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CHAPTER 1

Basics of Banach spaces

The aim of this first Lecture is to recall the basic definitions on Banach spaces and to
illustrate them with some examples.

1. Definitions

Definition 1.1. Let E be a vector space over K = R or C.

• A norm on E is a mapping ‖.‖ from E to the non-negative reals R+ such that
for every λ ∈ K and every x, y ∈ E
(1) ‖0‖ = 0, ‖x‖ ≥ 0 and ‖x‖ = 0 implies that x = 0;
(2) ‖λx‖ = |λ|‖x‖;
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

We then say that (E, ‖.‖) is a normed vector space.
• A sequence (en) in E converges to e ∈ E if ‖en − e‖ → 0, that is if:

for every ε > 0 there exists N (depending on ε) such that, for every n ≥ N ,
‖en − e‖ ≤ ε.

In this case, we write e = lim en.
• A sequence (en) in E is a Cauchy sequence if

for every ε > 0 there exists N (depending on ε) such that, for every m,n ≥ N ,
‖en − em‖ ≤ ε.

Example 1.2. Let E be a finite dimensional vector space, (ek)k=1,...,d a basis of E.

Each e ∈ E can then be uniquely written as e =

d∑
k=1

xkek. We can thus define ‖x‖∞ =∑d
k=1 |xk|.

It is easy to check that this defines a norm on E.

Moreover, if (fn) is a sequence in E, we can write each fn as fn =

d∑
k=1

x(k)
n ek. It is easy

to check that fn converges (resp. if a Cauchy sequence) if and only if each (x
(k)
n ) converges

(resp. is a Cauchy sequence).

But (x
(k)
n ) is a sequence in R and in R (either by definition or after some cumbersome

work depending on how R is constructed) Cauchy sequences converge.
Note that this norm depends on the chosen basis.

Remark 1.3. It is an easy exercice to show that every convergent sequence is a Cauchy
sequence. The converse may not be true. This shows that the chosen norm is not well
adapted to the vector space E.
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4 1. BASICS OF BANACH SPACES

Definition 1.4. Let E be a vector space and ‖.‖, ‖|.|‖ be two norms on E. We say
that they are equivalent if there exists a constant C such that, for every e ∈ E,

1

C
‖e‖ ≤ ‖|e|‖ ≤ C‖e‖.

This of course defines an equivalence relation on norms which simply means that if
‖.‖1 is equivalent to ‖.‖2 which in turn is equivalent to ‖.‖3, then ‖.‖1 is equivalent to ‖.‖3.

The following lemma is a simple exercice left to the reader:

Lemma 1.5. Let E be a vector space and ‖.‖, ‖|.|‖ be two equivalent norms on E.
Then every Cauchy sequence (resp. convergent sequence) for one norm is also a Cauchy
sequence (resp. convergent sequence) for the second one.

A more subtil fact is the following:

Theorem 1.6. Let E be a finite dimensional vector space. Then any two norms on E
are equivalent.

Sketch of proof. It is enough to fix a basis (ek) of E and to show that any norm
on E is equivalent to the ‖.‖∞ norm defined in the above example.

Take e ∈ E, write e =
∑
xkek and notice that

‖e‖ =
∥∥∥∑xkek

∥∥∥ ≤∑ |xk|‖ek‖ ≤
(∑

‖ek‖
)

max |xk| =
(∑

‖ek‖
)
‖e‖∞.

The converse is more subtle and uses the following facts:

• from the above inequality, we get that e → ‖e‖ is a continuous mapping from
E, ‖.‖∞ to R
• the unit sphere of E, ‖.|∞ SE = {e ∈ E : ‖e‖∞ = 1} is compact (we will come

back to this notion in the second semester and prove this fact)
• a continuous function over a compact set is bounded.

The remaining of the proof is then simple: there exists C > 0 such that, for every
e ∈ SE , ‖e‖ ≤ C. And, if e′ ∈ E

– either e′ = 0 and ‖e′‖ = 0 = ‖e′‖∞
– or e′ 6= 0 and then e := 1

‖e′‖∞ e
′ ∈ SE thus ‖e′‖

‖e′‖∞ = ‖e‖ ≤ C therefore ‖e′‖ ≤
C‖e‖. �

Definition 1.7. Let E, ‖.‖ be a normed vector space. Then E is a complete if every
Cauchy sequence in E is convergent. We then aso say that E is a Banach space.

Remark 1.8. This is a key property in analysis. It allows to define an object as a
limit of a sequence.

Indeed, contrary to the definition of a convergent sequence, the definition of a Cauchy
sequence does not require to know (or guess) the limit.

Many examples will occur in this course.

Theorem 1.9. Every finite dimensional normed vector space is a Banach space.

Proof. We have already seen that E, ‖.‖∞ (with some fixed basis) is complete. Since
all norms are equivalent, Cauchy sequences for any other norm ‖.‖ are also Cauchy se-
quences for the ‖.‖∞ norm thus are convergent for the ‖.‖∞ and, by equivalence of norms
again, are also convergent for ‖.‖. �
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2. An example: the space of continuous functions

Theorem 2.1. Let E = C([0, 1]) = {f [0, 1] → C : f is continuous on [0, 1]}. Endow
E with the norm defined by

‖f‖∞ = sup
x∈[0,1]

|f(x)|.

Then E is a Banach space.

Remark 2.2. It is a basic calculus exercice to show that ‖f‖∞ is well-defined (conti-
nous functions over the compact set [0, 1] are bounded) and that it is a norm.

Before we prove this result, let us recall the following fact from calculus:

Lemma 2.3. Let (fn) be a sequence C([0, 1]) and let f be a function [0, 1] → C. If
supx∈[0,1] |fn(x)− f(x)| → 0 then f is continous over [0, 1] so that fn → f in E

Proof. Fix x0 ∈ [0, 1] and let ε > 0. Then there exists n such that, for every x ∈ [0, 1],
|fn(x) − f(x)| ≤ ε. As fn is continuous in x0, there exists a neighborhood V of x0 such
that, for every x ∈ V |fn(x)− fn(x0)| ≤ ε. But then

|f(x)− f(x0)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)| ≤ 3ε

which shows continuity of f in x0. �

We can now prove the theorem.

Proof. Let (fn) be a Cauchy sequence: for every ε > 0 there is an N such that, if
m,n ≥ N and x ∈ [0, 1] |fn(x)− fm(x)| < ε.

First fix x ∈ [0, 1], the above shows that
(
fn(x)

)
n

is a Cauchy sequence in C, which is

complete. Therefore
(
fn(x)

)
n

has a limit that we denote by f(x). This defines a function

f [0, 1]→ C. It remains to show that this f is also a limit in the sense of ‖f‖∞. Once this
is done, a result in the calculus course shows that f is then continuous.

But this is simple: fix ε > 0, take N such that if n ≥ N and x ∈ [0, 1], for every m ≥ N ,
|fn(x)−fm(x)| < ε. Fix x and n ≥ N and let m go to infinity then |fn(x)−f(x)| ≤ ε, thus,
for every n ≥ N , ‖fn − f‖∞ := supx∈[0,1] |f(x)| ≤ ε which precisely means that fn → f in
E. �

The following proof has highlited the fact that there are two convergens in C([0, 1]):

Definition 2.4. Let (fn) be a sequence C([0, 1]) and let f be a function [0, 1] → C.
We say that

– fn → f pointwise (or simply) if, for every x ∈ [0, 1], fn(x)→ f(x) in C
– fn → f uniformly if fn → f for the ‖·‖∞ norm.

The first step in the above proof amounts to showing that uniform convergence implies
pointwise convergence. The converse is false as the example fn(x) = xn shows. Indeed

fn converges pointwise to the function f defined by f(x) =

{
0 if x 6=
1 if x = 1

. As f is not

continuous while fn is, the convergence can not be uniform.
Note that one can define other norms on C([0, 1]), for instance, one can show that the

following is also a norm:

‖ϕ‖1 =

∫ 1

0

|ϕ(x)|dx.

As fn → f for this norm we can deduce that:
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– the ‖·‖1 is not equivalent to the ‖·‖∞ norm
– as f is not continuous, C([0, 1]), ‖·‖1 is not complete.
– uniform convergence is a stronger convergence than the convergence in ‖·‖1-norm.

The convergence in this last norm will lead us to introduce a larger space.

Remark 2.5. [0, 1] plays no particular role here: we only use its compacity to show
that ‖f‖∞ is well defined. In particular

– everything in this section is valid if C([0, 1]) is replaced by C(K) where K is a compact
set

– everything in this section is valid if C([0, 1]) is replaced by Cb(X) the set of bounded
continuous functions on a metric space X.

3. A second example: bounded linear mappings

In this section, E,F will be two Banach spaces.
Let us recall the following fact about linear mappings:

Theorem 3.1. Let T : E → F be linear. Then the following are equivalent:

(1) T is continuous on E;
(2) T is continuous in 0;
(3) T is bounded over the unit ball of E: there exists C such that, for every x ∈ E

with ‖x‖ ≤ 1, ‖Tx‖ ≤ C.
(4) there exists K such that, for every x ∈ E, ‖Tx‖ ≤ K‖x‖.

Sketch of proof. The equivalence of (1) and (2) follows from the fact that T (x)−
T (x0) = T (x− x0) = T (x− x0)− T (0).

(4) clearly implies (3) with C = K. For the converse, if x 6= 0, then x
‖x‖ has norm 1

thus ‖Tx‖‖x‖ =
∥∥∥T x
‖x‖

∥∥∥ ≤ C thus (4) holds with K = C.

Finally (4) clearly imples (2). Finally, if (2) holds, take ε = 1, there exists η > 0 such
that, if ‖x‖ ≤ η, ‖Tx‖ ≤ 1. It follows that, when ‖x‖ ≤ 1, then ‖ηx‖ ≤ η thus

‖Tx‖ =
1

η
‖T (ηx)‖ ≤ 1

η

which completes the proof. �

Lemma 3.2. If E has finite dimension, then every linear map E → F is continuous.

Sketch of proof. This is simple to show for the ‖·‖∞ norm on E (with a fixed
basis) since, writting x =

∑
xiei we get Tx =

∑
xiTei thus

‖Tx‖ ≤
∑
|xi|‖Tei‖ ≤

(∑
‖Tei‖

)
‖x‖∞.

Then usuing the fact that all norms are equivalent in E, we conclude tha T is also contiuous
for any other norm. �

We can now define the following for a continous (bounded) linear mapping T : E → F :

‖T‖ = sup
x∈E,‖x‖E≤1

‖Tx‖F = sup
x∈E,‖x‖E=1

‖Tx‖F sup
x∈E,x6=0

‖Tx‖F
‖x‖E

.

It is an exercice to show that this three quantities are indeed equal and that they define
a norm on the set B(E,F ) := {T : E → F linearandcontinuous}. Such a norm on B(E,F )
is called a subordinate norm.
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Theorem 3.3. The space B(E,F ) endowed with this norm is a Banach space.

Proof. We will just outline the proof, the details are left to the reader as they are
essentally the same as for C([0, 1]).

Take Tn to be a Cauchy sequence in B(E,F ).
Step 1: observe that for each x ∈ E, Tn(x) is a Cauchy sequence in F . We can then

define T (x) = limTn(x).
Step 2: T is easily seen to be linear.
Step 3: Tn is Cauchy thus a bonded sequence, that is, there exists C such that ‖Tn‖ ≤

C. In other words, for every x ∈ E with ‖x‖ ≤ 1, ‖Tn(x)‖ ≤ C.
As the norm is a continuous function, ‖Tn(x)‖ → ‖T (x)‖ thus for every x ∈ E with

‖x‖ ≤ 1, ‖T (x)‖ ≤ C and T is bounded, thus continuous.
Step 4: ‖Tn − T‖ → 0 so that Tn → T in B(E,F ). �

A particular case is the dual space of E:

Definition 3.4. Let E be a Banach space over K = R or C. The dual of E is the
Banach space E′ = B(E,K).

If (E′)′ = E then E is said to be reflexive.

The key example is the case when E is a Hilbert space. Further examples will be given
in this course:

Theorem 3.5 (Riesz). If H is a Hilbert space over K then H ′ can be identified with
H in the sense that, for every element ` ∈ H ′ there exists a unique a ∈ H such that
`(x) = 〈x, a〉 where 〈., .〉 is the scalar product on H.

Note that Cauchy-Schwarz implies that x → 〈x, a〉 is indeed bounded linear mapping
on H (note that when H is a complex Hilbert space, the scalar product is anti-linear in
the second variable).

We can now define a new convergence:

Definition 3.6. Let E be a Banach space and E′ its dual. Let (xn) be a sequence in
E and x ∈ E. We say that xn → x weakly and write w − limxn = x if, for every ` ∈ E′,
`(xn)→ `(x).

The term “weak” convergence is justified by the fact that convergence implies weak
convergence (and is thus also called strong convergence). Indeed, if (xn) converges to x, as
` is continuous, `(xn)→ `(x).

It turns out that, if E is finite dimensional, then the converse is true as well. Indeed
if (ek)k=1,...,d is a basis of E then every x ∈ E can be uniquely written as x =

∑
xkek.

We can then define the mapping lk : E → K by lk(x) = xk. The uniqueness of the
xk also implies that each lk is linear. As E is finite dimensional, we also get that lk is
continuous, that is lk ∈ E′. But now, if (x(n)) converges weakly to x, for each k = 1, . . . , d
lk(x(n))→n→∞ lk(x) and then

x(n) =

d∑
k=1

lk(x(n))ek →n→∞

d∑
k=1

lk(x)ek = x.

In infinite dimensions, the situation is different, even in separable Hilbert spaces. For
instance, such a space has an orthonormal basis (en). Such a sequence can not converge
(and even has no sub-sequence that is convergeant) since, for every m 6= n

‖en − em‖2 = ‖en‖2 + ‖em‖2 + 2<〈en, em〉 = 2.



8 1. BASICS OF BANACH SPACES

On the other hand, if ` ∈ H ′ then, as seen above, there exists a ∈ H such that `(x) = 〈x, a〉.
But ∑

n≥0

|`(en)|2 =
∑
n≥0

|〈en, a〉|2 = ‖a‖2.

In particular, this series is convergent, thus its general term goes to 0: |`(en)|2 → 0 thus
`(en)→ 0 which is precisely w − lim en = 0.

The notion of weak convergence is essential in analysis in infinite dimensions. The main
reason (seen in the next semester) is that closed bounded sets will no longer be compact
in that case, but will still be weakly compact.

The notion of weak-convergence should not be confused with Cesaro-convergence which
is an other usefull convergence that is weaker than classical convergence:

Definition 3.7. Let E be a Banach space, x ∈ E and (xn)n≥0 a sequence in E. We
say that (xn) Cesaro-converges to x if the mean of its n first terms

x1 + x2 + · · ·+ xn
n

→ x.

It is not hard to see that a sequence can be Cesaro convergent without being convergent.
For instance, if we consider the real sequence given by xn = (−1)n, then

x1 + x2 + · · ·+ xn
n

=

{
−1/n if n is odd

0 if n is even
→ 0.

However, the converse is true

Lemma 3.8. Assume that (xn) converges to x then (xn) Cesaro-converges to x.

Proof. First note that

x1 + x2 + · · ·+ xn
n

− x =
(x1 − x) + (x2 − x) + · · ·+ (xn − x)

n
.

By replacing xn by xn − x we may thus assume without loss of generality that x = 0.
Let ε > 0, and take N such that, for all n ≥ N , ‖xn‖ ≤ ε. Then∥∥∥∥x1 + x2 + · · ·+ xn

n

∥∥∥∥ ≤ ‖x1‖+ · · ·+ ‖xN−1‖+ ‖xN‖+ · · ·+ ‖xn‖
n

≤ C

n
+

(n−N + 1)

n
ε

where C = ‖x1‖+ · · ·+ ‖xN−1‖. Now chose N ′ ≥ C/ε, then for n ≥ N ′,∥∥∥∥x1 + x2 + · · ·+ xn
n

∥∥∥∥ ≤ ε+ ε

which shows the convergence. �

4. Convergence of series

In this section, we gather a few facts that will be used in this course.
Let E be a Banach space. To a sequence (xn)n≥0 in E we associate the sequence

(SN )N≥0 of partial sums SN =
∑N
n=0.

