Particle systems as solutions of SDEs systems

Piotr Graczyk

LAREMA
Université d’Angers

12 June 2014

Conference in honor of Aline Bonami
Harmonic Analysis, Probability and Applications
Orléans, June 2014
P. Graczyk, J. Malecki
Multidimensional Yamada-Watanabe theorem and its applications to particle systems

P. Graczyk, J. Malecki
Strong solutions of non-colliding particle systems,
preprint (2014)

P. Graczyk, J. Malecki
Generalized Squared Bessel particle systems and Wallach set,
Motivation: processes conditioned to non-colliding

Consider a system of p Brownian particles (B_1, \ldots, B_p), i.e. independent BM on \mathbb{R}.
Consider a system of p Brownian particles (B_1, \ldots, B_p), i.e. independent BM on \mathbb{R}.

For each starting point $(B_1(0), \ldots, B_p(0)) \in \mathbb{R}^p$, the first collision time

$$T_B = \inf\{t > 0 : B_i(t) = B_j(t) \text{ for some } i \neq j\}$$

is finite with probability 1.
Consider a system of p Brownian particles (B_1, \ldots, B_p), i.e. independent BM on \mathbb{R}.

For each starting point $(B_1(0), \ldots, B_p(0)) \in \mathbb{R}^p$, the first collision time

$$T_B = \inf\{ t > 0 : B_i(t) = B_j(t) \text{ for some } i \neq j \}$$

is finite with probability 1.

We condition (B_1, \ldots, B_p) to non-colliding
Consider Vandermonde determinant

\[V(x_1, \ldots, x_p) = \prod_{i<j} (x_j - x_i), \]

- \(V = 0 \) iff some \(x_i = x_j \) collide (\(i \neq j \)),
- \(V > 0 \) when \(x_1 < \ldots < x_p \),
- \(V \) is \(\Delta \)-harmonic
Conditioning to non-colliding

- Consider Vandermonde determinant

\[V(x_1, \ldots, x_p) = \prod_{i<j}(x_j - x_i), \]

- \(V = 0 \) iff some \(x_i = x_j \) collide \((i \neq j)\),
- \(V > 0 \) when \(x_1 < \ldots < x_p \),
- \(V \) is \(\Delta \)-harmonic

- Denote by \((\lambda_1, \ldots, \lambda_p)\) the process \((B_1, \ldots, B_p)\) starting from

\[B_1(0) < \ldots < B_p(0), \]

conditioned using the Doob \(h \)-transform with \(h = V \)
The system \((\lambda_1, \ldots, \lambda_p)\) starts from \(\lambda_1(0) < \ldots \lambda_p(0)\).

The first collision time

\[T_\Lambda = \inf \{ t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j \} \]

is infinite with prob. 1.

The particles remain ordered

\[\lambda_1(t) < \ldots < \lambda_p(t) \]

i.e. the particles belong to the positive Weyl chamber
The system \((\lambda_1, \ldots, \lambda_p)\) starts from \(\lambda_1(0) < \ldots \lambda_p(0)\).

The first collision time

\[T_\Lambda = \inf\{t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j\} \]

is infinite with prob. 1.

The particles remain ordered

\[\lambda_1(t) < \ldots < \lambda_p(t) \]

i.e. the particles belong to the positive Weyl chamber

The system \((\lambda_1, \ldots, \lambda_p)\) satisfies

\[d\lambda_i(t) = dB_i + \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt \]

The repulsive drift terms \(\frac{1}{\lambda_i - \lambda_j}\) prevent collisions, to which the martingale parts tend
\(\beta \)-Dyson BM is described for \(\beta > 0 \) by

\[
d\lambda_i = dB_i + \frac{\beta}{2} \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt.
\]

- \(p \)-dim. BM conditioned not to collide is a Dyson BM with \(\beta = 2 \).
β-Dyson BM is described for $\beta > 0$ by

$$d\lambda_i = dB_i + \frac{\beta}{2} \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt.$$

- p-dim. BM conditioned not to collide is a Dyson BM with $\beta = 2$.
- A β-Dyson BM is non-colliding iff $\beta \geq 1$ (Rogers, Shi, 1993)
- For $\beta < 1$ the repulsion force $\frac{\beta}{\lambda_i - \lambda_j}$ is too little w.r. to the colliding martingales dB_i.

Let \((X_1, \ldots, X_p)\) be a system of independent BESQ processes on \(\mathbb{R}^+\) with dimension \(\alpha > 0\)

\[
dX_i = 2\sqrt{X_i}dB_i + \alpha dt, \quad i = 1, \ldots, p, \quad \alpha > 0.
\]

starting from \(X_i(0) > 0\).
Let \((X_1, \ldots, X_p)\) be a system of independent BESQ processes on \(\mathbb{R}^+\) with dimension \(\alpha > 0\)

\[dX_i = 2\sqrt{X_i}dB_i + \alpha dt, \quad i = 1, \ldots, p, \quad \alpha > 0.\]

starting from \(X_i(0) > 0\).

In such a system collisions happen with probability 1. The function

\[V(x_1, \ldots, x_p) = \prod_{i<j}(x_j - x_i)\]

is harmonic for the generator of \((X_1, \ldots, X_p)\)

By \(h\)-Doob transform \((h = V)\) we obtain a non-colliding squared Bessel particle system
Non-colliding squared Bessel particles

Process \((\lambda_1, \ldots, \lambda_p)\) satisfies the following system of SDEs:

\[
 d\lambda_i = 2\sqrt{\lambda_i} dB_i + \left(\alpha + 2(p-1) + 2 \sum_{j \neq i} \lambda_i + \lambda_j \lambda_i - \lambda_j\right) dt,
\]

where \(\lambda_1(0) < \ldots < \lambda_p(0)\).

It is a special case of a \(\beta\)-BESQ particle system:

\[
 d\lambda_i = 2\sqrt{\lambda_i} dB_i + \beta \left(\alpha + \sum_{j \neq i} \lambda_i + \lambda_j \lambda_i - \lambda_j\right) dt.
\]
Process \((\lambda_1, \ldots, \lambda_p)\) satisfies the following system of SDEs:

\[
d\lambda_i = 2\sqrt{\lambda_i} dB_i + \left(\alpha + 2(p - 1) + 2 \sum_{j \neq i} \frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j}\right) dt,
\]

where \(\lambda_1(0) < \ldots < \lambda_p(0)\).
Non-colliding squared Bessel particles

- Process \((\lambda_1, \ldots, \lambda_p)\) satisfies the following system of SDEs:

\[
d\lambda_i = 2\sqrt{\lambda_i} dB_i + \left(\alpha + 2(p - 1) + 2 \sum_{j \neq i} \frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j} \right) dt,
\]

where \(\lambda_1(0) < \ldots < \lambda_p(0)\).

- It is a special case of a \(\beta\)-BESQ particle system:

\[
d\lambda_i = 2\sqrt{\lambda_i} dB_i + \beta \left(\alpha + \sum_{j \neq i} \frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j} \right) dt.
\]
Let X_t be a Brownian Motion on the space of symmetric matrices Sym_p (stochastic Gaussian Orthogonal Ensemble).
Further motivation - Eigenvalues of matrix processes

- Let X_t be a Brownian Motion on the space of symmetric matrices Sym_p (stochastic Gaussian Orthogonal Ensemble)
- The process X_t satisfies a matrix SDE

$$dX_t = \frac{1}{2}dW_t + \frac{1}{2}dW_t^T$$

where W_t is a $p \times p$ Brownian square matrix
Proposition

Let X_t be a stochastic matrix process on Sym_p and Λ_t its ordered eigenvalues, $\lambda_1(t) \leq \ldots \leq \lambda_p(t)$. Suppose that X_t satisfies the SDE

$$dX_t = h(X_t)dW_t g(X_t) + g(X_t)dW_t^T h(X_t) + b(X_t)dt$$

where the functions $g, h, b : \mathbb{R} \to \mathbb{R}$ act spectrally on Sym_p. If $\lambda_1(0) \leq \ldots \leq \lambda_p(0)$, then the process Λ_t is a semimartingale, satisfying for $t < T=\text{first collision time}$ the SDEs system:

$$d\lambda_i = 2g(\lambda_i)h(\lambda_i)dB_i + \left(b(\lambda_i) + \sum_{j \neq i} \frac{G(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} \right) dt,$$

where $G(x, y) = g^2(x)h^2(y) + g^2(y)h^2(x)$.

Piotr Graczyk
Particle systems as solutions of SDEs systems
Back to Brownian Motion on Sym_p

$$dX_t = \frac{1}{2} dW_t + \frac{1}{2} dW_t^T$$
Back to Brownian Motion on Sym_p

$$dX_t = \frac{1}{2} dW_t + \frac{1}{2} dW_t^T$$

- If X_0 has no multiple eigenvalues:

 $$\lambda_1(0) < \ldots < \lambda_p(0),$$

 then the eigenvalue process Λ_t satisfies

 $$d\lambda_i = dB_i + \frac{1}{2} \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt, \quad i = 1, \ldots, p,$$
Back to Brownian Motion on Sym_p

\[dX_t = \frac{1}{2} dW_t + \frac{1}{2} dW_t^T \]

- If X_0 has no multiple eigenvalues:

 \[\lambda_1(0) < \ldots < \lambda_p(0), \]

 then the eigenvalue process Λ_t satisfies

 \[d\lambda_i = dB_i + \frac{1}{2} \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt, \quad i = 1, \ldots, p, \]

- If X_t is a BM on Herm_p(Stochastic UGE)

 \((W_t \text{ is a complex matrix BM, } dX_t = \frac{1}{2} dW_t + \frac{1}{2} dW_t^*) \)

 we obtain

 \[d\lambda_i = dB_i + \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt, \quad i = 1, \ldots, p, \]

Piotr Graczyk
Particle systems as solutions of SDEs systems
Back to Brownian Motion on Sym_p

$$dX_t = \frac{1}{2} dW_t + \frac{1}{2} dW_t^T$$

- If X_0 has no multiple eigenvalues:
 \[\lambda_1(0) < \ldots < \lambda_p(0), \]
 then the eigenvalue process Λ_t satisfies
 \[d\lambda_i = dB_i + \frac{1}{2} \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt, \quad i = 1, \ldots, p, \]

