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CHAPTER 1

Basics of Banach spaces

The aim of this first Lecture is to recall the basic definitions on Banach spaces and to
illustrate them with some examples.

1. Definitions
DEFINITION 1.1. Let F be a vector space over K =R or C.

e A norm on E is a mapping ||.|| from E to the non-negative reals R* such that
for every A € K and every xz,y €
(1) |lo]l =0, |jz|| > 0 and ||z|| = 0 implies that z = 0;
(2) [Aall = 1Al
@) Nz +yll < llzll + [yl
We then say that (E, ||.||) is a normed vector space.
o A sequence (ey) in E converges to e € E if |le,, — e|| — 0, that is if:

for every e > 0 there exists N (depending on €) such that, for everyn > N,
llen — el <e.

In this case, we write e = lime,,.
e A sequence (e,) in F is a Cauchy sequence if

for every e > 0 there exists N (depending on €) such that, for every m,n > N,
len — eml| < e.

EXAMPLE 1.2. Let E be a finite dimensional vector space, (ex)kg=1,....a & basis of E.
d

Each e € E' can then be uniquely written as e = kaek. We can thus define ||z|| =

. k=1
> k=1 [Tkl

It is easy to check that this defines a norm on FE.
d

Moreover, if (f,) is a sequence in E, we can write each f, as f, = Z ng)ek. It is easy
k=1
to check that f,, converges (resp. if a Cauchy sequence) if and only if each (x
(resp. is a Cauchy sequence).

%k) ) converges

But (a:%k)) is a sequence in R and in R (either by definition or after some cumbersome
work depending on how R is constructed) Cauchy sequences converge.
Note that this norm depends on the chosen basis.

REMARK 1.3. It is an easy exercice to show that every convergent sequence is a Cauchy
sequence. The converse may not be true. This shows that the chosen norm is not well
adapted to the vector space F.
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DEFINITION 1.4. Let E be a vector space and |||, |||.]|| be two norms on E. We say
that they are equivalent if there exists a constant C such that, for every e € F,

1
el < < Clle])-
cllell < llelll < Cllel

This of course defines an equivalence relation on norms which simply means that if
II-|l1 is equivalent to ||.||2 which in turn is equivalent to ||.||s, then ||.||1 is equivalent to ||.||3.
The following lemma is a simple exercice left to the reader:

LEMMA 1.5. Let E be a vector space and ||.||, |||-||| be two equivalent norms on E.
Then every Cauchy sequence (resp. convergent sequence) for one norm is also a Cauchy
sequence (resp. convergent sequence) for the second one.

A more subtil fact is the following:

THEOREM 1.6. Let E be a finite dimensional vector space. Then any two norms on E
are equivalent.

SKETCH OF PROOF. It is enough to fix a basis (ex) of F and to show that any norm
on F is equivalent to the ||.||o norm defined in the above example.
Take e € E, write e = ) xpey and notice that

lell = |3 wnen|| < 32 lallient < (3 lewll) max foel = (3 llewl) el

The converse is more subtle and uses the following facts:

e from the above inequality, we get that e — ||e|| is a continuous mapping from
E,|.||lc to R

e the unit sphere of F, ||.|c Sg = {€ € E : |le]lc = 1} is compact (we will come
back to this notion in the second semester and prove this fact)

e a continuous function over a compact set is bounded.

The remaining of the proof is then simple: there exists C' > 0 such that, for every
e€ Sk, |le] <C. And, if ¢ € E
— either ¢/ =0 and ||| =0 = ||¢/]| w0

—or ¢ # 0 and then e := me’ € Sg thus ”!',fl,‘!o = |le]| < C therefore ||e/|| <
Clle]l. O
DEFINITION 1.7. Let E,||.|| be a normed vector space. Then E is a complete if every

Cauchy sequence in F is convergent. We then aso say that E is a Banach space.

REMARK 1.8. This is a key property in analysis. It allows to define an object as a
limit of a sequence.

Indeed, contrary to the definition of a convergent sequence, the definition of a Cauchy
sequence does not require to know (or guess) the limit.

Many examples will occur in this course.

THEOREM 1.9. FEwvery finite dimensional normed vector space is a Banach space.

PROOF. We have already seen that E, ||.||oo (with some fixed basis) is complete. Since
all norms are equivalent, Cauchy sequences for any other norm ||.|| are also Cauchy se-
quences for the ||.|| norm thus are convergent for the ||.|o and, by equivalence of norms
again, are also convergent for ||.||. O
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2. An example: the space of continuous functions

THEOREM 2.1. Let E = C([0,1]) = {f[0,1] = C : f is continuous on [0,1]}. Endow
E with the norm defined by

1flloo = sup |f(2)].
z€[0,1]
Then E is a Banach space.

REMARK 2.2. It is a basic calculus exercice to show that ||f|| . is well-defined (conti-
nous functions over the compact set [0, 1] are bounded) and that it is a norm.

Before we prove this result, let us recall the following fact from calculus:

LEMMA 2.3. Let (fn) be a sequence C([0,1]) and let f be a function [0,1] — C. If
supgeqo,1) [fn() — f(z)| = 0 then f is continous over [0,1] so that f, — f in E

PrOOF. Fix zg € [0,1] and let ¢ > 0. Then there exists n such that, for every x € [0, 1],
|fr(x) — f(2)] < e. As f, is continuous in zg, there exists a neighborhood V of xg such
that, for every x € V' |fn(x) — fu(xo)| < . But then

[f (@) = fxo)| < [f(2) = fu(@)| + [fa(®) = fulzo)| + [fulwo) — f(20)| < 3¢

which shows continuity of f in zg. O
We can now prove the theorem.

PRrROOF. Let (f,) be a Cauchy sequence: for every € > 0 there is an N such that, if
m,n > N and z € [0,1] |fo(x) — fm(x)] <e.

First fix 2 € [0,1], the above shows that (f,(x))  is a Cauchy sequence in C, which is
complete. Therefore ( fn(x))n has a limit that we denote by f(z). This defines a function
f10,1] — C. It remains to show that this f is also a limit in the sense of || f|| .. Once this
is done, a result in the calculus course shows that f is then continuous.

But this is simple: fix € > 0, take N such that if n > N and x € [0, 1], for every m > N,
| fn(x)— fim(z)| < e. Fix x and n > N and let m go to infinity then |f,(z)— f(x)| < ¢, thus,
for every n > N, [|fn — fllo = supgepo,1) |f ()| < € which precisely means that f, — f in
E. O

The following proof has highlited the fact that there are two convergens in C([0, 1]):

DEFINITION 2.4. Let (f,) be a sequence C([0,1]) and let f be a function [0,1] — C.
We say that

— fn — f pointwise (or simply) if, for every x € [0,1], fn(x) = f(z) in C

~ fn — f uniformly if f,, — f for the ||-|| norm.

The first step in the above proof amounts to showing that uniform convergence implies
pointwise convergence. The converse is false as the example f,(z) = 2™ shows. Indeed
0 ifx+#

) . As f is not
1 ifz=1

fn converges pointwise to the function f defined by f(z) =

continuous while f, is, the convergence can not be uniform.
Note that one can define other norms on C([0, 1]), for instance, one can show that the
following is also a norm:

el = / ()| da.

As f,, — f for this norm we can deduce that:
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— the ||-||; is not equivalent to the [-||  norm

—as f is not continuous, C([0, 1]), ||-||; is not complete.

— uniform convergence is a stronger convergence than the convergence in ||-||;-norm.
The convergence in this last norm will lead us to introduce a larger space.

REMARK 2.5. [0,1] plays no particular role here: we only use its compacity to show
that || f|, is well defined. In particular

— everything in this section is valid if C([0, 1]) is replaced by C(K) where K is a compact
set

— everything in this section is valid if C([0, 1]) is replaced by C,(X) the set of bounded
continuous functions on a metric space X.

3. A second example: bounded linear mappings

In this section, F/, F’ will be two Banach spaces.
Let us recall the following fact about linear mappings:

THEOREM 3.1. Let T : E — F be linear. Then the following are equivalent:

(1) T is continuous on E;

(2) T is continuous in 0;

(3) T is bounded over the unit ball of E: there exists C' such that, for every x € E
with ||z < 1, | Tz| < C.

(4) there exists K such that, for every x € E, | Tx| < K||z||.

SKETCH OF PROOF. The equivalence of (1) and (2) follows from the fact that T'(z) —
T(wo) =T(x — o) = T(2x — o) — T(0).

(4) clearly implies (3) with C' = K. For the converse, if © # 0, then 7o has norm 1
thus 172l — HTi ‘ < C thus (4) holds with K = C.

[E] llIl
Finally (4) clearly imples (2). Finally, if (2) holds, take € = 1, there exists > 0 such
that, if ||| < n, ||Tz|| < 1. It follows that, when ||z| < 1, then |nz|| <7 thus

1 1
[Tz]| = =T ()| < =
Ui Ui
which completes the proof. (Il

LEmMA 3.2. If E has finite dimension, then every linear map E — F' is continuous.

SKETCH OF PROOF. This is simple to show for the |||, norm on E (with a fixed
basis) since, writting = > x;e; we get Tx = > x;Te; thus

ITel < 3wl Teill < (3 ITeil) oo

Then usuing the fact that all norms are equivalent in E, we conclude tha T is also contiuous
for any other norm. O

We can now define the following for a continous (bounded) linear mapping T : E — F:

Tx
IT|= sup |Tz|p= sup |Tz||p sup | ||F
zeB,|lz|l p<1 2€E,|z| =1 zeBz20 T\ g

It is an exercice to show that this three quantities are indeed equal and that they define
a norm on the set B(E, F) := {T : E — Flinearandcontinuous}. Such a norm on B(E, F)
is called a subordinate norm.
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THEOREM 3.3. The space B(E, F) endowed with this norm is a Banach space.

PrROOF. We will just outline the proof, the details are left to the reader as they are
essentally the same as for C([0, 1]).

Take T, to be a Cauchy sequence in B(E, F).

Step 1: observe that for each z € E, T,,(x) is a Cauchy sequence in F. We can then
define T'(x) = lim T,,(z).

Step 2: T is easily seen to be linear.

Step 3: Ty, is Cauchy thus a bonded sequence, that is, there exists C' such that ||T;,|| <
C. In other words, for every x € E with ||| <1, | T,(z)| < C.

As the norm is a continuous function, ||T,(z)|| — ||T(x)| thus for every z € E with
lz]] <1, |IT(x)]] < C and T is bounded, thus continuous.

Step 4: | T, — T|| — 0 so that T,, = T in B(E, F). O

A particular case is the dual space of E:

DEFINITION 3.4. Let E be a Banach space over K = R or C. The dual of E is the
Banach space E' = B(FE,K).
If (E')’ = E then FE is said to be reflexive.

The key example is the case when F is a Hilbert space. Further examples will be given
in this course:

THEOREM 3.5 (Riesz). If H is a Hilbert space over K then H' can be identified with
H in the sense that, for every element ¢ € H' there exists a unique a € H such that
L(z) = (x,a) where (.,.) is the scalar product on H.

Note that Cauchy-Schwarz implies that * — (x, a) is indeed bounded linear mapping
on H (note that when H is a complex Hilbert space, the scalar product is anti-linear in
the second variable).

We can now define a new convergence:

DEFINITION 3.6. Let F be a Banach space and E’ its dual. Let (z,) be a sequence in
E and x € E. We say that x,, — x weakly and write w — limz,, = z if, for every £ € E’,

Lzy) — ().

The term “weak” convergence is justified by the fact that convergence implies weak
convergence (and is thus also called strong convergence). Indeed, if (z,,) converges to z, as
¢ is continuous, {(x,) — ¢(x).

It turns out that, if F is finite dimensional, then the converse is true as well. Indeed
if (ex)k=1,....a is a basis of E then every x € E can be uniquely written as z = ) xex.
We can then define the mapping I, : E — K by li(x) = zx. The uniqueness of the
x) also implies that each [y is linear. As F is finite dimensional, we also get that [ is
continuous, that is I, € E’. But now, if (z(™)) converges weakly to z, for each k =1,...,d
(™) = Loo lk(z) and then

d d
(" = Zlk(ﬂf(n))ek —n—oo Zlk(l’)ek =T
k=1 k=1

In infinite dimensions, the situation is different, even in separable Hilbert spaces. For
instance, such a space has an orthonormal basis (e,). Such a sequence can not converge
(and even has no sub-sequence that is convergeant) since, for every m # n

llen — emHQ = ”611”2 + ||€m||2 + 2R(en, em) = 2.
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On the other hand, if £ € H' then, as seen above, there exists a € H such that ¢(x) = (z,a).

But

Do lten)l’ = Ken a)* = lla]*.

n>0 n>0
In particular, this series is convergent, thus its general term goes to 0: [{(e,)|?> — 0 thus
£(ey,) — 0 which is precisely w — lime,, = 0.

The notion of weak convergence is essential in analysis in infinite dimensions. The main
reason (seen in the next semester) is that closed bounded sets will no longer be compact
in that case, but will still be weakly compact.

The notion of weak-convergence should not be confused with Cesaro-convergence which
is an other usefull convergence that is weaker than classical convergence:

DEFINITION 3.7. Let E be a Banach space, z € E and (z,),>0 a sequence in E. We
say that (z,) Cesaro-converges to z if the mean of its n first terms
T1+ Ty + -+ T
n

It is not hard to see that a sequence can be Cesaro convergent without being convergent.
For instance, if we consider the real sequence given by x,, = (—1)", then

— 0.

n 0 if n is even

Ty T T, {—1/n if n is odd
However, the converse is true
LEMMA 3.8. Assume that (x,,) converges to x then (z,) Cesaro-converges to x.
PrROOF. First note that
1+ T2+t x, v (z1—2)+(xa—2)+ -+ (zp — 2)

n n
By replacing z,, by x,, — x we may thus assume without loss of generality that x = 0.
Let € > 0, and take N such that, for all n > N, ||z,|| < e. Then
T+ Ty 4+ T ol + -+ llenall + lznll +- - + [J2a]
n n
C —-N+1
< —+ (n=N+1 )5
n n
where C' = ||z1|| + - + ||lzn—1]]. Now chose N’ > C/e, then for n > N’,
Ty +T2+ -+ Ty
n

<e+e

which shows the convergence. O

4. Convergence of series

In this section, we gather a few facts that will be used in this course.
Let E be a Banach space. To a sequence (x,),>0 in E we associate the sequence

(Sn)n>o of partial sums Sy = 22[:0-

DEFINITION 4.1. We say that the series Yz, converges if the sequence of partial
sums Sy converges and in this case, > oo, = lim Sy.

We will say that > °° @, is normally convergent if the (real) series > > |z, con-
verges
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Note that in R or C, normal convergence is called absolute convergence.
We will need the following two lemmas:

LEMMA 4.2. Let (z,) be a sequence in a Banach space E. If ZZO:() Tn 15 normally
convergent it is convergent. The converse is false

PROOF. The converse is already false in R as shows the classical example z,, =
(=1)"/n.

The other direction is a direct copy of the proof in the real case. Assume that
>0 o llzn]| is convergent and consider the partial sums Sy = Zi\;o x, then for N > M,

N N
ISy =Sull = D aal[< D
n=M+1 n=M+1
from which one deduces that Sy is a Cauchy sequence and is thus convergent. 0

It turns out that this property characterizes Banach spaces, a fact that is sometimes
convenient to show that a space is complete:

LEMMA 4.3. Let E,||.|| be a normed vector space in which every normally convergent
series is convergent. Then E is a Banach space.

PROOF. Assume F has this property and let (x,) be a Cauchy sequence.

First, using the definition of a Cauchy sequence, we can construct an increasing se-
quence ny of integers such that ’|xnk+1 — Ty, || <107k,

Then define uy, = x,, , — ¥p, and note that

— the series Y uy is normally convergent, thus convergent

—as Tpy = ZkN;(f ug + Tn,, the sequence xz,, is therefore convergent.

Finally, one uses the follwing simple fact

LEMMA 4.4. A Cauchy sequence with a convergent sub-sequence is convergent.
O

PrOOF OF LEMMA 4.4. Let (fi) be a Cauchy sequence and assume that a subsequence
converges: fr, — f when j — oo.

Let € > 0, there exists N such that, if k,0 > N, || fi — fill, < &/2. There exists J such
that, if j > J, kj > N (since k; — oo by definition of a subsequence) and ||ka — f||p <e/2
(the sequence (fx;); converges to f). But then || fi — f||, < ka - flchp + kaj — pr <e
which shows that f, — f. O






CHAPTER. 2
LP spaces

1. Basics of integration theory
In this lecture, (2, B, 1) will be a o-finite measure space. Recall that this means that
there exists a countable family (£2,,),>1 such that
(1) n>1, Quy1 C Qs
(2) UnZl 0, =
(3) u(Qy) < +oo.
Note that if we consider 2,, = Qni1 \ Qn, we obtain a family that satifies
1) n#m>1,Q,N0Q, =0
(2) Un~21 Qn =
(3) u(2) < +o0.

ExXAMPLE 1.1. The three basic examples one should keep in mind are the following:

(1) © an open subset of R? endowed with the Lebesgue measure dz, or more generally,

a measure of the form w(x)dx for some (measurable) weight function w : Q — R*.

Note that if w = 1 then this measure space is finite if and only if €2 is bounded.

(2) @ ={1,...,d} endowed with the counting measure u({k}) = 1. Recall that a
function f on € is just a vector f = (f(l)7 .. .,f(d)) € C% and that

/ f(@) dp(z) = S £(k).

k=1
(3) © =N endowed with the counting measure u({k}) = 1. Recall that a function f

on Q is now a sequence f = (f(k)), € C" and that

/ f@)dp(z) = 3 £(k).
k=0

We will need a few results from your course on integration.