Definition 4.1. We say that the series
∑∞
n=0 xn converges if the sequence of partial

sums SN converges and in this case,
∑∞
n=0 xn = limSN .

We will say that
∑∞
n=0 xn is normally convergent if the (real) series

∑∞
n=0 ‖xn‖ con-

verges
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Note that in R or C, normal convergence is called absolute convergence.
We will need the following two lemmas:

Lemma 4.2. Let (xn) be a sequence in a Banach space E. If
∑∞
n=0 xn is normally

convergent it is convergent. The converse is false

Proof. The converse is already false in R as shows the classical example xn =
(−1)n/n.

The other direction is a direct copy of the proof in the real case. Assume that∑∞
n=0 ‖xn‖ is convergent and consider the partial sums SN =

∑N
n=0 xn then for N ≥M ,

‖SN − SM‖ =

∥∥∥∥∥
N∑

n=M+1

xn

∥∥∥∥∥ ≤
N∑

n=M+1

‖xn‖

from which one deduces that SN is a Cauchy sequence and is thus convergent. �

It turns out that this property characterizes Banach spaces, a fact that is sometimes
convenient to show that a space is complete:

Lemma 4.3. Let E, ‖.‖ be a normed vector space in which every normally convergent
series is convergent. Then E is a Banach space.

Proof. Assume E has this property and let (xn) be a Cauchy sequence.
First, using the definition of a Cauchy sequence, we can construct an increasing se-

quence nk of integers such that
∥∥xnk+1

− xnk

∥∥ ≤ 10−k.
Then define uk = xnk+1

− xnk
and note that

— the series
∑
uk is normally convergent, thus convergent

— as xnN
=
∑N−1
k=0 uk + xn0

, the sequence xnk
is therefore convergent.

Finally, one uses the follwing simple fact

Lemma 4.4. A Cauchy sequence with a convergent sub-sequence is convergent.

�

Proof of Lemma 4.4. Let (fk) be a Cauchy sequence and assume that a subsequence
converges: fkj → f when j →∞.

Let ε > 0, there exists N such that, if k, l ≥ N , ‖fk − fl‖p ≤ ε/2. There exists J such

that, if j ≥ J , kj ≥ N (since kj →∞ by definition of a subsequence) and
∥∥fkj − f∥∥p ≤ ε/2

(the sequence (fkj )j converges to f). But then ‖fk − f‖p ≤
∥∥fk − fkj∥∥p +

∥∥fkj − f∥∥p ≤ ε
which shows that fk → f . �





CHAPTER 2

Lp spaces

1. Basics of integration theory

In this lecture, (Ω,B, µ) will be a σ-finite measure space. Recall that this means that
there exists a countable family (Ωn)n≥1 such that

(1) n ≥ 1, Ωn+1 ⊂ Ωn;
(2)

⋃
n≥1 Ωn = Ω;

(3) µ(Ωn) < +∞.

Note that if we consider Ω̃n = Ωn+1 \ Ωn, we obtain a family that satifies

(1) n 6= m ≥ 1, Ω̃m ∩ Ω̃n = ∅;
(2)

⋃
n≥1 Ω̃n = Ω;

(3) µ(Ω̃n) < +∞.

Example 1.1. The three basic examples one should keep in mind are the following:

(1) Ω an open subset of Rd endowed with the Lebesgue measure dx, or more generally,
a measure of the form ω(x)dx for some (measurable) weight function ω : Ω→ R+.

Note that if ω = 1 then this measure space is finite if and only if Ω is bounded.
(2) Ω = {1, . . . , d} endowed with the counting measure µ({k}) = 1. Recall that a

function f on Ω is just a vector f =
(
f(1), . . . , f(d)

)
∈ Cd and that∫

f(x) dµ(x) =

d∑
k=1

f(k).

(3) Ω = N endowed with the counting measure µ({k}) = 1. Recall that a function f
on Ω is now a sequence f =

(
f(k)

)
k∈N ∈ CN and that∫

f(x) dµ(x) =

∞∑
k=0

f(k).

We will need a few results from your course on integration.

Theorem 1.2 (Fubini).
Let (Ω1,B1, µ1) and (Ω2,B2, µ2) be two σ-finite measure spaces and let f be measurable on
Ω1 × Ω2.

If f ≥ 0, then the three following integrals are equal (eventually +∞)∫
Ω1×Ω2

f(x, y)dµ1 ⊗ µ2(x, y),

∫
Ω1

(∫
Ω2

f(x, y)dµ2(y)

)
dµ1(x),

and ∫
Ω2

(∫
Ω1

f(x, y)dµ1(x)

)
dµ2(y).

11
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In particular, the functions x→
∫

Ω2

f(x, y)dµ2(y) and y →
∫

Ω2

f(x, y)dµ1(x) are mesurable.

If f takes real or complex values, the same conclusion holds provided∫
Ω1×Ω2

|f(x, y)|dµ1 ⊗ µ2(x, y) < +∞.

In this case, the three integrals are finite

Theorem 1.3 (Monotone Convergence – Beppo-Levi).
Let (Ω,B, µ) be a measure space. Let (fn)n∈N be a sequence of measurable functions on Ω
such that

(i) for µ-almost every t ∈ Ω, fn(t) is increasing;
(ii) fn ≥ 0 µ-almost everywhere.

Then lim fn exists µ-almost everywhere (eventually lim fn(t) = +∞) and

lim
n→+∞

∫
Ω

fn(t) dµ(t) =

∫
Ω

lim
n→+∞

fn(t) dµ(t)

(in particular, the left hand side and the right hand side are simultaneously finite or infi-
nite).

Theorem 1.4 (Dominated Convergence – Lebesgue).
Let (Ω,B, µ) be a measure space. Let (fn)n∈N and f bemesurable functions on Ω such that

(i) for µ-almost every t ∈ Ω, fn(t)→ f(t) when n→ +∞
(ii) there exists a measure function ϕ on Ω such that,

(a) ϕ is non-negative;
(b) for µ-almost every t ∈ Ω, |fn(t)| ≤ ϕ(t), thus |f(t)| ≤ ϕ(t);
(c) ϕ is integrable:

∫
Ω
ϕ(t) dµ(t) < +∞.

Then

∫
Ω

fn(t) dµ(t)→
∫

Ω

f(t) dµ(t) when n→ +∞.

Note that, contrary to Beppo-Levi’s theorem, fn is not required to be non-negative.
This hypothesis is replaced by the domination hypothesis (the function ϕ).

Two important consequences of Lebesgue’s theorem are the following results about
continuity and differentiability of integrals depending on a parameter

Corollary 1.5 (Continuity of intégrals depending on a parameter – Lebesgue).
Let (Ω,B, µ) be a measure space and (X, d) a metric space. Lett F : Ω × X → C be a
function such that :

(i) for µ-almost every t ∈ Ω, x 7→ F (t, x) is continuous;
(ii) there exists an integrable function ϕ on Ω such that, for every x ∈ X and µ-almost

every t ∈ Ω, |F (t, x)| ≤ |ϕ(t)|.

Then f : X → C defined by f(x) =

∫
Ω

F (t, x) dµ(t) is continuous on X.

Proof. Let x et x0 ∈ X, then

f(x)− f(x0) =

∫
Ω

F (t, x) dµ(t)−
∫

Ω

F (t, x0) dµ(t) =

∫
Ω

(
F (t, x)− F (t, x0)

)
dµ(t).

But, for µ almost every t, |F (t, x) − F (t, x0)| ≤ 2ϕ(t) ∈ L1 and, by continuity of F in
x0, F (t, x) − F (t, x0) → 0 when x → x0. By dominated convergence, f(x) → f(x0) when
x→ x0, thus f is continuous in x0. �
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Corollary 1.6 (Differentiability of intégrals depending on a parameter – Lebesgue).

Let (Ω,B, µ) be a measure space and X ⊂ Rd be open. Let F : Ω×X → C a function such
that :

(i) for µ-almost every t ∈ Ω, x 7→ F (t, x) is differentiable;
(ii) there exists an integrable function ϕ on Ω such that, for every x ∈ X and µ-almost

every t ∈ Ω, |F (t, x)| ≤ |ϕ(t)|;
(iii) there exists an integrable function ψ on Ω such that, for every x ∈ X and µ-almost

every t ∈ Ω,

∣∣∣∣∂F∂x (t, x)

∣∣∣∣ ≤ |ψ(t)|;

Then f : X → C defined by f(x) =

∫
Ω

F (t, x) dµ(t) is differentiable on X.

We leave the proof of this fact as an exercice.

2. Lp-spaces: defintion

Let 1 ≤ p < +∞ be a real number and (Ω,B, µ) a σ-finite measure space. We define

Lp(Ω, µ) =

{
f : Ω→ C, f µ−measurable,

∫
Ω

|f(x)|p dµ(x) < +∞
}
.

This space is endowed with the “norm” défined by

‖f‖p =

(∫
Ω

|f(x)|p dµ(x)

) 1
p

.

This defines a norm in the following sense:

(i) For f ∈ Lp(Ω, µ), we havea ‖f‖p ≥ 0 and ‖f‖p = 0 if and only if f = 0 µ-almost
everywhere.

(ii) For f ∈ Lp(Ω, µ) and λ ∈ C, we have λf ∈ Lp(Ω, µ) and ‖λf‖p = |λ‖f‖p.
(iii) For f, g ∈ Lp(Ω, µ), and f + g ∈ Lp(Ω, µ) we have ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Remark 2.1. It is important to notice that, in the particular case p = 2, L2Ω, µ) is a
Hilbert space and that the norm is associated to the scalar product

〈f, g〉L2(Ω,µ) =

∫
Ω

f(x)g(x) dµ(x).

Sketch of proof. Note that (ii) is obvious. For (i), we use the fact that if a non-
negative function has 0 integral, then it vanishes almost everywhere. The last point, (iii)
is much more subtle (excepted when p = 1 and when p = 2 when it is a consequence of
the Cauchy-Schwarz inequality) and will be proved later. However, it is easy to prove that
Lp(Ω, µ) is a vector space. Indeed

|f + g|p ≤ (|f |+ |g|)p = 2p
(
|f |+ |g|

2

)p
≤ 2p−1(|f |p + |g|p)

since x 7→ xp is convex on [0,+∞) when p ≥ 1. Thus, if f, g ∈ Lp(Ω, µ) then f + g ∈
Lp(Ω, µ). �

For p = +∞, one defines

L∞(Ω, µ) = {f : Ω→ C, f µ−measurable, il existe K > 0 telle que |f(x)| ≤ K, µ−p.p.}.
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One then endows this space with the “norm” (with the same meaning as previously)

‖f‖∞ = inf{K |f(x)| ≤ K µ− a.e.}.

Remark 2.2.
— We will simply write Lp(Ω) = Lp(µ) = Lp := Lp(Ω, µ) when either Ω, µ or both are
implicitly fixed When µ is the counting measure, one often write `p(Ω) = Lp(Ω, µ).

— It is important to understand that ‖f‖∞ is not the supremum of f but the essential
supremum. The two quantities don’t coincide in general. For instance, if f is defined on

R by f(x) =

{
1 si x ∈ Q
0 sinon

then sup |f | = 1 while ‖f‖∞ = 0 (Q has measure 0 so that

f(x) = 0 almost everywhere for the Lebesgue measure).
Of course, if f is continuous, then sup |f | = ‖f‖∞.

The notation L∞ is justified by the following fact that we leave as an exercice:

Exercice 2.3.

(1) Show that, if f ∈ Lq ∩ L∞ then, for p > q, f ∈ Lp.
(2) Show that, moreover, ‖f‖p → ‖f‖∞ when p→ +∞.

The “norms” that we have just defined do not distinguish all measurable functions
in the sense that ‖f − g‖p = 0 only implies that f = g µ-almost everywhere and not
everywhere.

To avoid that nuisance, one can re-define Lp(Ω, µ) so that its elements are “equivalence

classes” of functions. More precisely, if f ∈ Lp(Ω, µ), we may define f̃ as the set of all
functions h such that f−h = 0 µ-almost everywhere and we then write h ∼ f . In particular,
h ∈ Lp(Ω, µ) and ‖h‖p = ‖f‖p. Moreover, if f ∼ h and h ∼ g then f ∼ g (a finite union

– and even a countable one– of sets of measure zero still has measure zero), thus f̃ = h̃.
Finally, we define

‖f̃‖p = ‖f‖p
and this does not depend on the choice of f in f̃ .

Finally, if f̃ and g̃ are the equivalence classes of some f and g ∈ Lp(Ω, µ) and λ, µ ∈ C,

we define λf̃ + µg̃ = (λf + µg)̃ . It is easy to see that this does not depend on the choice

of f and g in f̃ and g̃.
We now have two vector spaces. One consists of functions while the other one is a set

of equivalence classes of functions. In the first one, the norm is not really a norm (‖f‖ = 0
does not imply f = 0) while in the second one, it is!

Both spaces are denoted by Lp(Ω, µ) and we will use the following abuse of language:

let f be a function in Lp(Ω, µ) to mean let f̃ ∈ Lp(Ω, µ) and let f ∈ f̃ . This is very
confortable, but one has to keep in mind that f = g means f = g µ-almost everywhere.
Further, if x0 ∈ Ω, then f(x0) does not make sense if µ({x0}) = 0.

Of course if, for some reason, one knows that f̃ contains a (necessarily unique) contin-

uous function, then the f ∈ f̃ we chose is this continuous function and f(x0) has its usual
meaning.

Also, if µ is the counting measure, i.e. in `p, this problem does not occur since
µ({x0}) = 1.

Remark 2.4. We would like to stress that f is continuous almost everywhere is not
the same thing as f̃ contains a continuous function.
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For instance if f = 1Q is the function defined by f(x) =

{
1 if x ∈ Q
0 otherwise

then f is

nowhere continuous but f = 0 almost everywhere and the 0 function is of course continuous.

An other example is the following: f(x) =

{
1 if x = 0

1/x otherwise
, then f is continous

almost everywhere but there is no continuous function g on R such that f(x) = g(x) for
almost every x.

3. Lp-spaces: Hölder and Minkowski

Theorem 3.1 (Hölder’s Inequality).

Let (Ω,B, µ) be a measured space. Let 1 ≤ p, p′ ≤ +∞ be such that
1

p
+

1

p′
= 1 (with the

convention p′ = +∞ when p = 1 and vice versa). Let f ∈ Lp(Ω, µ) and g ∈ Lp′(Ω, µ), then
fg ∈ L1(Ω, µ) and∣∣∣∣∫

Ω

f(x)g(x) dµ(x)

∣∣∣∣ ≤ ∫
Ω

|f(x)g(x)| dµ(x) ≤
(∫

Ω

|f(x)|p dµ(x)

) 1
p
(∫

Ω

|g(x)|p
′
dµ(x)

) 1
p′

.

Moreover,
— equality occurs and the first inequality if and only if there is a θ ∈ R such that

f(x)g(x) = eiθ|f(x)g(x)|.
— if f 6= 0 equality occurs and the second inequality if and only if there is a real λ ≥ 0

such that

(i) when 1 < p < +∞, |g(x)| = λ|f(x)|p−1 µ-almost everywhere;
(ii) when p = 1, |g(x)| ≤ λ µ-almost everywhere and |g(x)| = λ for µ-almost every x

for which f(x) 6= 0;
(iii) when p = +∞, |f(x)| ≤ λ µ-almost everywhere and |f(x)| = λ for µ-almost every

x for which g(x) 6= 0;

Remark 3.2.
— When p = 2 then q = 2 then Hölder’s Inequality is the well known Cauchy-Schwarz
Inequality.

— The first inequality and its equality case are trivial facts following from the positivity
of the integral of positive functions.

Exercice 3.3.

Show that, if 1 ≤ pi ≤ +∞ are such that

m∑
i=1

1

pi
= 1, then∣∣∣∣∣

∫
Ω

m∏
i=1

fi(x) dµ(x)

∣∣∣∣∣ ≤
m∏
i=1

‖fi‖pi .

