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Quasicrystals are sets of points or pavings of Rn. Following
R. Moody a new definition of almost periodicity is used.

A centered patch (or local configuration) of a point set or a
paving Λ is defined by

P0(λ,R) = (Λ− λ) ∩B(0, R)

where λ belongs to Λ or is a vertex of Λ.

Let Λ be a quasicrystal (point set or paving). When R is
large enough all centered patches P0(λ,R), λ ∈ Λ, are almost
identical. More precisely we have:

Theorem 1. For every positive ε there exist two positive num-
bers R(ε) and C(ε) such that the following property holds:

∀x, ∀y ∈ Λ there exists a translation τ ∈ Rn, τ = τ(x, y, ε), |τ | ≤
C(ε) such that ∀R ≥ R(ε) we have

#[P0(x,R)4 (P0(y,R)− τ)] ≤ εRn
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1. Pentagonal symmetry

 
 

Nigella. 

Beautiful but imperfect pentagonal symmetry. 

John Adam 
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A Penrose tiling with pentagonal symmetry.

Penrose, Roger (1974), “Role of aesthetics in pure and
applied research”, Bulletin of the Institute of Mathemat-
ics and its Applications 10.
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L’étonnant pavage d’Albrecht Dürer 

 

  
 

Dürer, Underweysung der Messung. Nürnberg, 1525.  

 

Version française : Géométrie. Trad. et présentation de  

Jeanne Peiffer, Seuil, 1995. 

 

Ce pavage se trouve à la page 218 de la version française. 

 

Il est invariant par rotation d’angle 2et préfigure  
donc les pavages de Penrose. 
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Underweysung der Messung, premier ouvrage  

en allemand et donc accessible aux artisans  

et aux artistes, consacré à la géométrie euclidienne  

et à la science de la perspective telle que pratiquée  

à la Renaissance.  

 

Peu de temps après sa publication en 1525, le traité  

de Dürer fut réuni, dans une reliure unique, à une  

édition du Geometricorum elementorum  

(1516) d’Euclide et à la première édition illustrée  

du De architectura (1511) de Vitruve.  

 

Des annotations manuscrites dans les marges du  

Vitruve renvoient à l’œuvre d’Érasme et à  

d’autres humanistes d’Europe du Nord.  

 

Ce volume montre combien l’érudition et la pratique  

s’influencent l’une l’autre et révèle la place centrale  

qu’occupe l’architecture dans l’expansion du savoir  

de la Renaissance  
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The Dürer paving looks like a Penrose paving since
it is invariant by a 2π/5 rotation. However it is not a
quasicrystal. Here comes the recipe.

Voici une cinquième manière d’assembler
des pentagones. Construis d’abord un pen-
tagone et accole à chacun de ses côtés un
pentagone régulier. Rajoute à ces cinq pen-
tagones d’autres pentagones, un respective-
ment sur deux côtés de chacun des pen-
tagones. Entre les pentagones se formeront
cinq losanges étroits. Engage ensuite les
pentagones dans les angles qui se forment
tout autour et fais en sorte que leurs som-
mets touchent ceux des losanges étroits.
Continue ensuite tant que tu voudras.

Albrecht Dürer.

[Communicated by Serge Boucheron and Denis Gratias.]
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2. What is a quasicrystal ?

Is it (1) a paving of the plane with tiles Tj, j ∈ J,
which are isometric copies of finitely many polygonal pro-
totiles or (2) an almost periodic discrete set Λ ⊂ R2 ?
This set Λ could be the set of vertices of the tiles Tj, j ∈
J, and conversely the paving could be the Voronöı tes-
sellation generated by Λ. In this essay quasicrystals will
be defined as almost periodic patterns (Definition 2).

A subset Λ of Rn is a Delone set if there exist two radii
R2 > R1 > 0 such that

(a) each ball with radius R1, whatever be its location,
shall contain at most one point in Λ

(b) each ball with radius R2, whatever be its location,
shall contain at least one point in Λ.