THEOREM 1.2 (Fubini).

Let (21, By, u1) and (2, Ba, 12) be two o-finite measure spaces and let f be measurable on
Ql X QQ.

If f > 0, then the three following integrals are equal (eventually +00)

/S21><02 flz,y)dp @ pa(z,y), /Q1 ( o, f(z,y)dpz(y)) dp (z),

and

/92 ( o f(x’y)d’“‘l(w)> dpaa(y)-

11
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In particular, the functions v — / f(z,y)dusa(y) andy — / f(x,y)dui (z) are mesurable.
QQ QZ

If f takes real or complex values, the same conclusion holds provided

[ sl pate, ) < oo
QlXQQ

In this case, the three integrals are finite

THEOREM 1.3 (Monotone Convergence — Beppo-Levi).
Let (Q, B, 1) be a measure space. Let (fn)nen be a sequence of measurable functions on §2
such that
(i) for p-almost every t € Q, fn(t) is increasing;
(i1) fn > 0 p-almost everywhere.

Then lim f,, exists p-almost everywhere (eventually lim f,(t) = +o00) and

Jim [ @t = [ im0 ity

(in particular, the left hand side and the right hand side are simultaneously finite or infi-
nite).

THEOREM 1.4 (Dominated Convergence — Lebesgue).
Let (Q,B, 1) be a measure space. Let (f,)nen and f bemesurable functions on Q such that
(i) for p-almost every t € Q, fn(t) — f(t) when n — 400
(ii) there exists a measure function @ on Q such that,
(a) ¢ is non-negative;
(b) for p-almost every t € Q, |fa(t)] < (1), thus |F(H)] < @ (t);
(c) ¢ is integrable: [, o(t) du(t) < 4o0.

Then /an(t) du(t) — /Qf(t) du(t) when n — +o00.

Note that, contrary to Beppo-Levi’s theorem, f, is not required to be non-negative.
This hypothesis is replaced by the domination hypothesis (the function ).

Two important consequences of Lebesgue’s theorem are the following results about
continuity and differentiability of integrals depending on a parameter

COROLLARY 1.5 (Continuity of intégrals depending on a parameter — Lebesgue).
Let (Q,B, 1) be a measure space and (X,d) a metric space. Lett F' : 2 x X — C be a
function such that :
(i) for p-almost every t € Q, x — F(t,x) is continuous;
(ii) there exists an integrable function ¢ on S such that, for every x € X and p-almost
every t € Q, |F(t,x)| < |p(t)].

Then f : X — C defined by f(x) = /QF(t,x) du(t) is continuous on X.
PROOF. Let z et xg € X, then

@) = flao) = [ Ftyan(®) = | Ft.ao)au(v) = [ (F(t.0) = Flt.a0)) dufo)

But, for p almost every t, |F(t,z) — F(t,z0)| < 2¢(t) € L' and, by continuity of F in

xo, F(t,z) — F(t,x0) — 0 when & — 9. By dominated convergence, f(z) — f(xg) when
r — xg, thus f is continuous in xg.
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CoROLLARY 1.6 (Differentiability of intégrals depending on a parameter — Lebesgue).

Let (2, B, 1) be a measure space and X C R? be open. Let F : Q x X — C a function such
that :
(i) for p-almost every t € Q, x — F(t,x) is differentiable;
(ii) there exists an integrable function @ on Q such that, for every x € X and p-almost
every t € Q, |F(t,z)| < |p(t)|;
(iii) there exists an integrable function v on § such that, for every x € X and p-almost

every t € Q, %(t,x) < [U(t)];

Then f : X — C defined by f(x) = / F(t,z) du(t) is differentiable on X .
Q
We leave the proof of this fact as an exercice.

2. LP-spaces: defintion

Let 1 < p < 400 be a real number and (2, B, 1) a o-finite measure space. We define

LP(Q,u) = {f :Q — C, f u— measurable, /Q |f(z)]P dp(z) < —|—oo}.

This space is endowed with the “norm” défined by

i1, = ([ |f<x>|ﬁdu<x>); |

This defines a norm in the following sense:

(i) For f € LP(S, u), we havea [|f||, > 0 and [|f||, = 0 if and only if f =0 p-almost
everywhere.
(ii) For f € LP(Q, pu) and A € C, we have A\f € LP(, p) and [[Af]l, =[] f]],-
(iii) For f,g € LP(Q, p), and f +g € LP(Q, u) we have ||f + gll, < [[fIl, + llgll,-

REMARK 2.1. It is important to notice that, in the particular case p = 2, L?Q, u1) is a
Hilbert space and that the norm is associated to the scalar product

Pz = [ S@@ (o).

SKETCH OF PROOF. Note that (ii) is obvious. For (i), we use the fact that if a non-
negative function has 0 integral, then it vanishes almost everywhere. The last point, (iii)
is much more subtle (excepted when p = 1 and when p = 2 when it is a consequence of
the Cauchy-Schwarz inequality) and will be proved later. However, it is easy to prove that
LP(Q, p) is a vector space. Indeed

fI+1gl\ _ oo
ol < Qs+l =2 (L) <o 4 i
since  — P is convex on [0,+00) when p > 1. Thus, if f,g € LP(Q,pu) then f+ g €
170, ). =

For p = +00, one defines

L*(Q,u) ={f : Q= C, f p—measurable, il existe K > 0 telle que |f(z)| < K, u—p.p.}.
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One then endows this space with the “norm” (with the same meaning as previously)
[/l = Inf{ K [f(2)] < K p—a.e}.
REMARK 2.2.
— We will simply write LP(Q2) = LP(u) = LP := LP(Q, ) when either , 1 or both are
implicitly fixed When p is the counting measure, one often write ¢2(Q) = LP(Q, u).

— It is important to understand that || f||., is not the supremum of f but the essential
supremum. The two quantities don’t coincide in general. For instance, if f is defined on

R by f(z) = 1 sizeQ

0 sinon
f(z) = 0 almost everywhere for the Lebesgue measure).
Of course, if f is continuous, then sup |f| = || f]| .-

then sup|f| = 1 while ||f| = 0 (Q has measure 0 so that

The notation L° is justified by the following fact that we leave as an exercice:

EXERCICE 2.3.
(1) Show that, if f € LN L then, for p > ¢, f € LP.
(2) Show that, moreover, || f|[, = [[fll,, when p — +o0.

The “norms” that we have just defined do not distinguish all measurable functions
in the sense that || f — ng = 0 only implies that f = g p-almost everywhere and not
everywhere.

To avoid that nuisance, one can re-define LP(£2, 1) so that its elements are “equivalence
classes” of functions. More precisely, if f € LP(Q, 1), we may define f as the set of all
functions h such that f—h = 0 py-almost everywhere and we then write h ~ f. In particular,
h € LP(Q, p) and [|h][, = || f]|,- Moreover, if f ~ h and h ~ g then f ~ g (a finite union

— and even a countable one— of sets of measure zero still has measure zero), thus f = h.
Finally, we define

£l = £,

and this does not depend on the choice of f in f.

Finally, if f and § are the equivalence classes of some f and ¢ € LP(Q, p) and A\, p € C,
we define )\f + ug = (Af + pg)”. It is easy to see that this does not depend on the choice
of fand ¢ in f and §.

We now have two vector spaces. One consists of functions while the other one is a set
of equivalence classes of functions. In the first one, the norm is not really a norm (|| f|| =0
does not imply f = 0) while in the second one, it is!

Both spaces are denoted by LP(£2, 1) and we will use the following abuse of language:
let f be a function in LP(Q,p) to mean let f € LP(Q,pu) and let f € f. This is very
confortable, but one has to keep in mind that f = g means f = g p-almost everywhere.
Further, if zog € Q, then f(xo) does not make sense if p({zo}) = 0.

Of course if, for some reason, one knows that f contains a (necessarily unique) contin-
uous function, then the f € f we chose is this continuous function and f(zo) has its usual
meaning.

Also, if p is the counting measure, i.e. in ¢P, this problem does not occur since

p({zo}) = 1.

REMARK 2.4. We would like to stress that f is continuous almost everywhere is not
the same thing as f contains a continuous function.
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1 ifzeQ

For instance if f = 1g is the function defined by f(x) = then f is
0 otherwise
nowhere continuous but f = 0 almost everywhere and the 0 function is of course continuous.
1 ifx=0
An other example is the following: f(z) = ne , then f is continous

1/x otherwise
almost everywhere but there is no continuous function g on R such that f(z) = g(x) for
almost every z.

3. LP-spaces: Hoélder and Minkowski
THEOREM 3.1 (Hélder’s Inequality).
1 1
Let (Q2,B, 1) be a measured space. Let 1 < p,p" < +o0 be such that — + — =1 (with the
p D

convention p’ = +oo when p =1 and vice versa). Let f € LP(Q, ) and g € LIDI(Q7 u), then

fg € LY, p) and
o) < [ e o) < ([ 1@ e ) ([ o0 aute )
Moreover,

— equality occurs and the first inequality if and only if there is a 0 € R such that
F(@)g(w) = €9 f(@)g(a)!.

—if f # 0 equality occurs and the second inequality if and only if there is a real A > 0
such that

(i) when 1 <p < 400, |g(z)] = A|f(x)|[P~! pu-almost everywhere;
(ii) when p =1, |g(z)| § A p-almost everywhere and |g(x)| = X for p-almost every x
for which f(z) # 0;

(iii) when p = +oo, |f(x)] < X p-almost everywhere and |f(z)| = X for p-almost every

x for which g(x) # 0;

REMARK 3.2.
— When p = 2 then ¢ = 2 then Holder’s Inequality is the well known Cauchy-Schwarz
Inequality.
— The first inequality and its equality case are trivial facts following from the positivity
of the integral of positive functions.

EXERCICE 3.3.

1
Show that, if 1 < p; < 400 are such that E — =1, then
— Di
=1
z)du(x H 1fill,,-

EXERCICE 3.4.
Endow R with the Lebesgue measure dz. For a function f on R and A > 0, define a new
function fy on R through fy(z) = f(A\x).
(1) Express [|fxll, in terms of || f][,,.
(2) Assume that there is a constant C such that, for every f € L?(R), g € LI(R), we
have fg € L"(R) and

(3.1) 179l < Cllfl,ll9ll,
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Replacing f,g by fa, gx in (3.1) and letting A vary between 0 and +oo, which
relation can you deduce on p, q,r.
(3) Assume now that p, g, r satisfy this relation. Prove (3.1) using Holder.

PROOF. When either f =0 or g = 0, there is notinhg to prove.
The cases p = 1 and p = +00, are trivial. We may thus assume that 1 < p < oo thus
1<p <ooand f,g # 0. This allows to define

N AR
<||f|p> ey (ngnp,)

As log is concave, one gets that, for 0 < a < 1, u®v!'=® < au + (1 — a)v. In particular,
taking o = 1/p, we get

AT S Ve W L
£, gl = P I, P [lgll)
Integrating with respect to p, we get the result.

For the equality case, log is actually strictly concave, which implies that 0 < o < 1,
u®v1=% < au+ (1 — a)v unless u = v. The result follows. O

THEOREM 3.5 (Jensen’s Inequality).
Let (Q, B, 1) be a measure space with u a finite measure. Let J : R — R be a C' convex

function. For f € LY(Q, u), write
o,
—— | f(z) du(z
@ [ @) dnto)
for its mean over Q). Then

(i) [J o f]_, the negative part of J o f is in L' (2, ), thus / J o f(z) du(zx) is well
Q

defined (possibly +00);
(i) J((f)) < (Jof), that is

I [ @) < o [ (@) duto)

PROOF. As J is convex and C', for a,t € R,
J(t) > J(a)+ J'(a)(t — a).
Taking t = f(z) and a = (f), this leads to
(32  J(f@), —J(f@)_=J(f@) = I+ T AN ) = T U
In particular, let @ be such that J(f(x))_ # 0 thus J(f(z)), =0, and
(

+
0<J(f(@)_ < =JUMf@)+T NS =T
< U@+ 1T NS = TEN)I-

As f € LY | T (()|If(x)| € L* and p is a finite measure, constant functions are integrables,
thus |J ((f){f) — J((f))| € L. the first part of the theorem is prove.
Finally, integrating (3.2), we get

! L J()
m/QJ(f(ac))du(ac)z m/ﬂJm)du(mH e /Qf(x)_<f>du(m).
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But 1
— | flx)—={(f)du(x) =0
7 | 5@ = (1) duta)
from which Jensen’s inequality follows. O

The result is valid for any non-negative convex function J. This comes from the fact
that such a function always satisfies an inequality of the form J(t) > J(a) + c(t — a). Of
course ¢ = J'(a) only when J is differentiable in a.

From this, we can deduce a second proof of Holder’s inequality

SECOND PROOF OF HOLDER. Up to replacing f, g by |f|, |g|, we may assume that
f,g > 0. Again, the cases p = 1 and p = +0o are obvious so that we also assume that
1 <p<+4o0.

Let ' ={x€Q: g(x) >0}. Then

| r@aue = [ paae+ |

fPe)du(@) = [ fP(z)dp(z)
Q\Q/ Q

while

[ r@a@)an) = [ f@a@an) e [ o@ anw) = [ gl o).
It follows that it is enough to prove Holder’s inequality with Q' replacing €, that is to say
that g does not vanish on (.

We can then define the measure dv(z) = g(z)? du(z) and the function F(z) =
f(x)g(x)?'/?. Note that

@) = [ 1aula) = [ oy duta)

thus v is a finite measure. Moreover

L ) dv(z) = ; 2al(x) P Pa(x)P du(z
g P ) TP | F@)g@) gl dua)
Q
J(@)g(x) du(a)

Q

[ st@y” dute)

! 1
since — 2 +p =9 <1 - > = 1. Finally, Jensen’s Inequality with J(t) = [t|P yields
p p

/ F(@)g(@) du() | / F(@)Pg(x)? g(x)? du(z)
QO S 0

/ g(2)” du(z) / g(2)? du(z)

Q Q

which is what we wanted to prove. O

EXERCICE 3.6.

(1) Show that, if J is strictly convex, then equality in Jensen’s inequality only occurs
when f is constant.
(2) Deduce the equality cases in Holder’s Inequality from this.

EXERCICE 3.7. (Inclusion of LP spaces)
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(1) Let 1 < p; < p2 < +oo. Show that, if f € LP* N LP? then,
(a) for all p1 <p < pq, f €LP,
(b) the mapping p — log [ |f|P is convex on [p1, ps].
(2) For each p € [1,00], find f € LP(R) such that f ¢ LI(R) fpr ¢ € [1,00], ¢ # p.
(3) Under which condition on p, ¢ does the inclusion ¢Z C ¢9 hold ?
(4) Let (92,8, 1) be a measured space and 1 < p < oo. show that f € LP(Q,pu),

40 = (o € 2 : @) > 3} < 1112,

THEOREM 3.8 (Minkowski’s Inequality).
Let (Q,B, 1) and (T, B,v) be two o-finite measured and let 1 < p < +00. Then, for every
v ® p-measurable function f,

1

s3 ([(/ If(fv,y)ldu(y))pdv(w)y < [ ([1renraw) ww.

In particular, if the right hand side is finite so is the left-hand side. Moreover, equality
holds if and only if f has separable variables, that is, f is of the form f(x,y) = a(x)B(y).

In other words

w—>/ﬂ|f(w7y)\du(y)

E / e = £ 9)l, du(y).

which extends the inequality ‘ / f(t)du(t)
Q

< / |f(t)] dpe(t) (which is the particular case
Q

of I' consisting of a single element).
PROOF. It is enough to assume that f > 0 and that f > 0 on a set of positive measure.

Note also that Fubini’s theorem implies that y — /f(x,y)” dy(z) are H : = —

/ f(z,y) du(y) measurable functions.
Q

Assume the right hand side is finite, otherwise there is nothing to prove.
Let fn, = fxg, with E, = F, N {(z,y) € T x Q : |f(z,y)] < n} and F, an increasing
sequence of finite measure subsets of I' x Q that cover I' x Q: |JF,, =T x Q. For f,, the

left hand side of (3.3),
i
is finite.

On the other hand, the monotone convergence theorem shows that this converges to

</F </Q /@y d/‘(y))p dv(m)> : .

We may thus assume that this quantity is also finite.
According to Fubini (Beppo-Levi),

/rH(x)Pdv(:z:) /F</Q f(z,y) du(y)) H(z)" do ()
/Q/Ff(%Z/)H(x)P—l dy () dpu(y).
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But, Holder (1/p+ 1/p" = 1) implies

( /F f(z,y)” dv(a:)>1/ ! ( /F ) dv(a:))l W

(/ f(a:,y)”dv(:v)>1/p (f H(x)pdwx))wp.
It follows that

/ff )P dy(x L/(/fwypdv )mdmw<lfﬂ@“h@0hﬂé

As we have assumed that / H(x)? dvy(x) # 0, 400, we can divide both sides by
r

([ dv<x>)1_l/p

from which the result follows. O

IN

/F f,y) H ()P~ dy(a)

COROLLARY 3.9 (Triangular Inequality for LP norms).

Let (2, B, 1) be a measure space with p a o-finite measure. Let 1 < p < 400 and f,g €
LP(Q,p). Then

1+ gll, < If1l, + llgll,
and equality holds if and only if g = \f with A > 0.

PrROOF. Take I' = {1,2} with the coounting measure and define F(1,y) = f(y),
F(2,y) = g(y). Minkowski’s inequality then reduces to the triangular inequality O

SKETCH OF A SECOND PROOF. There is a simpler more direct argument:
/ (@) + @) dp(z) = / @)+ g@Pf () + g(a)] dulx)
Q Q
/Q (@) + g(@) P ()] dulz)
+ / (@) + ()P g()| dpu(a).