Exercice 3.4.
Endow R with the Lebesgue measure dx. For a function f on R and λ > 0, define a new
function fλ on R through fλ(x) = f(λx).

(1) Express ‖fλ‖p in terms of ‖f‖p.
(2) Assume that there is a constant C such that, for every f ∈ Lp(R), g ∈ Lq(R), we

have fg ∈ Lr(R) and

(3.1) ‖fg‖r ≤ C‖f‖p‖g‖q
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Replacing f, g by fλ, gλ in (3.1) and letting λ vary between 0 and +∞, which
relation can you deduce on p, q, r.

(3) Assume now that p, q, r satisfy this relation. Prove (3.1) using Hölder.

Proof. When either f = 0 or g = 0, there is notinhg to prove.
The cases p = 1 and p = +∞, are trivial. We may thus assume that 1 < p < ∞ thus

1 < p′ <∞ and f, g 6= 0. This allows to define

u =

(
|f |
‖f‖p

)p
and v =

(
|g|
‖g‖p′

)p′
.

As log is concave, one gets that, for 0 < α < 1, uαv1−α ≤ αu + (1 − α)v. In particular,
taking α = 1/p, we get

|f |
‖f‖p

|g|
‖g‖p′

≤ 1

p

|f |p

‖f‖pp
+

1

p′
|g|p′

‖g‖p
′

p′

.

Integrating with respect to µ, we get the result.
For the equality case, log is actually strictly concave, which implies that 0 < α < 1,

uαv1−α < αu+ (1− α)v unless u = v. The result follows. �

Theorem 3.5 (Jensen’s Inequality).
Let (Ω,B, µ) be a measure space with µ a finite measure. Let J : R → R be a C1 convex
function. For f ∈ L1(Ω, µ), write

〈f〉 =
1

µ(Ω)

∫
Ω

f(x) dµ(x)

for its mean over Ω. Then

(i) [J ◦ f ]−, the negative part of J ◦ f is in L1(Ω, µ), thus

∫
Ω

J ◦ f(x) dµ(x) is well

defined (possibly +∞);
(ii) J(〈f〉) ≤ 〈J ◦ f〉, that is

J

(
1

µ(Ω)

∫
Ω

f(x) dµ(x)

)
≤ 1

µ(Ω)

∫
Ω

J
(
f(x)

)
dµ(x).

Proof. As J is convex and C1, for a, t ∈ R,

J(t) ≥ J(a) + J ′(a)(t− a).

Taking t = f(x) and a = 〈f〉, this leads to

(3.2) J
(
f(x)

)
+
− J

(
f(x)

)
− = J

(
f(x)

)
≥ J(〈f〉) + J ′(〈f〉)f(x)− J ′(〈f〉)〈f〉.

In particular, let x be such that J
(
f(x)

)
− 6= 0 thus J

(
f(x)

)
+

= 0, and

0 ≤ J
(
f(x)

)
− ≤ −J ′(〈f〉)f(x) + J ′(〈f〉)〈f〉 − J(〈f〉)
≤ |J ′(〈f〉)||f(x)|+ |J ′(〈f〉)〈f〉 − J(〈f〉)|.

As f ∈ L1, |J ′(〈f〉)||f(x)| ∈ L1 and µ is a finite measure, constant functions are integrables,
thus |J ′(〈f〉)〈f〉 − J(〈f〉)| ∈ L1. the first part of the theorem is prove.

Finally, integrating (3.2), we get

1

µ(Ω)

∫
Ω

J
(
f(x)

)
dµ(x) ≥ 1

µ(Ω)

∫
Ω

J(〈f〉) dµ(x) +
J ′(〈f〉)
µ(Ω)

∫
Ω

f(x)− 〈f〉dµ(x).
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But
1

µ(Ω)

∫
Ω

f(x)− 〈f〉dµ(x) = 0

from which Jensen’s inequality follows. �

The result is valid for any non-negative convex function J . This comes from the fact
that such a function always satisfies an inequality of the form J(t) ≥ J(a) + c(t − a). Of
course c = J ′(a) only when J is differentiable in a.

From this, we can deduce a second proof of Hölder’s inequality

Second proof of Hölder. Up to replacing f , g by |f |, |g|, we may assume that
f, g ≥ 0. Again, the cases p = 1 and p = +∞ are obvious so that we also assume that
1 < p < +∞.

Let Ω′ = {x ∈ Ω : g(x) > 0}. Then∫
Ω

fp(x) dµ(x) =

∫
Ω′
fp(x) dµ(x) +

∫
Ω\Ω′

fp(x) dµ(x) ≥
∫

Ω′
fp(x) dµ(x)

while∫
Ω

f(x)g(x) dµ(x) =

∫
Ω′
f(x)g(x) dµ(x) et

∫
Ω

g(x)p
′
dµ(x) =

∫
Ω′
g(x)p

′
dµ(x).

It follows that it is enough to prove Hölder’s inequality with Ω′ replacing Ω, that is to say
that g does not vanish on Ω.

We can then define the measure dν(x) = g(x)p
′
dµ(x) and the function F (x) =

f(x)g(x)p
′/p. Note that

ν(Ω) =

∫
Ω

1 dν(x) =

∫
Ω

g(x)p
′
dµ(x)

thus ν is a finite measure. Moreover
1

ν(Ω)

∫
Ω

F (x) dν(x) =
1∫

Ω

g(x)p
′
dµ(x)

∫
Ω

f(x)g(x)−p
′/pg(x)p

′
dν(x)

=

∫
Ω

f(x)g(x) dµ(x)∫
Ω

g(x)p
′
dµ(x)

since −p
′

p
+ p′ = p′

(
1− 1

p

)
= 1. Finally, Jensen’s Inequality with J(t) = |t|p yields

∫
Ω

f(x)g(x) dµ(x)∫
Ω

g(x)p
′
dµ(x)


p

≤

∫
Ω

f(x)pg(x)−p
′
g(x)p

′
dµ(x)∫

Ω

g(x)p
′
dµ(x)

which is what we wanted to prove. �

Exercice 3.6.

(1) Show that, if J is strictly convex, then equality in Jensen’s inequality only occurs
when f is constant.

(2) Deduce the equality cases in Hölder’s Inequality from this.

Exercice 3.7. (Inclusion of Lp spaces)
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(1) Let 1 ≤ p1 < p2 ≤ +∞. Show that, if f ∈ Lp1 ∩ Lp2 then,
(a) for all p1 < p < p2, f ∈ Lp,
(b) the mapping p 7→ log

∫
|f |p is convex on [p1, p2].

(2) For each p ∈ [1,∞], find f ∈ Lp(R) such that f /∈ Lq(R) fpr q ∈ [1,∞], q 6= p.
(3) Under which condition on p, q does the inclusion `p ⊂ `q hold ?
(4) Let (Ω,B, µ) be a measured space and 1 ≤ p < ∞. show that f ∈ Lp(Ω, µ),

df (t) := µ({x ∈ Ω : |f(x)| > λ}) ≤
‖f‖pp
tp

.

Theorem 3.8 (Minkowski’s Inequality).

Let (Ω,B, µ) and (Γ, B̃, γ) be two σ-finite measured and let 1 ≤ p < +∞. Then, for every
γ ⊗ µ-measurable function f ,

(3.3)

(∫
Γ

(∫
Ω

|f(x, y)| dµ(y)

)p
dγ(x)

) 1
p

≤
∫

Ω

(∫
Γ

|f(x, y)|p dγ(x)

) 1
p

dµ(y).

In particular, if the right hand side is finite so is the left-hand side. Moreover, equality
holds if and only if f has separable variables, that is, f is of the form f(x, y) = α(x)β(y).

In other words∥∥∥∥x→ ∫
Ω

|f(x, y)|dµ(y)

∥∥∥∥
p

≤
∫

Ω

‖x→ f(x, y)‖p dµ(y),

which extends the inequality

∣∣∣∣∫
Ω

f(t) dµ(t)

∣∣∣∣ ≤ ∫
Ω

|f(t)|dµ(t) (which is the particular case

of Γ consisting of a single element).

Proof. It is enough to assume that f ≥ 0 and that f > 0 on a set of positive measure.

Note also that Fubini’s theorem implies that y →
∫
f(x, y)p dγ(x) are H : x →∫

Ω

f(x, y) dµ(y) measurable functions.

Assume the right hand side is finite, otherwise there is nothing to prove.
Let fn = fχEn

with En = Fn ∩ {(x, y) ∈ Γ× Ω : |f(x, y)| ≤ n} and Fn an increasing
sequence of finite measure subsets of Γ× Ω that cover Γ× Ω:

⋃
Fn = Γ× Ω. For fn, the

left hand side of (3.3), (∫
Γ

(∫
Ω

|fn(x, y)|dµ(y)

)p
dγ(x)

) 1
p

is finite.
On the other hand, the monotone convergence theorem shows that this converges to(∫

Γ

(∫
Ω

|f(x, y)|dµ(y)

)p
dγ(x)

) 1
p

.

We may thus assume that this quantity is also finite.
According to Fubini (Beppo-Levi),∫

Γ

H(x)p dγ(x) =

∫
Γ

(∫
Ω

f(x, y) dµ(y)

)
H(x)p−1 dγ(x)

=

∫
Ω

∫
Γ

f(x, y)H(x)p−1 dγ(x) dµ(y).
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But, Hölder (1/p+ 1/p′ = 1) implies∫
Γ

f(x, y)H(x)p−1 dγ(x) ≤
(∫

Γ

f(x, y)p dγ(x)

)1/p(∫
Γ

H(x)(p−1)p′ dγ(x)

)1/p′

=

(∫
Γ

f(x, y)p dγ(x)

)1/p(∫
Γ

H(x)p dγ(x)

)1−1/p

.

It follows that∫
Γ

H(x)p dγ(x) ≤
∫

Ω

(∫
Γ

f(x, y)p dγ(x)

)1/p

dµ(y)

(∫
Γ

H(x)p dγ(x)

)1−1/p

.

As we have assumed that

∫
Γ

H(x)p dγ(x) 6= 0,+∞, we can divide both sides by

(∫
Γ

H(x)p dγ(x)

)1−1/p

from which the result follows. �

Corollary 3.9 (Triangular Inequality for Lp norms).
Let (Ω,B, µ) be a measure space with µ a σ-finite measure. Let 1 ≤ p ≤ +∞ and f, g ∈
Lp(Ω, µ). Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p
and equality holds if and only if g = λf with λ ≥ 0.

Proof. Take Γ = {1, 2} with the coounting measure and define F (1, y) = f(y),
F (2, y) = g(y). Minkowski’s inequality then reduces to the triangular inequality �

Sketch of a second proof. There is a simpler more direct argument:∫
Ω

|f(x) + g(x)|p dµ(x) =

∫
Ω

|f(x) + g(x)|p−1|f(x) + g(x)|dµ(x)

≤
∫

Ω

|f(x) + g(x)|p−1|f(x)|dµ(x)

+

∫
Ω

|f(x) + g(x)|p−1|g(x)|dµ(x).

Hölder’s Inequality ( 1
p + 1

p′ = 1 that is p′ = p
p−1 ) leads to∫

Ω

|f(x) + g(x)|p−1|f(x)|dµ(x)

≤
(∫

Ω

|f(x) + g(x)|(p−1) p
p−1 dµ(x)

)1− 1
p
(∫

Ω

|f(x)|p dµ(x)

) 1
p

.

The second integral is treated the same way. It follows that∫
Ω

|f(x) + g(x)|p dµ(x) ≤
(∫

Ω

|f(x) + g(x)|p dµ(x)

)1− 1
p (
‖f‖p + ‖g‖p

)
one concludes by dividing by ‖f + g‖pp. Of course, one should first check the trivial case

‖f + g‖pp 6= 0 but also prove that ‖f + g‖pp < +∞, which was done when we introduced
the norm. �
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4. Completeness of Lp spaces

The aim of this section is to prove that Lp is a Banach space. Before this, let us adapt
dominated convergence to convergence in Lp:

Lemma 4.1 (Lp-dominated convergence). Let (Ω,B, µ) be a σ-finite measure space.
Let 1 ≤ p < +∞.

Let (fk) be a sequence in Lp(Ω, µ) and f, F be two functions in Lp(Ω, µ). Assume that

(i) for every k, and µ-almost every x ∈ Ω, |fk(x)| ≤ F (x)
(ii) for µ-almost every x ∈ Ω, fk(x) → f(x) when k → +∞. In particular, |f(x)| ≤

F (x) µ-a.e.

Then fk → f in Lp(Ω, µ) i.e. ‖fk − f‖p → 0.

Proof. We have to prove that∫
Ω

|fk(x)− f(x)|p dµ(x)→ 0.

But Condition (ii) implies that |fk(x)− f(x)|p → 0 µ-a.e.
Condition (ii) implies that

|fk(x)− f(x)|p ≤ (|fk(x)|+ |f(x)|)p ≤
(
2F (x)

)p
and the hypothesis F ∈ Lp precisely means that

∫
Ω
F (x) dµ(x) < +∞. We can thus apply

the dominated convergence theorem to obtain the result. �

Theorem 4.2 (Lp is complete).
Let (Ω,B, µ) be a σ-finite measure space. Let 1 ≤ p ≤ +∞. Then Lp(Ω, µ) is complete
(and thus a Banach space).

More precisely, if (fk) is a Cauchy sequence in Lp(Ω, µ), then the exists a sub-sequence
(fkj )j and F in Lp(Ω, µ) such that

(i) for j ≥ 1, |fkj (x)| ≤ F (x) and µ-almost every x ∈ Ω;
(ii) for µ-almost every x ∈ Ω, fkj (x)→ f(x) when j → +∞.

Proof. We will concentrate on the case 1 ≤ p < +∞. The case p = +∞ follows
mainly from the completeness of C and is left as an exercice.

As noted in the above lemma, the second part of the theorem implies that every Cauchy
sequence in Lp has a convergent sub-sequence. But, as we have already noticed in the first
chapter, a Cauchy sequence with a convergent sub-sequence is convergent (Lemma 4.4).

The proof of the second part of the theorem is rather classical.
First, there exists i1 such that, if n ≥ i1, ‖fi1 − fn‖p ≤ 1/2 (ε = 1/2 in the definition

of a Cauchy sequence). There exists i2 > i1 such that, if n ≥ i2, ‖fi2 − fn‖p ≤ 1/22... This

way, we inductively define ik > ik−1 such that, if n ≥ ik, ‖fik − fn‖p ≤ 1/2k.
Consider the non-decreasing positive sequence defined by

Fl(x) = |fi1(x)|+
l∑

k=1

|fik+1
(x)− fik(x)|.

The triangular inequality yields

‖Fl‖p ≤ ‖fi1‖p +

l∑
k=1

∥∥fik+1
− fik

∥∥
p
≤ ‖fi1‖p +

+∞∑
k=1

2−k = 1 + ‖fi1‖p < +∞.
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The monotone convergence theorem implies that Fl converges almost everywhere to a
function F ∈ Lp. In particular, F (x) is finite for µ-almost every x ∈ Ω. For such an x, the
series

fi1(x) +

l∑
k=1

(
fik+1

(x)− fik(x)
)

is absolutely convergent, thus convergent. But this is a telescopic sequence:

fi1(x) +

l∑
k=1

(
fik+1

(x)− fik(x)
)

= fil+1
(x).

We have thus shown that fil+1
is convergent and, with the triangular inequality, |fil+1

| ≤
Fl ≤ F which completes the proof. �

5. Separability of Lp spaces

5.1. About the Lebesgue integral. Recall that a Banach space X is said to be
separable if there exists a countable subset D ⊂ X that is dense in X i.e. such that, if
x ∈ X for every ε > 0, there exists y ∈ D such that ‖x− y‖ < ε.

Let (Ω,B, µ) be a σ-finite measure space. We assume that this space has a further

property: there exists a countable family B̃ ⊂ B such that, given A ∈ B, for every ε > 0,
there exists B ∈ B̃ such that µ(A∆B) < ε. Here A∆B is the symetric difference A∆B =
(A \B) ∪ (B \A).

