry . 



Another group of questions 



The same questions as above on the metaquestion tree , and the response profile 
of various demographic groups , on the left problem groups , on the right healthy 
people. 



Observe that whenever we have a partition of data into a tree of subsets, 
we can associate with the tree an orthonormal basis constructed by 
orthogonalization of the characteristic functions of subsets of a parent 
node, first to the parent, and then to each other, as seen below. 

This is precisely the construction of Haar wavelets on the binary tree of 
dyadic intervals or on a quadtree of dyadic squares . 

To a partition tree we associate a metric, which is the weight of the 
lowest folder containing two points ,  and of course we have  
corresponding notion of  Holder regularity as well as an earth mover 
distance.  Conversely any metric  d(x,y) has the property that:  

d(x, y)α

d(x, y)α   is the average of a small number of tree metrics for any α<1.



The tensor product basis indexed by bi-folders, or rectangles in the data base is 
used to expand the full data base .  

The geometry  is iterated until we can no longer reduce the entropy of the 
tensor-Haar expansion of the data base. 





  

          observe that                         | hR (x) |≤
χR (x)

R
1/2     and

f − aRhR (x)
R>ε
∑∫ dx = aRhR (x)

R≤ε
∑∫ dx < | aR |

χR (x)

R
1/2 dx < ε1/2

R≤ε
∑∫ aR

∑ ,

(β = 0)

 Moreover                     f − a
R
h

R
(x)

|R|>ε ,|aR|>ε
∑∫ dx < ε 1/2

A  basic analytical observation on Haar like Basis functions is that a natural 
Entropy condition  such as                   

 on the coefficients of an expansion does not only enable sparse representations 
but also implies smoothness as well as accuracy of representation , in a 
dimensionally independent estimate with number of terms  < 

  | a
R

∑ |< 1

The entropy  condition for standard wavelet basis in d dimensions corresponds to 
having d/2 derivatives in the (special atom)  Hardy space   

 1 / ε



  

Given a tree of subsets we can define a natural distance ρ(x,y)

as the size of the smalles folder (node) containining the two points ,

 we say that a function is Holder of order β  if 

|f(x)-f(y)|< cρ(x,y)
β

 (or  its variance on any folder F   <c|F|
β )

 this condition is equivalent to the following condition

 on the Haar coefficients 

aR < c R
1/2+β

We claim that if f satisfies the condition aR∑ < 1  then it is locally Holder of order1/2

More precisely there is a decreasing sequence of sets E
l
 such that |E

l
|≤ 2− l− l

and a decomposition ( of Calderon Zygmund type )

 f =   g
l
+b

l
     where b

l
    is supported 

on   E
l
 . and g

l
 is Holder β=1/2 with constant 2

(l+1)

or equivalently with  Haar coefficients satisfying    aR < 2
(l+1)

R
1/2+1/2

All of this, extends to tensor products for the Bi Holder case, with R=IxJ.  



Observe that in reality there is no need to build a Haar system it 
suffices to consider the matingale differences  and the corresponding 
Besov spaces ie.	


 let   El  be the conditional expectation on the partition at level l
and Δl = El+1 − El  , clearly we have 
f= (El+1 − El ) f     + ∑ E0 f   ,  the entropy condition is the equivalent 

to  

∫ | Δl ( f )
l
∑  2l /2 |    <∞  , i,e  1/2 a derivative in L1.

∫ | Δl ( f )
l
∑  2− l /2 |   is the dual norm to Holder of index 1/2  equivalent to the emd 

with that distance.
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The	  same	  approach	  of	  organizing	  an	  image	  as	  a	  ques3onnaire	  ,is	  
effec3ve	  for	  texture	  segmenta3on.	  	  	  
Here	  we	  associate	  with	  each	  pixel	  the	  log	  values	  of	  the	  fourier	  
coefficients	  of	  the	  11X11	  square	  centered	  at	  the	  pixel	  .	  	  
	  The	  middle	  image	  shows	  folders	  at	  a	  level	  before	  last	  ,observe	  the	  
spot	  in	  the	  middle	  of	  the	  brown	  .	  
The	  image	  on	  the	  right	  is	  a	  good	  segmenta3on	  of	  the	  textures	  .	  	  
Observe	  that	  no	  assump3ons	  or	  filters	  were	  given	  ,	  this	  can	  be	  
done	  as	  easily	  without	  using	  the	  FT.	  



Questioning the Zebra image. 

We use about 60 band pass filters (below) , each pixel has a 
response to a given filter .  The stripe orientation statistics tree is 
generated   



One of the first applications  of wavelet bases ,was the observation that CZ operators 
could be efficiently implemented in such bases .  
Assume more generally that we have the matrix of potentials of a collection of sources 
located on a spiral, which are evaluated on a flat disk located away . We need to find a 
wavelet  basis on each  structure relative to its geometry.  The full matrix is then 
expanded efficiently in the Tensor Wavelet basis .       
Observe also that a matrix is usually given in garbled order.  





A simple empirical diffusion matrix A  can be constructed as follows 

Let            represent normalized data ,we “soft truncate” the covariance 
matrix  as  

                             A is  a renormalized Markov version of this matrix 

The eigenvectors of this matrix  provide a local non linear principal 
component analysis of the data . Whose entries are the diffusion coordinates 
These are also the eigenfunctions of  a  discrete Graph Laplace Operator. 

This	  map	  is	  a	  diffusion	  (at	  ,me	  t)	  embedding	  into	  Euclidean	  space	  	  



Another	  similar	  construc,on	  for	  empirical	  data	  	  



Observe	  that	  in	  general	  any	  posi,ve	  kernel	  with	  spectrum	  	  as	  above	  can	  give	  rise	  to	  a	  natural	  

orthogonal	  basis	  as	  well	  as	  a	  natural	  mul,scale	  analysis.	  



The	  mul,scale	  tree	  building	  organiza,on	  algorithm	  
proceeds	  as	  follows	  .	  	  
Start	  with	  a	  disjoint	  par,,on	  of	  the	  graph	  into	  clusters	  
of	  diameter	  	  between	  1	  and	  2	  rela,ve	  to	  the	  distance	  
at	  scale	  1	  .	  	  
Consider	  the	  new	  graph	  formed	  by	  leQng	  the	  
elements	  of	  the	  par,,on	  be	  the	  ver,ces	  Using	  the	  
distance	  between	  sets	  	  and	  affinity	  between	  sets	  
described	  above	  we	  repeat.	  	  



On	  this	  graph	  we	  par,,on	  again	  into	  clusters	  of	  diameter	  
between	  1	  and	  2	  rela,ve	  to	  the	  set	  distance	  (we	  double	  
the	  ,me	  scale	  )	  and	  redefine	  the	  affinity	  between	  
clusters	  of	  clusters	  using	  the	  previously	  defined	  affinity	  
between	  sub	  clusters.	  	  

Iterate	  un,l	  only	  disjoint	  clusters	  are	  leT.	  
Another	  approximate	  version	  of	  this	  algorithm	  is	  to	  
embed	  the	  data	  using	  a	  diffusion	  map	  into	  Euclidean	  
space	  and	  pull	  back	  a	  Euclidean	  based	  version	  of	  the	  
above	  .	  



                  Learning and extrapolating functions. 
A simple method to tune the geometry at it relates to various queries or 
functional approximation is obtained as follows. 

Start with a function known on a  subset of the data , and find a simple/
smooth function agreeing with it , for example a Haar expansion with 
minimal norm in       , use that function as a last row= question with an 
appropriate weight to reorganize the questionnaire geometry as it relates 
to that question , and iterate the process. 
. 
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