- If X_t is a BM on $Herm_p$(Stochastic UGE)
 (W_t is a complex matrix BM, $dX_t = \frac{1}{2} dW_t + \frac{1}{2} dW_t^*$)
 we obtain
 \[d\lambda_i = dB_i + \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} dt, \quad i = 1, \ldots, p, \]

- In both cases Λ_t is a Dyson Brownian Motion
Squared Bessel Matrix processes on Sym_p^+

$$dX_t = \sqrt{X_t}dW_t + dW_t^T \sqrt{X_t} + \alpha ld t, \quad \alpha \geq p - 1.$$
Squared Bessel Matrix processes on Sym_p^+

$$dX_t = \sqrt{X_t}dW_t + dW_t^T \sqrt{X_t} + \alpha ld\tau, \quad \alpha \geq p - 1.$$

- When $\alpha \in \mathbb{N}$, the process $X_t = N_t N_t^T$ with $N_t=$ Brownian Motion on $p \times \alpha$ matrices
Squared Bessel Matrix processes on Sym_p^+

$$dX_t = \sqrt{X_t} dW_t + dW_t^T \sqrt{X_t} + \alpha ld t, \quad \alpha \geq p - 1.$$

- When $\alpha \in \mathbb{N}$, the process $X_t = N_t N_t^T$ with $N_t =$ Brownian Motion on $p \times \alpha$ matrices
- Process X_t is also called Wishart (Laguerre) process (Bru(1991), Koenig, O’Connell(2001), Matsumoto, Yor, Donati-Martin(2004))
Squared Bessel Matrix processes on Sym_p^+

$$dX_t = \sqrt{X_t}dW_t + dW_t^T \sqrt{X_t} + \alpha dt, \quad \alpha \geq p - 1.$$

- When $\alpha \in \mathbb{N}$, the process $X_t = N_t N_t^T$ with $N_t=$ Brownian Motion on $p \times \alpha$ matrices
- Process X_t is also called Wishart (Laguerre) process (Bru(1991), Koenig, O’Connell(2001), Matsumoto, Yor, Donati-Martin(2004))
- If X_0 has no multiple eigenvalues,

$$d\lambda_i = 2\sqrt{\lambda_i}dB_i + \left(\alpha + \sum_{j \neq i} \frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j}\right) dt$$
Consider a system of SDEs on the cone
\[\overline{C_+} = \left\{ (x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 \leq x_2 \leq \ldots \leq x_p \right\} \]

\[
d\lambda_i = \sigma_i(\lambda_i) dB_i + \left(b_i(\lambda_i) + \sum_{j \neq i} \frac{H_{ij}(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} \right) dt \]

\[i = 1, \ldots, p \]

We prove, when starting from \(\lambda_1(0) \leq \ldots \leq \lambda_p(0) \)
Consider a system of SDEs on the cone \(\overline{C}_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 \leq x_2 \leq \ldots \leq x_p\} \)

\[
d\lambda_i = \sigma_i(\lambda_i)dB_i + \left(b_i(\lambda_i) + \sum_{j \neq i} \frac{H_{ij}(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} \right) dt
\]

\[i = 1, \ldots, p\]

We prove, when starting from \(\lambda_1(0) \leq \ldots \leq \lambda_p(0) \) and under natural conditions on the coefficients \(\sigma_i, H_{ij}, b_i \)
Consider a system of SDEs on the cone \(\overline{C_+} = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 \leq x_2 \leq \ldots \leq x_p\} \)

\[
d\lambda_i = \sigma_i(\lambda_i)dB_i + \left(b_i(\lambda_i) + \sum_{j \neq i} H_{ij}(\lambda_i, \lambda_j) \frac{\lambda_i - \lambda_j}{\lambda_i} \right) dt
\]

\(i = 1, \ldots, p\)

We prove, when starting from \(\lambda_1(0) \leq \ldots \leq \lambda_p(0) \)

and under natural conditions on the coefficients \(\sigma_i, H_{ij}, b_i \)

- strong existence and pathwise unicity
Open problems we solve

Consider a system of SDEs on the cone
\(\overline{C}_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 \leq x_2 \leq \ldots \leq x_p \} \)

\[
d\lambda_i = \sigma_i(\lambda_i) dB_i + \left(b_i(\lambda_i) + \sum_{j \neq i} \frac{H_{ij}(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} \right) dt
\]

\(i = 1, \ldots, p \)

We prove, when starting from \(\lambda_1(0) \leq \ldots \leq \lambda_p(0) \) and under natural conditions on the coefficients \(\sigma_i, H_{ij}, b_i \)

- strong existence and pathwise unicity
- non-colliding of solutions of this system
Consider a system of SDEs on the cone
\[
\overline{C_+} = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 \leq x_2 \leq \ldots \leq x_p\}
\]

\[
d\lambda_i = \sigma_i(\lambda_i) dB_i + \left(b_i(\lambda_i) + \sum_{j \neq i} \frac{H_{ij}(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} \right) dt
\]

\[
i = 1, \ldots, p
\]

We prove, when starting from \(\lambda_1(0) \leq \ldots \leq \lambda_p(0)\) and under natural conditions on the coefficients \(\sigma_i, H_{ij}, b_i\)

- strong existence and pathwise unicity
- non-colliding of solutions of this system
- by methods of classical Itô calculus
Motivation for different H_{ij}

Important example when different H_{ij} appear:

Brownian particles with nearest neighbour repulsion $\sigma_i = 1$, $b_i = 0$, $H_{ij} = \gamma$ when $|i - j| = 1$ and zero otherwise.
Motivation for different H_{ij}

- Important example when different H_{ij} appear:

Brownian particles with nearest neighbour repulsion

$\sigma_i = 1$, $b_i = 0$, $H_{ij} = \gamma$ when $|i-j| = 1$ and zero otherwise
Motivation for different H_{ij}

- Important example when different H_{ij} appear:

Brownian particles with nearest neighbour repulsion

$\sigma_i = 1$, $b_i = 0$,

$H_{ij} = \gamma$ when $|i - j| = 1$ and zero otherwise
What was known on the existence of pathwise unique strong non-colliding solutions

WORLD CENTER OF THIS KNOWLEDGE: ORLEANS!
What was known on the existence of pathwise unique strong non-colliding solutions

E. Cépa and D. Lépingle (1997):
for Dyson Brownian Motions with linear drift
What was known on the existence of pathwise unique strong non-colliding solutions

- E. Cépa and D. Lépingle (1997): for Dyson Brownian Motions with linear drift
- A. Bonami, F. Bouchut, E. Cépa and D. Lépingle (1999): for Dyson Brownian Motions with a Hilbert transform drift term
- B. Schapira (2007), N. Demni (2009): for radial Dunkl and Heckman-Opdam SDEs, with more general singularities
- D. Lépingle (2010): for Squared Bessel particle systems with $\alpha > \frac{p}{2}$ and some other SDE systems using the techniques of Multivalued SDEs
What was known on the existence of pathwise unique strong non-colliding solutions

E. Cépa and D. Lépingle (1997):
for Dyson Brownian Motions with linear drift

A. Bonami, F. Bouchut, E. Cépa and D. Lépingle (1999):
for Dyson Brownian Motions with a Hilbert transform drift term

for radial Dunkl and Heckman-Opdam SDEs, with more general singularities
What was known on the existence of pathwise unique strong non-colliding solutions

- E. Cépa and D. Lépingle (1997): for Dyson Brownian Motions with linear drift
- A. Bonami, F. Bouchut, E. Cépa and D. Lépingle (1999): for Dyson Brownian Motions with a Hilbert transform drift term
- B. Schapira (2007), N. Demni (2009): for radial Dunkl and Heckman-Opdam SDEs, with more general singularities
- D. Lépingle (2010): for Squared Bessel particle systems with $\alpha > p$ and some other SDEs systems
What was known on the existence of pathwise unique strong non-colliding solutions

- E. Cépa and D. Lépingle (1997): for Dyson Brownian Motions with linear drift
- A. Bonami, F. Bouchut, E. Cépa and D. Lépingle (1999): for Dyson Brownian Motions with a Hilbert transform drift term
- B. Schapira (2007), N. Demni (2009): for radial Dunkl and Heckman-Opdam SDEs, with more general singularities
- D. Lépingle (2010): for Squared Bessel particle systems with $\alpha > p$ and some other SDEs systems
- using the techniques of Multivalued SDEs
Main difficulty: singularities in SDEs

Recall the SDE for a Bessel process of dimension $\alpha > 0$ (index $\mu = \alpha/2 - 1$)

$$dX_t = dB_t + \frac{\alpha - 1}{2} X_t^\mu dt.$$

The singular drift $\frac{\alpha - 1}{2} X_t^\mu$ is problematic, when $X_t = 0$.

Multiplying by the indicator $1_{\{X_t \neq 0\}}$ practised in the literature
does not help!

Piotr Graczyk
Particle systems as solutions of SDEs systems
Main difficulty: singularities in SDEs

- Recall the SDE for a Bessel process of dimension $\alpha > 0$ (index $\mu = \alpha/2 - 1$)

$$dX_t = dB_t + \frac{\alpha - 1}{2X_t} dt.$$
Main difficulty: singularities in SDEs

- Recall the SDE for a Bessel process of dimension $\alpha > 0$ (index $\mu = \alpha/2 - 1$)

 $$dX_t = dB_t + \frac{\alpha - 1}{2X_t} dt.$$

- The singular drift $\frac{\alpha - 1}{2X_t}$ is problematic, when $X_t = 0$.

Main difficulty: singularities in SDEs

- Recall the SDE for a Bessel process of dimension $\alpha > 0$ (index $\mu = \alpha/2 - 1$)

$$dX_t = dB_t + \frac{\alpha - 1}{2X_t} dt.$$

- The singular drift $\frac{\alpha - 1}{2X_t}$ is problematic, when $X_t = 0$.
- Multiplying by the indicator $1_{\{X_t \neq 0\}}$ practised in the literature

$$dX_t = dB_t + \frac{\alpha - 1}{2X_t} 1_{\{X_t \neq 0\}} dt$$

does not help!
1-dimensional Bessel processes

\[dX_t = dB_t + \frac{\alpha - 1}{2X_t} 1_{\{X_t \neq 0\}} dt \]

When \(X_0 = 0 \) uniqueness of solutions does not hold.