Hoélder’s Inequality (2 + & =1 that is p’ = leads to
PP

IN

/Q (@) + @) f (@) dpu(e)

< ([ 1)+ sl 7 auta) ) (/f P du(a )

The second integral is treated the same way. It follows that

[+ g anr = ([ 156+ strane) (151, + 1ol

one concludes by dividing by ||f + g||§. Of course, one should first check the trivial case
IIf + g||£ # 0 but also prove that || f + g||§ < 400, which was done when we introduced
the norm. 0
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4. Completeness of LP spaces

The aim of this section is to prove that L? is a Banach space. Before this, let us adapt
dominated convergence to convergence in LP:

LEMMA 4.1 (LP-dominated convergence). Let (2, B, 1) be a o-finite measure space.
Let 1 < p < 4o00.
Let (fx) be a sequence in LP(Q, u) and f, F be two functions in LP(Q, u). Assume that
(i) for every k, and p-almost every x € Q, |fr(z)| < F(x)
(ii) for p-almost every x € Q, fr(x) — f(z) when k — 4o00. In particular, |f(x)| <
F(z) p-a.e.
Then fi, — f in LP(Q, p) i.e. || fi — fIl, — 0.

PROOF. We have to prove that

/ (@) — F@)P du(z) — 0.

But Condition (ii) implies that |fx(z) — f(2)|P — 0 p-a.e.
Condition (ii) implies that

|fu(@) = f@)P < (|fu(@)| + [F(2)])? < (2F (x))"

and the hypothesis F' € LP precisely means that fQ x) du(z) < +o00. We can thus apply
the dominated convergence theorem to obtain the result ([

THEOREM 4.2 (LP is complete).
Let (Q, B, 1) be a o-finite measure space. Let 1 < p < 4+o0o. Then LP(Q, i) is complete
(and thus a Banach space).

More precisely, if (fr) is a Cauchy sequence in LP (), ), then the exists a sub-sequence
(fx;); and F in LP(Q, ) such that

(i) forj > 1, |fx;(x)| < F(x) and p-almost every x € Q;
(ii) for p-almost every x € Q, fi, () — f(x) when j — +o0.

PrROOF. We will concentrate on the case 1 < p < 4o00. The case p = +oo follows
mainly from the completeness of C and is left as an exercice.

As noted in the above lemma, the second part of the theorem implies that every Cauchy
sequence in LP has a convergent sub-sequence. But, as we have already noticed in the first
chapter, a Cauchy sequence with a convergent sub-sequence is convergent (Lemma 4.4).

The proof of the second part of the theorem is rather classical.

First, there exists 41 such that, if n > i1, ||fi, — fall, < 1/2 (¢ = 1/2 in the definition
of a Cauchy sequence). There exists i > i1 such that, if n > ia, || fi, — full, < 1/22... This
way, we inductively define i > ix_; such that, if n > i, ||fi, — anp < 1/2k.

Consider the non-decreasing positive sequence defined by

Fi(z) = |fi, (x |+Z\fu+1 — fi (@)

The triangular inequality yields

! +oo
||F‘al < Hfh”p + Z Hfik+1 - fika < ||fi1||p + 22_k =1+ ||fi1Hp < +00.
k=1

k=1
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The monotone convergence theorem implies that F; converges almost everywhere to a
function F' € LP. In particular, F(x) is finite for p-almost every = € Q. For such an z, the
series

le +Z f1k+1 fzk( ))

is absolutely convergent, thus convergent. But this is a telescopic sequence:

l
fll +Z f1k+1 flk( )) = fil+1(x)'
k=1

We have thus shown that f;_ , is convergent and, with the triangular inequality, |f;,, | <
F; < F which completes the proof. O

5. Separability of LP spaces

5.1. About the Lebesgue integral. Recall that a Banach space X is said to be
separable if there exists a countable subset D C X that is dense in X i.e. such that, if
x € X for every € > 0, there exists y € D such that ||z — y|| < e.

Let (22, B, ) be a o-finite measure space. We assume that this space has a further
property: there exists a countable family B C B such that, given A € B, for every ¢ > 0,
there exists B € B such that u(AAB) < . Here AAB is the symetric difference AAB =
(A\ B)U(B\ A).

Of course, this property is satified when €2 is countable. It is a bit more complicated
when € is an open subset of R%. Actually, as a Borel set is optained from a countable
number of operations (countable unions and intersections, complementary) from cubes
(the o-algebra generated by cubes is the Borel o-algebra), it is enough to find a countable
family such that the above property holds whenever A is a cube. As cubes are finite
products of intervals, it is enough to do so for intervals. But then, it is easy to see that

B= { U F:Fc{k/2,(k+1)/2], ke Z,jeN}, Fﬁnite}

FreF

has the desired property. In other words: the Borel sets are generated by “dyadic intervals”.
Next, recall that a simple function on € is a function of the form

(5.4) s(x) = Z arla,

keK
with K finite and 0 < p(Ag) < oo. We can (and will) further assume that the Ay’s are
disjoint. We can then definie the Lebesgue integral of a non negative function f as

/ f(z)dp(x) = sup { Z ari(Ag) s given by (5.4) satisfies s < f}

keK

Note that this quantity can be +00. Note also that one can simply request ax to be rational
and the A;’s to be in B so that a countable family Dy of simple non-negative functions
suffices.

When f is real valued, we then say that f is Lebesgue integrable if [, [f(z)|dpu(z) <
+oo. It follows that both its positive part fy = max(f,0) and negative part f_ =
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max(—f,0) are non-negative and have finite integral (since s < fo <|f]). As f = f+ — f—
one of course defines

[ @ aue) = [ pe@an) - [ @ aua

which makes sense since both quantities are finite (only one needs to be). For complex
valued functions, one again requires [, | f(x)|du(xz) < 4+0co. Then the real and imaginary
parts of f are integrale and

[ @) duta) = [ R dute) +i [ T (7)(e) o)

From the above discution, the countable set

D ={f1 — fo +i(fs — fa), f1, f2, f3, fa € Do with disjoint support}

has the following property: Given an integrable complex-valued function f, for every ¢ > 0,
there exists fo = f1 — f2+i(f2 — f2) € D such that

/ I~ fldu) <
Q

In other words, D is countable dense in L!(Q, 11).

5.2. Sepatability of LP(Q,u) for 1 < p < co. Take 1 < p < o0, fix f € LP(Q, p),
and € > 0. First write f = f1 — fo +i(fs — f1) with f; > 0 and note that f; < |f| so that

each f; € LP(Q, u). Further, if we show that, for given € > 0 there exists fg(i) € Sy such

that ‘ ) < ¢ then the triangular inequality shows that, setting f. = 5(1) — fs(Q) +
P

z(fg(d) - f5(4))7 we have [|f — fc||, < 4e. We can thus assume that f > 0.

Next, set f, = 1y<,f and note that f, — f pointwise and 0 < f,, < f thus f, — f
in LP(Q, iv). Note also that f,, < n so that f, is bounded.” Thus there exists and N such
that || f — fwll, < e. Up to replacing f by fx we can thus assume that f is bounded by
some N.

Now let (£2,,) be an increasing sequence of subsets of Q of finite measure such that
U, = Q. Setting f,, = 1o, fv we get f, — f in LP(Q, u). We can thus assume that f is
supported in a set of finite measure € and write v = ().

Finally, [0, N] C UjM:O I; with I; = [(j/v)"/?e, ((j + 1)/u)1/”g[. Note that the length
of each interval is

(G + 1) /0) P = (G /)P < (14 )7 = §MP)e /P < efulr

since 1 < p < 400 thus 0 < 1/p < 1. Also, let a; € I; N Q. Write B; = f~(I;) and note
that the B;’s are a disjoint cover of €. Further, for z € B;

—e/vt/P < (j/u)l/pe—aj < fl@)—a; < ((G+ 1)/V)1/p5—aj <e/vt.

In other words, for z € B;, |f(z) — a;|P < e/vt/P. As the Bj’s cover the support of f, if
we take an x such that f(x) # 0, then there is a j such that € B; and then

[f(2) = a;]” = |f(2)1B;(z) — a;1p,(2)[" < e”/vip,(z).

*In otherwords, L% (£2, u) N LP (), u) is dense in LP (£, p).
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Next, note that when v and v have disjoint support, then |u + v|? = |ulP + |v|P. As the
Bj’s are disjoint, we get that for z in the support of f

N N N
1D F@)is, () = Y a1, (@) > _1f@)1p,(x) — ajlp, (@) < e/v
J=1 J=1 j=1

N
< Zep/ulgj(x)

= &P /vlg(z).

Finally note that both sides of this inequality are 0 when x is not in the support of f so
that it is valid as well for those x’s. Set f = Zjvzl a;1p, then, integrating over €2, gives

[ 1#@) = F@P dut@) < = [ 14() duta) ==
Q Q

by definition of v. )
Thus, after losing again an e, we may replace f by f, that is assume that f is a
(bounded) simple function with rational coeflicients with support of finite measure

M
f=2 ails,
j=1

The last step now amounts to approximate each of the sets B; by a set A; € B with
w(Bj\ Aj) < (¢/NM)? and set

M
fe= Z a;la,
j=1

so that f — f. = Zj\il ajl4,\p,- Recall that 0 < a; < N thus

M
1 = Fell, < D agltaps, [, < NMmaxpu(B; \ 417 <e.

j=1
We have thus shown the following;:

THEOREM 5.1. Let 1 < p < 400 and (Q,B,u1) be a o-finite measure space with a
countable o-algebra basis. Then LP($, p) is separable.
Moreover, simple functions (with rational coefficients) are dense in LP(Q, ).

REMARK 5.2. Note that L is not separable in infinite dimensions, which is equivalent
to the existance of a sequence (€2;);>1 of disjoints sets in €2 of positive measure.

1 if th ists j € J such that Q;
For J C Nwedefine f;(x) =) .., 1g,(z) = ' er?eXIbb]E such that w € 25
J ’ 0 otherwise

Then if J # K, there exists j € K\ J or j € J\ K. Up to exchanging J and K, we can
assume we are in the later case. Then for € Q;, f;(z) = 1 while fx(z) = 0. Thus
lf7 — frllo = 1. Note also that P(N), the set of subsets of N is not countable.

Now consider the non-countable set of disjoint open balls {B(fs,1/2), J C N}. If
a set S is dense in L*°(£2), it contains at least one element of each of these balls and is
therefore non countable.
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5.3. Continuity of translations in LP(R?). For a € R?, we define the translation
operator 7, acting on f € LP(R%) by 7,f(z) = f(x — a). Of course, for every 1 < p < 400
this is a bounded linear LP(R?) — LP(R?) with e fll, = Il

What we are interested in here is the continuity with respect to the translation param-
eter a:

PROPOSITION 5.3. Let 1 < p < oo and f € LP(RY) then the mapping a — T.f is
continuous R — LP(RY). In other words
given f € LP(RY), and ag € R?, |7, f — Tao fIl, = 0 When a — ao.

PROOF. First ||7of — 7o, fll, = [ITa—ao f — fll, so that it is enough to consider ag = 0.
Step 1. The property is true when f =14 for A a Borel set of finite measure.
When d =1 and f = 1[4 8], Taf = ljata,s+a], and then,

1 al — Lia.atla ifa>0
Tof — f = (8,8+a] [a,at] . )
“Ligta,8 + Lataa ifa<0
Therefore [|7.f — fl|, = (2a)'/? — 0 when a — 0.
Now if @ € R? a cube Q = H?:l[ajvbj] and f = 1g the result follows directly.
Further, if U = U;\le Q; with the @;’s disjoint cubes and f = 1y then f = Zj\;l 1q, thus
Iraf = £ll, < 35551 I7ale; — g, ||, — 0 when a — 0.

If U is a bounded open set then, for every € > 0 there exists a family of disjoint cubes
Q; C U such that' |U\ U;V=1 Q;| <e. Then, for f =1y and f. = Z;\f:l 1q,, we have

N
I7af = 7atell, = lf- = £Il, = 10U\ [ Q"7

j=1
It follows that
[7af — f||p < lraf - Tafer + 7o fe — fe”p +1fe - f”p < 3¢'/P

provided a is small enough. The result is thus valid for such an f.

Finally, Let E be a set of finite Lebesgue measure and € > 0. There exists an open
set U such that |[EAU| < e. Set f = 1g and f. = 1y, then |f — f:| = 1gav, thus
If = fell, = |[EAU|*? < &'/P and one concludes as previsouly.

Step 2. Conclusion.

The first consequence is that, by linearity, if f is a simple function, f = Zjvzl ¢ilg;,
then

N
Iraf = fll, <D lesl|[rale, — 1], =0
j=1

when a — 0.
Finally, if f € L? and € > 0, there exists a simple function f. such that || f — fer <e.
One then concludes as previously. O

REMARK 5.4. The result is false in L*°: take f = 1jo 1) and a # 0 then |7, f — f[|, = 1.
However, if f € Co(R?) then ||7,f — T4y f]lo. — 0 when a — ao.
Indeed, as previsouly, it is enough to consider ag = 0.

TWe here adopt the notation |F| for the Lebesgue measure of E
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Now, let a € R? with |a| < 1 and € > 0. Fix R such that, for |z| > R—1, |f(z)| < ¢/2.
But then, if |z| > 1, |z —a] > R—1 thus |f(z) — f(z —a)| <|f(@)|+ |f(z —a)| <e.

On B(0, R), f is uniformly continuous, thus there exists 0 < n < 1 such that, if |a| < ¢,
for every z € B(0, R), |f(x) — f(z —a)| < e. It follows that sup,cga |f(2) — f(z —a)| <e.

6. The projection Theorem

Projections play an essential role in Hilbert spaces. It turns out that a version of the
projection theorem is still valid in LP:

THEOREM 6.1. Let 1 < p < 400 and let E be a closed vector space in LP(S), u).
For f € LP(S), ), let us write d(f, E) = infgep ||f — gl|,- Then there exists go such that

d(f, E) = [l = goll,-
REMARK 6.2. Not that, if ||g|, > 2[/f]|, then
If = gll, = llgll, = I1£1l, > [1£1l, = IlF = Oll, = d(f, E)

since 0 € E. Therefore d(f, E) = inf{|f —gll, : g € E,gll, < 2[|f],}-

If E is finite dimensional, the {g € E\|g||, < 2[/f|l,} being bounded and closed, is
compact. As g — ||f — ¢ p 1s continuous, the existence of gg follows.

In infinite dimensions, this argument is no longer valid.

PROOF WHEN p > 2. When p = 2 this follows from the parallelogram identity
2 2 2 2
lu = olly + llu+vll; = 2[ullz + 2[v]3.
Take g, € E a sequence such that || f — gn||, — d(f, E). Then the parallelogram identity

applied to u = ffzg’” v=1Z9 S gives
2
)
As &tim ¢ | || 9atdm —f”2 > d(f,E) thus
g = gmll3 < 2(1f = gmlis = d(f, E)* + | f = gull3 — d(}, E)?)

from which one gets that (g,,) is a Cauchy sequence. Thus (g,) is convergent and as F is
closed, the limit gy € E. By continuity of the norm ||f — g, ||, = || — goll, which is then
the go we were looking for.

When p > 2, the parallelogram identity is no longer valid. However, it is valid point-
wise: if f,g € LP(Q,u) and x € Q then

[f(2) = 9(@)* + | f(2) + g(2)]* = 2| f()]* + 2|g()|*
Asp>2,r=p/2>1. But, fora,b >0
(6.5) a"+ b < (a+b)" <27 a" +b).
From this, we get

[f (@) = g(@)" + | f(z) + g(=)[”

gn + gm
In I _

2 1 2, 1 2
”gn _gm”z =4 <2||f_9m|2+ §Hf_9n||2 - 9

(1f(x) = g@)[*)" + (| f(z) + g(a)[*)"

(1f(x) = g(@)? + |f(z) + g(z)2)"

2°(|f (@) + lg(@)]?)" <22 (| (@) + [g()]*")
= 27| f(@)]” + |g(x)[P).

IN
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Integrating with respect to u, we get
Lf = glly +1f +glly < 2071115+ llglp).-

The remaining of the proof is exactly the same: take a sequence g, € FE such that
lgn — fll, = d(f, E) and apply the inequality with f replaced by f — g, and g by f — gim.
We obtain

||gn - gm”i < 2p_1(”f - 9n||£ + Hf - gm”i) - ||2f —9n — gm”i
< 27| f = gallB +IIf — gmlh — 2d(F, E)).
We then deduce that g, is a Cauchy sequence, thus converges. As F is closed, the limit is

in F and is the desired value. O

PROOF OF (6.5). Let us rewrite the inequality a” + " < (a 4+ b)" in the form 1 +
(b/a)" < (1 +b/a)" that is, setting t = b/a, 1 +¢" < (1 +1¢)" for all ¢ > 0. For ¢ > 0 let
ft) =0+t —(1+¢"). Clearly f(0) =0and f'(t) =7((1+t)"" 1 —¢t""1) > 0 since r > 1
thus s"~! is increasing.

The other inequality uses convexity of ¢ — t":

b r r br
(a+b)r:2r<a+ ) §2ra—2|—

which is the expected inequality. O

The proof for p < 2 is more involved and requires the use of Hammer’s inequality

Lf+all, + 1 =gl P+ 1f +all, = 1 = gll,[” < 2 (A1 + llglly)-

As we won’t use the projection theorem in that case, we will not develop the proof here.