Of course, this property is satified when Ω is countable. It is a bit more complicated
when Ω is an open subset of Rd. Actually, as a Borel set is optained from a countable
number of operations (countable unions and intersections, complementary) from cubes
(the σ-algebra generated by cubes is the Borel σ-algebra), it is enough to find a countable
family such that the above property holds whenever A is a cube. As cubes are finite
products of intervals, it is enough to do so for intervals. But then, it is easy to see that

B̃ =

{ ⋃
F∈F

F : F ⊂ {[k/2j , (k + 1)/2j ], k ∈ Z, j ∈ N}, F finite

}
has the desired property. In other words: the Borel sets are generated by “dyadic intervals”.

Next, recall that a simple function on Ω is a function of the form

(5.4) s(x) =
∑
k∈K

ak1Ak

with K finite and 0 < µ(Ak) < ∞. We can (and will) further assume that the Ak’s are
disjoint. We can then definie the Lebesgue integral of a non negative function f as∫

Ω

f(x) dµ(x) = sup

{∑
k∈K

akµ(Ak) : s given by (5.4) satisfies s ≤ f

}
.

Note that this quantity can be +∞. Note also that one can simply request ak to be rational
and the Ak’s to be in B̃ so that a countable family D0 of simple non-negative functions
suffices.

When f is real valued, we then say that f is Lebesgue integrable if
∫

Ω
|f(x)|dµ(x) <

+∞. It follows that both its positive part f+ = max(f, 0) and negative part f− =
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max(−f, 0) are non-negative and have finite integral (since s ≤ f± ≤ |f |). As f = f+− f−
one of course defines∫

Ω

f(x) dµ(x) =

∫
Ω

f+(x) dµ(x)−
∫

Ω

f−(x) dµ(x)

which makes sense since both quantities are finite (only one needs to be). For complex
valued functions, one again requires

∫
Ω
|f(x)|dµ(x) < +∞. Then the real and imaginary

parts of f are integrale and∫
Ω

f(x) dµ(x) =

∫
Ω

<(f)(x) dµ(x) + i

∫
Ω

Im (f)(x) dµ(x).

From the above discution, the countable set

D = {f1 − f2 + i(f3 − f4), f1, f2, f3, f4 ∈ D0 with disjoint support}

has the following property: Given an integrable complex-valued function f , for every ε > 0,
there exists fε = f1

ε − f2
ε + i(f3

ε − f4
ε ) ∈ D such that∫
Ω

|f − fε|dµ(x) ≤ ε.

In other words, D is countable dense in L1(Ω, µ).

5.2. Sepatability of Lp(Ω, µ) for 1 ≤ p < ∞. Take 1 ≤ p < ∞, fix f ∈ Lp(Ω, µ),
and ε > 0. First write f = f1 − f2 + i(f3 − f4) with fi ≥ 0 and note that fi ≤ |f | so that

each fi ∈ Lp(Ω, µ). Further, if we show that, for given ε > 0 there exists f
(i)
ε ∈ S0 such

that
∥∥∥fi − f (i)

ε

∥∥∥
p
≤ ε then the triangular inequality shows that, setting fε = f

(1)
ε − f (2)

ε +

i(f
(3)
ε − f (4)

ε ), we have ‖f − fε‖p ≤ 4ε. We can thus assume that f ≥ 0.
Next, set fn = 1f≤nf and note that fn → f pointwise and 0 ≤ fn ≤ f thus fn → f

in Lp(Ω, µ). Note also that fn ≤ n so that fn is bounded.∗ Thus there exists and N such
that ‖f − fN‖p ≤ ε. Up to replacing f by fN we can thus assume that f is bounded by
some N .

Now let (Ωn) be an increasing sequence of subsets of Ω of finite measure such that⋃
Ωn = Ω. Setting fn = 1Ωn

fN we get fn → f in Lp(Ω, µ). We can thus assume that f is

supported in a set of finite measure Ω̃ and write ν = µ(Ω̃).

Finally, [0, N ] ⊂
⋃M
j=0 Ij with Ij = [(j/ν)1/pε,

(
(j + 1)/ν

)1/p
ε[. Note that the length

of each interval is(
(j + 1)/ν

)1/p
ε− (j/ν)1/pε ≤

(
(1 + j)1/p − j1/p

)
ε/ν1/p ≤ ε/ν1/p

since 1 ≤ p < +∞ thus 0 < 1/p ≤ 1. Also, let aj ∈ Ij ∩Q. Write Bj = f−1(Ij) and note

that the Bj ’s are a disjoint cover of Ω̃. Further, for x ∈ Bj

−ε/ν1/p ≤
(
j/ν
)1/p

ε− aj ≤ f(x)− aj ≤
(
(j + 1)/ν

)1/p
ε− aj ≤ ε/ν1/p.

In other words, for x ∈ Bj , |f(x) − aj |p ≤ ε/ν1/p. As the Bj ’s cover the support of f , if
we take an x such that f(x) 6= 0, then there is a j such that x ∈ Bj and then

|f(x)− aj |p = |f(x)1Bj
(x)− aj1Bj

(x)|p ≤ εp/ν1Bj
(x).

∗In otherwords, L∞(Ω, µ) ∩ Lp(Ω, µ) is dense in Lp(Ω, µ).
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Next, note that when u and v have disjoint support, then |u + v|p = |u|p + |v|p. As the
Bj ’s are disjoint, we get that for x in the support of f

|
N∑
j=1

f(x)1Bj
(x)−

N∑
j=1

aj1Bj
(x)|p =

N∑
j=1

|f(x)1Bj
(x)− aj1Bj

(x)|p ≤ εp/ν

≤
N∑
j=1

εp/ν1Bj
(x)

= εp/ν1Ω̃(x).

Finally note that both sides of this inequality are 0 when x is not in the support of f so

that it is valid as well for those x’s. Set f̃ =
∑N
j=1 aj1Bj

then, integrating over Ω, gives∫
Ω

|f(x)− f̃(x)|p dµ(x) ≤ εp

ν

∫
Ω

1Ω̃(x) dµ(x) = εp

by definition of ν.
Thus, after losing again an ε, we may replace f by f̃ , that is assume that f is a

(bounded) simple function with rational coefficients with support of finite measure

f =

M∑
j=1

aj1Bj

The last step now amounts to approximate each of the sets Bj by a set Aj ∈ B̃ with
µ(Bj \Aj) < (ε/NM)p and set

fε =

M∑
j=1

aj1Aj

so that f − fε =
∑M
j=1 aj1Aj\Bj

. Recall that 0 ≤ aj ≤ N thus

‖f − fε‖p ≤
M∑
j=1

aj
∥∥1Aj\Bj

∥∥
p
≤ NM maxµ(Bj \Aj)1/p ≤ ε.

We have thus shown the following:

Theorem 5.1. Let 1 ≤ p < +∞ and (Ω,B, µ) be a σ-finite measure space with a
countable σ-algebra basis. Then Lp(Ω, µ) is separable.

Moreover, simple functions (with rational coefficients) are dense in Lp(Ω, µ).

Remark 5.2. Note that L∞ is not separable in infinite dimensions, which is equivalent
to the existance of a sequence (Ωj)j≥1 of disjoints sets in Ω of positive measure.

For J ⊂ N we define fJ(x) =
∑
j∈I 1Ωj

(x) =

{
1 if there exists j ∈ J such that x ∈ Ωj

0 otherwise
.

Then if J 6= K, there exists j ∈ K \ J or j ∈ J \K. Up to exchanging J and K, we can
assume we are in the later case. Then for x ∈ Ωj , fJ(x) = 1 while fK(x) = 0. Thus
‖fJ − fK‖∞ ≥ 1. Note also that P(N), the set of subsets of N is not countable.

Now consider the non-countable set of disjoint open balls
{
B(fJ , 1/2), J ⊂ N

}
. If

a set S is dense in L∞(Ω), it contains at least one element of each of these balls and is
therefore non countable.
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5.3. Continuity of translations in Lp(Rd). For a ∈ Rd, we define the translation
operator τa acting on f ∈ Lp(Rd) by τaf(x) = f(x− a). Of course, for every 1 ≤ p ≤ +∞
this is a bounded linear Lp(Rd)→ Lp(Rd) with ‖τaf‖p = ‖f‖p.

What we are interested in here is the continuity with respect to the translation param-
eter a:

Proposition 5.3. Let 1 ≤ p < ∞ and f ∈ Lp(Rd) then the mapping a 7→ τaf is
continuous Rd → Lp(Rd). In other words

given f ∈ Lp(Rd), and a0 ∈ Rd, ‖τaf − τa0f‖p → 0 when a→ a0.

Proof. First ‖τaf − τa0f‖p = ‖τa−a0f − f‖p so that it is enough to consider a0 = 0.

Step 1. The property is true when f = 1A for A a Borel set of finite measure.

When d = 1 and f = 1[α,β], τaf = 1[α+a,β+a], and then,

τaf − f =

{
1[β,β+a] − 1[α,α+]a if a ≥ 0

−1[β+a,β] + 1[α+a,α] if a ≤ 0
.

Therefore ‖τaf − f‖p = (2a)1/p → 0 when a→ 0.

Now if Q ∈ Rd a cube Q =
∏d
j=1[aj , bj ] and f = 1Q the result follows directly.

Further, if U =
⋃N
j=1Qj with the Qj ’s disjoint cubes and f = 1U then f =

∑N
j=1 1Qj

thus

‖τaf − f‖p ≤
∑N
j=1

∥∥τa1Qj
− 1Qj

∥∥
p
→ 0 when a→ 0.

If U is a bounded open set then, for every ε > 0 there exists a family of disjoint cubes

Qj ⊂ U such that† |U \
⋃N
j=1Qj | ≤ ε. Then, for f = 1U and fε =

∑N
j=1 1Qj

, we have

‖τaf − τafε‖p = ‖fε − f‖p = |U \
N⋃
j=1

Qj |1/p.

It follows that

‖τaf − f‖p ≤ ‖τaf − τafε‖p + ‖τafε − fε‖p + ‖fε − f‖p ≤ 3ε1/p

provided a is small enough. The result is thus valid for such an f .
Finally, Let E be a set of finite Lebesgue measure and ε > 0. There exists an open

set U such that |E∆U | ≤ ε. Set f = 1E and fε = 1U , then |f − fε| = 1E∆U , thus
‖f − fε‖p = |E∆U |1/p ≤ ε1/p and one concludes as previsouly.

Step 2. Conclusion.

The first consequence is that, by linearity, if f is a simple function, f =
∑N
j=1 cj1Ej ,

then

‖τaf − f‖p ≤
N∑
j=1

|cj |
∥∥τa1Ej − 1Ej

∥∥
p
→ 0

when a→ 0.
Finally, if f ∈ Lp and ε > 0, there exists a simple function fε such that ‖f − fε‖p ≤ ε.

One then concludes as previously. �

Remark 5.4. The result is false in L∞: take f = 1[0,1] and a 6= 0 then ‖τaf − f‖∞ = 1.

However, if f ∈ C0(Rd) then ‖τaf − τa0f‖∞ → 0 when a→ a0.
Indeed, as previsouly, it is enough to consider a0 = 0.

†We here adopt the notation |E| for the Lebesgue measure of E
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Now, let a ∈ Rd with |a| ≤ 1 and ε > 0. Fix R such that, for |x| ≥ R− 1, |f(x)| ≤ ε/2.
But then, if |x| ≥ 1, |x− a| ≥ R− 1 thus |f(x)− f(x− a)| ≤ |f(x)|+ |f(x− a)| ≤ ε.

On B(0, R), f is uniformly continuous, thus there exists 0 < η < 1 such that, if |a| ≤ ε,
for every x ∈ B(0, R), |f(x)− f(x− a)| ≤ ε. It follows that supx∈Rd |f(x)− f(x− a)| ≤ ε.

6. The projection Theorem

Projections play an essential role in Hilbert spaces. It turns out that a version of the
projection theorem is still valid in Lp:

Theorem 6.1. Let 1 ≤ p < +∞ and let E be a closed vector space in Lp(Ω, µ).
For f ∈ Lp(Ω, µ), let us write d(f,E) = infg∈E ‖f − g‖p. Then there exists g0 such that

d(f,E) = ‖f − g0‖p.

Remark 6.2. Not that, if ‖g‖p > 2‖f‖p then

‖f − g‖p ≥ ‖g‖p − ‖f‖p > ‖f‖p = ‖f − 0‖p ≥ d(f,E)

since 0 ∈ E. Therefore d(f,E) = inf{‖f − g‖p : g ∈ E, ‖g‖p ≤ 2‖f‖p}.
If E is finite dimensional, the {g ∈ E, ‖g‖p ≤ 2‖f‖p} being bounded and closed, is

compact. As g → ‖f − g‖p is continuous, the existence of g0 follows.
In infinite dimensions, this argument is no longer valid.

Proof when p ≥ 2. When p = 2 this follows from the parallelogram identity

‖u− v‖22 + ‖u+ v‖22 = 2‖u‖22 + 2‖v‖22.

Take gn ∈ E a sequence such that ‖f − gn‖2 → d(f,E). Then the parallelogram identity

applied to u = f−gm
2 , v = f−gn

2 gives

‖gn − gm‖22 = 4

(
1

2
‖f − gm‖22 +

1

2
‖f − gn‖22 −

∥∥∥∥gn + gm
2

− f
∥∥∥∥2

2

)
.

As gn+gm
2 ∈ E,

∥∥ gn+gm
2 − f

∥∥
2
≥ d(f,E) thus

‖gn − gm‖22 ≤ 2(‖f − gm‖22 − d(f,E)2 + ‖f − gn‖22 − d(f,E)2)

from which one gets that (gn) is a Cauchy sequence. Thus (gn) is convergent and as E is
closed, the limit g0 ∈ E. By continuity of the norm ‖f − gn‖2 → ‖f − g0‖2 which is then
the g0 we were looking for.

When p > 2, the parallelogram identity is no longer valid. However, it is valid point-
wise: if f, g ∈ Lp(Ω, µ) and x ∈ Ω then

|f(x)− g(x)|2 + |f(x) + g(x)|2 = 2|f(x)|2 + 2|g(x)|2.

As p > 2, r = p/2 > 1. But, for a, b > 0

(6.5) ar + br ≤ (a+ b)r ≤ 2r−1(ar + br).

From this, we get

|f(x)− g(x)|p + |f(x) + g(x)|p =
(
|f(x)− g(x)|2

)r
+
(
|f(x) + g(x)|2

)r
≤

(
|f(x)− g(x)|2 + |f(x) + g(x)|2

)r
= 2r(

∣∣f(x)|2 + |g(x)|2
)r ≤ 22r−1(

∣∣f(x)|2r + |g(x)|2r
)

= 2p−1(
∣∣f(x)|p + |g(x)|p

)
.
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Integrating with respect to µ, we get

‖f − g‖pp + ‖f + g‖pp ≤ 2p−1(
∥∥f‖pp + ‖g|pp

)
.

The remaining of the proof is exactly the same: take a sequence gn ∈ E such that
‖gn − f‖p → d(f,E) and apply the inequality with f replaced by f − gn and g by f − gm.
We obtain

‖gn − gm‖pp ≤ 2p−1(
∥∥f − gn‖pp + ‖f − gm‖pp

)
− ‖2f − gn − gm‖pp

≤ 2p−1(
∥∥f − gn‖pp + ‖f − gm‖pp − 2d(f,E)

)
.

We then deduce that gn is a Cauchy sequence, thus converges. As E is closed, the limit is
in E and is the desired value. �

Proof of (6.5). Let us rewrite the inequality ar + br ≤ (a + b)r in the form 1 +
(b/a)r ≤ (1 + b/a)r that is, setting t = b/a, 1 + tr ≤ (1 + t)r for all t > 0. For t ≥ 0 let
f(t) = (1 + t)r − (1 + tr). Clearly f(0) = 0 and f ′(t) = r((1 + t)r−1− tr−1) ≥ 0 since r ≥ 1
thus sr−1 is increasing.

The other inequality uses convexity of t→ tr:

(a+ b)r = 2r
(
a+ b

2

)r
≤ 2r

ar + br

2

which is the expected inequality. �

The proof for p < 2 is more involved and requires the use of Hammer’s inequality

|‖f + g‖p + ‖f − g‖p|
p + |‖f + g‖p − ‖f − g‖p|

p ≤ 2p
(
‖f‖pp + ‖g‖pp

)
.