By Tanaka formula, pathwise uniqueness holds if we consider only non-negative \(X_t \geq 0 \).
1-dimensional Bessel processes

\[dX_t = dB_t + \frac{\alpha - 1}{2X_t} \mathbf{1}_{\{X_t \neq 0\}} \, dt \]

- When \(X_0 = 0 \) uniqueness of solutions does not hold
1-dimensional Bessel processes

\[dX_t = dB_t + \frac{\alpha - 1}{2X_t} 1_{\{X_t \neq 0\}} dt \]

- When \(X_0 = 0 \) uniqueness of solutions does not hold
- By Tanaka formula, pathwise uniqueness holds if we consider only non-negative \(X_t \geq 0 \)
1-dimensional Squared Bessel processes

\[dX_t = 2\sqrt{X_t} dB_t + \alpha dt \]

- No more singularity in the drift part
1-dimensional Squared Bessel processes

\[dX_t = 2\sqrt{X_t}dB_t + \alpha dt \]

- No more singularity in the drift part
- A non-Lipschitz function \(\sqrt{x} \) in the martingale part
1-dimensional Squared Bessel processes

\[dX_t = 2\sqrt{X_t} dB_t + \alpha dt \]

- No more singularity in the drift part
- A non-Lipschitz function \(\sqrt{x}\) in the martingale part
- The equation is solved by the Yamada-Watanabe theorem, allowing 1/2-Hölder coefficients in the martingale part

Particle systems as solutions of SDEs systems
In equations for non-colliding BESQ particles

\[d\lambda_i = 2\sqrt{\lambda_i}dB_i + \beta \left(\alpha + \sum_{j \neq i} \frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j} \right) dt \]

both problems appear
In equations for non-colliding BESQ particles

\[d\lambda_i = 2\sqrt{\lambda_i} dB_i + \beta \left(\alpha + \sum_{j \neq i} \frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j} \right) dt \]

both problems appear

- non-Lipschitz functions \(\sqrt{x} \) in martingale parts
 (Yamada-Watanabe th. is 1-dimensional!)
- The drift part contains singularities \((\lambda_i - \lambda_j)^{-1} \)
 (physicists want to start from \((0, \ldots, 0)!\))
Solve the system of SDEs

\[d\lambda_i = \sigma_i(\lambda_i)dB_i + \left(b_i(\lambda_i) + \sum_{j \neq i} \frac{H_{ij}(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} \right) dt \]

\[i = 1, \ldots, p \]

on the cone

\[\overline{C_+} = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 \leq x_2 \leq \ldots \leq x_p\} \]
Assumptions on coefficients

General conditions

- the functions \(\sigma_i, b_i, H_{ij} \) are continuous

- the functions \(H_{ij} \) are non-negative and

\[
H_{ij}(x, y) = H_{ji}(y, x), \quad x, y \in \mathbb{R}.
\]
the functions σ_i, b_i, H_{ij} are continuous

the functions H_{ij} are non-negative and

$$H_{ij}(x, y) = H_{ji}(y, x), \quad x, y \in \mathbb{R}.$$

i.e. the particles push away one another with the same forces

$$\frac{H_{ij}(x, y)}{y - x}$$
Assumptions on coefficients

Regularity conditions

\(\rho : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) such that
\[
\int_0^\infty \rho^{-1}(x) \, dx = \infty
\]
and that
\[
|\sigma_i(x) - \sigma_i(y)|^2 \leq \rho(|x - y|), \quad x, y \in \mathbb{R}, \quad i = 1, \ldots, p
\]
(the functions \(\sigma_i \) are at least \(\frac{1}{2} \) Hölder)

The functions \(b_i \) are Lipschitz continuous.
(C1) there exists a function $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ such that
\[
\int_{0^+} \rho^{-1}(x)dx = \infty
\]
and that
\[
|\sigma_i(x) - \sigma_i(y)|^2 \leq \rho(|x - y|), \quad x, y \in \mathbb{R}, \quad i = 1, \ldots, p
\]
Assumptions on coefficients

Regularity conditions

(C1) There exists a function $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ such that
$$\int_{0^+} \rho^{-1}(x) dx = \infty$$
and that
$$|\sigma_i(x) - \sigma_i(y)|^2 \leq \rho(|x - y|), \quad x, y \in \mathbb{R}, \ i = 1, \ldots, p$$
(the functions σ_i are at least $\frac{1}{2}$-Hölder)
(C1) there exists a function $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$\int_{0^+} \rho^{-1}(x)dx = \infty$$

and that

$$|\sigma_i(x) - \sigma_i(y)|^2 \leq \rho(|x - y|), \quad x, y \in \mathbb{R}, \; i = 1, \ldots, p$$

(the functions σ_i are at least $\frac{1}{2}$-Hölder)

- the functions b_i are Lipschitz continuous
Assumptions on coefficients

Non-explosion conditions

\[\sigma_i^2(x) + b_i(x)x \leq c(1 + |x|^2), \quad x \in \mathbb{R}, \]

\[H_{ij}(x, y) \leq c(1 + |xy|), \quad x, y \in \mathbb{R}, \]

(These are standard conditions which give finiteness of the solutions for every \(t \geq 0; \) the sublinear growth of \(b_i \) can be replaced by non-positivity of \(b_i(x)x \) for large \(x \)).
Assumptions on coefficients
Non-explosion conditions

(C2) There exists $c > 0$ such that

$$\sigma_i^2(x) + b_i(x)x \leq c(1 + |x|^2), \quad x \in \mathbb{R},$$

$$H_{ij}(x, y) \leq c(1 + |xy|), \quad x, y \in \mathbb{R}$$
Assumptions on coefficients
Non-explosion conditions

(C2) There exists $c > 0$ such that

$$
\sigma_i^2(x) + b_i(x)x \leq c(1 + |x|^2), \quad x \in \mathbb{R},
$$

$$
H_{ij}(x, y) \leq c(1 + |xy|), \quad x, y \in \mathbb{R}
$$

(these are standard conditions which give finiteness of the solutions for every $t \geq 0$; the sublinear growth of b_i can be replaced by non-positivity of $b_i(x)x$ for large x).
(A1) For every $i \neq j$ and $w < x < y < z$

\[
\frac{H_{ij}(w, z)}{z - w} \leq \frac{H_{ij}(x, y)}{y - x}
\]
(A1) For every $i \neq j$ and $w < x < y < z$

$$\frac{H_{ij}(w, z)}{z - w} \leq \frac{H_{ij}(x, y)}{y - x}$$

(Exterior particles interact less than the interior ones)
Assumptions on coefficients

A physical condition

(A1) For every \(i \neq j \) and \(w < x < y < z \)

\[
\frac{H_{ij}(w, z)}{z - w} \leq \frac{H_{ij}(x, y)}{y - x}
\]

(Exterior particles interact less than the interior ones)

This is a crucial condition to prove the pathwise uniqueness of solutions by Tanaka formula
(A2) There exists $c_1 \geq 0$ such that for every $i \neq j$

$$\sigma_i^2(x) + \sigma_j^2(y) \leq c_1(x - y)^2 + 4H_{ij}(x, y)$$
(A2) There exists $c_1 \geq 0$ such that for every $i \neq j$

$$
\sigma_i^2(x) + \sigma_j^2(y) \leq c_1(x - y)^2 + 4H_{ij}(x, y)
$$

(drift part is appropriately bigger than the martingale part, to prevent collisions)
Assumptions on coefficients
Conditions for non-collisions

(A2) There exists $c_1 \geq 0$ such that for every $i \neq j$

$$\sigma_i^2(x) + \sigma_j^2(y) \leq c_1(x - y)^2 + 4H_{ij}(x, y)$$

(drift part is appropriately bigger than the martingale part, to prevent collisions)

(A3) There exists $c_2 \geq 0$ such that for every $x < y < z$ and $i < j < k$

$$H_{ij}(x, y)(y - x) + H_{jk}(y, z)(z - y) \leq c_2(z - y)(z - x)(y - x) + H_{ik}(x, z)(z - x)$$
Assumptions on coefficients

Conditions for non-collisions

(A2) There exists $c_1 \geq 0$ such that for every $i \neq j$

$$\sigma_i^2(x) + \sigma_j^2(y) \leq c_1(x - y)^2 + 4H_{ij}(x, y)$$

(drift part is appropriately bigger than the martingale part, to prevent collisions)

(A3) There exists $c_2 \geq 0$ such that for every $x < y < z$ and $i < j < k$

$$H_{ij}(x, y)(y - x) + H_{jk}(y, z)(z - y) \leq c_2(z - y)(z - x)(y - x) + H_{ik}(x, z)(z - x)$$

(repulsion by exterior particles does not make collide interior particles)
(A4) \(\sigma_k^2(x) + \sigma_i^2(x) + H_{kl}(x, x) \neq 0 \)
(A4) \[\sigma_k^2(x) + \sigma_i^2(x) + H_{kl}(x, x) \neq 0 \]

or, otherwise, such points \(x \) are isolated and

\[
\sum_{i=k}^{l} \left(b_i(x) + \sum_{j=1}^{p-2} \frac{H_{ij}(x, y_j)}{x - y_j} 1_{\mathbb{R}\setminus\{x\}}(y_j) \right) \neq 0,
\]

for every \(y_1, \ldots, y_{p-2} \in \mathbb{R} \).
Assumptions on coefficients
Conditions for non-collisions

\[(A4) \quad \sigma_k^2(x) + \sigma_i^2(x) + H_{kl}(x, x) \neq 0\]
or, otherwise, such points x are isolated and

\[
\sum_{i=k}^{l} \left(b_i(x) + \sum_{j=1}^{p-2} \frac{H_{ij}(x, y_j)}{x - y_j} 1_{\mathbb{R}\{x\}}(y_j) \right) \neq 0,
\]

for every $y_1, \ldots, y_{p-2} \in \mathbb{R}$.
(in each collision point x there is a force making the particles leave from it).
Assumptions on coefficients

Conditions for non-collisions

\[(A4) \quad \sigma_k^2(x) + \sigma_i^2(x) + H_{kl}(x, x) \neq 0\]

or, otherwise, such points \(x\) are isolated and

\[
\sum_{i=k}^{l} \left(b_i(x) + \sum_{j=1}^{p-2} \frac{H_{ij}(x, y_j)}{x - y_j} 1_{\mathbb{R}\setminus\{x\}}(y_j) \right) \neq 0,
\]

for every \(y_1, \ldots, y_{p-2} \in \mathbb{R}\).