7. Duality

Thanks to Hélder’s inequality, it is easy to construct continous linear functionals on
LP(Q, ). Indeed,

LEMMA 7.1. Let 1 < p < 400 and let p’ be such that % + 1% =1. Let g € LPI(Q,,u)
and define

By(f) = / f(@)g(x) du(x).

Then ®4 is a continous linear functional on LP(S, ). Moreover

[ p— / F(@)g(x) du(z) = gl

I£1,<1

Proor. Holder’s inequality directly shows continuity with [[®,] < [lg[l,, while the
equality follows from the equality case in Holder’s inequality. O

The key result of this section is the following converse of this lemma:

THEOREM 7.2. Let 1 < p < 400 and let p' be such that % + i =1. Let ® € (LP) i.e.
a bounded linear functional on LP(Q, p). Then there exists a unique g € LP (Q, p) such
that ® = ®,, that is

o(f) = [ flx)g(x) du(x).

Q
for every f € LP(Q, ).
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REMARK 7.3. It is important to notice that the result is false for p = +0c0. The dual
of L>°(Q, 1) is much more difficult to describe and is out of scope of this course.

PROOF OF UNIQUENESS. The uniqueness is easy to prove: assume that gi,g2 € L
are such that ®, = ®,, then, if g = g1 — go, for every f € LP, &,(f) = 0.

_ Jlg@)IP 2g(x) it g(x) #0
0 if g(x) =0

(lglP'~1)P = |g|*" since p = p,p—il when % + i = 1. Thus f € LP. Next,

0=, (f) = [ f(@)g(x) du(z) = /Q 9()P 5@ ) du(z) = gl

thus g = 0 as claimed.
If p =1, a slight modification is needed. Write Q = J,,5; 2, with u(,) < +oc and

g(x) = e?@|g(x)|. Then f, = e *¥Q, € L' and

0= By(f) = / ful@)g(a) dpu(r) = / l9(2)] du(z).

n

If p > 1, then p’ < +o0, take f(x) First [f|? =

It follows that g = 0 p-almost everywhere on €, i.e. there is an E,, C €2, such that g =0
on Q, \ Ey. Thus g =0o0n U,>; 2 \U,>1 En = Q\U, >, En- As U, >, En is a countable
union of sets of mesure 0, it has measure 0 thus g = 0 p-almost everywhere. O

Recall that L2(€2, ) is a Hilbert space so that the theorem follows from the more
general theorem by Riesz. It turns out that the case 1 < p < 2 can be deduced from it.

PROOF IN THE CASE 1 < p < 2. First let p’ be the dual index, % + i = 1 and note
that p’ > 2. Let r be given by £ + 1 =1 ie. s = 2 and r = ps. Note that r, s have

2—p
been chosen so that Holder’s inequality implies

(7.6)
[ r@rlsorane < ( [ |f<x>|2du<x>)p/2 (f |g<x>p8du<x>)l/s=||f||;’||g||f.

Write 2 = {J,,55 Qs with £1(€2,) < +00 and the Q,, being disjoint. Let us define w through

w(z) = Y aula,

n>1
where the a,, > 0 are chosen so that

(i) for every n, a;, > 0 and ap11 < ap,

(it) [Jwll; = 2 ons1 () < +o0.
It follows from (7.6) that, for every f € L%(Q, ), fw € LP(Q, u) with [ fwll, < llwll, [l £l
In other words, the operator T}, : L? — LP defined by T, f = wf is bounded.

Now, let ® € (LP)’, that is let ® be a bounded linear functional on LP(£2, ). It follows

that ®T,, is a bounded linear functional on L?(€, u). According to Riesz’s theorem, there
exists G € L?(Q, u) such that T, = ®g: for every f € L2(Q, ),

BT, f = B(fw) = | f@)6(a)duta).

Now consider the set S = {¢ € LP(Q,u) : p/w € L*(Q,u)}. Note that S is dense
in LP(Q, ). Indeed, if f € LP(Q, ) and € > 0, there exists N such that, writing & =
Un<n @ fv = flayljp<n, then [|[f — fn[l, < e (note that fy — f a.e. and that
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|fn] < fsothat fy — fin LP). Further, for € @y, there is an n < N such that z € Q,,.
Then w(x) = a,, > ay since the «;, have been chosen as a decreasing sequence. It follows

that
Fn(@)] _ {o if 2 ¢ By

w(z) % if €y

Thus fy/w is bounded with support of finite measure and is thus in L2(Q, ) i.e. fx € S.
Now, for ¢ € S, we can write p = fw with f = p/w € L%. Therefore

B(e) = 2(fu) = [ f2)6() duto) = [ o) 2 () = 2, ()

w(z)

with ¢ := G/w. If we are able to prove that g € L (Q,pu), then ®, is a continuous
linear functional on L? as well. Therefore ® = &, is an equality between two continuous
functionals on LP on the dense set S of LP. This equality is then true on all of LP, which
is what we wanted to prove.

It remains to prove that g € Lp,(Q, 1). We need to distinguish two cases.

First consider the case 1 < p < 2. Consider ¢y = §\g|p_21‘g‘Squ>N and observe that
lon| = |g|p_11‘g‘§N1¢N. In particular ¢y is bounded and has support of finite measure
thus ,, € LP(Q, 1) and on its support w > ay so that |on/w| < |pn|/an € L2(2, u). In
other words, pn € S. But then

Bon) = ylon) = | on (o) 4n(w) = [ 9@ Uypen (@)L, (@) dua)

On the other hand, ® is continuous on LP(£2, ) thus, for all ¢, |(¢)] < [|2|||l¢llp, in
particular

IN

1/p
®llllenll, = [l </Q gD ()15 <n (@) Loy (@) dﬂ(fﬂ))

(| @] (/ lgl”'( r)1g<n(w )1¢N(x)du(x))l/p.

Combining both identities shows that, for every N,

(/ 917 (2)1 gz v (2) 10 (2) du($)>1/p/ <C

Letting IV go to infinity and applying Beppo-Levi’s Lemma, we get [|g[,, < C so that
g€ LP (Q, 1) as expected.

When p = 1 the argument needs to be modified. We write g = €?|g| and consider
YN = 6_i91|g|>”q)”+1/N1¢>N. As pl"eViOllSly7 PN € S. But then

[@(en)]

(o) = By(ion) = /Q on(@)g(x) du(z / 19(0)| Lig1> o515 Lo i)

> (@]l +1/N){lgl > [|@]| + 1/N} N @yl
On the other hand

[@(en)] < [[]l[len ]l

H‘I’||/Ql|g|>u<1>n+1/zv1<1>N dp(x)
2l {lg| > @] +1/N} N Pn].

Combining both, we get that |{|g] > ||®|| + 1/N} N ®x| = 0. Finally, As {|g| > ||®|} =
Unsitlgl > @] + 1/N} N @y we get that [g] < [|®]| almost everywhere. O
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PROOF USING THE PROJECTION THEOREM WHEN 1 < p < co. Let ® be a continuous
linear functional on L?(€), 11). We are looking for g € LP (2, u) such that & = ®,. We can
assume that @ is not identically zero (otherwise take g = 0) so that there is an f € LP(, p)
with L(f) # 0. Up to replacing f by f/L(f) we can assume that L(f) = 1.

Let E = ker® = ®71(0) and note that E is a closed linear subspace of LP({2, p).
Therefore, there exists go € E such that [|f — gol|, = d(f, E). Note that L(f — go) =
L(f) ~ L(go) = 10 = 0 and that |f ~ goll, = | - g0) ~ 0], = d(f. E). Up to replacing
f by f—go we can assume that 0 is a projection of f on E: L(f) =1 and ||f||p =d(f, E),
that is, for all g € E, || f[|, < [|f —gll,,-

Now fix w € F and consider the function ¢ defined on (—1,1) x Q by @(t,z) =
|f(x) — tg(x)|P and let @ be defined on R by

B(t) = / p(t,z) da = | f — g,

First, observe that
~astg€ E, ®(t) = |f —tg|]|? > ||f||5 = ®(0). Thus ® has a minimum at 0.
— ¢ is continuous in t. Moreover,

o(t,2) = (If (@) — tg(@) )" = (1 (@) + Plg(2) | + 2R [@)g ()"
thus

& = B(j(w) — g (2tlg(a)? + 2R (g ()
= Dl () — o) (tg(@)]? + RF(@g(x)
— for |t| <1 and z € Q,

olta) = |f@) - to(a)p = 2 L2
2@ + o))

Lebesgue’s theorem on continuity of integrals then shows that ® is continuous.
— for |t| <1 and z € Q,

2

<or <f(fv)|+|g(fv)|)p

IN

‘aaf < p(If(@)] + lg(@))P 2 (2lg(2) [ + |f(2)]?)

P22 (|f ()P + lg()[P%) (2lg(2) | + | £(2)[?)

P22 (| f (@) + |g(@) [P + | f(@)P~2[g(2)* + |g() [P~ | f(2)]?).

As f,g € LP, |f(x)|P 4+ |g(x)|P is integrable. Further if ¢ = p/2 and ¢’ is given by %—f— i =1
then ¢' = -1 = P and Holders inequality with these exponents gives

/|f )P~]g() [ du(x) (/ f(@)P dpa(e )(p %(/ lg(2) P du(a ) "

thus |f(z)[P~2|g(x)|? is also intergable. The same is true for g(x)|P=2|f(z)|?.
We can thus apply Lebegue’s derivation theorem and see that ® is differentiable on
(—=1,1) and

IN A

¥(0) = [ F(t.0)du(o)
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In particular,

/|f PR (@g(e) du).
As ® has a minimum at 0, we get ®'(0) = 0 that is, for every g € L?, with L(g) = 0,
%/u )P F@g ) du(x) = 0.
Note that, if g € LP, with L(g) = 0 then ig € LP and L(ig) = 0 so that

%z/u P2 (@g(x) du(z) = 0.

Finally, define f by f(z) = |f(z)[P~2f(z) and note that |f[?" = |f|®»=V?" = |f|” so that
f e L¥ with HfH = [Ifll,- We have proved that for every g € LP(S, u) with L(g) =0,
p/

/ f(x)g(x) du(z) = 0.
Q

In otherwords, if L(g) = 0 then ®(g) = 0.
Now let h € LP and consider g = h— L(h)f € LP. Note that L(g) = L(h)—L(h)L(f) =
0 since L(f) = 1 and that Phiz(f) = [|f|| — p?. Therefore ®(g) = 0. But

0=25(g) = @j(h— L(h)f) = D5(h) — L) P (f) = D5(h) — LW f;.
As L(f) =1, f # 0 thus || f||> # 0 and we conclude that

1
L(h) = W‘I’f(h) =@/ (h)

which is the expected result. ([



CHAPTER 3

Convolution - regularization

Multi-index notation

Before starting this section, we will introduce the multi-index notation:

A multi-index is a vector with integer coordinates: o = (ay,...,aq) € N4 If g =
(B1,...,B4) € N¢, we will say that B < a if 3; < a; for all j € {1,...,d}.

The length of a multi-index « is the sum of its coordinates: || = a; + - + aq4.

We will write a! = aq!--- ay!, and the binomial coefficient for § < a
() = - (1) (3)
s Bl a—B)! b1 Ba)
For x = (z1,...,2q) € RY, we write 2% = 2" -~ 25¢. For a function f : R? — C we write
ot 0%
aozf = Ja1 T qa f
Ozt 0zl

With this notation, some classical one-variable formula are written in the same way
for multi-variate functions:
— Leibnitz formula
*(fg) = (g) 9°f0° ="
BLa
— Taylor formula

flzo+h) = Z % f(x0)— + o(RN).

la|<n
1. Definition and basic examples

DEFINITION 1.1. Let f, g be two functions on R%, we define the convolution of f and
g as being the function on R? given by

(1.7) frglz / fW)g(z —y)dy

Note that in the definition, we have said nothing about the existence of f x g. The
aim of this chapter is precisely to give a meaning to f * g. However, there are a few basic
examples for which this is easy:

EXAMPLE 1.2. Let f =14, 9 = ¢ q-

First, the change of variable t = x — y shows that f* g = g * f. On may thus assume
that b — a > d — ¢, that is, the lenght of [a,b] is bigger than the length of [e, d].

It is obvious that, for = fixed, f(y)g(z —y) = 1, (y) where I, is an intersection of
two intervals and is thus an interval. It follows that f * g(x) = |I.| the length of this
interval. Next g(z —y) =1 is and only if ¢ <z —y < d that is y € [x — d,x — ¢] so that
I, = [a,b] N[z — d,x — ¢|]. The length of this interval is clearly a piecewise affine function

31
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since [a,b] is fixed and we “slide” a second interval [—d, —c| at constant speed, i.e. the
second interval is [—d, —c|] + x.

It is enough to find the nodes and determine the length at those nodes.

There are 5 cases:

— the interval [—d, —c] + x is entirely on the left of [a,b] (up to the end point), that is
—c+x <aie x<a+c Inthiscase fxg(z) =|I;] =0.

— the interval [—d, —c|] 4+ = overlaps [a,b] on the left side: —d+x < a < —c+ z i.e.
a+c<xz<a+d. In this case I, = [a,—c+ z] and [ *g(z) = |I;| =z — (a + ¢).

— the interval [—d, —c|] 4+ x is entirely inside [a,b]: a < —d+ 2z < —c+ 2 < b ie.
a+d<xz<b+c Inthiscase I, =[—d,—c]+zand fxg(x)=|I,|]=d—c

— the interval [—d, —c| + x overlaps [a, b] on the right side: —d+ 2 <b < —c+z i.e.
b+c<ax<b+d. Inthiscase I, = [-d+z,b] and f*g(z) = |I;| =b+d — .

— the interval [—d, —c] + « is entirely on the left of [a,b] (up to the end point), that is
b< —d+z ie x>b+dand in this case again f * g(x) = 0.

We strongly advise the reader to draw the 5 cases and the graph of f xg. Once this is
done, one can note for future use that f x g is continuous and compactly supported with
support [a,b] + [c,d] = {z +y,x € [a,b],y € [e,d]} = [a+ ¢, b+ d].

ExaMPLE 1.3. Assume that f,g are tensors: f(x1,...,2q4) = fi(x1)--- fa(xq) and
g(x1,...,zq) = g1(z1) - - - ga(xq). Then if f; * g; are defined by (1.7), so if f * g and

frglxy,...,zq) = fixgi1(z1) - fa* ga(zq).

An example of this are characteristic functions of cubes QQ = H;l:1 I; with I; intervals,
then 1g(x1,...,2q4) = 11, (21) - - 11,(z4). This allows to compute 1g *1g when Q, Q' are
cubes and shows that this function is continuous.

LEMMA 1.4. Let f,g € C.(R?), the space of compactly supported continuous functions.
Then f*g € Co(RY) and fxg=g* f.

Morevoer, if g € CMR?), then f* g € C*(RY) and for all « € N, with |a| < n,
9(f xg) = f*(0%g) = (0%g) = f.

Note that %(f * g) = (0%g) * f implies that, if g € C?(R?) then f * g is of class C"t™
and 98 (f 1 g) = (9° f) + (9%) as long as |a| < m, |3] < n.

ProOOF. We will only prove the result in one variable, the proof for several variables
is similar.
Consider F(x,t) = f(t)g(x —t). Then
(1) F is continuous in t so that f * g(z) = [; F(x,t)dt is well defined. Further, the
change of varible s = x — ¢t shows that fxg=g=* f.
(2) Write I (resp. J) for an interval containing the support of f (resp. of g). As
f,g are continuous with compact support, they are bounded, so we can take
C > | fllos 9]l - But then |F(z,t)] < C?17(t)1,(x — t). It follows that

|f * g(z)] < C? /R 1;()1y(z —t)dt = C*1; % 14(x).

The later one having compact support, f * g has compact support. Further its
support is included in I + J ={z+y,x € I,y € J}.

(3) Fix a bounded interval K C R and note that if x € K and g(x —t) # 0 then
tee—JCK—-J={k—jke K,je J} (abounded interval). It follows
that |F(x,t)| < C?1;(t)1x_s(t) € LY(R). As 2 — F(z,t) is continuous for all



3. CONVOLUTION OF L! WITH ITSELF 33

t, Lebesgue’s continuity theorem shows that f x g is continuous on K and K is
arbitrary

The last part follows the same path noting that 09 F(x,t) = f(t)0%g(x — t) and then

the same reasoning shows that this is bounded by an L' function independent of z € K.

It remains to apply Lebsgue’s derivation theorem. O

2. Convolution between L? and its dual space

1 1
THEOREM 2.1. Let 1 < p < +o0 and p’ be such that — + — = 1. Let f € LP(RY) and
p P
g € LY (RY) then

(2.8) fog(a) = / Ttz 1) di

is well defined for every x € R%. The mapping (f,9) = [ =g is bilinear and continuous
LP x LV — L% with || f = gl < [ fll,ll9ll, -

Moreover, if 1 < p < +oo f*g € Co(R?) so that (f,g) — f * g is a bounded bilinear
mapping LP X L — Cp.

Recall that Co(R?) is the space of continuous functions on R? that go to 0 at infinity.

PROOF. First, if g € L?' then g, : t — g(x —t) is also in L?'. Holder’s inequality then
shows that fg, € L' thus f * g is well defined through (2.8). Further, Holder shows that
1f* gl < 1Fl,llgll, - As (f;9) = f =g is clearly bilinear, it follows that (f,g) — f*g is

a bounded bilinear mapping LP X L' — L%,

The key observation is that Cp is a closed subspace of L. Indeed, if (fx) is a sequence
of elements of Cy that converges to some f in the L°°-norm, that is uniformly then

— the limit f is continuous (uniform limits of continuous functions are continuous)

— for € > 0 there exists n such that || f — f,||, < e. But then, there exists K such
that, if ||z|| > K, | f,(2)| < . Finally, for those z’s, | f(z)| < |fa(z)| +||f — fallo < 26, s0
f(z) = 0 when ||z|]| = +o0.