A Delone set Λ is of finite type if and only if Λ− Λ is
a discrete closed set. Then Λ has only a finite number
of different local neighborhoods of radius 2R2 around its
points λ ∈ Λ, up to translations (J. Lagarias). Moreover
the Voronöı tessellation generated by Λ is a paving of
the plane with tiles which are translated copies of finitely
many prototiles. The converse implication holds.

A centered patch (or local configuration) is defined by

P0(λ,R) = (Λ− λ) ∩B(0, R), λ ∈ Λ.

A Delone set is of finite type iff for R ≥ 1 there are
finitely many patches P0(λ,R), λ ∈ Λ.
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3. The pinwheel tiling

The beautiful paving which will appear now is the pin-
wheel tiling. It has been constructed by John Conway
and Charles Radin (1994). It is not of finite type. There-
fore it is not a quasicrystal.

Federation Square, a building complex in Melbourne,
Australia features the pinwheel tiling. In the project, the
tiling pattern is used to create the structural sub-framing
for the facades, allowing for the facades to be fabricated
off-site, in a factory and later erected to form the fa-
cades. The pinwheel tiling system was based on the sin-
gle triangular element, composed of zinc, perforated zinc,
sandstone or glass (known as a tile), which was joined to
4 other similar tiles on an aluminum frame, to form a
“panel”. Five panels were affixed to a galvanized steel
frame, forming a “mega-panel”, which were then hoisted
onto support frames for the facade. The rotational po-
sitioning of the tiles gives the facades a more random,
uncertain compositional quality, even though the pro-
cess of its construction is based on pre-fabrication and
repetition. The same pinwheel tiling system is used in
the development of the structural frame and glazing for
the “Atrium” at Federation Square, although in this in-
stance, the pinwheel grid has been made “3-dimensional”
to form a portal frame structure.
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4. Ammann tilings

 
 

  
The set of vertices  

 

of the Ammann-Beenker tiling 
 

is a model set.  
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The Ammann-Beenker tiling is a model set.  
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Ammann tilings are quasicrystals. Robert Ammann
(1946-1994) was an amateur mathematician who made
several signicant and groundbreaking contributions to
the theory of quasicrystals and aperiodic tilings. Am-
mann attended Brandeis University, but generally did
not go to classes, and left after three years. He worked
as a programmer for Honeywell. After ten years, his po-
sition was eliminated as part of a routine cutback, and
Ammann ended up working as a mail sorter for a post of-
fice. In 1975, Ammann read an announcement by Martin
Gardner of new work by Roger Penrose. Penrose had dis-
covered two simple sets of aperiodic tiles, each consisting
of just two quadrilaterals. Since Penrose was taking out a
patent, he wasn’t ready to publish them, and Gardner’s
description was rather vague. Ammann wrote a letter
to Gardner, describing his own work, which duplicated
one of Penrose’s sets, plus a foursome of golden rhom-
bohedra that formed aperiodic tilings in space. More
letters followed, and Ammann became a correspondent
with many of the professional researchers. 20 He dis-
covered several new aperiodic tilings, each among the
simplest known examples of aperiodic sets of tiles. He
also showed how to generate tilings using lines in the
plane as guides for lines marked on the tiles, now called
Ammann bars. The discovery of quasicrystals in 1982 by
Dan Shechtman changed the status of aperiodic tilings
and Ammann’s work from mere recreational mathemat-
ics to respectable academic research. After more than ten
years of coaxing, he agreed to meet various professionals
in person, and eventually even went to two conferences
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and delivered a lecture at each. Afterwards, Ammann
dropped out of sight, and died of a heart attack a few
years later. News of his death did not reach the research
community for a few more years

5. Almost periodic patterns

Definition 1. If Λ is a discrete set, R > 0, and if

(5.1) D+
R(Λ) = sup

x∈Rn
|B(x,R)|−1#[(B(x,R)) ∩ Λ]

The uniform upper density of Λ is defined by

(5.2) D+(Λ) = lim sup
R→∞

D+
R(Λ)

The symmetric difference between A,B ⊂ Rn is de-
noted by A4 B. Almost periodic patterns are defined
as follows.