As we won’t use the projection theorem in that case, we will not develop the proof here.

7. Duality

Thanks to Hölder’s inequality, it is easy to construct continous linear functionals on
Lp(Ω, µ). Indeed,

Lemma 7.1. Let 1 ≤ p ≤ +∞ and let p′ be such that 1
p + 1

p′ = 1. Let g ∈ Lp′(Ω, µ)

and define

Φg(f) =

∫
Ω

f(x)g(x) dµ(x).

Then Φg is a continous linear functional on Lp(Ω, µ). Moreover

‖Φg‖ := sup
‖f‖p≤1

∫
Ω

f(x)g(x) dµ(x) = ‖g‖p′ .

Proof. Hölder’s inequality directly shows continuity with ‖Φg‖ ≤ ‖g‖p′ while the
equality follows from the equality case in Hölder’s inequality. �

The key result of this section is the following converse of this lemma:

Theorem 7.2. Let 1 ≤ p < +∞ and let p′ be such that 1
p + 1

p′ = 1. Let Φ ∈ (Lp)′ i.e.

a bounded linear functional on Lp(Ω, µ). Then there exists a unique g ∈ Lp
′
(Ω, µ) such

that Φ = Φg, that is

Φ(f) =

∫
Ω

f(x)g(x) dµ(x).

for every f ∈ Lp(Ω, µ).
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Remark 7.3. It is important to notice that the result is false for p = +∞. The dual
of L∞(Ω, µ) is much more difficult to describe and is out of scope of this course.

Proof of uniqueness. The uniqueness is easy to prove: assume that g1, g2 ∈ Lp
′

are such that Φg1 = Φg2 then, if g = g1 − g2, for every f ∈ Lp, Φg(f) = 0.

If p > 1, then p′ < +∞, take f(x) =

{
|g(x)|p′−2g(x) if g(x) 6= 0

0 if g(x) = 0
. First |f |p =

(|g|p′−1)p = |g|p′ since p = p′

p′−1 when 1
p + 1

p′ = 1. Thus f ∈ Lp. Next,

0 = Φg(f) =

∫
Ω

f(x)g(x) dµ(x) =

∫
Ω

|g(x)|p
′−2g(x)g(x) dµ(x) = ‖g‖p

′

p′

thus g = 0 as claimed.
If p = 1, a slight modification is needed. Write Ω =

⋃
n≥1 Ωn with µ(Ωn) < +∞ and

g(x) = eiθ(x)|g(x)|. Then fn = e−iθΩn ∈ L1 and

0 = Φg(fn) =

∫
Ω

fn(x)g(x) dµ(x) =

∫
Ωn

|g(x)|dµ(x).

It follows that g = 0 µ-almost everywhere on Ωn i.e. there is an En ⊂ Ωn such that g = 0
on Ωn \En. Thus g = 0 on

⋃
n≥1 Ωn \

⋃
n≥1En = Ω\

⋃
n≥1En. As

⋃
n≥1En is a countable

union of sets of mesure 0, it has measure 0 thus g = 0 µ-almost everywhere. �

Recall that L2(Ω, µ) is a Hilbert space so that the theorem follows from the more
general theorem by Riesz. It turns out that the case 1 ≤ p < 2 can be deduced from it.

Proof in the case 1 ≤ p < 2. First let p′ be the dual index, 1
p + 1

p′ = 1 and note

that p′ > 2. Let r be given by p
2 + 1

s = 1 i.e. s = 2
2−p and r = ps. Note that r, s have

been chosen so that Hölder’s inequality implies
(7.6)∫

Ω

|f(x)|p|g(x)|p dµ(x) ≤
(∫

Ω

|f(x)|2 dµ(x)

)p/2(∫
Ω

|g(x)|ps dµ(x)

)1/s

= ‖f‖p2‖g‖
p
r .

Write Ω =
⋃
n≥2 Ωn with µ(Ωn) < +∞ and the Ωn being disjoint. Let us define w through

w(x) =
∑
n≥1

αn1Ωn

where the αn > 0 are chosen so that

(i) for every n, αn > 0 and αn+1 ≤ αn,
(ii) ‖w‖rr =

∑
n≥1 α

r
nµ(Ωn) < +∞.

It follows from (7.6) that, for every f ∈ L2(Ω, µ), fw ∈ Lp(Ω, µ) with ‖fw‖p ≤ ‖w‖r‖f‖2.

In other words, the operator Tw : L2 → Lp defined by Twf = wf is bounded.
Now, let Φ ∈ (Lp)′, that is let Φ be a bounded linear functional on Lp(Ω, µ). It follows

that ΦTw is a bounded linear functional on L2(Ω, µ). According to Riesz’s theorem, there
exists G ∈ L2(Ω, µ) such that ΦTw = ΦG: for every f ∈ L2(Ω, µ),

ΦTwf = Φ(fw) =

∫
Ω

f(x)G(x) dµ(x).

Now consider the set S = {ϕ ∈ Lp(Ω, µ) : ϕ/w ∈ L2(Ω, µ)}. Note that S is dense
in Lp(Ω, µ). Indeed, if f ∈ Lp(Ω, µ) and ε > 0, there exists N such that, writing ΦN =⋃
n≤N Ωn fN = f1ΦN

1|f |≤N , then ‖f − fN‖p ≤ ε (note that fN → f a.e. and that
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|fN | ≤ f so that fN → f in Lp). Further, for x ∈ ΦN , there is an n ≤ N such that x ∈ Ωn.
Then w(x) = αn ≥ αN since the αn have been chosen as a decreasing sequence. It follows
that

|fN (x)|
w(x)

≤

{
0 if x /∈ ΦN
N
αN

if x ∈ ΦN
.

Thus fN/w is bounded with support of finite measure and is thus in L2(Ω, µ) i.e. fN ∈ S.
Now, for ϕ ∈ S, we can write ϕ = fw with f = ϕ/w ∈ L2. Therefore

Φ(ϕ) = Φ(fw) =

∫
Ω

f(x)G(x) dµ(x) =

∫
Ω

ϕ(x)
G(x)

w(x)
dµ(x) = Φg(ϕ)

with g := G/w. If we are able to prove that g ∈ Lp
′
(Ω, µ), then Φg is a continuous

linear functional on Lp as well. Therefore Φ = Φg is an equality between two continuous
functionals on Lp on the dense set S of Lp. This equality is then true on all of Lp, which
is what we wanted to prove.

It remains to prove that g ∈ Lp′(Ω, µ). We need to distinguish two cases.
First consider the case 1 < p < 2. Consider ϕN = g|g|p−21|g|≤N1ΦN

and observe that

|ϕN | = |g|p−11|g|≤N1ΦN
. In particular ϕN is bounded and has support of finite measure

thus ϕn ∈ Lp(Ω, µ) and on its support w ≥ αN so that |ϕN/w| ≤ |ϕN |/αN ∈ L2(Ω, µ). In
other words, ϕN ∈ S. But then

Φ(ϕN ) = Φg(ϕN ) =

∫
Ω

ϕN (x)g(x) dµ(x) =

∫
Ω

|g(x)|p
′
1|g|≤N (x)1ΦN

(x) dµ(x).

On the other hand, Φ is continuous on Lp(Ω, µ) thus, for all ϕ, |Φ(ϕ)| ≤ ‖Φ‖‖ϕ‖p, in
particular

|Φ(ϕN )| ≤ ‖Φ‖‖ϕN‖p = ‖Φ‖
(∫

Ω

|g|p(p−1)(x)1|g|≤N (x)1ΦN
(x) dµ(x)

)1/p

= ‖Φ‖
(∫

Ω

|g|p
′
(x)1|g|≤N (x)1ΦN

(x) dµ(x)

)1/p

.

Combining both identities shows that, for every N ,(∫
Ω

|g|p
′
(x)1|g|≤N (x)1ΦN

(x) dµ(x)

)1/p′

≤ C

Letting N go to infinity and applying Beppo-Levi’s Lemma, we get ‖g‖p′ ≤ C so that

g ∈ Lp′(Ω, µ) as expected.
When p = 1 the argument needs to be modified. We write g = eiθ|g| and consider

ϕN = e−iθ1|g|>‖Φ‖+1/N1ΦN
. As previously, ϕN ∈ S. But then

Φ(ϕN ) = Φg(ϕN ) =

∫
Ω

ϕN (x)g(x) dµ(x) =

∫
Ω

|g(x)|1|g|>‖Φ‖+1/N1ΦN
dµ(x)

≥ (‖Φ‖+ 1/N)|{|g| > ‖Φ‖+ 1/N} ∩ ΦN |.
On the other hand

|Φ(ϕN )| ≤ ‖Φ‖‖ϕN‖1 = ‖Φ‖
∫

Ω

1|g|>‖Φ‖+1/N1ΦN
dµ(x)

= ‖Φ‖| {|g| > ‖Φ‖+ 1/N} ∩ ΦN |.
Combining both, we get that |{|g| > ‖Φ‖ + 1/N} ∩ ΦN | = 0. Finally, As {|g| > ‖Φ‖} =⋃
N≥1{|g| > ‖Φ‖+ 1/N} ∩ ΦN we get that |g| ≤ ‖Φ‖ almost everywhere. �
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Proof using the projection theorem when 1 < p <∞. Let Φ be a continuous
linear functional on Lp(Ω, µ). We are looking for g ∈ Lp′(Ω, µ) such that Φ = Φg. We can
assume that Φ is not identically zero (otherwise take g = 0) so that there is an f ∈ Lp(Ω, µ)
with L(f) 6= 0. Up to replacing f by f/L(f) we can assume that L(f) = 1.

Let E = ker Φ = Φ−1(0) and note that E is a closed linear subspace of Lp(Ω, µ).
Therefore, there exists g0 ∈ E such that ‖f − g0‖p = d(f,E). Note that L(f − g0) =

L(f)−L(g0) = 1− 0 = 0 and that ‖f − g0‖p = ‖(f − g0)− 0‖p = d(f,E). Up to replacing

f by f − g0 we can assume that 0 is a projection of f on E: L(f) = 1 and ‖f‖p = d(f,E),

that is, for all g ∈ E, ‖f‖p ≤ ‖f − g‖p.
Now fix w ∈ E and consider the function ϕ defined on (−1, 1) × Ω by ϕ(t, x) =

|f(x)− tg(x)|p and let Φ be defined on R by

Φ(t) =

∫
Ω

ϕ(t, x) dx = ‖f − tg‖pp.

First, observe that
– as tg ∈ E, Φ(t) = ‖f − tg‖pp ≥ ‖f‖

p
p = Φ(0). Thus Φ has a minimum at 0.

– ϕ is continuous in t. Moreover,

ϕ(t, x) =
(
|f(x)− tg(x)|2

)p/2
=
(
|f(x)|2 + t2|g(x)|2 + 2t<f(x)g(x)

)p/2
thus

∂ϕ

∂t
=

p

2

(
|f(x)− tg(x)|2

)p/2−1(
2t|g(x)|2 + 2<f(x)g(x)

)
= p|f(x)− tg(x)|p−2

(
t|g(x)|2 + <f(x)g(x)

)
— for |t| ≤ 1 and x ∈ Ω,

|ϕ(t, x)| = |f(x)− tg(x)|p = 2p
∣∣∣∣f(x)− tg(x)

2

∣∣∣∣p ≤ 2p
(
|f(x)|+ |g(x)|

2

)p
≤ 2p−1(|f(x)|p + |g(x)|p).

Lebesgue’s theorem on continuity of integrals then shows that Φ is continuous.
— for |t| ≤ 1 and x ∈ Ω,∣∣∣∣∂ϕ∂t

∣∣∣∣ ≤ p(|f(x)|+ |g(x)|)p−2
(
2|g(x)|2 + |f(x)|2

)
≤ p2p−3(|f(x)|p−2 + |g(x)|p−2)

(
2|g(x)|2 + |f(x)|2

)
≤ p2p−2(|f(x)|p + |g(x)|p + |f(x)|p−2|g(x)|2 + |g(x)|p−2|f(x)|2).

As f, g ∈ Lp, |f(x)|p+ |g(x)|p is integrable. Further if q = p/2 and q′ is given by 1
q + 1

q′ = 1

then q′ = q
q−1 = p

p−2 and Hölders inequality with these exponents gives∫
Ω

|f(x)|p−2|g(x)|2 dµ(x) ≤
(∫

Ω

|f(x)|p dµ(x)

)(p−2)/p(∫
Ω

|g(x)|p dµ(x)

)2/p

thus |f(x)|p−2|g(x)|2 is also intergable. The same is true for g(x)|p−2|f(x)|2.
We can thus apply Lebegue’s derivation theorem and see that Φ is differentiable on

(−1, 1) and

Φ′(t) =

∫
Ω

∂ϕ

∂t
(t, x) dµ(x).
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In particular,

Φ′(0) = p

∫
Ω

|f(x)|p−2<f(x)g(x) dµ(x).

As Φ has a minimum at 0, we get Φ′(0) = 0 that is, for every g ∈ Lp, with L(g) = 0,

<
∫

Ω

|f(x)|p−2f(x)g(x) dµ(x) = 0.

Note that, if g ∈ Lp, with L(g) = 0 then ig ∈ Lp and L(ig) = 0 so that

<i
∫

Ω

|f(x)|p−2f(x)g(x) dµ(x) = 0.

Finally, define f̃ by f̃(x) = |f(x)|p−2f(x) and note that |f̃ |p′ = |f |(p−1)p′ = |f |p so that

f̃ ∈ Lp′ with
∥∥∥f̃∥∥∥

p′
= ‖f‖p. We have proved that for every g ∈ Lp(Ω, µ) with L(g) = 0,∫

Ω

f̃(x)g(x) dµ(x) = 0.

In otherwords, if L(g) = 0 then Φf̃ (g) = 0.

Now let h ∈ Lp and consider g = h−L(h)f ∈ Lp. Note that L(g) = L(h)−L(h)L(f) =
0 since L(f) = 1 and that Phif̃ (f) = ‖f‖ − pp. Therefore Φf̃ (g) = 0. But

0 = Φf̃ (g) = Φf̃
(
h− L(h)f

)
= Φf̃ (h)− L(h)Φf̃ (f) = Φf̃ (h)− L(h)‖f‖pp.

As L(f) = 1, f 6= 0 thus ‖f‖pp 6= 0 and we conclude that

L(h) =
1

‖f‖pp
Φf̃ (h) = Φf̃/‖f‖pp

(h)

which is the expected result. �



CHAPTER 3

Convolution - regularization

Multi-index notation

Before starting this section, we will introduce the multi-index notation:
A multi-index is a vector with integer coordinates: α = (α1, . . . , αd) ∈ Nd. If β =

(β1, . . . , βd) ∈ Nd, we will say that β ≤ α if βj ≤ αj for all j ∈ {1, . . . , d}.
The length of a multi-index α is the sum of its coordinates: |α| = α1 + · · ·+ αd.
We will write α! = α1! · · ·αd!, and the binomial coefficient for β ≤ α(

α
β

)
=

α!

β!(α− β)!
=

(
α1

β1

)
· · ·
(
αd
βd

)
.

For x = (x1, . . . , xd) ∈ Rd, we write xα = xα1
1 · · ·x

αd

d . For a function f : Rd → C we write

∂αf =
∂α1

∂α1
x1

· · · ∂
αd

∂αd
xd

f.

With this notation, some classical one-variable formula are written in the same way
for multi-variate functions:

– Leibnitz formula

∂α(fg) =
∑
β≤α

(
α
β

)
∂βf∂α−βg

– Taylor formula

f(x0 + h) =
∑
|α|≤n

∂αf(x0)
hα

|α|!
+ o(hN ).

1. Definition and basic examples

Definition 1.1. Let f, g be two functions on Rd, we define the convolution of f and
g as being the function on Rd given by

(1.7) f ∗ g(x) =

∫
Rd

f(y)g(x− y) dy.