In conclusion f € Cy and Cy is closed in L.

Now, Example 1.3 shows that, if f,g are characteristic functions of cubes, f * g is
continuous compactly supported. By bilinearity, if f, g are step functions, that is, finite
linear combinations of characteristic functions of cubes, then f * g € C.(R%) C Co(R?).

Finally, let f € LP(R%) and g € L? (R%). As p # 400, there exists a sequence fi of
step functions such that fi — f in LP(R?). As p # 1, p’ # +o0, so there exists a sequence
gr of step functions such that g, — f in LP(R?).

But then

I(f = fr) * 9+ fr(g = g6)llo SN = Fo) * 9lloe + 1 f2(9 — gl
If = fell gl + 1 fll,llg = gkl — 0

since || f — fill,: lg — gxll,, — 0 and || fi[[, is bounded since fj, is convergent. O

\f*g— fr*grllo

IN

3. Convolution of L' with itself

We want to make sense of

(3.9) frglx)= /Rd fy)g(x —y)dy.



34 3. CONVOLUTION - REGULARIZATION

This is possible as a Lebesgue integral when / |f(y)g(z — y)| dy is finite. But note that,
Rd

integrating this quantity in the x variable, we obtain, with Fubini

/R/R [f(y)g(z —y)|dy dz /Rd/Rd|f(y)g(a:—y)\dxdy

L1l ([ lata=lac) ay

11 ([ la01ae) dy =171 e ol e

It follows that, if f,g € L*(R?) then

/Rd (/Rd|f(y)9($y)|dy) dz < 400

but then, for almost every z, / If(y)g(x — y)|dy is finite. It follows that (3.9) is well
R4

defined for almost every z. Moreover, the resulting function is in L' (R%). Let us summarize
this:

PROPOSITION 3.1. Let f,g € L*(R?) then
frgl@)= | flyglz—y)dy
R

is well defined for almost every x € RY. Moreover, the mapping (f,g) — f* g is a bounded
bilinear mapping L*(R?) x L}(R?) — L'(R?) and

1+ glly < WA= lgllly = 1£1 gl -

4. Extension principle

In this course, we will use the following general principle:

— X and Y are Banach spaces and D is a dense (vectorial) subspace of X;

— T is a linear mapping D — Y;

— T is bounded on D, that is, there exists C' > 0 such that, for all z € D, |Tz|, <
Cllax- )

Then T extends into a bounded linear mapping 7" : X — Y with same norm: for all
x €D, Tz =Tz and for all z € X, HT:UH < Cllz|l k-

Y

Of course, we then write 7 = T.

PROOF. Let us first extend T and then show it is linear bounded:

Let x € X. From the density of D in X, there exists a sequence (z,), C D that
converges to z in X. In particular, it is a Cauchy sequence. Let us show that (Tx,), is
also a Cauchy sequence. Indeed, let € > 0, there exists N > 0 such that, if p,q > N, then
|y — 24|l ¢ <e. But then, as x),z, € D and T is linear on D,

”Twp - quHy = HT(xp - xq)”y < Cpr - xq”x <Ce

since T' is bounded on D. Now, as (Tx, ), is Cauchy in Y, a Banach space, (T'z,,), has a
limit that we denote by a.
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We would of course like to call a = Tz. To do so, we need to show that, if (y,), is an
other sequence of elements of D that converges to x in X, then Ty, also converges to a.
But, as x,,,y, € D and T is linear on D,

Tz, — Tyn”Y = HT(xn - yn)HY <Cllzn - yn”X - OHx - 'rH =0

since the norm is a continuous mapping. We thus write a = Tax.
Further, if € D the sequence z,, = = converges to x so that Tz = Tz, — Tz and T
is an extension of T' from D to X. We will thus denote T'=T.

Let us now show that T is linear: let z,y € X and A\, u € K. By density, there exist
sequences (), (yn) in D that converge respectively to x and y. But then Az, + uy, —
Ax + py so T(Axy, + pyn) — T(Ax + py). On the other hand, as T is linear on D,
T(A\xp, + pyn) = Tz + pTyn — XTx + uTy, so

T(Ax + py) = ATz + uTy.

Finally, if € X and (z,), C D converges to x, then Tz, = Tz in Y and || Tz,|, <

Cllzn || x- As norms are continuous, ||Tz|ly- < C||lz|y. So T is a bounded linear mapping
O

Let us illustrate this:

THEOREM 4.1. Let f € L*(R?) and 1 < p < +oo. Then the mapping Ty : g — f*g
extends from C.(R?) — L* to a mapping LP(RY) — LP(RY).
Moreover, this mapping commutes with the translations T,.

Recall that 7,9(z) = g(z — a).

PRrROOF. Note that we have already seen that f * g is well defined when f € L' and
g € L. What we have to prove is that there is a C' > 0 such that, for all g € C.(R?),

IIf *g”LP(Rd) < CHQHLP(]Rd)'
But this follows from Minkowski’s inequality :

‘ fg(-—1)dt S/ FOlllgC =D, dt =171, ll4ll,-
R4 R4

Finally, when p # 400, g € C.(R?)

T

Tyrag(z) = f * (rag)(z) = /R Tt —t—a)ar

=/, f)g((x—a) —t)dt = fx gz —a) = 1. Trg(z).

Thus Ty7, = 7,1 holds on the dense subspace C.(R?%) of LP(R?) and T}, 7, are continuous
linear mappings on LP so the conclusion follows.
When p = 400, we can directly take g € L in the above computation. O

The extension principle works exactly the same way for bilinear mappings:

In this course, we will use the following general principle :

— X4, X5 and Y are Banach spaces and D; (resp. Ds) is a dense (vectorial) subspace
of X1 (resp. Xa);

— T is a bilinear mapping D1 X Dy — Y

— T is bounded on D; X D5, that is, there exists C' > 0 such that, for all x € D,
IT(@1,22)lly < Cllerlly, llezllx, -
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Then T extends into a bounded bilinear mapping T : X1 x Xo — Y with same
norm: for all (z1,22) € D1 X Dy, T(x1,22) = T(x1,22) and for all (z1,22) € X7 X X,

|T@r,a2)|| < Cllanlly, 22l

Of course, we then write T =T.

5. Young’s inequality

We would now like to extend the convolution to a bilinear mapping from C.(R?) x
C.(R?) — C.(R?) to LP(RY) x L4(R?) — L"(R). For this to be possible, one needs to have
a constant C' > 0 such that the inequality
(5.10) 1 * gl Lray < Cllf M Lo ey 191l Lo (ray-

To start, we will use a simple but common trick to check for which p, g, r this is possible:
Fix f,g € C.(R%) \ {0} nand f,g > 0 so that f*g € C(RY)\ {0} as well. Take a
parameter A > 0 and define fy(z) = f(\z), g = g(Az) then, changing variable s = Az

axga(x / FA)g(A(z —1t)) / f(s)ghz —s)ds = A% f x g(\x).

On the other hand

1/p 1/p
s llsvgenr = ([ 1r00rae) = = (570 [ 1eras) = xl e.

The same way, we have

||9A||Lq(Rd) = Aid/q”gHLq(]Rd) and || fx * g>\||LT(]Rd) = Afd(lﬂ/?ﬂ)”f * 9||Lr(Rd)'
Thus, if we replace f,g by fi,gx in (5.10), then
0< || f = g”LT(Rd) )\d(pr%,%,%)_

C||f||Lp(Rd)||9||Lq(Rd)

Letting A — 0, this implies that the power of A be < 0 while letting A — 400, this implies
1 1 1

that the power of A be > 0. We have thus shown that (5.10) implies — + - =1+ —. In
p q r

other words, the conditions on p, ¢,r in the following theorem are necessary.

THEOREM 5.1 (Young’s Inequality).
1 1 1
Let 1 < p,q,r < 400 be three real numbers such that — + — = 1+ —. Then, for all
r

p g
f.9 € C.(RY),
(5.11) ILf = gll,. < Lf1l,llgll,-

It follows that the mapping (f,g) — f * g extends from C.(R?) x C.(R?) — C.(RY) into a
bounded bilinear mapping LP(R?) x LY(RY) — L"(R?).
Further fxg=gx* f.

PROOF. We only have to prove (5.11).

Note that several particular cases have already be proven: when r = 400, then %Jr% =
1 and this is (part of) Theorem 2.1.

When r = 1 then Il] + é = 2. As p,q > 1 this implies p = ¢ = 1 and Young’s inequality
is Proposition 3.1. More generally, the case p = 1 was treated in Theorem 2.1 and, by
symmetry f* g = g* f, so is the case ¢ = 1.
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Note finally that if p = +o0, then as 1 < ¢,7 < +oo then 1+ 1/r = 1/q implies

q = 1 and r = +oo which is already covered. The same holds when ¢ = 4+00. We can
then assume that 1 < p,q,r < +o0o. Note that % + % =1+ % implies 7 > p,q so that

0<p/r,q/r,1—p/r,1—q/r <1.
We will use the following fact which comes from the duality of L™-L"" when % + % =1
(actually from Holder’s Inequality): if ¢ € L" then

loll, = sup{ / Cper” |y, =1}

But now, if f,g € C.(R%), then f x g € C.(R?) € L"(R?). Let h € L" with 1’ = L.

We want to bound
I(f,9.h / gz

1 bl < [ 1 sa@l@ldr< [ [ 17Ol = 0e) dedt = 1051, ol 1)

Obvously

with Fubini. We may thus replace f, g, h with |f|, |g], ||, that is, we can now assume that
f.9,h > 0. We have to prove that I(f,g,h) < | f[l,llgll, Al
Note that, as f,g,h > 0, we may apply Fubini and get

I(f.g,h) /R [ F@)(z ~ )h(r) drdr

To bound this quantity we will first isolate h and apply Holder’s L™ — L inequality with

1 + l =1ide 1 . We write f(t)g(z — t)h(z) = Fi(x,t)Fy(z,t) with

Fi(z,t) = fOP gz — )" and  Fy(z,t) = f(£) P/ g(z — )~V h(x)

so that

(5.12) I(f,g,h)ﬁ(/Rd RdFl(xt dazdt) (/Rd/RdFth dxdt) /.

Note that Fy(z,t)", Fy(z,t)” > 0 so that we will be able to change the order of
integration.

The first of these two integrals is rather simple to bound: using Fubini, we first integrate
with respect to z,

(/Rd/RdFl(x’t)rdxdty = (/R/R :c—t‘Idxdty
= (fuseran) " ([ serar)

(5.13) R H R

ya
T
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The second term is more involved. First

(/ / Fg(x,t)r,dxdt>r :(/ / f(t)(l_”/”)r/g(x—t)(l_q/r)r/h(x)r/dtdx)T
R4 JRd Rd JRd
1

U=

a a
< <sup F() =P/ (g — ) Ama/mr dt> </ h(z)" dx) '
zeR JRA R4
’ ’ 1/T/
(5.14) — Hf(lfp/r)r % g(lfq/r)r HhHr'

We next introduce a parameter s to be determined soon and s’ its dual index %4—5 =1.
Then from Theorem 2.1 we know that

(5.15> Hf(l—p/r)r/ >kg(l—q/r)r/ < Hf(l—P/"")T"/ g(l—Q/T)T/
As we want an estimate with | f[|, this leads to the choice s(1 — p/r)r’ = p. As
r = Ll we thus have (1 — p/r)r" = == so that
r—1
s = .
r—p

Note that » > p > 1 so p < s < +00. The dual index is then

s = s :(T—l)p:]i
s—=1 rp-1)

thus

(L—g/r)r's' = (1 —q/r)p' = (1 - %) p.

1 1 1 1
But, multiplying 1 + — = — + — by ¢ and rewriting it gives 1 — 4 _ q (1 — ) =
r p q r
Finally
(1—q/r)r's' =q.
The choice of s then implies that

- ( f(a:)“p/”’“'sclx)s
s Rd

H Fa=p/ryr’

( / f(x)pdx)s — 7
R4

o= (fosrmomean)” = (f orac) =

Injecting this into (5.15), we get

while

=

H g(=a/nr’

H F=p/mr' y g=a/m’

< p/s ‘I/Sl.
=R Nl

From this, (5.14) reduces to

(/ / F2<x,t>’“’dxdt) < AP gl Yl
Rd JRA

Finally, with (5.13), we get that (5.12) reduces to

247 A
I(f,9,0) < £l = Nlglly ™ IRl

-
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It remains to notice that
1 11 1 r—1 r—p p+r—p 1

r

1 11 1
and that — + = —. In conclusion we have
T

s r+ r (r—l)p_ p P

,,,/ 8/

q
L, [ 1sta = op)azar < 11, ol 1,

hor all h e L. Tt follows that, for all f, g € C.(R%),

1 gll, < 11l
The extension principle then shows that f % g can be defined on LP x L9. O

1 1 1

REMARK 5.2. If —+= = 1+—= > 1 then fxg is a priori not defined by/ f@)g(z—t)dt.
p q r R4

One needs to approximate f and/or g by a sequence of functions that converges to f

and g in LP and LY respectively and for which the above definition makes sense.
To do so, write fr = f1)¢|<k so that fp — f in LP. Further, fi € L*® for every s > p.

1 1 1
But — + — =1+ — can be rewritten as — — — =1 — — = — so that ¢’ > p. In particular,
q r p T q q

fr € LY. But then fj, * g(x) = / fe@)g(x —t)dt. As frxg — f*xgin L" we conclude
Rd
that
fxg(x)= lim y FO)1<k(t)g(x —t)dt.

k—+oo

6. Regularization

6.1. Spaces of smooth functions: C2°(R?) and S(R?). Spaces of smooth functions
will play a key role in the sequel. The first space we consider is the following:

CX(RY = {f €eC®RY) : IR > 0s.t. f(z)=0if |z]| > R}

the space of smooth functions with compact support.
One may wonder if such functions actually exist so let us start by giving an example:

0 ifx <0
e /7 if x>0
C> on R\ {0}. Moreover, for every k, there exists a polynomial P such that ¢(®)(z) =

Pk(x)g(gc) when z # 0.

2k
Indeed, the formula is clearly true for £k = 0. For k = 1, ¢’(x) = 0 when 2 < 0 while

EXAMPLE 6.1. Let g be defined on R by g(z) = { . Then g is clearly

1
g (x) = ——2671/1 so that the formula is also true for k = 1. Assuming ¢(*) is of that form
up to some rank k£ > 1 we get

o) — 2ot ity ) - DBt DA

gt (z) =

and if P is a polynomial, so is Pyy1(x) := 22 P/(x) — (2kz + 1) Py ().
Alternatively, one may also show that ¢*) () = Qx(1/x)g(x) with Q) a polynomial.

Next, it is clear that ¢ is continuous at 0. Assuming g is of class C¥~! on R, as

P,
g (z) = %}f)eq/z we get that g*®)(z) — 0 when z — 0% and as ¢ (z) = 0 when
x
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x < 0 we also get that ¢®) (z) — 0 when z — 0. It follows that ¢*) extends by continuity
at 0 so that ¢*=1 is of class C', thus g is of class C*.

Finally define f through f(z) = g(1 — ||x — a||*/n*) and note that g is clearly C*
(taking the euclidean norm) and that f(z) = 0 when 1 — ||z — a]|?/n? < 0 that is, when
| —al|| > n. Thus f is C*° supported in the ball B(a,n).

0 ifx <0

ExXAMPLE 6.2. We still consider g defined on R by g(z) = L . . Next,
e~ if x>0
we define
() 0 for z <0
g\ —1/z
h(z) = = < = for0<z<1.
)+ ol —x e /7 e 1/0—2)
g9(x) +9(1—x) . forz > 1

As g(x) 4+ g(1 — x) # 0 for all z, clearly h is of class C* on R.

Next, we define b(x) = h(2 4+ z)h(2 — x) which is clearly C*°. Further, for |z| > 2,
one of 24,2 —x is < 0 so b(x) = 0. For |z| < 1, both 2+ x,2 — x are > 1 so that
h(2+2) =h(2—2)=1and b(z) = 1. Finally as 0 < g <1, 0 < b < 1. It follows that

the function b is a smooth bump function: b is C*° with support [—2,2] and b(x) =1 for
€[-1,1] and 0 < b < 1.

Note that given a < b < ¢ < d there exists a function B € C* such that b =1 on [b, ],
b = 0 outside [a,b] and 0 < b < 1. To do so, one choses b(z) = h(a + fx)h(y — dz) with
B,6>0,vy—dd=a+ Pa=0and a+ b=~ — dc = 1. The choice is thus

—a 1 d 1
_b—a’ ﬁ_

b—a | d—¢ T d-c¢

(07

Note that one may tensor such functions: b(x1,...,x4) = Hle bi(z;). Then, if Q1,Q2 are
two cubes with the closure of @ in the interior of Q2 (so that the boundaries don’t touch)
then there exists b € C* such that b(x) =1 on @1, b(z) = 0 outside Q2 and 0 < b < 1.

It should be noted that once we have an element of C2°, we get many others:

LEMMA 6.3. Let ¢ € LY(RY) and f € C*(RY) then ¢  f € C°(R?) and, if ¢ is
compactly supported then so if ¢ * f € C.(R?).

We will define the support of ¢ € L'(RY) in a precise way later on, here we simply
mean that there is an R > 0 such that ¢(z) = 0 whenever |z| > R.

PROOF. Indeed, if f € C2°(R?) then f is bounded so that px* f(x) = /d o(t) f(x—t)dt.