Definition 2. A Delone set Λ is an almost periodic
pattern if and only if for every positive ε there exists
a R(ε) > 0 and a relatively dense set M(ε) such that

(5.3) R ≥ R(ε), τ ∈M(ε)⇒ D+
R[(Λ + τ )4 Λ] ≤ ε

This implies the weaker property

(5.4) D+[(Λ + τ )4 Λ] ≤ ε

Robert Moody introduced an even weaker property in
[3] where the uniform upper density is replaced by

(5.5) d(Λ) = lim sup
R→∞

|B(0, R)|−1#[(B(0, R)) ∩ Λ]
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and (5.4) by

(5.6) d[(Λ + τ )4 Λ] ≤ ε

Here is an example of a set of integers which is almost
periodic if the definition given by Robert Moody is used
but is not an almost periodic pattern. Let E ⊂ Z be
the union of the intervals [2j, 2j + j], j ≥ 1, and let
Λ = Z \ E. For every τ we have d[(Λ + τ ) 4 Λ] = 0.
However Λ is not an almost periodic pattern. We argue
by contradiction and assume that for every ε > 0 there
exists a relatively dense set M(ε) of almost periods of Λ.
Therefore for every j there exists a τ ∈ M(ε) such that
|τ − j| ≤ C(ε). Then [2j, 2j + j] is disjoint from [2j, 2j +
j] + τ up to an interval of length less than 2C(ε). It
implies D+[(Λ+τ )4Λ] ≥ 1−2C(ε)/j and the expected
contradiction will be reached when 1− 2C(ε)/j > ε.

6. Regular model sets are almost periodic
patterns

A regular model set Λ is defined by the cut and pro-
jection method. Let us assume that Γ ⊂ Rn+m is a lat-
tice. Then p1 : Rn+m 7→ Rn is defined by p1(x, y) = x
when x ∈ Rn, y ∈ Rm, and similarly p2(x, y) = y. We
are assuming that p1 : Γ 7→ Rn is injective and that
p2 : Γ 7→ Rm has a dense range. Let W ⊂ Rm be a
Riemann integrable compact set.

Definition 3. With these notations the regular model
set Λ is defined by

(6.1) Λ = {λ = p1(γ); γ ∈ Γ, p2(γ) ∈ W}
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We know that Λ has a uniform density given by dens Λ =
D+(Λ) = c|W | where c = c(Γ) and |W | is the Lebesgue
measure of W. Keeping in mind Definition 2 we have

Theorem 2. Regular model sets are almost periodic
patterns in the sense given by Definition 2.

In other terms for every positive ε there exists a Delone
set M(ε) such that (5.3) holds for every τ ∈ M(ε) and
for every R ≥ R(ε). Most of the points in the model set
Λ also belong to τ + Λ (this set of “good points” in Λ
depends on τ ).
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The proof is not difficult. Let N(η) the model set
defined by

(6.2) N(η) = {x = p1(γ); γ ∈ Γ, |p2(γ)| ≤ η}

Then N(η) is the M(ε) we are looking for if η is small
enough. More precisely we have

Lemma 1. There exists a regular model set Q(ε) such
that D+(Q(ε)) ≤ ε and if η is small enough

(6.3) τ ∈ N(η)⇒ (Λ + τ )4 Λ ⊂ Q(ε)

Lemma 1 obviously implies Theorem 2.

Let us treat the set Λ + τ \ Λ when τ ∈ N(η). The
treatment of Λ \ Λ + τ will be similar. If x ∈ Λ + τ we
have x = p1(γ) + p1(γ0) = p1(γ + γ0) where γ, γ0 ∈
Γ, p2(γ) ∈ W and |p2(γ0| ≤ η. If x /∈ Λ we have p2(γ+
γ0) /∈ W. It implies that p2(γ+γ0) ∈ Wη whereWη ⊂ W
is defined as the set of points y /∈ W such that the
distance from y to the boundary of W does not exceed
η. We have proved the following

(6.4)
Λ + τ \ Λ ⊂ Qη = {λ = p1(y); y ∈ Γ, p2(y) ∈ Wη}

Let us stress that the model set Qη does not depend on
τ. We now observe that |Wη| tends to 0 as η tends to 0.
The uniform density of the model set Qη defined by the
window Wη does not exceed ε if η is small enough and
we then set Q(ε) = Qη. As it was said the treatment of
Λ \ Λ + τ is similar, Wη being replaced by the set W η
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of points y ∈ W such that the distance from y to the
boundary of W does not exceed η. This ends the proof.