Note that in the definition, we have said nothing about the existence of f ∗ g. The
aim of this chapter is precisely to give a meaning to f ∗ g. However, there are a few basic
examples for which this is easy:

Example 1.2. Let f = 1[a,b], g = 1[c,d].
First, the change of variable t = x− y shows that f ∗ g = g ∗ f . On may thus assume

that b− a > d− c, that is, the lenght of [a, b] is bigger than the length of [c, d].
It is obvious that, for x fixed, f(y)g(x − y) = 1Ix(y) where Ix is an intersection of

two intervals and is thus an interval. It follows that f ∗ g(x) = |Ix| the length of this
interval. Next g(x − y) = 1 is and only if c ≤ x − y ≤ d that is y ∈ [x − d, x − c] so that
Ix = [a, b] ∩ [x− d, x− c]. The length of this interval is clearly a piecewise affine function

31



32 3. CONVOLUTION - REGULARIZATION

since [a, b] is fixed and we “slide” a second interval [−d,−c] at constant speed, i.e. the
second interval is [−d,−c] + x.

It is enough to find the nodes and determine the length at those nodes.
There are 5 cases:
– the interval [−d,−c] + x is entirely on the left of [a, b] (up to the end point), that is

−c+ x ≤ a i.e. x ≤ a+ c. In this case f ∗ g(x) = |Ix| = 0.
– the interval [−d,−c] + x overlaps [a, b] on the left side: −d + x ≤ a ≤ −c + x i.e.

a+ c ≤ x ≤ a+ d. In this case Ix = [a,−c+ x] and f ∗ g(x) = |Ix| = x− (a+ c).
– the interval [−d,−c] + x is entirely inside [a, b]: a ≤ −d + x ≤ −c + x ≤ b i.e.

a+ d ≤ x ≤ b+ c. In this case Ix = [−d,−c] + x and f ∗ g(x) = |Ix| = d− c
– the interval [−d,−c] + x overlaps [a, b] on the right side: −d + x ≤ b ≤ −c + x i.e.

b+ c ≤ x ≤ b+ d. In this case Ix = [−d+ x, b] and f ∗ g(x) = |Ix| = b+ d− x.
– the interval [−d,−c] + x is entirely on the left of [a, b] (up to the end point), that is

b ≤ −d+ x i.e. x ≥ b+ d and in this case again f ∗ g(x) = 0.
We strongly advise the reader to draw the 5 cases and the graph of f ∗ g. Once this is

done, one can note for future use that f ∗ g is continuous and compactly supported with
support [a, b] + [c, d] = {x+ y, x ∈ [a, b], y ∈ [c, d]} = [a+ c, b+ d].

Example 1.3. Assume that f, g are tensors: f(x1, . . . , xd) = f1(x1) · · · fd(xd) and
g(x1, . . . , xd) = g1(x1) · · · gd(xd). Then if fj ∗ gj are defined by (1.7), so if f ∗ g and

f ∗ g(x1, . . . , xd) = f1 ∗ g1(x1) · · · fd ∗ gd(xd).

An example of this are characteristic functions of cubes Q =
∏d
j=1 Ij with Ij intervals,

then 1Q(x1, . . . , xd) = 1I1(x1) · · ·1Id(xd). This allows to compute 1Q ∗1Q′ when Q,Q′ are
cubes and shows that this function is continuous.

Lemma 1.4. Let f, g ∈ Cc(Rd), the space of compactly supported continuous functions.
Then f ∗ g ∈ Cc(Rd) and f ∗ g = g ∗ f .

Morevoer, if g ∈ Cnc (Rd), then f ∗ g ∈ Cnc (Rd) and for all α ∈ Nd, with |α| ≤ n,
∂α(f ∗ g) = f ∗ (∂αg) = (∂αg) ∗ f .

Note that ∂α(f ∗ g) = (∂αg) ∗ f implies that, if g ∈ Cnc (Rd) then f ∗ g is of class Cn+m

and ∂α+β(f ∗ g) = (∂αf) ∗ (∂βg) as long as |α| ≤ m, |β| ≤ n.

Proof. We will only prove the result in one variable, the proof for several variables
is similar.

Consider F (x, t) = f(t)g(x− t). Then

(1) F is continuous in t so that f ∗ g(x) =
∫
R F (x, t) dt is well defined. Further, the

change of varible s = x− t shows that f ∗ g = g ∗ f .
(2) Write I (resp. J) for an interval containing the support of f (resp. of g). As

f, g are continuous with compact support, they are bounded, so we can take
C ≥ ‖f‖∞, ‖g‖∞. But then |F (x, t)| ≤ C21I(t)1J(x− t). It follows that

|f ∗ g(x)| ≤ C2

∫
R

1I(t)1J(x− t) dt = C21I ∗ 1J(x).

The later one having compact support, f ∗ g has compact support. Further its
support is included in I + J = {x+ y, x ∈ I, y ∈ J}.

(3) Fix a bounded interval K ⊂ R and note that if x ∈ K and g(x − t) 6= 0 then
t ∈ x − J ⊂ K − J = {k − j, k ∈ K, j ∈ J} (a bounded interval). It follows
that |F (x, t)| ≤ C21I(t)1K−J(t) ∈ L1(R). As x → F (x, t) is continuous for all
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t, Lebesgue’s continuity theorem shows that f ∗ g is continuous on K and K is
arbitrary

The last part follows the same path noting that ∂αxF (x, t) = f(t)∂αg(x− t) and then
the same reasoning shows that this is bounded by an L1 function independent of x ∈ K.
It remains to apply Lebsgue’s derivation theorem. �

2. Convolution between Lp and its dual space

Theorem 2.1. Let 1 ≤ p ≤ +∞ and p′ be such that
1

p
+

1

p′
= 1. Let f ∈ Lp(Rd) and

g ∈ Lp′(Rd) then

(2.8) f ∗ g(x) =

∫
Rd

f(t)g(x− t) dt

is well defined for every x ∈ Rd. The mapping (f, g) → f ∗ g is bilinear and continuous

Lp × Lp′ → L∞ with ‖f ∗ g‖∞ ≤ ‖f‖p‖g‖p′ .
Moreover, if 1 < p < +∞ f ∗ g ∈ C0(Rd) so that (f, g) → f ∗ g is a bounded bilinear

mapping Lp × Lp′ → C0.

Recall that C0(Rd) is the space of continuous functions on Rd that go to 0 at infinity.

Proof. First, if g ∈ Lp′ then gx : t→ g(x− t) is also in Lp
′
. Hölder’s inequality then

shows that fgx ∈ L1 thus f ∗ g is well defined through (2.8). Further, Hölder shows that
‖f ∗ g‖∞ ≤ ‖f‖p‖g‖p′ . As (f ; g)→ f ∗ g is clearly bilinear, it follows that (f, g)→ f ∗ g is

a bounded bilinear mapping Lp × Lp′ → L∞.

The key observation is that C0 is a closed subspace of L∞. Indeed, if (fk) is a sequence
of elements of C0 that converges to some f in the L∞-norm, that is uniformly then

– the limit f is continuous (uniform limits of continuous functions are continuous)
– for ε > 0 there exists n such that ‖f − fn‖∞ ≤ ε. But then, there exists K such

that, if ‖x‖ ≥ K, |fn(x)| ≤ ε. Finally, for those x’s, |f(x)| ≤ |fn(x)|+ ‖f − fn‖∞ ≤ 2ε, so
f(x)→ 0 when ‖x‖ → +∞.

In conclusion f ∈ C0 and C0 is closed in L∞.

Now, Example 1.3 shows that, if f, g are characteristic functions of cubes, f ∗ g is
continuous compactly supported. By bilinearity, if f, g are step functions, that is, finite
linear combinations of characteristic functions of cubes, then f ∗ g ∈ Cc(Rd) ⊂ C0(Rd).

Finally, let f ∈ Lp(Rd) and g ∈ Lp′(Rd). As p 6= +∞, there exists a sequence fk of
step functions such that fk → f in Lp(Rd). As p 6= 1, p′ 6= +∞, so there exists a sequence
gk of step functions such that gk → f in Lp(Rd).

But then

‖f ∗ g − fk ∗ gk‖∞ = ‖(f − fk) ∗ g + fk(g − gk)‖∞ ≤ ‖(f − fk) ∗ g‖∞ + ‖fk(g − gk)‖∞
≤ ‖f − fk‖p‖g‖p′ + ‖fk‖p‖g − gk‖p′ → 0

since ‖f − fk‖p, ‖g − gk‖p′ → 0 and ‖fk‖p is bounded since fk is convergent. �

3. Convolution of L1 with itself

We want to make sense of

(3.9) f ∗ g(x) =

∫
Rd

f(y)g(x− y) dy.
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This is possible as a Lebesgue integral when

∫
Rd

|f(y)g(x− y)|dy is finite. But note that,

integrating this quantity in the x variable, we obtain, with Fubini∫
Rd

∫
Rd

|f(y)g(x− y)|dy dx =

∫
Rd

∫
Rd

|f(y)g(x− y)|dxdy

=

∫
Rd

|f(y)|
(∫

Rd

|g(x− y)|dx
)

dy

=

∫
Rd

|f(y)|
(∫

Rd

|g(t)|dt
)

dy = ‖f‖L1(Rd)‖g‖L1(Rd).

It follows that, if f, g ∈ L1(Rd) then∫
Rd

(∫
Rd

|f(y)g(x− y)|dy
)

dx < +∞

but then, for almost every x,

∫
Rd

|f(y)g(x − y)|dy is finite. It follows that (3.9) is well

defined for almost every x. Moreover, the resulting function is in L1(Rd). Let us summarize
this:

Proposition 3.1. Let f, g ∈ L1(Rd) then

f ∗ g(x) =

∫
Rd

f(y)g(x− y) dy

is well defined for almost every x ∈ Rd. Moreover, the mapping (f, g)→ f ∗ g is a bounded
bilinear mapping L1(Rd)× L1(Rd)→ L1(Rd) and

‖f ∗ g‖1 ≤ ‖|f | ∗ |g|‖1 = ‖f‖1‖g‖1.

4. Extension principle

In this course, we will use the following general principle :
— X and Y are Banach spaces and D is a dense (vectorial) subspace of X;
— T is a linear mapping D → Y ;
— T is bounded on D, that is, there exists C ≥ 0 such that, for all x ∈ D, ‖Tx‖Y ≤

C‖x‖X .

Then T extends into a bounded linear mapping T̃ : X → Y with same norm: for all

x ∈ D, T̃ x = Tx and for all x ∈ X,
∥∥∥T̃ x∥∥∥

Y
≤ C‖x‖X .

Of course, we then write T̃ = T .

Proof. Let us first extend T and then show it is linear bounded:
Let x ∈ X. From the density of D in X, there exists a sequence (xn)n ⊂ D that

converges to x in X. In particular, it is a Cauchy sequence. Let us show that (Txn)n is
also a Cauchy sequence. Indeed, let ε > 0, there exists N ≥ 0 such that, if p, q ≥ N , then
‖xp − xq‖X ≤ ε. But then, as xp, xq ∈ D and T is linear on D,

‖Txp − Txq‖Y = ‖T (xp − xq)‖Y ≤ C‖xp − xq‖X ≤ Cε

since T is bounded on D. Now, as (Txn)n is Cauchy in Y , a Banach space, (Txn)n has a
limit that we denote by a.
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We would of course like to call a = Tx. To do so, we need to show that, if (yn)n is an
other sequence of elements of D that converges to x in X, then Tyn also converges to a.
But, as xn, yn ∈ D and T is linear on D,

‖Txn − Tyn‖Y = ‖T (xn − yn)‖Y ≤ C‖xn − yn‖X → C‖x− x‖ = 0

since the norm is a continuous mapping. We thus write a = T̃ x.

Further, if x ∈ D the sequence xn = x converges to x so that Tx = Txn → T̃ x and T̃
is an extension of T from D to X. We will thus denote T̃ = T .

Let us now show that T is linear: let x, y ∈ X and λ, µ ∈ K. By density, there exist
sequences (xn), (yn) in D that converge respectively to x and y. But then λxn + µyn →
λx + µy so T (λxn + µyn) → T (λx + µy). On the other hand, as T is linear on D,
T (λxn + µyn) = λTxn + µTyn → λTx+ µTy, so

T (λx+ µy) = λTx+ µTy.

Finally, if x ∈ X and (xn)n ⊂ D converges to x, then Txn → Tx in Y and ‖Txn‖Y ≤
C‖xn‖X . As norms are continuous, ‖Tx‖Y ≤ C‖x‖X . So T is a bounded linear mapping

�

Let us illustrate this:

Theorem 4.1. Let f ∈ L1(Rd) and 1 ≤ p ≤ +∞. Then the mapping Tf : g → f ∗ g
extends from Cc(Rd)→ L∞ to a mapping Lp(Rd)→ Lp(Rd).

Moreover, this mapping commutes with the translations τa.

Recall that τag(x) = g(x− a).

Proof. Note that we have already seen that f ∗ g is well defined when f ∈ L1 and
g ∈ L∞. What we have to prove is that there is a C > 0 such that, for all g ∈ Cc(Rd),
‖f ∗ g‖Lp(Rd) ≤ C‖g‖Lp(Rd).

But this follows from Minkowski’s inequality :∥∥∥∥∫
Rd

f(t)g(· − t) dt

∥∥∥∥
r

≤
∫
Rd

|f(t)|‖g(· − t)‖r dt = ‖f‖1‖g‖r.

Finally, when p 6= +∞, g ∈ Cc(Rd)

Tfτag(x) = f ∗ (τag)(x) =

∫
Rd

f(t)g(x− t− a) dt

=

∫
Rd

f(t)g
(
(x− a)− t

)
dt = f ∗ g(x− a) = τaTfg(x).

Thus Tfτa = τaTf holds on the dense subspace Cc(Rd) of Lp(Rd) and Tf , τa are continuous
linear mappings on Lp so the conclusion follows.

When p = +∞, we can directly take g ∈ L∞ in the above computation. �

The extension principle works exactly the same way for bilinear mappings:
In this course, we will use the following general principle :
— X1, X2 and Y are Banach spaces and D1 (resp. D2) is a dense (vectorial) subspace

of X1 (resp. X2);
— T is a bilinear mapping D1 ×D2 → Y ;
— T is bounded on D1 × D2, that is, there exists C ≥ 0 such that, for all x ∈ D,

‖T (x1, x2)‖Y ≤ C‖x1‖X1
‖x2‖X2

.
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Then T extends into a bounded bilinear mapping T̃ : X1 × X2 → Y with same
norm: for all (x1, x2) ∈ D1 × D2, T̃ (x1, x2) = T (x1, x2) and for all (x1, x2) ∈ X1 × X2,∥∥∥T̃ (x1, x2)

∥∥∥
Y
≤ C‖x1‖X1

‖x2‖X2
.

Of course, we then write T̃ = T .

5. Young’s inequality

We would now like to extend the convolution to a bilinear mapping from Cc(Rd) ×
Cc(Rd)→ Cc(Rd) to Lp(Rd)×Lq(Rd)→ Lr(Rd). For this to be possible, one needs to have
a constant C > 0 such that the inequality

(5.10) ‖f ∗ g‖Lr(Rd) ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).

To start, we will use a simple but common trick to check for which p, q, r this is possible:
Fix f, g ∈ Cc(Rd) \ {0} nand f, g ≥ 0 so that f ∗ g ∈ Cc(Rd) \ {0} as well. Take a

parameter λ > 0 and define fλ(x) = f(λx), gλ(x) = g(λx) then, changing variable s = λx

fλ ∗ gλ(x) =

∫
Rd

f(λt)g
(
λ(x− t)

)
dt = λ−d

∫
Rd

f(s)g(λx− s) ds = λ−df ∗ g(λx).

On the other hand

‖fλ‖Lp(Rd) =

(∫
Rd

|f(λt)|p dt

)1/p

=

(
λ−d

∫
Rd

|f(s)|p ds

)1/p

= λ−d/p‖f‖Lp(Rd).

The same way, we have

‖gλ‖Lq(Rd) = λ−d/q‖g‖Lq(Rd) and ‖fλ ∗ gλ‖Lr(Rd) = λ−d(1+1/r)‖f ∗ g‖Lr(Rd).