(in each collision point \(x\) there is a force making the particles leave from it).

\[(A5) \quad \text{If } i < j \text{ then } b_i(x) \leq b_j(x) \text{ for all } x \in \mathbb{R}.
\]
Assumptions on coefficients

Conditions for non-collisions

\[(A4) \quad \sigma^2_k(x) + \sigma^2_i(x) + H_{kl}(x, x) \neq 0\]

or, otherwise, such points \(x\) are isolated and

\[
\sum_{i=k}^{l} \left(b_i(x) + \sum_{j=1}^{p-2} \frac{H_{ij}(x, y_j)}{x - y_j} 1_{\mathbb{R}\setminus\{x\}}(y_j) \right) \neq 0,
\]

for every \(y_1, \ldots, y_{p-2} \in \mathbb{R}\).

(in each collision point \(x\) there is a force making the particles leave from it).

\[(A5) \quad \text{If } i < j \text{ then } b_i(x) \leq b_j(x) \text{ for all } x \in \mathbb{R}.\]

(if \(b_i(x) > b_j(x)\) then the particle \(x_i\) could catch up with the particle \(x_j\) thanks to the bigger drift force.)
Main result

Theorem (PG, J. Malecki, 2014)

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-exploding solution $[\Lambda(t)]_{t \geq 0}$. The first collision time

$$T = \inf\{t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i, j = 1, \ldots, p\}$$

is infinite almost surely.

Applications:
- General Brownian NC (non-colliding) particle systems (e.g. neighbor interaction)
- BESQ NC-particle systems for $\alpha \geq p-1$
- Generalized BESQ NC-particle systems (for $\alpha < p-1$)
- General trigonometric and hyperbolic particle systems

Piotr Graczyk

Particle systems as solutions of SDEs systems
Main result

Theorem (PG, J. Malecki, 2014)

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-exploding solution \([\Lambda(t)]_{t \geq 0}\). The first collision time

\[
T = \inf\{t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i, j = 1, \ldots, p\}
\]

is infinite almost surely.

Applications:
Main result

Theorem (PG, J. Malecki, 2014)

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-exploding solution $[\Lambda(t)]_{t \geq 0}$. The first collision time

$$T = \inf\{ t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i, j = 1, \ldots, p \}$$

is infinite almost surely.

Applications:

- General Brownian NC(non-colliding) particle systems (e.g. neighbor interaction)
Main result

Theorem (PG, J. Malecki, 2014)

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-explosing solution \([\Lambda(t)]_{t \geq 0}\). The first collision time

\[
T = \inf\{ t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i, j = 1, \ldots, p \}
\]

is infinite almost surely.

Applications:

- General Brownian NC(non-colliding) particle systems (e.g. neighbor interaction)
- BESQ NC-particle systems for \(\alpha \geq p - 1 \)
Theorem (PG, J. Malecki, 2014)

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-exploding solution $[\Lambda(t)]_{t \geq 0}$. The first collision time

$$T = \inf\{ t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i, j = 1, \ldots, p \}$$

is infinite almost surely.

Applications:

- General Brownian NC(non-colliding) particle systems (e.g. neighbor interaction)
- BESQ NC-particle systems for $\alpha \geq p - 1$
- Generalized BESQ NC-particle systems (for $\alpha < p - 1$)
Main result

Theorem (PG, J. Malecki, 2014)
If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-exploding solution \([\Lambda(t)]_{t\geq 0}\). The first collision time

\[T = \inf\{ t > 0 : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j, i,j = 1,\ldots,p \} \]

is infinite almost surely.

Applications:

- General Brownian NC(non-colliding) particle systems (e.g. neighbor interaction)
- BESQ NC-particle systems for \(\alpha \geq p - 1\)
- Generalized BESQ NC-particle systems (for \(\alpha < p - 1\))
- General trigonometric and hyperbolic particle systems
Scheme of the proof

Step 1 Assuming (A2)-(A5) we show that there exists a weak solution \(\Lambda(t) \), having no collisions after the start.

Tools for existence: SDEs for basic symmetric polynomials \(e_1, \ldots, e_p \), via Itô formula. Solving them; defining \(\Lambda_t = \Lambda(\mathcal{e}_t) \).

Proving non-collisions of \(\Lambda_t \).

Limit passage \(\Lambda_s \to \Lambda_0 \).

Tools for non-collisions: symmetric polynomials in \((\lambda_i - \lambda_j)^2 \).

McKean argument (non-explosion of \(U = \ln \mathcal{V}, \mathcal{V} = \mathcal{V} \) Vandermond determinant).

Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions.

Tool: Tanaka formula.

We get much more: Yamada-Watanabe theorem in dimension \(p \).

The existence of a unique strong solution follows.
Scheme of the proof

Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start.
Scheme of the proof

Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start

- Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p, via Itô formula
- Solving them; defining $\Lambda_t = \Lambda(e_t)$

Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions

- Tool: Tanaka formula

We get much more: Yamada-Watanabe theorem in dimension p

End the existence of a unique strong solution follows
Scheme of the proof

Step 1 Assuming (A2)-(A5) we show that there exists a weak solution \(\Lambda(t) \), having no collisions after the start

- Tools for existence: SDEs for basic symmetric polynomials \(e_1, \ldots, e_p \), via Itô formula
- Solving them; defining \(\Lambda_t = \Lambda(e_t) \)
- Proving non-collisions of \(\Lambda_t \)

Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions

- Tool: Tanaka formula

We get much more: Yamada-Watanabe theorem in dimension \(p \)

End the existence of a unique strong solution follows
Scheme of the proof

Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start

- Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p, via Itô formula
 Solving them; defining $\Lambda_t = \Lambda(e_t)$
 Proving non-collisions of Λ_t
 Limit passage $\Lambda_s \to \Lambda_0$

Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions

Tool: Tanaka formula

We get much more: Yamada-Watanabe theorem in dimension p

End the existence of a unique strong solution follows
Scheme of the proof

Step 1 Assuming (A2)-(A5) we show that there exists a weak solution \(\Lambda(t) \), having no collisions after the start

- Tools for existence: SDEs for basic symmetric polynomials \(e_1, \ldots, e_p \), via Itô formula
 - Solving them; defining \(\Lambda_t = \Lambda(e_t) \)
 - Proving non-collisions of \(\Lambda_t \)
 - Limit passage \(\Lambda_s \rightarrow \Lambda_0 \)

- Tools for non-collisions: symmetric polynomials in \((\lambda_i - \lambda_j)^2 \)
Scheme of the proof

Step 1 Assuming (A2)-(A5) we show that there exists a weak solution \(\Lambda(t) \), having no collisions after the start

- Tools for existence: SDEs for basic symmetric polynomials \(e_1, \ldots, e_p \), via Itô formula
- Solving them; defining \(\Lambda_t = \Lambda(e_t) \)
- Proving non-collisions of \(\Lambda_t \)
- Limit passage \(\Lambda_s \to \Lambda_0 \)

- Tools for non-collisions: symmetric polynomials in \((\lambda_i - \lambda_j)^2\)
- McKean argument (non-explosion of \(U = \ln V, \ V = \text{Vandermond determinant} \))

Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions

Tool: Tanaka formula

We get much more: Yamada-Watanabe theorem in dimension \(p \)

End the existence of a unique strong solution follows
Step 1 Assuming (A2)-(A5) we show that there exists a weak solution \(\Lambda(t) \), having no collisions after the start.

- Tools for existence: SDEs for basic symmetric polynomials \(e_1, \ldots, e_p \), via Itô formula
 - Solving them; defining \(\Lambda_t = \Lambda(e_t) \)
 - Proving non-collisions of \(\Lambda_t \)
 - Limit passage \(\Lambda_s \to \Lambda_0 \)

- Tools for non-collisions: symmetric polynomials in \((\lambda_i - \lambda_j)^2 \)
 - McKean argument (non-explosion of \(U = \ln V, \ V = \text{Vandermond determinant} \))

Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions.
Scheme of the proof

Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start

- Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p, via Itô formula
 - Solving them; defining $\Lambda_t = \Lambda(e_t)$
 - Proving non-collisions of Λ_t
 - Limit passage $\Lambda_s \to \Lambda_0$

- Tools for non-collisions: symmetric polynomials in $(\lambda_i - \lambda_j)^2$
 - McKean argument (non-explosion of $U = \ln V$, $V =$ Vandermond determinant)

Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions

- Tool: Tanaka formula
Scheme of the proof

Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start

- Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p, via Itô formula
 Solving them; defining $\Lambda_t = \Lambda(e_t)$
- Proving non-collisions of Λ_t
- Limit passage $\Lambda_s \to \Lambda_0$

- Tools for non-collisions: symmetric polynomials in $(\lambda_i - \lambda_j)^2$
 McKean argument (non-explosion of $U = \ln V$, $V =$ Vandermond determinant)

Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions

- Tool: Tanaka formula

We get much more:
 Yamada-Watanabe theorem in dimension p
Step 1 Assuming (A2)-(A5) we show that there exists a weak solution $\Lambda(t)$, having no collisions after the start

- Tools for existence: SDEs for basic symmetric polynomials e_1, \ldots, e_p, via Itô formula

 Solving them; defining $\Lambda_t = \Lambda(e_t)$

- Proving non-collisions of Λ_t

- Limit passage $\Lambda_s \to \Lambda_0$

- Tools for non-collisions: symmetric polynomials in $(\lambda_i - \lambda_j)^2$

 McKean argument (non-explosion of $U = \ln V$, $V =$ Vandermond determinant)

Step 2 Assuming conditions (C1) and (A1) we show the pathwise uniqueness of the solutions

- Tool: Tanaka formula

- We get much more:

 Yamada-Watanabe theorem in dimension p

End the existence of a unique strong solution follows
Consider $e_1 = \lambda_1 + \ldots + \lambda_p$.
Consider $e_1 = \lambda_1 + \ldots + \lambda_p$. It is easy to see that

$$de_1 = \left(\sum_i \sigma_i (\lambda_i)^2 \right)^{\frac{1}{2}} dW_t + \sum_i b_i (\lambda_i) dt$$

for a 1-dimensional BM W_t.

\[e_2 = \sum_{i > j} \lambda_j \lambda_i, \quad \ldots \quad e_p = \lambda_1 \cdots \lambda_p. \]
Consider $e_1 = \lambda_1 + \ldots + \lambda_p$.