Set F(x,t) = (t) f(z—t) and note that, for t fixed, x — F(x,t) is C*® (unﬁiess lp(t)] = +o0
so this is true for almost every t). Further for every a € N4, 92F (z,t) = @(t)0%f(x — t).
But 0%f is continuous with compact support so that it is bounded [9%f(u)| < C, thus
|02 F(z,t)| < Calp(t)] € LY(RY). Lebesgue’s derivation theorem then implies that ¢ * f is
of class C*° with 0%(p * f) = @« 9 f.

Finally, if ¢ and f are both compactly supported, there is an R such that, if ||¢|| > R
and |lu]| > R then ¢(t) = 0 and f(u) = 0. But then, if ||z|| > 2R and [|t|| < R,
|z —t|| > R. Tt follows that, when ||z|| > 2R, F(z,t) = ¢(t)f(x —t) = 0 for all t € R? thus
o f=[F(zt)dt =0. O

Although C.(R?) is a large class (we will even see that it is dense in every LP(R?) space
with p < +00), this class is too small to contain a function like the Gaussian. We will
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thus define a larger class that has almost the same property. To do so, for o, 8 € N¢ and
f:R? = C, let
Pas(f) = sup [2°0" f()|.

zERY

DEFINITION 6.4. The Schwarz class is the set
S(RY) = {f € C*(RY) : Vo, B € N, po 5(f) < +00}.

The Schwarz class is thus the space of all smooth functions such that all derivatives

have fast decrease at infinity (i.e. faster than any polynomial). The class is not empty as
obviously C°(R%) C S(R?).

EXAMPLE 6.5. Let f be a Gaussian, f(z) = emallzl* ¢ >0 (the norm is the Euclidean
norm). Then f € S(RY).

For simplicity, we will show this for d = 1 and a = 1/2 so f(z) = e~ /2, Then, for
every k, there exists a polynomial P, such that f*)(z) = Py (x)e=*"/2. This is clear since
Py =1 and, by induction, f*+Y(z) = (P/(z) — 2P (1:))e’z2/2 and P11 = Pi(x) —zPy(x)

—x2/2

is a polynomial if Py is. Finally, ¥ Py(x)e is clearly bounded.

It should be noted that the choice of p, s to define S(RY) is somewhat arbitrary. We
may as well take m, n two integers and define

P (f) = sup (L4 [lz*)™ >

d
zeR 1B]<n

o8 f

Then if we notice that (1 + [|z]|*)™ is a polynomial of degree 2m
(L+felP)" = > cax
|a|<2m
and C' = max |cy| then

Bun(f) < D2 leal D sup [a°0°f(@)| SC Y7 Y7 pasl(f)

jal<zm  |]<n "€ la<2m |8|<n
On the other hand,

|- fzg ™ < Jafle) < Jlall < (1 + [la)3)e!

|z =

For the last inequality, one considers the cases ||z||2 < 1 and ||z||2 > 1. But then

Pa.s(f) < Dlag,i81(f)-
It follows that
S(RY) = {f € C®(R?) :Vm,n € N, pmn(f) < +o0}.
This change of “semi-norm” is sometimes convenient, for instance for the following lemma

LEMMA 6.6. For every 1 < p < oo, S(R?) C LP(R?).

PRrROOF. The lemma is trivial when p = +o00 since po,o(f) = || f|l
For other p’s we will use the fact that, integrating in polar coordinates

“+oo d—l
L drdoy (0
/Rd (1+Hx|| /S / 1+ 2y 7= 1)

g1 o0 rdfl
=04_1(S*" ——dr <+
0d 1( )/0 (1 _’_Tg)ﬁ T o0
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if 2k > d. It follows that, if
dz dz
(@) da f/ 1+ 2l f () <paolf) [ T e
/ T+ P o (L1 2]
O

It is now easy to prove the following that we leave as an exercice

PROPOSITION 6.7. Let a € N4, \ € C, T € GL(R?) an invertible linear transforma-
tion. Then

~if f,9 €CX(RY) sois \f +pg, foT, fg, xf, 9°f;

—if f,g€ SRY) sois \f +pg, foT, fg, z*f, 9°f.

Let us now extend Lemma 6.3 which shows that we can add f * g to the above list.

LEMMA 6.8. Let 1 < p < oo, ¢ € LP(R?) and f € S(R?) then p* f € C*(R?). Further
if, for every a € N4, t%p € LP(R?) then ¢ x f € S(R?).

The second part of the lemma is satisfied if ¢ is compactly supported or if ¢ € S(R9).

PRrROOF. The general scheme of proof is the same as for Lemma 6.3. Note that, as
S(RY) ¢ LP'(RY), 1/p+1/p' = 1, we have ¢ * f € L°(R?) and

p* f(x) = /Rd o(t)f(z —t)dt.

For p = 1, there is nothing to change: we again define F(¢,z) = ¢(t)f(x — t) and, for
every a € N¢ 92 F(t,2) = o(t)0° f(w 1) s0 that |92 F(t,2)] < pao(f)|e(H)] € L(RY). By
Lebesgue’s Differentiation Theorem, ¢ * f is of class C*° with 9%(¢ * f) = ¢ * (0¢f).

For p > 1, this can not work and we need to use the fact that f has some extra decrease
that can compensate the fact that ¢ ¢ L'. First, note that it is enough to show that ¢ x f
is of class C*° on the ball B(0, R) with R arbitrary. So assume that ||z|| < R

2\d
0P (t.0) = ()0 f (o~ 1) = - T I 1 o = P10 o - )

First, as (1 + [|t]|2)~% € L (R%) (it is in all LI(R%) spaces, ¢ > 1) and ¢ € LP, Holder’s
t
inequality shows that ®(t) := m € LY(RY).
Next (1+ ||z —t]|%)?0%f (2 — t)] < pajal(f)-
Finally if |[t| > 2R, and |z| < R, |z —t| > [t| — |z| > |[t| — R > |t|/2 so that

d
(e [ A
A+l = \T+ef2/a) =

(1+ [it]*)
1+ [z —t?)* —
Assuming R > 2, we get that this bound also holds for |¢| > 2R and finally
07 F(t, )] < Paja)(f)(1+2R)?®(t) € L' (R).

By Lebesgue’s Differentiation Theorem, ¢ * f is of class C* with 0%(p* f) = p* (0%f) on
B(0,R) and as R is arbitrary, the same holds on R<.

while for |¢t| < 2R,

< (1+2R)"
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It remains to prove that, for all o, 3, 2%9% (¢ * f) = x%p * (9°f) is bounded. As
f € S(RY) implies that 9% f € S(R?), it is enough to consider the case 3 = 0. But now,
define M;v(t) = t;4(t), then

d d d
s« 1@) = [ etnista=0dt= [ o0 —t)fa =+ [ tetra -0
=pxM;f +Mip= f
which is bounded since M;p € LP(R%) and M, f € S(R?). An induction on the length of a
then shows that, for every a € N%, %p  f is bounded. O

REMARK 6.9. A careful examination of the above proofs shows that, for ¢ € LP(R?)
and f € CF(RY) such that for every o with |a| < k there is a k > 0 such that (1+[t[?)~" €
L? (ie. 2kp > d) and (1+ |t[2)"8*f € L™, we have ¢ % f € CF.

6.2. Regularization by convolution.

THEOREM 6.10 (Approximation of unity).
Let1 < p < 400 and j € S(R?) be such that j > 0 and [, j(z) dv = 1. For s > 0, denote
by js the function defined by js(t) = s~ (t/s).

Then, for every ¢ € LP(R?), ¢ * j, € C°(R?) and o * j; — ¢ in LP when s — 0.

For p = 400, L™ has to be replaced by Co(R%): for every ¢ € Co(RY), ¢ * j, € C®(R?)
and ¢ * js — © uniformly when s — 0.

Proor. We will only give the proof for 1 < p < +00. We leave to the reader the case
p = +oo. The only thing that one needs to use is the fact that functions in Co(R?) are
uniformly continuous.

Let us first note that j, € S(R?) and that

with a change of variable r = t/s.
We have thus already seen that ¢ * j, € C(R?).
Next, j, € LP (RY) with % + i =1, so that

@ *js(r) = /Rd js(t)o(x —t)dt.
But then
p(x) —p*js(z) = f(z) /Rd Gs(t)dt — /Rd js(t)p(z —t) dt
[ i) = oo =) .

From Minkowski’s inequality we deduce that
o= edull, < [ ga@lle = reell, dt.
R4

Now fix € > 0. As p < 400, we have seen that || — 7|, — 0 when t — 0 so that
there exists 7 > 0 such that, if [t| <, [[¢ — 7pll, < e. When [t| > n we can simply use
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that || — 7]l < 2[|]|, We then write

o = *3sll, S/ js(t)llw—nwllde/ Js@®lle — el , dt
[t|<n [t|>n

< . / Jult) dt + 2], / ja(t)dt.
Rd [t|>n

It remains to notice that [y, js(¢)dt = 1 and that

/t|2n B (8)dt = /t|zn sT(t/s)dt = /TZWSj(r) dr =0

when s — 0. In particular, there is an 7’ such that, if s <#’, 2[[¢]|, js(t)dt < e and
[t|>n
then [[p — ¢ = js||, < 2e. d

Again, the hypothesis can be weakend without changing the proof. To do so, we may
assume that (js)s>o is a family of L'(R?) functions such that

(1) there is a constant C' > 0 such that, for all s > 0,

/ Js(z)de =1 and / l7s(x)|dz < C.
R Re

(2) For every n > 0, flr\>n |7s(x)] dz — 0 when s — 0.

Such a family is called an approximation of the identity (and sometimes a mollifier).

COROLLARY 6.11. The space C2°(R?) is dense in every LP(RY) space with 1 < p < +o0
and thus so is every space containing it like C.(R?) and S(R?).

PROOF. Let f € LP(R?) and € > 0. Let j € C°(R?) and j,(t) = s~4;(t/s) First, for R
large enough Hf - flngH < e. Next there exists s such that Hflng — (f1jz<r) *js” <
€. But then Hf — (f1|:1:\§R) *]SH < 2¢ and (fllx\SR) *js S CSO(Rd) U

REMARK 6.12. One has to be careful with the density of C.(R?) in LP(R?). The proof
given here relies on approximation of unity. This in turn relies on the fact that translations
are continuous.

We have proven this last fact by first proving it for characteristic functions of cubes,
from which we deduced the fact for simple step functions. Then we concluded that trans-
lations are continuous by density of step functions in LP. Our proof is thus not circular.

It turns out that it is simpler to prove that translations are continuous by first proving
this fact for functions in C.(R%) and then using the density of this last step. The approxi-
mation of unity theorem then allows to prove that C>°(R?) is dense in L, but the density
of C.(R%) then needs a different proof.

7. Partition of unity

The aim of this section is to decompose the function 1 into a sum of smooth bum
functions with controled support. Before doing so, we need a result from topology:

PROPOSITION 7.1. Let Q C R be an open set and let {§;,i € I} be an open cover of
Q: each Q; is open and Q C Uiel Q;. Then there exists a sequence (z)ren C Q and a
sequence (T)ken of positive numbers such that

(i) Q= Bk, n);

k>0
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(ii) for each k there is an i € I such that B(xy,2ry) C §;;
(i) each x € Q has an open neighbourhood U such that {k : U N B(xg,rr) # 0} is
finite.

Let us postpone the proof of this proposition. We can now prove the following:

THEOREM 7.2 (Partition of unity). Let Q C R? be an open set and let {Q;,i € I} be
an open cover of Q. Then, for each i € I, there exists f; € C®(R?) such that

(i) 0<fi<l;

(i) supp f; C Q;;

(iii) each x € Q has an open neighborhood U such that {i : f; # 0 on U} is finite;
(iv) Z fi(x) =1 for every x € Q.

icl

DEFINITION 7.3. We say that (f;)icr is a partition of unity subordinated to (€2;);er.

PROOF. Let xy,rr be given by Proposition 7.1. Let gx be a smooth function with
gr > 0 1in B(xg,ex) and gg(xz) = 0 for |x — x| > ri. Such a function was constructed in
Example 6.1. Let g = >, < gx- As a sum of positive numbers, this always exists (but may
be infinite for the moment)

Now, according to Proposition 7.1iii, for each & € Q there is an open neighborhood U
such that Jy := {k : B(xy,2e,)NU} is finite. But then, if y € U, gr(y) = 0 unless k € Jy.

It follows that
ng(y) = Z 9k(y)

k>0 keJy

on U. As this is a finite sum of smooth functions, it is a smooth function on U. As z
was arbitrary, it follows that g is smooth in a neighborhood of each point in  thus it is
smooth on 2. Further, given x € €2, from Proposition 7.1i, there is at least one k such that
x € B(xg, i) thus gr(x) > 0. As gj(z) > 0 for j # k, we get that g(z) > 0.

Next define hj, = gi/g which is C*°, with support B(xy,ry) and >, hi = 1. Now
take ¢ € I and write J; = {k : B(xg,rx) C Q;}. Let f, = Zkeh hi. One then repeats
the previous proof and gets tat fl and F:=)" ﬁ are smooth and F' > 0 thus f; = fl /F is
smooth. Next, by definition, if f;(x) # 0 then there is a j € J; such that hy(x) # 0 thus
x € B(zg, ) C ;. Thus this f; have the required properties. O






CHAPTER 4

The Fourier transform

1. The L!-theory

DEFINITION 1.1. For f € L}(R?) we define the Fourier transform of f, and denote it
either by f or Ff, the function defined on R by

fo) = [ swe e aa,
Rd
Let us start with a fundamental example:

EXAMPLE 1.2. Let a <b € R and f =1, 4. Then if £ # 0,

b
R ' 1 _ .
[ = / e 2TEE g — (e*2mb£ _ eﬂmag)

2im€
e2im e J2imbpte | —2imigte
N wé 2i
p2im Ete sinm(b — a)f.
¢
A b
When £ =0, f(§)=/ dz =b—a.
a
. . . . . 1 ift=0 o
It is convenient to introduce the function sinct = ¢ _. ] . Note that this is an
Sl%t ift#0

analytic function.
If we write ¢ = “T'H’ for the center of the interval [a,b] and ¢ for its length, ¢ = 2r then

f(&) = £e*™ sine wlE = 2re?™ sinc 27r€.
d
Let us now notice that, if f is a tensor function f(xi,...,xq) = H fi(z;), then so
j=1
d
does f: f(&1,...,&) = H fi(&;). This follows directly from Fubini’s Theorem and the
j=1
d
fact that e—2im(z.€) — =27 E?=1 z;€5 — H e~ 2T
Jj=1

d d
Now, for Q = H[aj,bj] is a cube, write £; = b; — a; for its side length, |Q| = Hﬂj
j=1 j=1
for its volume, ¢ = (‘“—erbl,...,%) for its center of gravity. Let f(z) = 1lg(z) =

47
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d
H 1(a, b,)(z;) then

j=1
~ . d
f(&) =1Q| ™€) [ [ sincnt;e;.
j=1
Note for future use that f € Co(R%).

Let us now start detailing properties of the Fourier transform. First, it is well defined.
Indeed, let F(xz,€) = f(z)e=27(®<€), Then, for x fixed, & — F(z,£) is continuous. More-

over, |F(z,€)| = |f(z)] € LY(RY), it follows that f(£) = / F(z,£)dz is well defined and
Rd

continuous. Further,
f@1 < [ 1P@olas= [ 17@]do = 1m0

As f — f is clearly linear, this shows that this mapping is bounded L*(R%) — C,(R), the
space of bounded continuous functions on R%. Actually, a bit more is true:

THEOREM 1.3 (Riemann-Lebesgue Lemma). The Fourier transform F is a bounded
linear mapping L' (RY) — Co(RY) with | Ffll < If],-

PROOF. We have already seen that F is a bounded linear mapping L*(R) — C,(R9)
with || Ff|l < | f]l,- It remains to prove that Ff € Co(R?) when f € L*(R?).

This is indeed the case when f = 1¢g, @ a cube, thus also when f is a (finite) linear
combination of such functions, that is, when f is a step function. But step functions
are dense. Thus, if f € L*(R?), there exists a sequence f;, of step functions, such that
|| fr — fll,x = 0 when k& — oco. But then

IFf = Flilla = IF(f = filll o < IIf = Flly = 0.

In other words, Ffy — Ff in Cp(RY). As Ff € Co(R?) which is closed in Cy(R?) (see the
chapter on convolutions for a proof), we get that Ff € Co(R%). O

A SECOND PROOF. In dimension 1, there is an alternative proof of the fact that f(f) —
0 when & — 4o00. First note that —1 = e~ = ¢~21"¢/2¢ thus

2f(¢) = /R f(H)e 2me dt — /R f(t)e2imE/ 2 o= 2imte gy
:/f(t)e*Qi'n'tEdti/f(t)872i7r(t+1/2§)5dt
R R

-flros ()

In other words, f(¢) = %}"[f — T172¢ f1(§). It follows that 1f(6) < | f —Tl/gngl. Now

letting &€ — +00 and using the continuity of a — 7, f from R — L'(R) shows that |f(¢)] —
0.
Recall that this continuity required the same density argument. ([

Let us now list the main properties of the Fourier transform. To do so, we need to
introduce some notation. For a,w € R4, A > 0, T € GL,(R?) (a d x d invertible matrix)
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and f a function on R%, we define new functions on R

raf(@) = f(z —a), Myf(z) = e 22 f(2), 65f(x) = f(Ax), Arf(x) = f(T ' a).

Note that 74, M,,, 65, A7 are continuous linear mappings LP — LP for every p.