Is the converse implication true ? Let us assume that
a Delone set Λ is an almost periodic pattern. Is Λ−Λ a
Delone set ? Here is a one dimensional counter example.

Lemma 2. Let Λ = ∪∞0 Λj where Λj = 2j +rj +2j+1Z.
If rj ∈ (0, 1/3] then Λ is an almost periodic pattern.
If rj ∈ (0, 1/3] tends to 0 as j tends to infinity then
Λ− Λ cannot be a Delone set.

Let us observe that 2j + 2j+1Z = 2jZ \ 2j+1Z which
implies that Λ is a Delone set. Moreover Λ is an almost
periodic pattern since Λ0 ∪ . . .∪ Λj−1 is 2j-periodic and
the uniform upper density of Λj ∪ . . . is 2−j. Let us di-
rectly check that Λ−Λ is not a Delone set. We have 2j ∈
2Z = Λ0− Λ0. Moreover 2j + rj + 2k ∈ Λj if k ≥ j + 1.
Finally rk + 2k ∈ Λk which implies 2j + rj− rk ∈ Λ−Λ.
But 2j also belongs to Λ − Λ. Therefore Λ − Λ cannot
be a Delone set since rj − rk, k ≥ j + 1, tends to 0 as j
tends to infinity. Let us observe that Λ is also an almost
periodic pattern if the definition given in [2] is adopted.
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7. Large patches of model sets

Let B(x,R) ⊂ Rn be the ball centered at x with
radius R. Patches of Λ are defined as P(x,R) = Λ ∩
B(x,R), x ∈ Λ, R > 0 and the corresponding centered
patch is P0(x,R) = P(x,R) − x. Finally #E denotes
the number of elements of E. Then we have

Theorem 3. Let Λ be an almost periodic pattern in
the sense given by Definition 2. Then for every posi-
tive ε there exist two positive numbers R(ε) and C(ε)
such that the following property holds:

∀x, ∀y ∈ Λ there exists a translation τ ∈ Rn, τ =
τ (x, y, ε), |τ | ≤ C(ε) such that:
(7.1)
∀R ≥ R(ε), #[P0(x,R)4 (P0(y,R)− τ )] ≤ εRn

This was discovered by Pierre-Antoine Guihéneuf. We
do not know if (5.1) characterizes almost periodic pat-
terns. The proof of Theorem 3 gives more. Indeed
there exists a Delone set M(ε) such that one can impose
y − x− τ ∈ M(ε) in (7.1). This improved statement is
then a characterization of almost periodic patterns.

Property (7.1) is obvious if |x − y| ≤ R0 and R ≥
R0(Cnε)

−1. Then (7.1) holds with τ = 0. Indeed we then
have |B(y,R)4 B(x,R)| ≤ Cn|x − y|Rn−1 ≤ εRn. It
yields (7.1) since Λ is a Delone set. It is the trivial case.
Property (7.1) is only relevant if the distance between x
and y is extremely large.
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Theorem 3 in its full generality follows easily from the
trivial case and from Lemma 1. We obviously have
(7.2)
B(y,R)∩ [(Λ + τ )4Λ] = P(y,R)4 (P(y− τ, R) + τ )

Therefore Λ is an almost periodic pattern if and only if
there exists a relatively dense Delone set M(ε) such that
y ∈ Rn, R ≥ R(ε), τ ∈M(ε) implies

(7.3)
#[P(y,R)4 (P(y − τ, R) + τ )]

|B(y,R)|
≤ ε

This is a restatement of Lemma 1 and it settles the case
of the two patches P(y,R) and P(y−τ, R). To compare
P(y,R) to P(x,R) it suffices to observe that there exists
a τ ∈M(ε) such that |y−x− τ | ≤ C(ε). We are finally
led to compare P(x,R) to P(y−τ, R) which is the trivial
case.