It is easy to see that

$$de_1 = \left(\sum_i \sigma_i(\lambda_i)^2 \right)^{\frac{1}{2}} dW_t + \sum_i b_i(\lambda_i) dt$$

for a 1-dimensional BM W_t.

- The symmetry of $H_{ij}(x, y)$ implies that the singularities $\frac{1}{\lambda_i - \lambda_j}$ cancel!
Idea of the proof of weak existence (Step 1)

Consider $e_1 = \lambda_1 + \ldots + \lambda_p$.

It is easy to see that

$$de_1 = \left(\sum_i \sigma_i(\lambda_i)^2\right)^{\frac{1}{2}} dW_t + \sum_i b_i(\lambda_i) dt$$

for a 1-dimensional BM W_t.

- The symmetry of $H_{ij}(x, y)$ implies that the singularities $\frac{1}{\lambda_i - \lambda_j}$ cancel!
- Analogous phenomenon occurs for other basic symmetric polynomials of $(\lambda_1, \ldots, \lambda_p)$

$$e_2 = \sum_{j > i} \lambda_j \lambda_i,$$

$$e_p = \lambda_1 \ldots \lambda_p$$
Idea of the proof of weak existence (Step 1)

If we restrict the arguments to the open set $C^+ = \{(x_1,...,x_p) \in \mathbb{R}^p : x_1 < x_2 < ... < x_p}\}$ then the smooth function $e = (e_1,...,e_p) : C^+ \rightarrow \mathbb{R}^p$ is one-to-one. Thus e is a diffeomorphism between C^+ and $e(C^+)$ which is open.

Denote the inverse diffeomorphism by $f = (f_1,...,f_p) : e(C^+) \rightarrow C^+$. By the continuity of roots of a polynomial as functions of its coefficients, f extends to a continuous function $f : e(C^+) \rightarrow C^+$.

Piotr Graczyk
Particle systems as solutions of SDEs systems
Idea of the proof of weak existence (Step 1)

If we restrict the arguments to the open set

\[C_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 < x_2 < \ldots < x_p\} \]

then the smooth function

\[e = (e_1, \ldots, e_p) : C_+ \to \mathbb{R}^p \]

is one-to-one
Idea of the proof of weak existence (Step 1)

If we restrict the arguments to the open set

\[C_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 < x_2 < \ldots < x_p\} \]

then the smooth function

\[e = (e_1, \ldots, e_p) : C_+ \rightarrow \mathbb{R}^p \]

is one-to-one

\((-1)^k e_k(X)\) is the coefficient of \(x^{p-k}\) in \(P(x) = \prod_{i=1}^{p} (x - x_i)\)

(\(e\) is a diffeomorphism between \(C_+\) and \(e(C_+)\) which is open)

Denote the inverse diffeomorphism by \(f = (f_1, \ldots, f_p) : e(C_+) \rightarrow C_+\)

By the continuity of roots of a polynomial as functions of its coefficients, \(f\) extends to a continuous function \(f : e(C_+) \rightarrow C_+\)
Idea of the proof of weak existence (Step 1)

If we restrict the arguments to the open set

$$C_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 < x_2 < \ldots < x_p\}$$

then the smooth function

$$e = (e_1, \ldots, e_p) : C_+ \to \mathbb{R}^p$$

is one-to-one

($(-1)^k e_k(X)$ is the coefficient of x^{p-k} in $P(x) = \prod_{i=1}^{p} (x - x_i)$)

Thus e is a diffeomorphism between C_+ and $e(C_+)$ which is open
Idea of the proof of weak existence (Step 1)

If we restrict the arguments to the open set

\[C_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 < x_2 < \ldots < x_p\} \]

then the smooth function

\[e = (e_1, \ldots, e_p) : C_+ \to \mathbb{R}^p \]

is one-to-one

(\((-1)^k e_k(X)\) is the coefficient of \(x^{p-k}\) in \(P(x) = \prod_{i=1}^{p} (x - x_i)\))

Thus \(e\) is a diffeomorphism between \(C_+\) and \(e(C_+)\) which is open

Denote the inverse diffeomorphism by

\[f = (f_1, \ldots, f_p) : e(C_+) \to C_+ \]
Idea of the proof of weak existence (Step 1)

If we restrict the arguments to the open set

\[C_+ = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : x_1 < x_2 < \ldots < x_p\} \]

then the smooth function

\[e = (e_1, \ldots, e_p) : C_+ \rightarrow \mathbb{R}^p \]

is one-to-one

(\((-1)^k e_k(X)\) is the coefficient of \(x^{p-k}\) in \(P(x) = \prod_{i=1}^{p} (x - x_i)\))

Thus \(e\) is a diffeomorphism between \(C_+\) and \(e(C_+)\) which is open

Denote the inverse diffeomorphism by

\[f = (f_1, \ldots, f_p) : e(C_+) \rightarrow C_+ \]

By the continuity of roots of a polynomial as functions of its coefficients, \(f\) extends to a continuous function

\[f : \overline{e(C_+)} \xrightarrow{1-1} \overline{C_+} \]
Using Itô formula and the diffeomorphism f, we compute SDEs

\[y_n = e_n(\Lambda_t) \]
\[dy_n = a_n(y_1, \ldots, y_p) dU_n + q_n(y_1, \ldots, y_p) dt, \]

where (i means that the i-th variable is omitted)

\[a_n(y) = \left(\sum_{i=1}^{p} \sigma_i^2(f_i(y)) \right)^{1/2}, y \in C^+, \]
\[q_n(y) = \sum_{i=1}^{p} b_i(f_i(y)) e_i n - 2(e_i, f_j(y)) H_{ij}(f_i(y), f_j(y)). \]

and U_n are BMs such that

\[\langle a_n dU_n, a_m dU_m \rangle = \sum_{i=1}^{p} \sigma_i^2(f_i(y)) e_i n - 1(f_i(y)) e_j m - 1(f_j(y)). \]
Using Itô formula and the diffeomorphism f, we compute SDEs for $y_n = e_n(\Lambda_t)$
Using Itô formula and the diffeomorphism f, we compute SDEs for $y_n = e_n(\Lambda_t)$:

$$
dy_n = a_n(y_1, \ldots, y_p)du_n + q_n(y_1, \ldots, y_p)dt, \quad n = 1, \ldots, p,
$$
Idea of the proof of weak existence (Step 1)

Using Itô formula and the diffeomorphism f, we compute SDEs for $y_n = e_n(\Lambda_t)$

$$dy_n = a_n(y_1, \ldots, y_p) dU_n + q_n(y_1, \ldots, y_p) dt, \quad n = 1, \ldots, p,$$

where (\bar{i} means that the i-th variable is omitted)

$$a_n(y) = \left(\sum_{i=1}^{p} \sigma_i^2(f_i(y))(e_{n-1}^\bar{i}(f(y)))^2 \right)^{1/2}, \quad y \in \overline{C_+},$$

$$q_n(y) = \sum_{i=1}^{p} b_i(f_i(y)) e_{n-1}^\bar{i}(f(y)) - \sum_{i<j} e_{n-2}^{\bar{i}, \bar{j}}(f(y)) H_{ij}(f_i(y), f_j(y))$$
Idea of the proof of weak existence (Step 1)

Using Itô formula and the diffeomorphism f, we compute SDEs for $y_n = e_n(\Lambda_t)$

$$
dy_n = a_n(y_1, \ldots, y_p) dU_n + q_n(y_1, \ldots, y_p) dt, \quad n = 1, \ldots, p,
$$

where (\tilde{i} means that the i-th variable is omitted)

$$
a_n(y) = \left(\sum_{i=1}^p \sigma_i^2(f_i(y))(e_{n-1}^i(f(y)))^2 \right)^{1/2}, \quad y \in \mathbb{C}_+,
$$

$$
q_n(y) = \sum_{i=1}^p b_i(f_i(y))e_{n-1}^i(f(y)) - \sum_{i<j} e_{n-2}^{i,j}(f(y))H_{ij}(f_i(y), f_j(y))
$$

and U_n are BMs such that

$$
\langle a_n dU_n, a_m dU_m \rangle = \sum_{i=1}^p \sigma_i^2(f_i(y))(e_{n-1}^i(f(y)))e_{m-1}^j(f(y)).
$$
Example: BESQ particle systems, $p = 4$

\[
\begin{align*}
\text{de}_1 &= 2 \sqrt{e_1} \text{d}U_1 + 4 \alpha \text{d}t \\
\text{de}_2 &= 2 \sqrt{e_1 e_2} + 3 e_3 \text{d}U_2 + 3 (\alpha - 1) e_1 \text{d}t \\
\text{de}_3 &= 2 \sqrt{e_3 e_2} + 6 e_1 e_4 \text{d}U_3 + 2 (\alpha - 2) e_2 \text{d}t \\
\text{de}_4 &= 2 \sqrt{e_4 e_3} \text{d}U_4 + (\alpha - 3) e_3 \text{d}t
\end{align*}
\]

Back to the general proof:

The SDEs for e_n are not sensible to the start from a collision (they do not have singularities in the drift term). We solve them on $e(C +)$. We define $\Lambda = f(e_1, \ldots, e_p)$ and show that λ_i never collide for $t > 0$.