PROPOSITION 1.4. Assume that f € L*(R?) then

- ]:[Taf] = Ma]:[f]; ]:[wa] = T—w]:[f];
~ Fl6af] = X4F[81/2f] and more generally F[Arf] = | det T|Ajp-1): F[f].

~If & f € LY(R?) then f admits a continuous partial derivative in the &; direction with

O (6 = “ainFla; ().

% of of
_ 1 d
If f is C* with — 92, € LY(RY), then F [(%Jj

~If f.g € L'(R?) then F[f * g] = F[f]F[g]-

PROOF. The first 4 follow from a simple change of variable
— changing variable y = x — a,

] () = 2ine, FISIE).

‘F[Taf] (f) = f(x — Cl,)e_%ﬂ(m{) dr = f( ) —2im(y+a,§) dy

Rd Rd
_ efZiw(a,E)/ Fly)e= 28 qy = ¢=2im(@8) (g,
Rd
— the next one is even easier

FIMLAE) = [ flae =9 mie0 qn = [ fa)e im0 da = g +).
Rd
— changing variable y = Az,

FlorfI(§) = R f()\x)e—Ziw(x,f) de = \ / fly —2im (y/\€) dy

Fy)e 2N dy = x4/ ).
R4
It is a particular case of the following:
— changing variable y = T 'z, 2 = Ty
PSSO = [ FT e da = e ] [ pae 9 ay
R

— |det | [ )T dy = | den 71 (176,
Rd

~The next two ones are slightly more subtle. First assume that z; f € L'(R?) and consider
again F(x,&) = f(x)e 2@ Then, for z fixed, & — F(x,&) is of class C', |F(z,&)| =
f(z)| € L1(R?) and
oF
9¢;

It follows that f(&) = / F(z,¢)dx is differentiable with respect to &; with
R4

2 (2,9) ’_ |~2ime; f(@)e2m=9| = 2rja; 1] € L'(R).

af oF

5 ©= [ Ge@o= [ -vima et e = Flzin, ()
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— Now, assume that f € C!, f, §f e L'. To simplify notation, we will take j = 1. Note

that, from Fubini’s Theorem,

/W|f(:v)|dx:/Rd_1 <A|f(ml,x2,...,xd)|dx1> dzy---dzyg < +00

so that / |f(z1,22,...,24)|dz1 < 400 for almost every (z3,...,z4). The same is true
R
with é% replacing f. If two properties hold almost everywhere, they jointly hold almost
everywhere. We may thus take an (xo,...,z4) such that
/|f(a:1,x2,..., d) 8 $1,Z‘2,...,$d) dzy < 400
R 5]
and almost every (xa, ..., zq) is like that. The fundamental theorem of calculus then shows
that
] af
flxy, o, ... xq) = f(0,29,...,24) + ——(t,ma, ..., xq)dt
o 0§
+oo af
— f(0,22,...,2q) + —(t,xa,...,xq)dt
0 ag]

when 1 — £oo. Thus f(z1, 22, ..., 2z4) has alimit in +c0. But then/ [f(x1,29,...,2q)|dz1 <
R

400 implies that this limit is zero. ~ -
Next, write z,& € R? as ¢ = (11, 2), £ = (£1,€) with 7,& € R4™1. Integrating by parts,

0 ; 0 —2imx —2im(Z,&
A%(x17j)€_21ﬂ<x7g)dxl = 8&{ (ml,fi)e 2 1€1dxle 2 < 75>

67217r<m,§> [f(zla j)€72iﬂ'11§1} +o0

— 00

+2im&y / flay, :E)efzimlgldxle_%”@’@
R

= 2i7r§1/f(cc1,i”)672”<x’5> do;.
R

It remains to integrate with respect to the d — 1 remaining variables and to use Fubini.
The last property is a direct consequence of Fubini and the change of variable u = z—y

Flf=gl(§) = /Rd Rdf(y)g(x_y)dye—zmx,é)dx

= [ 5w [ ot =9 dray
R4 Rd

/f(y)/ g(u)e= 2 (wtvE) qy dy
R4 Rd

/f(y)/ g(u)e=2m (w8 gy e=2m(v:6) gy

Rd

= [ Wi e ay = heate)

as claimed. O

We can now give as a second example the case of the Gaussian:
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EXAMPLE 1.5. Let f be the Gaussian defined for # € R by f(z) = e ™, then
fe)=ee.

Indeed, first note that f(0) = / ¢~™" dz. But then, using Fubini in the first line and

changing to polar coordinates:

f(O)2 = /Re*m?da:/Refﬁfdy:/Rze m(@*+y7) dx dy
+oo 2 N

/ / e ™" dOrdr

0 0

o 2 2
/ 2rre” ™ dr = [—e ™5 = 1.
0

As f(0) is the integral of a positive function, f(0) > 0 thus f(0) =1

Next, note that f satisfies the differential equation f' = —27x f thus F[f'] = —2nF[x f].
As clearly f is C' with f,zf, f' € L' we can use the above properties: f’ = —2inF[zf]
F[f'] = 2in€f. Tt follows that f satisfies the differential equation (f) = —27¢f which is
the same equation as the one satisfied by the Gaussian. Thus f = cf. Comparing values
at 0, we get f: f-

In higher dimensions, we immediately get that, if y(z) = e~7171* then (&) = e~ mlel,

Now, let A be a positive definite symetric matrix and f(z) = e~ m(Az,z)

As A is a real sumetric matrix, it is diagonalizable in an orthonormal matrix, A =
PAP?! with A a diagonal martrix and P an orthogonal matrix. Write A = diag (A, ..., Aq)-
As A is positive definite, the \;’s are > 0 thus we can write A\; = ,u?. Then define
B = Pdiag (u1, ..., uq) Pt and notice that B! = B and that A = B? = B'B. It follows
that (Az,x) = (B'Bx,z) = |Bz[%. As the u;’s are > 0, B is invertible thus f(z) =
y(Bz). Tt follows that f € L'(R%) and that f(z) = |det B~!|y(B~'z). But B!
Pdiag (1/pu1,...,1/uq) Pt is symetric with (B=1)!B~! = (B~1)2 = A~! thus |det B~ }|
det(A)~1/2 and

B~ 'z|* = (B '2,B 'z) = (B™")'B 'z,z) = (A" 'z, z)

It follows that f(¢) = det(A)’1/267”<A_1I"’”>.

2. The inversion formula and the Fourier transform on S(R9)

We are now going to show that the Fourier transform can be inverted and that it is
(almost) its own inverse. To do so, let us start with the following simple observation:

Assume that f,g € L'(R?), then f,§ € Co(R?) so that f§ and gf are both integrable.
But as

/ F@)g(w) dydz = | fl|llglp < +oo,
Rd JRd

Fubini’s theorem shows that
[ 1@ = [ [ @ ayda
Re JRd
(2.16) = g(y)/ f@)e W) dz dy = / 9(v)f(y) dy.
R4 Rd R4
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Let us now replace g by M, g so that g is replaced by 7,§ (more precisely, if we replace
g by M_.,g). We get

(2.17) ﬂmmw—wdx=/’<>ﬂ>2mw>dy
Rd ]Rd

The right hand side looks like a convolution and is indeed g f when ¢ is even. Let
us take as an example g(y) = eI 50 that g(x) = A~de=ml2/A” Write w(z) =
A~de=mle/A?  Then (2.17) reads

(218) f*’yA(w) :/Rd *‘ﬂ'|)\y‘ f( ) 247 (w,y) dy

Now, since v € S(R?), according to Theorem 6.10, f*vy — f in L*(R9). In particular,
if f1, f2 € LY(R?) are such that fi = fo then fi % ya(w) = fa % va(w). Letting A — 0 shows
that f; = f2. In other words, the Fourier transform is one-to-one.

What about the right hand side? Note that e~/ f(y)e2im (@) — f(y)e2™ (@) when
A — 0. Further, as \e’”"\y|2f(y)62”<“7y>| = |e*”"\y|2f(y)| < |f(y), if f € L*(R%), we can
use dominated convergence and obtain the following theorem:

THEOREM 2.1 (Fourier inversion formula). The Fourier transform is one-to-one L*(RY) —
Co(RY). Let f € LY (RY) be such that f € L*(RY), then f € Co(R?) and

flz) = f@)ﬁﬂgﬂd@

PrOOF. We have not fully proven the above theorem, we have only shown that the
inversion formula is valid in L' (R?). The observation is that the right hand side is F[f](—z).
As f € L'(R?), Riemann-Lebesgue’s lemma implies that the right hand side is in Cy. Now
f*vx — fin L' thus has a subsequence that converges almost-everywhere, thus f is almost
everywhere equal to F[f](—z) 1e. is in the same class as a Cy function. Our convention is
that we chose f to be this Cy function. (]

The Fourier inversion theorem shows that the Fourier transform is almost its own
inverse, this explains the very symetric properties we have already observed in Proposition
1.4.

REMARK 2.2. If f = 1(_; ;) then f = sinc 27t ¢ L' (R). It follows that / f(&)e* ™ q¢
R
does not make sense. We will see below that

S A .
lim / F(€)e2mem ag - 11, 1y (x)

R,S—+o0 _R

in L?2. Actually,
R
. ¢ 2iméx
i [ fee g s 101

is valid pointwise, excepted at the jumps +1. Note that we now integrate over a symetric
interval.

REMARK 2.3. It is important to have in mind that the Fourier transform is not a
bijection L!(R?) — Co(R?) as there are functions in Co(R%) that are not Fourier transforms
of L' functions.
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Now, let f € S(R?). For every a € N4 zof € S(RY) c LY(R?). Tt follows from
Proposition 1.4 that f € C>°(R%) and 8°f = (—2ix)!*| Flz*f]. Further as z*f € S, for
every 3 € N4, 9%(z2f) € S ¢ L'(R?). Applying again Proposition 1.4 we obtain that
2P0 f = (—=2im)lI=18 F[9P (z* f)]. But then, Riemann-Lebesgue’s Lemma implies that
F[08(x®f)] is in Cp, in particular, it is bounded. We have just shown that, fec= (R%)
and that, for every o, 8 € N%, 279 f is bounded, that is, that f € S(R%).

Finally, as S(R%) ¢ L'(R%), the Fourier inversion theorem applies to every f € S(R?)
and for such an f, f(z) = F[f](—z). Writing Zf(y) = f(—y) and noticing that Zf € S(R?)
and that F[f](—z) = F[Z[](z), we see that every f € S(R?) is the Fourier transform of a
function in the Schwartz class. We have thus shown the following:

THEOREM 2.4. The Fourier transform is a bijection S(R?) — S(R?). The inverse map

is given by F~[f1(€) = FIf1(=£).

3. The L2-theory

Our aim here is to extend the Fourier transform to other LP spaces. Let us recall that
if f,g € S(RY) c L' (R?) then

[ @@= [ aw)iwa.

Now let h € S(R?), then h € S(RY) and the Fourier inversion Formula reads

o) = [ h)ernton dy = [ Rge 70 dy = Fluly).
]Rd Rd

We now replace g by h(y) € S(R%) in the above formula. We thus obtain

| J@h@yde= | J@ht)dy,  fhe SRY.

In particular, taking h = f, we get | F[f]llr2ra) = || fllp2(a) for every f € S(R).
As S(R?) is dense in L?(R%), we can apply the Banach extension principle. It follows
that F extends to a continuous linear mapping L?(R?) — L?(R%). Further the mapping
FL(f)(z) = F(f)(—z) also extends from S(R?) to a continuous linear mapping L?(R¢) —
L2(RY). As FL[F[f]] = F[F S]] = f for all f € S(R?), by density of S(R?) in L*(R?),
this identity stays true for f € L?(R%). In particular, F is a bijection L?(RY) — L2(R?)
and its inverse map is F 1.

Finally, the mappings 7,, M., dx, A are all continuous on L?(R?), so the corresponding
properties in Proposition 1.4 stay true in L?(R%).

In summary

THEOREM 3.1. The Fourier transform extends into a continuous linear mapping L*(R%) —
L?(R%) and the extended map is a bijection. The mapping is an isometry and satisfies

— Plancherel’s identity: for all f € L*(R?)

[P = [ iferde

— Parseval’s identity: for all f,g € L*(R?)

fa)g(x) de = [ f(€)g(€) dt.
Rd Rd
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Further, the identities F|1af] = Mo F[f], F[Myf] = 7—uF[f], Florf] = Afd]'—[él/)\f] and
F[Arf] = |det T|Ajp-1: F[f] are all valid for f € L*(R?)

Let us note that the convolution identity f/;k\g = fg does not extend to f,g € L?(RY)

as in this case f * g € Co(R?) and m might not make sense. We will see later how to
overvome this.

EXAMPLE 3.2. Let @ > 0 and define f on R as ef (t) = 1o 4o0e”* and e (t) =
1(_oo0€". Note that e € L'(R) N L?(R) so that its Fourier transform is given by

+oo ) 1
5+ _ —(a+2im&)t 14 —
¢a () /0 € o+ 2int
while
 (a2ing) 1
A— — a—21m€)t dt — .
€a (&) /,oo ¢ a — 2im€
1
Let ¢& be defined on R by ¢f(z) = ————. Note that ¢ € L? but not in L' so
a+ 2irx

that it has an L?-Fourier transform but not an L!'-Fourier transform. Never the less
ct = Flef] in L'-sense thus also in the L2-sense. Thus, the Fourier inversion theorem
gives Fle](€) = F[FleF]](6) = F[FleZ]](~€) = eF(~€) = eF(€). This has to be
understood in the L? sense, in particular, equalities hold only almost everywhere.

One may notice that e is not continuous so that, according to Riemann-Lebesgue,
they are not Fourier transforms of L' functions.

ExAMPLE 3.3. An example of a function in Cy that is not a Fourier transform

of an L! function.

Let us define f on R by f(t) = g1g£|(:\) Note that f € L?(R) but f ¢ L'(R). The

Fourier transform of f can thus not be calculated via [ f(t)e~2"¢ d¢ but only as an L?
limit. To carry out this limit, we will need the following identity

1 oo
:/ o~ I+ gy
L+t Jo
Using Fubini’s Theorem, we see that
R R +o0
t _ .
/ sgn( )672177155 dt = / / Sgn(t)ef(1+\t|)m dze=2mt ¢
—r 1+ ~-rJo
“+00 R
/ / sgn(t)e” (IFee=2imtE gg 4y
0 -R

“+o0 R )
/ e / sgn(t)e 1172 i dy
0 -R

(3.19)



3. THE L?-THEORY 55

To see that one is allowed to apply Fubini’s theorem, one writes | sgn(t)e~(1Hthee=2imte| —
e~ (Hlthr < e~ ¢ LY([~R, R] x R, dtdz). But now, if £ # 0, (or x # 0)

R 0 R
/ e—\t|xe—2iﬂ't§ dt = _/ et(a:—2i7r§) dt +/ e—t(ac+2i7r§) dt

-R -R 0
ot(z—2ime) 70 o—t(a+2ime) 11
|:.Z'—2i7Tf]_R [ T+ 2im¢ ]0
14+ e—R(ac—2i7r§) 1— e—R(ac+2'L'7r£) _47;71.5 e—R(:c—Q'L'ﬂ'E) e—R(:c+2i7r§)
T — 2imé + T+ 2iné _11+Qﬁﬁ+ r—2iné x4+ 2iné

Inserting this into (3.19) gives

R e 2imtE +o0 e 7 +oo s o—R(z—2im¢) e~ R(z+2im¢)
———dt =41 ——d — T dx.
/_R T+ 1] i / 22 + (27€)? ”/o ( v—2irE | a+2ing ) c

But, if z >0

e—R(.’r—Qiﬂf) e—R(r+2i7r§)

T —2iné  x+ 2né

when R — +oo while, if £ # 0,
efR(172i7r§) 67R(z+2i71'§) . e~ Rz e~ Rz .

- - - e < — + - e
x — 2imwé x + 2imé |z — 2img|  |x + 2iwg|
e—l‘

S
We may thus apply domintated convergence and obtain that, for £ # 0

too /o —R(z—2in§) e~ R(z+2inf)
/0 < xr — 24mé B T+ 29m€

<

€ L'(R).

>6Ida:%0

when R — +o0 and thus

R 672i7rt§ +o0 e T
lim / —dt = 42'7Tf/ ——dux.
R>too [_p 14|t o @2+ (27€)?

But, the L?-limit of this integral (seen as a function of &) is the Fourier transform of f. It
follows that, for almost every &,

R +o0 e~ 7 +oo 6*27T|§|u
=4i —————dr =2 —d
flo) = sint | o de=2isen(©) [
with a change of variable x = 27|¢]u.
One may observe that this function is continuous except at 0 where it has a jump
discontinuity and goes to 0 at infinity. This follows immediately from Lebesgue’s theorem:

. . 6727‘-‘5‘“
if we write F(§,u) = W then
67271’ &lu 1
—|F _ < Ll R+ .
&l = |5 | S 1 € LR,

—if we fix u, &€ —» F(§,u) thus £ — f0+oo F (&, u) du is continuous over R. In particular

+oo +oo 1 T
F(&,u)du = — _du=~—~
| Pewan= [ =]

—if we fix u > 0, F(§,u) — 0 when £ — +oo. Thus f0+°o F(& u)du — 0 as well.
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Thus f(¢) = 2isgn(¢) f;oo F(&,u)du has the properties we just announced with
F(0*) = ~f(0) = i

One should also note that limg_, 1o f_RR f(t)dt = 0 since f is odd.

Let us now erase the jump discontinuities with the help of the previous example. Let
g = f+inlct —c7) = Slgil(:l) + H‘g;t)Q. Note that g(t) ~ 3sgn(t)/t in +oo so that
g € L*(R) but not in L*(R). By linerity § = f —imei +imey . All three functions f, e}, e7
are continuous outside 0 and f(0F) = +im, £ (0F) = 0, ef(0¥) = 1. Thus the jump
discontinuities cancel.