8. Almost periodic measures

Let us begin with the definition by Hermann Weyl of
almost periodic functions.

Definition 4. The Weyl norm ‖f‖w,1 of a function
f ∈ L1

loc(Rn) is defined by

(8.1)

‖f‖w,p = lim sup
R→∞

[
sup
x∈Rn

1

|B(x,R)|

∫
B(x,R)

|f (y)| dy
]

whenever the right hand side of (8.1) is finite.

The spaceW1 of almost periodic functions in the sense
of H. Weyl is defined as follows.
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Definition 5. A function f ∈ L1
loc(Rn) belongs toW1

if it is the limit for the norm ‖ · ‖w,1 of a sequence of
generalized trigonometric polynomials.

Besicovitch used a less demanding norm defined as

(8.2) ‖f‖b,1 = lim sup
R→∞

1

|B(0, R)|

∫
B(0,R)

|f (y)| dy

Definition 6. A function f ∈ L1
loc(Rn) is almost pe-

riodic in the sense of Besicovitch if it is the limit for
the norm ‖ · ‖b,1 of a sequence of generalized trigono-
metric polynomials. We then write f ∈ B1.

The Besicovitch space B1 is larger than the Weyl space
W1. For example we have

Proposition 1. The function f (x) of the real vari-
able x defined by

(8.3) f (x) =

∞∑
1

1

n
sin(2−nx)

belongs to B1 but not to W1.
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Definition 7. The Weyl norm of a Borel measure µ
on Rn is defined by

(8.4) ‖µ‖w = lim sup
R→∞

sup
x∈Rn

|B(x,R)|−1|µ|(B(x,R))

whenever the right hand side of (8.4) is finite.

If µ = f dx where f is locally integrable then ‖µ‖w =
‖f‖w,1.

For τ ∈ Rn we denote by µτ the measure µ translated
by τ. Almost periodic measures are defined as follows.

Definition 8. A Borel measure µ is almost periodic
in the sense of Weyl if for every positive ε there exists
a relatively dense set M(ε) ⊂ Rn such that

(8.5) τ ∈M(ε)⇒ ‖µτ − µ‖w ≤ ε
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Proposition 2. Let rk, k ∈ Z, be a sequence of real
numbers tending to 0. Then the perturbed Dirac comb
σ =

∑
k∈Z δk+rk is an almost periodic measure if and

only if the upper density of the set E = {k; rk 6= 0}
is 0.

If τ /∈ Z then k+rk 6= j+rj+τ for |k|, |j| ≥ k0 which
implies ‖στ − σ‖w ≥ 2. Then ‖στ − σ‖w ≤ 1 implies
τ ∈ Z. Finally the conclusion follows immediately from
Definition 8.

Definition 9. A Borel measure µ is uniformly almost
periodic if for every positive ε there exists a relatively
dense set M(ε) and a positive number R(ε) such that
τ ∈M(ε), x ∈ Rn, R ≥ R(ε) implies

(8.6)
1

|B(x,R)|

∫
B(x,R)

d |µτ − µ| ≤ ε

The sum σ =
∑∞

k=1 δk is the right half of the Dirac
comb. It is an example of an almost periodic measure
which is not uniformly almost periodic. Here M(ε) = Z
and στ − σ = −

∑τ
k=1 δk if τ ≥ 1. When τ ≤ −1 we

have στ − σ =
∑0

k=τ+1 δk. Therefore

(8.7) ‖στ − σ‖w = 0 (∀τ ∈ Z)

Therefore σ is almost periodic in the sense of Weyl. It is
not uniformly almost periodic. Indeed (8.6) implies R ≥
|τ |/ε. Uniformity with respect to τ makes the difference
between (8.5) and (8.6). An equivalent definition of an
almost periodic pattern is given now.
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Proposition 3. A Delone set Λ is an almost periodic
pattern if the sum of Dirac masses µ =

∑
λ∈Λ δλ is

a uniformly almost periodic measure (in the sense
given by Definition 9).
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