Piotr Graczyk

Particle systems as solutions of SDEs systems
Example: BESQ particle systems, $p = 4$

\[
\begin{align*}
 de_1 &= 2\sqrt{e_1}dU_1 + 4\alpha dt \\
 de_2 &= 2\sqrt{e_1 e_2} + 3e_3 dU_2 + 3(\alpha - 1)e_1 dt \\
 de_3 &= 2\sqrt{e_3 e_2} + 6e_1 e_4 dU_3 + 2(\alpha - 2)e_2 dt \\
 de_4 &= 2\sqrt{e_4 e_3} dU_4 + (\alpha - 3)e_3 dt
\end{align*}
\]
Example: BESQ particle systems, $p = 4$

\[de_1 = 2\sqrt{e_1} dU_1 + 4\alpha dt \]
\[de_2 = 2\sqrt{e_1 e_2} + 3e_3 dU_2 + 3(\alpha - 1)e_1 dt \]
\[de_3 = 2\sqrt{e_3 e_2} + 6e_1 e_4 dU_3 + 2(\alpha - 2)e_2 dt \]
\[de_4 = 2\sqrt{e_4 e_3} dU_4 + (\alpha - 3)e_3 dt \]

- Back to the general proof:
Example: BESQ particle systems, $p = 4$

\[
\begin{align*}
 de_1 &= 2\sqrt{e_1} dU_1 + 4\alpha dt \\
 de_2 &= 2\sqrt{e_1 e_2} + 3e_3 dU_2 + 3(\alpha - 1)e_1 dt \\
 de_3 &= 2\sqrt{e_3 e_2} + 6e_1 e_4 dU_3 + 2(\alpha - 2)e_2 dt \\
 de_4 &= 2\sqrt{e_4 e_3} dU_4 + (\alpha - 3)e_3 dt
\end{align*}
\]

- Back to the general proof:
- The SDEs for e_n are not sensible to the start from a collision (they do not have singularities in the drift term)

Piotr Graczyk

Particle systems as solutions of SDEs systems
Example: BESQ particle systems, $p = 4$

\[
\begin{align*}
&de_1 = 2\sqrt{e_1} dU_1 + 4\alpha dt \\
&de_2 = 2\sqrt{e_1 e_2} + 3e_3 dU_2 + 3(\alpha - 1)e_1 dt \\
&de_3 = 2\sqrt{e_3 e_2} + 6e_1 e_4 dU_3 + 2(\alpha - 2)e_2 dt \\
&de_4 = 2\sqrt{e_4 e_3} dU_4 + (\alpha - 3)e_3 dt
\end{align*}
\]

- Back to the general proof:
- The SDEs for e_n are not sensible to the start from a collision
 (they do not have singularities in the drift term)
- We solve them on $e(C_+)$
Example: BESQ particle systems, \(p = 4 \)

\[
\begin{align*}
de_1 &= 2\sqrt{e_1} \, dU_1 + 4\alpha \, dt \\
de_2 &= 2\sqrt{e_1 e_2} + 3e_3 \, dU_2 + 3(\alpha - 1)e_1 \, dt \\
de_3 &= 2\sqrt{e_3 e_2} + 6e_1 e_4 \, dU_3 + 2(\alpha - 2)e_2 \, dt \\
de_4 &= 2\sqrt{e_4 e_3} \, dU_4 + (\alpha - 3)e_3 \, dt
\end{align*}
\]

- Back to the general proof:
- The SDEs for \(e_n \) are not sensible to the start from a collision
 (they do not have singularities in the drift term)
- We solve them on \(e(C_+) \)
- We define \(\Lambda = f(e_1, \ldots, e_p) \)
Example: BESQ particle systems, \(p = 4 \)

\[
\begin{align*}
 de_1 &= 2\sqrt{e_1} dU_1 + 4\alpha dt \\
 de_2 &= 2\sqrt{e_1e_2} + 3e_3 dU_2 + 3(\alpha - 1)e_1 dt \\
 de_3 &= 2\sqrt{e_3e_2} + 6e_1 e_4 dU_3 + 2(\alpha - 2)e_2 dt \\
 de_4 &= 2\sqrt{e_4e_3} dU_4 + (\alpha - 3)e_3 dt
\end{align*}
\]

- Back to the general proof:
- The SDEs for \(e_n \) are not sensible to the start from a collision (they do not have singularities in the drift term)
- We solve them on \(\bar{e}(C_+) \)
- We define \(\Lambda = f(e_1, \ldots, e_p) \)
- We show that \(\lambda_i \) never collide for \(t > 0 \)
Idea of the proof of non-collisions (Step 1)

We compute the SDEs for the semimartingales

\[V_1 = \sum_{j > i} (\lambda_i - \lambda_j)^2 \]
\[\vdots \]
\[V_N = \prod_{j > i} (\lambda_j - \lambda_i)^2, \quad N = p(p+1)/2 \]

they are symmetric polynomials of

\[(\lambda_i - \lambda_j)^2 \]

We show that even if \(V_N(0) = 0 \), if (A4) holds then

\[\tau_N = \inf \{ t > 0 : V_N(t) > 0 \} = 0 \]

almost surely (instant diffraction)

The proof is based on:

– the implication \(\tau_n = 0 \Rightarrow \tau_{n-1} = 0 \)

– the fact that (A4) guarantees the instant exit from a collision in a "degenerate point"
We compute the SDEs for the semimartingales

\[
V_1 = \sum_{j > i} (\lambda_i - \lambda_j)^2 \\
\vdots \\
V_N = \prod_{j > i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p + 1)}{2}
\]
Idea of the proof of non-collisions (Step 1)

We compute the SDEs for the semimartingales

\[V_1 = \sum_{j > i} (\lambda_i - \lambda_j)^2 \]

\[\ldots \]

\[V_N = \prod_{j > i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p + 1)}{2} \]

they are symmetric polynomials of \((\lambda_i - \lambda_j)^2\)
We compute the SDEs for the semimartingales

\[V_1 = \sum_{j > i} (\lambda_i - \lambda_j)^2 \]

\[\vdots \]

\[V_N = \prod_{j > i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p+1)}{2} \]

they are symmetric polynomials of \((\lambda_i - \lambda_j)^2\)

We show that even if \(V_N(0) = 0\), if (A4) holds then

\[\tau_N = \inf\{t > 0 : V_N(t) > 0\} = 0 \] almost surely

(instant diffraction)
Idea of the proof of non-collisions (Step 1)

We compute the SDEs for the semimartingales

\[V_1 = \sum_{j > i} (\lambda_i - \lambda_j)^2 \]

\[\ldots \]

\[V_N = \prod_{j > i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p + 1)}{2} \]

they are symmetric polynomials of \((\lambda_i - \lambda_j)^2\)

We show that even if \(V_N(0) = 0\), if (A4) holds then
\[\tau_N = \inf\{ t > 0 : V_N(t) > 0 \} = 0 \text{ almost surely} \]
(instant diffraction)

The proof is based on:
Idea of the proof of non-collisions (Step 1)

We compute the SDEs for the semimartingales

\[V_1 = \sum_{j > i} (\lambda_i - \lambda_j)^2 \]
\[
\ldots
\]
\[V_N = \prod_{j > i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p+1)}{2} \]

they are symmetric polynomials of \((\lambda_i - \lambda_j)^2\)

We show that even if \(V_N(0) = 0\), if (A4) holds then
\[\tau_N = \inf\{ t > 0 : V_N(t) > 0 \} = 0 \text{ almost surely} \]
(instant diffraction)

The proof is based on:
- the implication \(\tau_n = 0 \Rightarrow \tau_{n-1} = 0\)
Idea of the proof of non-collisions (Step 1)

We compute the SDEs for the semimartingales

\[V_1 = \sum_{j > i} (\lambda_i - \lambda_j)^2 \]
\[\ldots \]
\[V_N = \prod_{j > i} (\lambda_j - \lambda_i)^2, \quad N = \frac{p(p + 1)}{2} \]

they are symmetric polynomials of \((\lambda_i - \lambda_j)^2\)

We show that even if \(V_N(0) = 0\), if (A4) holds then
\[\tau_N = \inf\{t > 0 : V_N(t) > 0\} = 0 \text{ almost surely} \]
(instant diffraction)

The proof is based on:
- the implication \(\tau_n = 0 \Rightarrow \tau_{n-1} = 0\)
- the fact that (A4) guarantees the instant exit from a collision in a ”degenerate point” \(x\), \(\sigma_k^2(x) + \sigma_l^2(x) + H_{kl}(x, x) = 0\).
For every $t > s > 0$, by Itô formula

\[
\lambda_i(t) - \lambda_i(s) = \int_s^t \sigma_i(\lambda_i(u)) dB_i(u) + \int_s^t \left(b_i(\lambda_i(u)) + \sum_{j \neq i} \frac{H_{ij}(\lambda_i(u), \lambda_j(u))}{\lambda_i(u) - \lambda_j(u)} \right) du
\]
For every $t > s > 0$, by Itô formula

$$
\lambda_i(t) - \lambda_i(s) = \int_s^t \sigma_i(\lambda_i(u))dB_i(u) + \int_s^t \left(b_i(\lambda_i(u)) + \sum_{j \neq i} \frac{H_{ij}(\lambda_i(u), \lambda_j(u))}{\lambda_i(u) - \lambda_j(u)} \right) du
$$

When $s \to 0$, we have $\lambda_i(s) \to \lambda_i(0)$ and

$$
\int_s^t \sigma_i(\lambda_i(u))dB_i(u) \to \int_0^t \sigma_i(\lambda_i(u))dB_i(u)
$$

in L^2, so almost surely for a subsequence $s_k \to 0$.
Step 2: pathwise uniqueness

Let (Λ, B) and $(\tilde{\Lambda}, B)$ be two solutions with $\Lambda(0) = \tilde{\Lambda}(0)$. Local time of $\lambda_i - \tilde{\lambda}_i$ at 0 is 0. By Tanaka formula

$$p\sum_{i=1} E|\lambda_i(t) - \tilde{\lambda}_i(t)| = E\int_0^t p\sum_{i=1} \text{sgn}(\lambda_i - \tilde{\lambda}_i) \sum_{j \neq i} (H_{ij}(\lambda_i, \lambda_j) \lambda_i - H_{ij}(\tilde{\lambda}_i, \tilde{\lambda}_j) \tilde{\lambda}_i - \tilde{\lambda}_j) du + E\int_0^t p\sum_{i=1} \text{sgn}(\lambda_i - \tilde{\lambda}_i) (b_i(\lambda_i) - b_i(\tilde{\lambda}_i)) du.$$