4. Solving the heat equation

The aim of this section is to show how Fourier analysis can be used to solve some
partial differential equations. As an example, we will here take the heat equation:

Owu(z,t) = Ag(z,t)
(E) { u(z,0) = wo(x)
where Agu(z,t) = (82, 4 - + 92 )u(z,t). The unknown is a function u on R? x (0, 400)
and the variable ¢ represents time while the x variable is a space variable. The meaning of
u(z,0) = up(x) has to be taken as u(z,0) — ug(x) when ¢t — 0 in some sense that we will
make precise later.
For the moment, we will leave a side all mathematical rogour and compute the space

Fourier transform: for ¢ € RY, write 4(&,t) = / u(z, t)e 2T @E) dg.
Rd

If u is a resonable function, then

(4.20) (g, t) = at/ u(z, t)e 26 dg = Ayu(z, t)e 28 .
R4 Rd

Note that we are not trying to justify the fact that the differentiation can be entered into
the integral. Further, under good circonstances, we may integrate by parts to obtain

/ O, u(z, t)e 28 qp = —/ u(z,1)0y,; e 2m(@8) gy = 2i7r§j/ u(z, t)e 2@ dy
R R

Rd

(at least if u vaniashes at infinity). Repating this
/ aiu(x7 t)e—2i7r<w75) dz = _47r2§j2 / u(:m t)e—%rr(x,g) dz
R4 Rd
and summing up, we get

Agu(w, t)e” 208 dr = —ar®(¢[falE, b).

R
Together with (4.20), this shows that (F) implies
{owu(g,t) = —An?glPa(€, 1)aya(€,0) = o).

Notice that, when ¢ is fixed, this is an ordinary differential equation which admits as a
unique solution

(g, t) = e 4 16 g 6.

Remmebering that e ” is its own Fourier transform, a simple computation shows that, if
2 “ _ 2 2 ~ N ~
pi(x) = (4mt)~42e7 171/ then py(€) = e~ 1" thus a(€, 1) = pi(€)ao(€) = Flpe * uol(€)

—7|x
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with the convolution theorem. It remains to invert the Fourier transform and
(1.21) u(et) =i s unle) = [ wolw)pile — y)do.
R

So far, we have not been rigourous and have not been looking for any justification.
There are two things to do

— justify that this is indeed a solution of d;u = Aju. To do so, one first checks that
p(t, x) = pi(x) satistifies the heat equation. Then u(z,t) = p; * up will also satisfy the heat
equation if one can enter the differentiation operators inside the integral apearing in (4.21).
This can be done with Lebesgue’s differentiation theorem and the fact that, if tg < t < 1,
for every o € N¥+! there is a constant C' = C(a, tg,t1) such that [0%p(t,z)| < Ce~lal?/C
(0% means differentiation in space and time).

— Once one knows that d,u = A, u, one notices that p; is an approximation of unity so
that, if ug € LP for some 1 < p < oo, then p; * ug — ug in LP.

— The only thing this method does not provide is the fact that there is no other solution.
Of course, it is the only solution that can be obtained via a Fourier transform. We will see
in the next chapter how to deal with that issue.






CHAPTER 5

Distributions

1. Definition and examples

DEFINITION 1.1. A distribution T € D'(R?) is a linear functional on C2°(R¢) such that,
for every R > 0, there exists N € N and C > 0 such that, for every ¢ € C>°(R?) with
supp ¢ C B(0, R),

(1.22) KT, ) <C  sup sup |0%p(x)|.
a€N? |a|<N zeR?

If N can be chosen independent of R, we say that T' is of finite order and the order of
T is the smallest such N.

A tempered distribution T € S'(R?) is a linear functional on S(R?) such that there
exists M, N € N and D > 0 such that, for every ¢ € S(R?),

(1.23) (T.o)l <D sup  sup (14 [z[)*|0%p(z)|-

a€N? |a|<N zeR?
If N can be chosen independent of R, we say that T is of finite order and the order of T
is the smallest such N.

In the previous definition, (T, f) stands for T'(f) and is here a more convenient notation.
Let us recall that C°(R?) C S(RY). Further if we fix R > 0 and ¢ € C°(R?) with
supp ¢ C B(0, R), then for every o € N4, 9%p(z) = 0 if |z| > R. It follows that
(1+ [z)M|0%p(x)| < (1+ R)M[8%p(2)].
Thus, (1.23) implies (1.22) with C = D(1 + R)M. In particular, T € D'(R¢) and T has
order of at most N. In other words: we just proved the following;
LEMMA 1.2. Every tempered distribution is a distribution of finite order.

Before developping the properties of distributions, let us first notice that every locally
integrable function can be identified with a distribution.

ExaMPLE 1.3. Locally integrable functions
Let f € Lj,.(R?). Recall that this means that, for every R > 0, flg( r) € L*(R?). Note

loc

also that, for every ¢ € C°(R?),
Tr0) = [ Fla)ela)da
Rd

is well defined. Also T uniquely determines f. Indeed, fix ¢ € C.(RY) and let R > 0 such
that suppp C B(0,R). Write ¢;(x) = t~%p(z/t) so that p;(z) = 0 if |z| > tR. Then
for 0 <t < 1landy € B(0,S), pr(y —x) = 01if || > R+ S since |y — x| > |z| — |y| >
R+S5—S=R2>tR. It follows that

L) [ F@eir—)de = 1a0.50) | Taeres(@ @) de = Lo 0)(Lae.res /e

59
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Now 1p(0,r+)f so that (1g(,rts)f) * ¢t = 1p,rts)f in L' as t — 0. Therefore, there
exists a sequence t; — 0 such that 1z,5)(¥)(1B(0,r+5)f) * Yt = 1B(0,5)(¥)1B(0,R+5)f =
1(0,s)(y)f almost everywhere. It follows that f is determined almost everywhere on
B(0,5). As S is arbitrary, f is determined almost everywhere on R¢ by T7.

Finally, if ¢ € C° with supp ¢ C B(0, R),

| @
B(0,R)

This shows that T is a distribution of order 0.
However, it does not show that T is a tempered distribution. For this, we require that

x
f be tempered in the sense that there exists an integer m such that / M dr < 400

ra (1+|z))™

(Tl =| [ Freta)as

zeRd

< /B(O,R) |f(z)p(z)|de < /B(O’R) |f(z)] dz sup |o(x)].

then T is a tempered distribution since

(Tl =| [, f@)eta) as

L z[)"p(z)| dz @l x su z))"p(z
S/Rd (1+|x|)m(1+| )™ le(z)]d S/Rd (1+|$|)md xeﬂgl(1+| D™ le(@)].

In summary:

loc

Then Ty € D'(RY), is of order 0 and f — T is one-to-one.

LEMMA 1.4. For f € L}, (R?), define Ty : ¢ — (Tf, ) = /Rd f(x)p(z) do.

/()]

Further, if f is tempered in the sense that there exists an integer m such that / m dz <
R4 X
+00 then Ty € S8'(RY).

We leave as an exercice to extend the previous lemma to (T}, f) = / o(z) du(zx)
Rd

where 4 is a locally finite measure, i.e. pu(B(0,R)) < +oco for every R > 0. In this case,
T, € D'(R?). If further the measure y is tempered: there exists an integer m such that
/ _du(@) < 400, then T}, € §'(R?).
re (14 [z)™ ’

ExampLE 1.5. Dirac and Dirac comb
We can now give two further examples. The Dirac § “function”: for zo € R? and ¢ €
C.(RY), define (6,,,¢) = ¢(wo) and notice that this is a finite measure, thus a tempered
distribution of order 0.

More generally, we can define the Dirac comb as ), _, dr. More precisely, for ¢ €
Ce(R), define (3,7 0k, ¢) = D ez ¢(k). Note that this sum is finite so that it is well
defined and if supp ¢ C [N, N]| then

(L R

kEZ
In particular, ), , oy is a locally finite measure and thus a distribution of order 0. It is
actually also a tempered distribution: if p € S(R) then |p(z)| < (1 + |z|) 2 sup,er(l +
|2])?|ip()] thus

()l

N
< 3 lp(k)| < (2N + 1) sup o(a)].
he— N z€R

> (k)

keZ

1
< ————sup(1 + |z])?|p(x)].
> e Sl + e eto)
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DEFINITION 1.6. A distribution 7' € D’(R?) is said to be positive and we write 7' > 0
if, for every ¢ € C2°(R%) with ¢ > 0, we have (T, ¢) > 0.

LEMMA 1.7. A positive distribution is of order 0.

PROOF. Let T be a positive distribution and ¢ € C°(R?). Let R > 0 be such that
@(x) = 0 when |z| > R and let 1 € C>(R%) be such that ¢(z) = 1 if |x| < R. Let
[+ =|l¢ll ¥ £ ¢ sothat fr € C(R?) and fy > 0. It follows that

0 <AT f+) = (T, lello¥ £ ) = el oo (T, 9) £ (T’ @)

It follows that

(T, )| < (T, )loll o
which is exactly saying that T is of order 0. Note that the “constant” (T, v) depends on
1 which only depends on R. g

EXAMPLE 1.8. Principle value Note that  — 1/x is not in L}, (R%) so that it does
not fall in the scope of Example 1.3. We will now propose a substitute for it.

Let us define the following, for ¢ € S(R), let
1 p(x)

vp —, ) = lim dz.
{(vp—, ) = lim o @
xr
It is important to understand that this limit is not / de as this integral is divergent
R X

when ¢(0) # 0. For the limit to exist, we will use in a crucial way that we are integrating
over a symetric set (—oo, —¢] suple, +00). We then write

/ w(fv)dx:/ w(z)dx+/ p)
lz|>e T e<lel<1 ¥ lz|>1 T

For the second integral, write p(z) = 27 'zp(z) and use the fact that, as ¢ € S(R), zy is
bounded. Then
/ pla)
z>1 ¥

For the first integral, we use the fact that

/ dz /_5 dz Yz
S Za Eoo
e<lz|<1 ¥ -1 7 e X

Note that we are integrating an odd function over a symetric interval. It follows that

/ plz) o :/ plz) S0(0)/ dz
e<lzl<t ¥ e<lzj<t ¥ e<lzl<1 T

dz
< [ suplop(o)] = 2sup ap(o)]
|z|>1 T7 zeR T€R

T

L[ @O,
e<|a|<1

— (0
But, as ¢ € C!, z — M is continuous. Further, according to the mean value
x
— (0
theorem, M’ < sup |y’ (t)|. It follows that
€ teR
1
. o)y, [ e,
70 e<lzi<1 T -1 z
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[

All together this shows that Vp is a well defined tempered distribution of order at most

1:
ok oy [ e =) o),
{vp—. ) / ++/|ch1

and

< 2sup [¢(¢)].
teR

-1 x X
ans

(9 79 < 2(sup(1+ )0+ sup ¢ (0.

To check that the order is exactly 1, we consider functions sequence ¢,, € C°(R) with
0 < ¢, <1, suppe, C (0,2) (in particular ¢, = 0 in a neighbourhood of 0) and ¢, = 1
on (1/n,1). Then

1 +oo N 1 , 1 1
<VP*,<Pn>:/ #nl@) da:Z/ #n (@) dm:/ —dz=Inn — 4+
z 0 T 1/n T 1/n &

while |||l = 1. It follows that an inequality of the form (vp<,¢) < Cll¢||,, can not
hold for all functions ¢ € C°(R?) with support in [—2,2] and vp L is not of order 0.
In particular, this distribution is not of the form 7T for any locally integrable function

f
2. Convergence de suites de distributions

DEFINITION 2.1. Let (7),)n>0 and T be distributions, T,,, T € D'(R?). We say that
T, — T in D'(RY) if, for every ¢ € C(RY), (T,,,p) — (T, ).

Let (Ty,)n>0 and T be tempered distributions, T,,,T € S'(R?). We say that T,, — T
in §'(RY) if, for every ¢ € S(RY), (T, ) — (T, ¢).

Of course, convergence in &’'(R) implies convergence in D’(R9).
Donnons quelques exemples

EXAMPLE 2.2. Let T, =Y __ 6p and T =, ., 6, then T}, — T in S'(R?).

Indeed, this was already proved when we defined the Dirac comb and just amounts to
saying that the series ), ., ¢(k) converges when ¢ € S (R%). Note also that convergence
in D’(R%) is much easier: if ¢ € C.(R?) then there exists an integer N such that ¢(x) =0
if |z| > N + 1. But then (T, ¢) = (T}, @) for every n > N.

ExaMmpLE 2.3. Weak convergence in LP.
1
Let 1 < p,p’ < 40 Wlth + — = 1. Let f,,f € L?(RY) and assume that f, — f i.e.
p

weakly in LP, that is / fo(@)o(z)do — / f(x)o(z) dz for every ¢ € LP' (R%).
Rd

But S(R?) < L* (R?), it follows that (Tfn,go} (T}, @) for every p € S(R?), thus
Tf71 — Tf in Sl(Rd)

Note that if f,, € L] . converges in L} . to some f € L¥ then f, — f in the sense
of distributions d.e. in D'(R?). This is because convergence in LY means that, for every
R >0, fnlp(o,r) converges to flp(,g) strongly in L? thus weakly, thus in D'(R%). But

then, if ¢ € C°(R?), there exists R > 0 such that supp ¢ C B(0, R). It follows that
<fna <)0> = <fn]-B(0,R)> 90> — <le(O,R)7 90> = <.f7 <P>
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EXAMPLE 2.4. Approximation of unity Let g € S(R?) be a function with [, g(z) dz =
1 and let g, = n%g(nz). We have seen in Theorem 6.10 that, if ¢ € S(RY) C Cy(R¢) and
&(xz) = p(—x) then g, * » — ¢ uniformly, in particular g, * $(0) = @(0) = ©(0) = (g, ¢).
But

gn *P(0) = /Rd In(y)p(0 —y)dy = /Rd In(W)p(y) dy = (Ty, , @)

Thus Ty, — o which is usually denoted by g, — d¢ in the sense of (tempered) distributions.
Note that |g,(2)| = n¢|g(nz)| < Cn(1 + |nz|)~41 — 0 for every  # 0. So almost
everywhere convergence does not imply convergence in the sense of distributions.
According to the remark following the proof of Theorem 6.10, the result stays valid for
g € LY(RY).

EXAMPLE 2.5. Let w € RY with |w| = 1. Consider the functions f,, given on R? by
fulx) = e 2 @nw) and T,, = Ty, . Then, for ¢ € S(R™), (T}, @) = /d o(x)e2m@nw) qp —
R

p(nw) — 0 according to the Riemann-Lebesgue Lemma. Thus T,, — 0 in the sense of dis-
tributions.

Finally, we will accept without proof the following result (the proof relies on a refined
verion of Banach-Steinhaus’s theorem adapted to semi-norms and is beyond the scope of
this course)

THEOREM 2.6. Let (T},) be a sequence in D' (R?). Assume that, for every ¢ € C*(R%),
(T, ) has a limit. Define (T, p) =lim, o (T, ). Then T € D'(R?).

Let (T,,) be a sequence in S'(R?). Assume that, for every p € S(R?), (T}, ) has a
limit. Define (T, ) = lim, o0 (T, ). Then T € S'(RY).

3. Operations on distributions

Recall that, for a,w € R4, A > 0, A € GL,(RY) (a d x d invertible matrix) and f a
function on R?, we defined new functions on R¢

Taf(‘r) = f({L‘ - a)7 wa({);‘) = 6_2“‘-(“}’1‘)][(‘%)7 (5)\f(l‘) = f()\l'), AAf('r> = f(A_lx)
Also, if f is locally integrable, then f is uniquely determined by T, that is, by (T, ¢)
for all ¢. Thus, for instance 7, f is determined by

Ture) = [ fa=appla)ds = [ f)oly+a)dy = Ty ruf).

This can then be used as definition for 7,7 for any distribution 7. A similar reasoning
applies the the 3 other transforms and leads to the following

DEFINITION 3.1. For a,w € RY, A > 0, A € GL,(R%) and T € D'(R?) —resp. T €
S'(R?)—, define

— 7T (14T, p) = (T, 7_atp) for all p € C(RY) —resp. ¢ € S(RY);

— M,T: (M,T, ) = (T, M,p) for all ¢ € C(RY) —resp. p € S(RY);

= 0\T: (O\T, @) = /\_d<T, (51/,\<p> —resp. ¢ € S(RY);

— AAT:{6AT, @) = det(A)~HT, 5 4-1p) —tesp. ¢ € S(RY).

Then 7,T, M, T, 65T and AAT are in D'(R%) —resp. S'(R%)- and have same order as
T.

We leave as an exercice that the notation is coherent for all four operations when
T =Ty. Also, we leave as an exercice that those operation indeed lead to new distributions.
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Finally, if b € C> such that 9“b is bounded for every a € N, and T € D’(R%) or
S'(RY) then M,T defined as (M,T, ) = (T,by) also defines a distribution of same order
as T

DEFINITION 3.2. A distribution is said to be homogeneous if
EXAMPLE 3.3. Jq is homogeneous of degree

3.1. Elementary operations.

3.2. Differentiation.

DEFINITION 3.4. Differentiation

LeEMMA 35. Let T € D'(R) and T, = L=2L. Then Tj, — T' in D'(R?) when h — 0.
If T € S'(R) then Ty, — T' in S'(RY) when h — 0.

PROOF. O
!

LEMMA 3.6. IfT is homogeneous of degree x then 0T is homogeneous of degree k+ ||