Thus, if we replace f, g by fλ, gλ in (5.10), then

0 <
‖f ∗ g‖Lr(Rd)

C‖f‖Lp(Rd)‖g‖Lq(Rd)

≤ λd(1+ 1
r−

1
p−

1
q ).

Letting λ→ 0, this implies that the power of λ be ≤ 0 while letting λ→ +∞, this implies

that the power of λ be ≥ 0. We have thus shown that (5.10) implies
1

p
+

1

q
= 1 +

1

r
. In

other words, the conditions on p, q, r in the following theorem are necessary.

Theorem 5.1 (Young’s Inequality).

Let 1 ≤ p, q, r ≤ +∞ be three real numbers such that
1

p
+

1

q
= 1 +

1

r
. Then, for all

f, g ∈ Cc(Rd),

(5.11) ‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

It follows that the mapping (f, g) → f ∗ g extends from Cc(Rd) × Cc(Rd) → Cc(Rd) into a
bounded bilinear mapping Lp(Rd)× Lq(Rd)→ Lr(Rd).

Further f ∗ g = g ∗ f .

Proof. We only have to prove (5.11).
Note that several particular cases have already be proven: when r = +∞, then 1

p + 1
q =

1 and this is (part of) Theorem 2.1.
When r = 1 then 1

p + 1
q = 2. As p, q ≥ 1 this implies p = q = 1 and Young’s inequality

is Proposition 3.1. More generally, the case p = 1 was treated in Theorem 2.1 and, by
symmetry f ∗ g = g ∗ f , so is the case q = 1.
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Note finally that if p = +∞, then as 1 ≤ q, r ≤ +∞ then 1 + 1/r = 1/q implies
q = 1 and r = +∞ which is already covered. The same holds when q = +∞. We can
then assume that 1 < p, q, r < +∞. Note that 1

p + 1
q = 1 + 1

r implies r > p, q so that

0 < p/r, q/r, 1− p/r, 1− q/r < 1.

We will use the following fact which comes from the duality of Lr-Lr
′

when 1
r + 1

r′ = 1
(actually from Hölder’s Inequality): if ϕ ∈ Lr then

‖ϕ‖r = sup{
∫
Rd

ϕ(x)ψ(x)dx : ψ ∈ Lr
′
, ‖ψ‖r′ = 1}.

But now, if f, g ∈ Cc(Rd), then f ∗ g ∈ Cc(Rd) ⊂ Lr(Rd). Let h ∈ Lr′ with r′ = r
r−1 .

We want to bound

I(f, g, h) =

∫
Rd

f ∗ g(x)h(x) dx.

Obvously

|I(f, g, h)| ≤
∫
Rd

|f ∗ g(x)||h(x)|dx ≤
∫
Rd

∫
Rd

|f |(t)|g|(x− t)|h|(x) dxdt = I(|f |, |g|, |h|)

with Fubini. We may thus replace f, g, h with |f |, |g|, |h|, that is, we can now assume that
f, g, h ≥ 0. We have to prove that I(f, g, h) ≤ ‖f‖p‖g‖q‖h‖r′ .

Note that, as f, g, h ≥ 0, we may apply Fubini and get

I(f, g, h) =

∫
Rd

∫
Rd

f(t)g(x− t)h(x) dx dt.

To bound this quantity we will first isolate h and apply Hölder’s Lr − Lr′ inequality with
1

r
+

1

r′
= 1 i.e. r′ = r

r−1 . We write f(t)g(x− t)h(x) = F1(x, t)F2(x, t) with

F1(x, t) = f(t)p/rg(x− t)q/r and F2(x, t) = f(t)1−p/rg(x− t)1−q/rh(x)

so that

(5.12) I(f, g, h) ≤
(∫

Rd

∫
Rd

F1(x, t)r dxdt

) 1
r
(∫

Rd

∫
Rd

F2(x, t)r
′
dxdt

) 1
r′

.

Note that F1(x, t)r, F2(x, t)r
′ ≥ 0 so that we will be able to change the order of

integration.
The first of these two integrals is rather simple to bound: using Fubini, we first integrate

with respect to x,(∫
Rd

∫
Rd

F1(x, t)r dxdt

) 1
r

=

(∫
Rd

∫
Rd

f(t)pg(x− t)q dx dt

) 1
r

=

(∫
Rd

g(x)q dx

) 1
q

q
r
(∫

Rd

f(t)p dt

) 1
p

p
r

= ‖f‖
p
r
p ‖g‖

q
r
q .(5.13)
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The second term is more involved. First(∫
Rd

∫
Rd

F2(x, t)r
′
dxdt

) 1
r′

=

(∫
Rd

∫
Rd

f(t)(1−p/r)r′g(x− t)(1−q/r)r′h(x)r
′
dtdx

) 1
r′

≤
(

sup
x∈Rd

∫
Rd

f(t)(1−p/r)r′g(x− t)(1−q/r)r′ dt

) 1
r′
(∫

Rd

h(x)r
′
dx

) 1
r′

=
∥∥∥f (1−p/r)r′ ∗ g(1−q/r)r′

∥∥∥1/r′

∞
‖h‖r′ .(5.14)

We next introduce a parameter s to be determined soon and s′ its dual index 1
s+ 1

s′ = 1.
Then from Theorem 2.1 we know that

(5.15)
∥∥∥f (1−p/r)r′ ∗ g(1−q/r)r′

∥∥∥
∞
≤
∥∥∥f (1−p/r)r′

∥∥∥
s

∥∥∥g(1−q/r)r′
∥∥∥
s′
.

As we want an estimate with ‖f‖p this leads to the choice s(1 − p/r)r′ = p. As

r′ =
r

r − 1
we thus have (1− p/r)r′ = r−p

r−1 so that

s =
r − 1

r − p
p.

Note that r > p > 1 so p < s < +∞. The dual index is then

s′ =
s

s− 1
=

(r − 1)p

r(p− 1)
=
p′

r′

thus

(1− q/r)r′s′ = (1− q/r)p′ =
(

1− q

r

)
p′.

But, multiplying 1 +
1

r
=

1

p
+

1

q
by q and rewriting it gives 1 − q

r
= q

(
1− 1

p

)
=

q

p′
.

Finally

(1− q/r)r′s′ = q.

The choice of s then implies that∥∥∥f (1−p/r)r′
∥∥∥
s

=

(∫
Rd

f(x)(1−p/r)r′s dx

) 1
s

=

(∫
Rd

f(x)p dx

) 1
s

= ‖f‖p/sp

while ∥∥∥g(1−q/r)r′
∥∥∥
s′

=

(∫
Rd

g(x)(1−q/r)r′s′ dx

) 1
s′

=

(∫
Rd

g(x)q dx

) 1
s′

= ‖g‖q/s
′

p .

Injecting this into (5.15), we get∥∥∥f (1−p/r)r′ ∗ g(1−q/r)r′
∥∥∥
∞
≤ ‖f‖p/sp ‖g‖

q/s′

p .

From this, (5.14) reduces to(∫
Rd

∫
Rd

F2(x, t)r
′
dx dt

) 1
r′

≤ ‖f‖p/r
′s

p ‖g‖q/r
′s′

p ‖h‖r′ .

Finally, with (5.13), we get that (5.12) reduces to

I(f, g, h) ≤ ‖f‖
p
r + p

r′s
p ‖g‖

q
r + q

r′s′
p ‖h‖r′ .
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It remains to notice that
1

r
+

1

r′
1

s
=

1

r
+
r − 1

r

r − p
(r − 1)p

=
p+ r − p

rp
=

1

p

and that
1

r
+

1

r′
1

s′
=

1

q
. In conclusion we have∫
Rd

∫
Rd

f(t)g(x− t)h(x) dxdt ≤ ‖f‖p‖g‖q‖h‖r′

hor all h ∈ Lr′ . It follows that, for all f, g ∈ Cc(Rd),
‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

The extension principle then shows that f ∗ g can be defined on Lp × Lq. �

Remark 5.2. If
1

p
+

1

q
= 1+

1

r
> 1 then f∗g is a priori not defined by

∫
Rd

f(t)g(x−t) dt.

One needs to approximate f and/or g by a sequence of functions that converges to f
and g in Lp and Lq respectively and for which the above definition makes sense.

To do so, write fk = f1‖f‖≤k so that fk → f in Lp. Further, fk ∈ Ls for every s ≥ p.

But
1

p
+

1

q
= 1 +

1

r
can be rewritten as

1

p
− 1

r
= 1− 1

q
=

1

q′
so that q′ > p. In particular,

fk ∈ Lq
′
. But then fk ∗ g(x) =

∫
Rd

fk(t)g(x − t) dt. As fk ∗ g → f ∗ g in Lr we conclude

that

f ∗ g(x) = lim
k→+∞

∫
Rd

f(t)1|f |≤k(t)g(x− t) dt.

6. Regularization

6.1. Spaces of smooth functions: C∞c (Rd) and S(Rd). Spaces of smooth functions
will play a key role in the sequel. The first space we consider is the following:

C∞c (Rd) = {f ∈ C∞(Rd) : ∃R > 0 s.t. f(x) = 0 if ‖x‖ ≥ R}
the space of smooth functions with compact support.

One may wonder if such functions actually exist so let us start by giving an example:

Example 6.1. Let g be defined on R by g(x) =

{
0 if x ≤ 0

e−1/x if x > 0
. Then g is clearly

C∞ on R \ {0}. Moreover, for every k, there exists a polynomial Pk such that g(k)(x) =
Pk(x)

x2k
g(x) when x 6= 0.

Indeed, the formula is clearly true for k = 0. For k = 1, g′(x) = 0 when x ≤ 0 while

g′(x) = − 1

x2
e−1/x so that the formula is also true for k = 1. Assuming g(k) is of that form

up to some rank k ≥ 1 we get

g(k+1)(x) =
P ′k(x)

x2k
g(x)− 2kPk(x)

x2k+1
g(x)

Pk(x)

x2k
g′(x) =

x2P ′k(x)− (2kx+ 1)Pk(x)

x2k+2
g(x)

and if Pk is a polynomial, so is Pk+1(x) := x2P ′k(x)− (2kx+ 1)Pk(x).

Alternatively, one may also show that g(k)(x) = Qk(1/x)g(x) with Qk a polynomial.
Next, it is clear that g is continuous at 0. Assuming g is of class Ck−1 on R, as

g(k)(x) =
Pk(x)

x2k
e−1/x we get that g(k)(x) → 0 when x → 0+ and as g(k)(x) = 0 when
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x < 0 we also get that g(k)(x)→ 0 when x→ 0−. It follows that g(k) extends by continuity
at 0 so that g(k−1) is of class C1, thus g is of class Ck.

Finally define f through f(x) = g(1 − ‖x − a‖2/η2) and note that g is clearly C∞
(taking the euclidean norm) and that f(x) = 0 when 1 − ‖x − a‖2/η2 ≤ 0 that is, when
|x− a‖ ≥ η. Thus f is C∞ supported in the ball B(a, η).

Example 6.2. We still consider g defined on R by g(x) =

{
0 if x ≤ 0

e−1/x if x > 0
. Next,

we define

h(x) =
g(x)

g(x) + g(1− x)
=


0 for x ≤ 0

e−1/x

e−1/x+e−1/(1−x) for 0 < x < 1

1 for x ≥ 1

.

As g(x) + g(1− x) 6= 0 for all x, clearly h is of class C∞ on R.
Next, we define b(x) = h(2 + x)h(2 − x) which is clearly C∞. Further, for |x| ≥ 2,

one of 2 + x, 2 − x is ≤ 0 so b(x) = 0. For |x| ≤ 1, both 2 + x, 2 − x are ≥ 1 so that
h(2 + x) = h(2− x) = 1 and b(x) = 1. Finally as 0 ≤ g ≤ 1, 0 ≤ b ≤ 1. It follows that

the function b is a smooth bump function: b is C∞ with support [−2, 2] and b(x) = 1 for
x ∈ [−1, 1] and 0 ≤ b ≤ 1.

Note that given a < b < c < d there exists a function B ∈ C∞ such that b = 1 on [b, c],
b = 0 outside [a, b] and 0 ≤ b ≤ 1. To do so, one choses b(x) = h(α + βx)h(γ − δx) with
β, δ ≥ 0, γ − δd = α+ βa = 0 and α+ βb = γ − δc = 1. The choice is thus

α =
−a
b− a

, β =
1

b− a
, γ =

d

d− c
, δ =

1

d− c
.

Note that one may tensor such functions: b(x1, . . . , xd) =
∏d
i=1 bi(xi). Then, if Q1, Q2 are

two cubes with the closure of Q1 in the interior of Q2 (so that the boundaries don’t touch)
then there exists b ∈ C∞ such that b(x) = 1 on Q1, b(x) = 0 outside Q2 and 0 ≤ b ≤ 1.

It should be noted that once we have an element of C∞c , we get many others:

Lemma 6.3. Let ϕ ∈ L1(Rd) and f ∈ C∞c (Rd) then ϕ ∗ f ∈ C∞(Rd) and, if ϕ is
compactly supported then so if ϕ ∗ f ∈ Cc(Rd).

We will define the support of ϕ ∈ L1(Rd) in a precise way later on, here we simply
mean that there is an R > 0 such that ϕ(x) = 0 whenever ‖x‖ ≥ R.

Proof. Indeed, if f ∈ C∞c (Rd) then f is bounded so that ϕ∗f(x) =

∫
Rd

ϕ(t)f(x−t) dt.

Set F (x, t) = ϕ(t)f(x− t) and note that, for t fixed, x→ F (x, t) is C∞ (unless |ϕ(t)| = +∞
so this is true for almost every t). Further for every α ∈ Nd, ∂αxF (x, t) = ϕ(t)∂αf(x − t).
But ∂αf is continuous with compact support so that it is bounded |∂αf(u)| ≤ Cα thus
|∂αxF (x, t)| ≤ Cα|ϕ(t)| ∈ L1(Rd). Lebesgue’s derivation theorem then implies that ϕ ∗ f is
of class C∞ with ∂α(ϕ ∗ f) = ϕ ∗ ∂αf .

Finally, if ϕ and f are both compactly supported, there is an R such that, if ‖t‖ ≥ R
and ‖u‖ ≥ R then ϕ(t) = 0 and f(u) = 0. But then, if ‖x‖ ≥ 2R and ‖t‖ ≤ R,
‖x− t‖ ≥ R. It follows that, when ‖x‖ ≥ 2R, F (x, t) = ϕ(t)f(x− t) = 0 for all t ∈ Rd thus
ϕ ∗ f =

∫
F (x, t) dt = 0. �

Although Cc(Rd) is a large class (we will even see that it is dense in every Lp(Rd) space
with p < +∞), this class is too small to contain a function like the Gaussian. We will
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thus define a larger class that has almost the same property. To do so, for α, β ∈ Nd and
f : Rd → C, let

pα,β(f) = sup
x∈Rd

|xα∂βf(x)|.

Definition 6.4. The Schwarz class is the set

S(Rd) = {f ∈ C∞(Rd) : ∀α, β ∈ Nd, pα,β(f) < +∞}.

The Schwarz class is thus the space of all smooth functions such that all derivatives
have fast decrease at infinity (i.e. faster than any polynomial). The class is not empty as
obviously C∞c (Rd) ⊂ S(Rd).

Example 6.5. Let f be a Gaussian, f(x) = e−a‖x‖
2

, a > 0 (the norm is the Euclidean
norm). Then f ∈ S(Rd).

For simplicity, we will show this for d = 1 and a = 1/2 so f(x) = e−x
2/2. Then, for

every k, there exists a polynomial Pk such that f (k)(x) = Pk(x)e−x
2/2. This is clear since

P0 = 1 and, by induction, f (k+1)(x) =
(
P ′k(x)−xPk(x)

)
e−x

2/2 and Pk+1 = P ′k(x)−xPk(x)

is a polynomial if Pk is. Finally, xNPk(x)e−x
2/2 is clearly bounded.