Lipschitz condition on $b_i(x)$ implies that the second term $\leq c_3 E\int_0^t \sum_{i=1} |\lambda_i - \tilde{\lambda}_i| du$. Assumption (A1) ensures that the first term is non-positive!!! Gronwall Lemma ends the proof.
Let (Λ, B) and $(\tilde{\Lambda}, B)$ be two solutions with $\Lambda(0) = \tilde{\Lambda}(0)$. Local time of $\lambda_i - \tilde{\lambda}_i$ at 0 is 0. By Tanaka formula

\[
E \left| \lambda_i(t) - \tilde{\lambda}_i(t) \right| = E \int_0^t p_i \sum_{j=1}^i \text{sgn}(\lambda_i - \tilde{\lambda}_i) \left(b_i(\lambda_i) - b_i(\tilde{\lambda}_i) \right) du + E \int_0^t p_i \sum_{j=1}^i \left| \lambda_i - \tilde{\lambda}_i \right| du.
\]

Lipschitz condition on $b_i(x)$ implies that the second term $\leq c E \int_0^t \left| \lambda_i - \tilde{\lambda}_i \right| du$. Assumption (A1) ensures that the first term is non-positive!!! Gronwall Lemma ends the proof.
Step 2: pathwise uniqueness

Let \((\Lambda, B)\) and \((\tilde{\Lambda}, B)\) be two solutions with \(\Lambda(0) = \tilde{\Lambda}(0)\). Local time of \(\lambda_i - \tilde{\lambda}_i\) at 0 is 0. By Tanaka formula

\[
\sum_{i=1}^{p} \mathbb{E}|\lambda_i(t) - \tilde{\lambda}_i(t)| = \\
\mathbb{E} \int_0^t \sum_{i=1}^{p} \text{sgn}(\lambda_i - \tilde{\lambda}_i) \sum_{j \neq i} \left(\frac{H_{ij}(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} - \frac{H_{ij}(\tilde{\lambda}_i, \tilde{\lambda}_j)}{\tilde{\lambda}_i - \tilde{\lambda}_j} \right) du \\
+ \mathbb{E} \int_0^t \sum_{i=1}^{p} \text{sgn}(\lambda_i - \tilde{\lambda}_i)(b_i(\lambda_i) - b_i(\tilde{\lambda}_i)) du.
\]
Step 2: pathwise uniqueness

Let \((\Lambda, B)\) and \((\tilde{\Lambda}, B)\) be two solutions with \(\Lambda(0) = \tilde{\Lambda}(0)\). Local time of \(\lambda_i - \tilde{\lambda}_i\) at 0 is 0. By Tanaka formula

\[
\sum_{i=1}^{p} \mathbb{E}|\lambda_i(t) - \tilde{\lambda}_i(t)| =
\]

\[
\mathbb{E} \int_0^t \sum_{i=1}^{p} \text{sgn}(\lambda_i - \tilde{\lambda}_i) \sum_{j \neq i} \left(\frac{H_{ij}(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} - \frac{H_{ij}(\tilde{\lambda}_i, \tilde{\lambda}_j)}{\tilde{\lambda}_i - \tilde{\lambda}_j} \right) du
\]

\[
+ \mathbb{E} \int_0^t \sum_{i=1}^{p} \text{sgn}(\lambda_i - \tilde{\lambda}_i)(b_i(\lambda_i) - b_i(\tilde{\lambda}_i)) du.
\]

Lipschitz condition on \(b_i(x)\) implies that

the second term \(\leq c_3 \mathbb{E} \int_0^t \sum_{i=1}^{p} |\lambda_i - \tilde{\lambda}_i| du\).
Let (Λ, B) and $(\tilde{\Lambda}, B)$ be two solutions with $\Lambda(0) = \tilde{\Lambda}(0)$. Local time of $\lambda_i - \tilde{\lambda}_i$ at 0 is 0. By Tanaka formula

$$
\sum_{i=1}^{p} \mathbb{E}|\lambda_i(t) - \tilde{\lambda}_i(t)| =
$$

$$
\mathbb{E} \int_0^t \sum_{i=1}^{p} \text{sgn}(\lambda_i - \tilde{\lambda}_i) \sum_{j \neq i} \left(\frac{H_{ij}(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} - \frac{H_{ij}(\tilde{\lambda}_i, \tilde{\lambda}_j)}{\tilde{\lambda}_i - \tilde{\lambda}_j} \right) du
$$

$$
+ \mathbb{E} \int_0^t \sum_{i=1}^{p} \text{sgn}(\lambda_i - \tilde{\lambda}_i)(b_i(\lambda_i) - b_i(\tilde{\lambda}_i)) du.
$$

Lipschitz condition on $b_i(x)$ implies that

the second term $\leq c_3 \mathbb{E} \int_0^t \sum_{i=1}^{p} |\lambda_i - \tilde{\lambda}_i| du$.

Assumption (A1) ensures that the first term is non-positive!!!
Let \((\Lambda, B)\) and \((\tilde{\Lambda}, B)\) be two solutions with \(\Lambda(0) = \tilde{\Lambda}(0)\). Local time of \(\lambda_i - \tilde{\lambda}_i\) at 0 is 0. By Tanaka formula

\[
\sum_{i=1}^{p} \mathbb{E}|\lambda_i(t) - \tilde{\lambda}_i(t)| = \\
\mathbb{E} \int_0^t \sum_{i=1}^{p} \text{sgn}(\lambda_i - \tilde{\lambda}_i) \sum_{j \neq i} \left(\frac{H_{ij}(\lambda_i, \lambda_j)}{\lambda_i - \lambda_j} - \frac{H_{ij}(\tilde{\lambda}_i, \tilde{\lambda}_j)}{\tilde{\lambda}_i - \tilde{\lambda}_j} \right) du \\
+ \mathbb{E} \int_0^t \sum_{i=1}^{p} \text{sgn}(\lambda_i - \tilde{\lambda}_i)(b_i(\lambda_i) - b_i(\tilde{\lambda}_i))du.
\]

Lipschitz condition on \(b_i(x)\) implies that the second term \(\leq c_3 \mathbb{E} \int_0^t \sum_{i=1}^{p} |\lambda_i - \tilde{\lambda}_i| du\).

Assumption (A1) ensures that the first term is non-positive!!! Gronwall Lemma ends the proof.
We know (Bru, 1991) that for $\alpha \geq p - 1$ the BESQ (Wishart) processes exist on S_{Sym}^p.

\[
dX_t = \sqrt{X_t} dB_t + dB_T_t \sqrt{X_t + \alpha I} dt, \quad \alpha \geq p - 1.
\]

By quadratic construction it is straightforward to see that they exist also for $\alpha = 1, 2, \ldots, p - 2$.

What about $\alpha < p - 1$ and different from 1, 2, ..., $p - 2$?

Another question: admissible starting points for $\alpha = 1, \ldots, p - 2$.

Intuitively, X_0 cannot be of rank superior to α: the process (X_t) evolves in rank α.

Piotr Graczyk
Particle systems as solutions of SDEs systems
We know (Bru, 1991) that for $\alpha \geq p - 1$ the BESQ matrix (Wishart) processes exist on Sym_p^+.

$$dX_t = \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha l dt, \quad \alpha \geq p - 1.$$
We know (Bru, 1991) that for $\alpha \geq p - 1$ the BESQ matrix (Wishart) processes exist on Sym_p^+.

$$\begin{align*}
dX_t &= \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha ld t, \quad \alpha \geq p - 1.
\end{align*}$$

By quadratic construction it is straightforward to see that they exist also for $\alpha = 1, 2, \ldots, p - 2$.
We know (Bru, 1991) that for $\alpha \geq p - 1$ the BESQ matrix (Wishart) processes exist on \overline{Sym}_p^+.

$$dX_t = \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha l dt, \quad \alpha \geq p - 1.$$

By quadratic construction it is straightforward to see that they exist also for $\alpha = 1, 2, \ldots, p - 2$.

What about $\alpha < p - 1$ and different from $1, 2, \ldots, p - 2$?
We know (Bru, 1991) that for $\alpha \geq p - 1$ the BESQ matrix (Wishart) processes exist on \Sym_p^+.

$$dX_t = \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha t dt, \quad \alpha \geq p - 1.$$

By quadratic construction it is straightforward to see that they exist also for $\alpha = 1, 2, \ldots, p - 2$.

What about $\alpha < p - 1$ and different from 1, 2, \ldots, $p - 2$?

Another question: admissible starting points for $\alpha = 1, \ldots, p - 2$.

Piotr Graczyk

Particle systems as solutions of SDEs systems
We know (Bru, 1991) that for $\alpha \geq p - 1$ the BESQ matrix (Wishart) processes exist on Sym_p^+.

$$dX_t = \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha l dt, \quad \alpha \geq p - 1.$$

By quadratic construction it is straightforward to see that they exist also for $\alpha = 1, 2, \ldots, p - 2$.

What about $\alpha < p - 1$ and different from $1, 2, \ldots, p - 2$?

Another question: admissible starting points for $\alpha = 1, \ldots, p - 2$.

Intuitively, X_0 cannot be of rank superior to α: the process (X_t) evolves in rank α.

Piotr Graczyk

Particle systems as solutions of SDEs systems
Theorem

(1) When $\alpha < p - 1$ and α is not integer, the BESQ matrix process cannot exist on Sym_p^+.
(2) When $\alpha \in \{0, 1, 2, \ldots, p - 2\}$ is integer, and X_0 is of rank greater than α then the BESQ matrix process cannot exist on Sym_p^+.

Comments:
– (1) gives a simple stochastic proof of the classical Wallach set
– (2) gives a simple stochastic proof of a result of Letac-Massam (based on ideas of J. Faraut), on non-central Wishart laws (unpublished yet).

Piotr Graczyk

Particle systems as solutions of SDEs systems
Theorem

(1) When $\alpha < p - 1$ and α is not integer, the BESQ matrix process cannot exist on $\overline{Sym_p^+}$.

(2) When $\alpha \in \{0, 1, 2, \ldots, p - 2\}$ is integer, and X_0 is of rank greater than α then the BESQ matrix process cannot exist on $\overline{Sym_p^+}$.

Comments:
– (1) gives a simple stochastic proof of the classical Wallach set
– (2) gives a simple stochastic proof of a result of Letac-Massam (based on ideas of J. Faraut), on non-central Wishart laws (unpublished yet)

Piotr Graczyk

Particle systems as solutions of SDEs systems
Theorem

(1) When $\alpha < p - 1$ and α is not integer, the BESQ matrix process cannot exist on $\overline{\text{Sym}}^+_p$.
(2) When $\alpha \in \{0, 1, 2, \ldots, p - 2\}$ is integer, and X_0 is of rank greater than α then the BESQ matrix process cannot exist on $\overline{\text{Sym}}^+_p$.

Comments:
- (1) gives a simple stochastic proof of the classical Wallach set
- (2) gives a simple stochastic proof of a result of Letac-Massam (based on ideas of J. Faraut), on non-central Wishart laws (unpublished yet)
Proof of (1), Example $p = 4$

Suppose a "true" BESQ matrix process exists for $\alpha < 3, \alpha \not\in \mathbb{N}$.

de_1 = 2 \sqrt{e_1} dU_1 + 4 \alpha dt
de_2 = 2 \sqrt{e_1 e_2} + 3 e_3 dU_2 + 3(\alpha - 1) e_1 dt
de_3 = 2 \sqrt{e_3 e_2} + 6 e_1 e_4 dU_3 + 2(\alpha - 2) e_2 dt
de_4 = 2 \sqrt{e_4 e_3} dU_4 + (\alpha - 3) e_3 dt

Look at e_4. This is a BESQ $(\alpha - 3)$ process starting from \mathbb{R}^+.

If $e_3(t) \neq 0$, then e_4 cannot live on \mathbb{R}^+ as a BESQ $(\alpha - 3)$ process with $\alpha - 3 < 0$. Thus $e_3(t) = 0$ for t near 0.

Look at the SDE for e_3. We infer that $e_2 = 0$ for t near 0, otherwise the drift part of e_3 would be equal to its martingale part.

We repeat this argument and deduce that $e_1 = 0$ for t near 0.

This is however impossible because of the SDE for e_1. Its drift part $4\alpha dt$ is not 0.
Proof of (1), Example \(p = 4 \)

Suppose a ”true” BESQ matrix process exists for \(\alpha < 3, \alpha \notin \mathbb{N} \).
Proof of (1), Example $p = 4$

Suppose a ”true” BESQ matrix process exists for $\alpha < 3, \alpha \notin \mathbb{N}$.

$$de_1 = 2\sqrt{e_1}dU_1 + 4\alpha dt$$
$$de_2 = 2\sqrt{e_1e_2 + 3e_3}dU_2 + 3(\alpha - 1)e_1 dt$$
$$de_3 = 2\sqrt{e_3 e_2 + 6e_1e_4}dU_3 + 2(\alpha - 2)e_2 dt$$
$$de_4 = 2\sqrt{e_4 e_3}dU_4 + (\alpha - 3)e_3 dt$$
Proof of (1), Example $p = 4$

Suppose a "true" BESQ matrix process exists for $\alpha < 3, \alpha \notin \mathbb{N}$.

\[
\begin{align*}
 de_1 &= 2\sqrt{e_1}dU_1 + 4\alpha dt \\
 de_2 &= 2\sqrt{e_1 e_2} + 3e_3 dU_2 + 3(\alpha - 1)e_1 dt \\
 de_3 &= 2\sqrt{e_3 e_2} + 6e_1 e_4 dU_3 + 2(\alpha - 2)e_2 dt \\
 de_4 &= 2\sqrt{e_4 e_3}dU_4 + (\alpha - 3)e_3 dt
\end{align*}
\]

Look at e_4. This is a $BESQ(\alpha - 3)$ process starting from \mathbb{R}^+, with a time change $e_3(t)$.

If $e_3(t) \neq 0$, then e_4 cannot live on \mathbb{R}^+ as a $BESQ(\alpha - 3)$ process with $\alpha - 3 < 0$. Thus $e_3(t) = 0$ for t near 0.
Proof of (1), Example $p = 4$

Suppose a ”true” BESQ matrix process exists for $\alpha < 3, \alpha \notin \mathbb{N}$.

\[
\begin{align*}
 de_1 &= 2\sqrt{e_1} dU_1 + 4\alpha dt \\
 de_2 &= 2\sqrt{e_1 e_2 + 3e_3} dU_2 + 3(\alpha - 1)e_1 dt \\
 de_3 &= 2\sqrt{e_3 e_2 + 6e_1 e_4} dU_3 + 2(\alpha - 2)e_2 dt \\
 de_4 &= 2\sqrt{e_4 e_3} dU_4 + (\alpha - 3)e_3 dt
\end{align*}
\]

Look at e_4. This is a $BESQ(\alpha - 3)$ process starting from \mathbb{R}^+, with a time change $e_3(t)$.
If $e_3(t) \neq 0$, then e_4 cannot live on \mathbb{R}^+ as a $BESQ(\alpha - 3)$ process with $\alpha - 3 < 0$. Thus $e_3(t) = 0$ for t near 0.

Look at the SDE for e_3. We infer that $e_2 = 0$ for t near 0, otherwise the drift part of e_3 would be equal to its martingale part.
Proof of (1), Example $p = 4$

Suppose a "true" BESQ matrix process exists for $\alpha < 3$, $\alpha \notin \mathbb{N}$.

$$de_1 = 2\sqrt{e_1} dU_1 + 4\alpha dt$$
$$de_2 = 2\sqrt{e_1 e_2} + 3e_3 dU_2 + 3(\alpha - 1)e_1 dt$$
$$de_3 = 2\sqrt{e_3 e_2} + 6e_1 e_4 dU_3 + 2(\alpha - 2)e_2 dt$$
$$de_4 = 2\sqrt{e_4 e_3} dU_4 + (\alpha - 3)e_3 dt$$

Look at e_4. This is a $BESQ(\alpha - 3)$ process starting from \mathbb{R}^+, with a time change $e_3(t)$.

If $e_3(t) \neq 0$, then e_4 cannot live on \mathbb{R}^+ as a $BESQ(\alpha - 3)$ process with $\alpha - 3 < 0$. Thus $e_3(t) = 0$ for t near 0.

Look at the SDE for e_3. We infer that $e_2 = 0$ for t near 0, otherwise the drift part of e_3 would be equal to its martingale part.

We repeat this argument and deduce that $e_1 = 0$ for t near 0.
Proof of (1), Example \(p = 4 \)

Suppose a ”true” BESQ matrix process exists for \(\alpha < 3, \alpha \not\in \mathbb{N} \).

\[
\begin{align*}
 de_1 &= 2\sqrt{e_1}dU_1 + 4\alpha dt \\
 de_2 &= 2\sqrt{e_1e_2 + 3e_3}dU_2 + 3(\alpha - 1)e_1 dt \\
 de_3 &= 2\sqrt{e_3e_2 + 6e_1e_4}dU_3 + 2(\alpha - 2)e_2 dt \\
 de_4 &= 2\sqrt{e_4e_3}dU_4 + (\alpha - 3)e_3 dt
\end{align*}
\]

Look at \(e_4 \). This is a \(BESQ(\alpha - 3) \) process starting from \(\mathbb{R}^+ \), with a time change \(e_3(t) \).
If \(e_3(t) \neq 0 \), then \(e_4 \) cannot live on \(\mathbb{R}^+ \) as a \(BESQ(\alpha - 3) \) process with \(\alpha - 3 < 0 \). Thus \(e_3(t) = 0 \) for \(t \) near 0.

Look at the SDE for \(e_3 \). We infer that \(e_2 = 0 \) for \(t \) near 0, otherwise the drift part of \(e_3 \) would be equal to its martingale part.

We repeat this argument and deduce that \(e_1 = 0 \) for \(t \) near 0.
This is however impossible because of the SDE for \(e_1 \). Its drift part \(4\alpha dt \) is not 0.
Proof of (2), Example $p = 4, \alpha = 1,$

$\Lambda_0 = \text{diag}(0, 0, \lambda_3 > 0, \lambda_4)$ or $(0, \lambda_2 > 0, \lambda_3, \lambda_4)$
Proof of (2), Example $p = 4, \alpha = 1,$
$\Lambda_0 = diag(0, 0, \lambda_3 > 0, \lambda_4)$ or $(0, \lambda_2 > 0, \lambda_3, \lambda_4)$

The argument is identical as in the proof of (1), but stops on the level

$$e_2 = 0$$
Proof of (2), Example $p = 4, \alpha = 1,$
$\Lambda_0 = \text{diag}(0, 0, \lambda_3 > 0, \lambda_4)$ or $(0, \lambda_2 > 0, \lambda_3, \lambda_4)$

The argument is identical as in the proof of (1), but stops on the level

$$e_2 = 0$$

(The argument cannot go down to e_1 because the drift $(\alpha - 1)dt$ of e_2 is 0 for $\alpha = 1$.)
Proof of (2), Example $p = 4, \alpha = 1,$
$\Lambda_0 = diag(0,0,\lambda_3 > 0, \lambda_4)$ or $(0, \lambda_2 > 0, \lambda_3, \lambda_4)$

The argument is identical as in the proof of (1), but stops on the level

$$e_2 = 0$$

(The argument cannot go down to e_1 because the drift $(\alpha - 1) dt$ of e_2 is 0 for $\alpha = 1$.)

$e_2 = \sum_{1\leq i<j\leq 4} \lambda_i \lambda_j = 0$ implies that $\lambda_2 = \lambda_3 = 0$, contradiction with $\text{rank}(X_0) = 2$ or 3.