It should be noted that the choice of pα,β to define S(Rd) is somewhat arbitrary. We
may as well take m,n two integers and define

p̃m,n(f) = sup
x∈Rd

(1 + ‖x‖2)m
∑
|β|≤n

∣∣∣∣∂βf∂xβ
f(x)

∣∣∣∣.
Then if we notice that (1 + ‖x‖2)m is a polynomial of degree 2m

(1 + ‖x‖2)m =
∑
|α|≤2m

cαx
α

and C = max |cα| then

p̃m,n(f) ≤
∑
|α|≤2m

|cα|
∑
|β|≤n

sup
x∈Rd

|xα∂βf(x)| ≤ C
∑
|α|≤2m

∑
|β|≤n

pα,β(f).

On the other hand,

|xα| = |x1|α1 · · · |xd|αd ≤ ‖x‖|α|∞ ≤ ‖x‖
|α|
2 ≤ (1 + ‖x‖22)|α|.

For the last inequality, one considers the cases ‖x‖2 ≤ 1 and ‖x‖2 ≥ 1. But then

pα,β(f) ≤ p̃|α|,|β|(f).

It follows that
S(Rd) = {f ∈ C∞(Rd) : ∀m,n ∈ N, p̃m,n(f) < +∞}.

This change of “semi-norm” is sometimes convenient, for instance for the following lemma

Lemma 6.6. For every 1 ≤ p ≤ ∞, S(Rd) ⊂ Lp(Rd).

Proof. The lemma is trivial when p = +∞ since p̃0,0(f) = ‖f‖∞.
For other p’s we will use the fact that, integrating in polar coordinates∫
Rd

dx

(1 + ‖x‖2)κ
=

∫
Sd−1

∫ +∞

0

rd−1

(1 + r2)κ
dr dσd−1(θ)

= σd−1(Sd−1)

∫ +∞

0

rd−1

(1 + r2)κ
dr < +∞
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if 2κ > d. It follows that, if∫
Rd

|f(x)|p dx =

∫
Rd

|(1 + ‖x‖2)df(x)|p dx

(1 + ‖x‖2)dp
≤ p̃d,0(f)

∫
Rd

dx

(1 + ‖x‖2)dp
< +∞.

�

It is now easy to prove the following that we leave as an exercice

Proposition 6.7. Let α ∈ Nd, λ, µ ∈ C, T ∈ GL(Rd) an invertible linear transforma-
tion. Then

– if f, g ∈ C∞c (Rd) so is λf + µg, f ◦ T , fg, xαf , ∂αf ;
– if f, g ∈ S(Rd) so is λf + µg, f ◦ T , fg, xαf , ∂αf .

Let us now extend Lemma 6.3 which shows that we can add f ∗ g to the above list.

Lemma 6.8. Let 1 ≤ p ≤ ∞, ϕ ∈ Lp(Rd) and f ∈ S(Rd) then ϕ∗f ∈ C∞(Rd). Further
if, for every α ∈ Nd, tαϕ ∈ Lp(Rd) then ϕ ∗ f ∈ S(Rd).

The second part of the lemma is satisfied if ϕ is compactly supported or if ϕ ∈ S(Rd).

Proof. The general scheme of proof is the same as for Lemma 6.3. Note that, as
S(Rd) ⊂ Lp′(Rd), 1/p+ 1/p′ = 1, we have ϕ ∗ f ∈ L∞(Rd) and

ϕ ∗ f(x) =

∫
Rd

ϕ(t)f(x− t) dt.

For p = 1, there is nothing to change: we again define F (t, x) = ϕ(t)f(x− t) and, for
every α ∈ Nd ∂αxF (t, x) = ϕ(t)∂αf(x− t) so that |∂αxF (t, x)| ≤ pα,0(f)|ϕ(t)| ∈ L1(Rd). By
Lebesgue’s Differentiation Theorem, ϕ ∗ f is of class C∞ with ∂α(ϕ ∗ f) = ϕ ∗ (∂αf).

For p > 1, this can not work and we need to use the fact that f has some extra decrease
that can compensate the fact that ϕ /∈ L1. First, note that it is enough to show that ϕ ∗ f
is of class C∞ on the ball B(0, R) with R arbitrary. So assume that ‖x‖ ≤ R

∂αxF (t, x) = ϕ(t)∂αf(x− t) =
ϕ(t)

(1 + ‖t‖2)d
(1 + ‖t‖2)d

(1 + ‖x− t‖2)d
(1 + ‖x− t‖2)d∂αf(x− t).

First, as (1 + ‖t‖2)−d ∈ Lp′(Rd) (it is in all Lq(Rd) spaces, q ≥ 1) and ϕ ∈ Lp, Hölder’s

inequality shows that Φ(t) :=
|ϕ(t)|

(1 + ‖t‖2)d
∈ L1(Rd).

Next (1 + ‖x− t‖2)d|∂αf(x− t)| ≤ p̃d,|α|(f).
Finally if |t| ≥ 2R, and |x| ≤ R, |x− t| ≥ |t| − |x| ≥ |t| −R ≥ |t|/2 so that

(1 + ‖t‖2)d

(1 + ‖x− t‖2)d
≤
(

1 + ‖t‖2

1 + ‖t‖2/4

)d
≤ 4d

while for |t| ≤ 2R,

(1 + ‖t‖2)d

(1 + ‖x− t‖2)d
≤ (1 + 2R)d.

Assuming R ≥ 2, we get that this bound also holds for |t| ≥ 2R and finally

|∂αxF (t, x)| ≤ p̃d,|α|(f)(1 + 2R)dΦ(t) ∈ L1(R).

By Lebesgue’s Differentiation Theorem, ϕ ∗ f is of class C∞ with ∂α(ϕ ∗ f) = ϕ ∗ (∂αf) on
B(0, R) and as R is arbitrary, the same holds on Rd.
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It remains to prove that, for all α, β, xα∂β(ϕ ∗ f) = xαϕ ∗ (∂βf) is bounded. As
f ∈ S(Rd) implies that ∂βf ∈ S(Rd), it is enough to consider the case β = 0. But now,
define Miψ(t) = tiψ(t), then

xiϕ ∗ f(x) =

∫ d

R
ϕ(t)xif(x− t) dt =

∫ d

R
ϕ(t)(xi − ti)f(x− t) dt+

∫ d

R
tiϕ(t)f(x− t) dt

= ϕ ∗Mif +Miϕ ∗ f

which is bounded since Miϕ ∈ Lp(Rd) and Mif ∈ S(Rd). An induction on the length of α
then shows that, for every α ∈ Nd, xαϕ ∗ f is bounded. �

Remark 6.9. A careful examination of the above proofs shows that, for ϕ ∈ Lp(Rd)
and f ∈ Ck(Rd) such that for every α with |α| ≤ k there is a κ > 0 such that (1 + |t|2)−κ ∈
Lp
′

(i.e. 2κp′ > d) and (1 + |t|2)κ∂αf ∈ L∞, we have ϕ ∗ f ∈ Ck.

6.2. Regularization by convolution.

Theorem 6.10 (Approximation of unity).
Let 1 ≤ p < +∞ and j ∈ S(Rd) be such that j ≥ 0 and

∫
Rd j(x) dx = 1. For s > 0, denote

by js the function defined by js(t) = s−dj(t/s).
Then, for every ϕ ∈ Lp(Rd), ϕ ∗ js ∈ C∞(Rd) and ϕ ∗ js → ϕ in Lp when s→ 0.
For p = +∞, L∞ has to be replaced by C0(Rd): for every ϕ ∈ C0(Rd), ϕ ∗ js ∈ C∞(Rd)

and ϕ ∗ js → ϕ uniformly when s→ 0.

Proof. We will only give the proof for 1 ≤ p < +∞. We leave to the reader the case
p = +∞. The only thing that one needs to use is the fact that functions in C0(Rd) are
uniformly continuous.

Let us first note that js ∈ S(Rd) and that∫
Rd

js(t) dt =

∫
Rd

j(t/s) s−ddt =

∫
Rd

j(r) dr = 1

with a change of variable r = t/s.
We have thus already seen that ϕ ∗ js ∈ C∞(Rd).
Next, js ∈ Lp

′
(Rd) with 1

p + 1
p′ = 1, so that

ϕ ∗ js(x) =

∫
Rd

js(t)ϕ(x− t) dt.

But then

ϕ(x)− ϕ ∗ js(x) = f(x)

∫
Rd

js(t) dt−
∫
Rd

js(t)ϕ(x− t) dt

=

∫
Rd

js(t)
(
ϕ(x)− ϕ(x− t)

)
dt.

From Minkowski’s inequality we deduce that

‖ϕ− ϕ ∗ js‖p ≤
∫
Rd

js(t)‖ϕ− τtϕ‖p dt.

Now fix ε > 0. As p < +∞, we have seen that ‖ϕ− τtϕ‖p → 0 when t → 0 so that

there exists η > 0 such that, if |t| < η, ‖ϕ− τtϕ‖p ≤ ε. When |t| ≥ η we can simply use
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that ‖ϕ− τtϕ‖p ≤ 2‖ϕ‖p We then write

‖ϕ− ϕ ∗ js‖p ≤
∫
|t|≤η

js(t)‖ϕ− τtϕ‖p dt+

∫
|t|≥η

js(t)‖ϕ− τtϕ‖p dt

≤ ε

∫
Rd

js(t) dt+ 2‖ϕ‖p
∫
|t|≥η

js(t) dt.

It remains to notice that
∫
Rd js(t) dt = 1 and that∫

|t|≥η
js(t) dt =

∫
|t|≥η

s−dj(t/s) dt =

∫
r≥η/s

j(r) dr → 0

when s→ 0. In particular, there is an η′ such that, if s < η′, 2‖ϕ‖p
∫
|t|≥η

js(t) dt ≤ ε and

then ‖ϕ− ϕ ∗ js‖p ≤ 2ε. �

Again, the hypothesis can be weakend without changing the proof. To do so, we may
assume that (js)s≥0 is a family of L1(Rd) functions such that

(1) there is a constant C > 0 such that, for all s > 0,∫
Rd

js(x) dx = 1 and

∫
Rd

|js(x)|dx ≤ C.

(2) For every η > 0,
∫
|x|≥η |js(x)|dx→ 0 when s→ 0.

Such a family is called an approximation of the identity (and sometimes a mollifier).

Corollary 6.11. The space C∞c (Rd) is dense in every Lp(Rd) space with 1 ≤ p < +∞
and thus so is every space containing it like Cc(Rd) and S(Rd).

Proof. Let f ∈ Lp(Rd) and ε > 0. Let j ∈ C∞c (Rd) and js(t) = s−dj(t/s) First, for R
large enough

∥∥f − f1|x|≤R
∥∥ ≤ ε. Next there exists s such that

∥∥f1|x|≤R − (f1|x|≤R) ∗ js
∥∥ ≤

ε. But then
∥∥f − (f1|x|≤R) ∗ js

∥∥ ≤ 2ε and (f1|x|≤R) ∗ js ∈ C∞c (Rd). �

Remark 6.12. One has to be careful with the density of Cc(Rd) in Lp(Rd). The proof
given here relies on approximation of unity. This in turn relies on the fact that translations
are continuous.

We have proven this last fact by first proving it for characteristic functions of cubes,
from which we deduced the fact for simple step functions. Then we concluded that trans-
lations are continuous by density of step functions in Lp. Our proof is thus not circular.

It turns out that it is simpler to prove that translations are continuous by first proving
this fact for functions in Cc(Rd) and then using the density of this last step. The approxi-
mation of unity theorem then allows to prove that C∞c (Rd) is dense in Lp, but the density
of Cc(Rd) then needs a different proof.

7. Partition of unity

The aim of this section is to decompose the function 1 into a sum of smooth bum
functions with controled support. Before doing so, we need a result from topology:

Proposition 7.1. Let Ω ⊂ Rd be an open set and let {Ωi, i ∈ I} be an open cover of
Ω: each Ωi is open and Ω ⊂

⋃
i∈I Ωi. Then there exists a sequence (xk)k∈N ⊂ Ω and a

sequence (rk)k∈N of positive numbers such that

(i) Ω =
⋃
k≥0

B(xk, rk);
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(ii) for each k there is an i ∈ I such that B(xk, 2rk) ⊂ Ωi;
(iii) each x ∈ Ω has an open neighbourhood U such that {k : U ∩ B(xk, rk) 6= ∅} is

finite.

Let us postpone the proof of this proposition. We can now prove the following:

Theorem 7.2 (Partition of unity). Let Ω ⊂ Rd be an open set and let {Ωi, i ∈ I} be
an open cover of Ω. Then, for each i ∈ I, there exists fi ∈ C∞(Rd) such that

(i) 0 ≤ fi ≤ 1;
(ii) supp fi ⊂ Ωi;
(iii) each x ∈ Ω has an open neighborhood U such that {i : fi 6= 0 on U} is finite;

(iv)
∑
i∈I

fi(x) = 1 for every x ∈ Ω.

Definition 7.3. We say that (fi)i∈I is a partition of unity subordinated to (Ωi)i∈I .

Proof. Let xk, rk be given by Proposition 7.1. Let gk be a smooth function with
gk > 0 in B(xk, εk) and gk(x) = 0 for |x − xk| ≥ rk. Such a function was constructed in
Example 6.1. Let g =

∑
k≥0 gk. As a sum of positive numbers, this always exists (but may

be infinite for the moment)
Now, according to Proposition 7.1iii, for each x ∈ Ω there is an open neighborhood U

such that JU := {k : B(xk, 2εk)∩U} is finite. But then, if y ∈ U , gk(y) = 0 unless k ∈ JU .
It follows that ∑

k≥0

gk(y) =
∑
k∈JU

gk(y)

on U . As this is a finite sum of smooth functions, it is a smooth function on U . As x
was arbitrary, it follows that g is smooth in a neighborhood of each point in Ω thus it is
smooth on Ω. Further, given x ∈ Ω, from Proposition 7.1i, there is at least one k such that
x ∈ B(xk, rk) thus gk(x) > 0. As gj(x) ≥ 0 for j 6= k, we get that g(x) > 0.

Next define hk = gk/g which is C∞, with support B(xk, rk) and
∑
k≥0 hk = 1. Now

take i ∈ I and write Ji = {k : B(xk, rk) ⊂ Ωi}. Let f̃i =
∑
k∈Ji hk. One then repeats

the previous proof and gets tat f̃i and F :=
∑
f̃i are smooth and F > 0 thus fi = f̃i/F is

smooth. Next, by definition, if fi(x) 6= 0 then there is a j ∈ Ji such that hk(x) 6= 0 thus
x ∈ B(xk, rk) ⊂ Ωi. Thus this fi have the required properties. �





CHAPTER 4

The Fourier transform

1. The L1-theory

Definition 1.1. For f ∈ L1(Rd) we define the Fourier transform of f , and denote it

either by f̂ or Ff , the function defined on R by

f̂(ξ) =

∫
Rd

f(x)e−2iπ〈x,ξ〉 dx.

Let us start with a fundamental example:

Example 1.2. Let a < b ∈ R and f = 1[a,b]. Then if ξ 6= 0,

f̂(ξ) =

∫ b

a

e−2iπxξ dx =
−1

2iπξ

(
e−2iπbξ − e−2iπaξ

)
=

e2iπ a+b
2 ξ

πξ

e2iπ b−a
2 ξ − e−2iπ b−a

2 ξ

2i

= e2iπ a+b
2 ξ sinπ(b− a)ξ

πξ
.

When ξ = 0, f̂(ξ) =

∫ b

a

dx = b− a.

It is convenient to introduce the function sinc t =

{
1 if t = 0
sin t
t if t 6= 0

. Note that this is an

analytic function.
If we write c = a+b

2 for the center of the interval [a, b] and ` for its length, ` = 2r then

f̂(ξ) = `e2iπcξ sincπ`ξ = 2re2iπcξ sinc 2πrξ.

Let us now notice that, if f is a tensor function f(x1, . . . , xd) =

d∏
j=1

fj(xj), then so

does f̂ : f̂(ξ1, . . . , ξd) =

d∏
j=1

f̂j(ξj). This follows directly from Fubini’s Theorem and the

fact that e−2iπ〈x,ξ〉 = e−2iπ
∑d

j=1 xjξj =

d∏
j=1

e−2iπxjξj .

Now, for Q =

d∏
j=1

[aj , bj ] is a cube, write `j = bj − aj for its side length, |Q| =

d∏
j=1

`j

for its volume, c =
(
a1+b1

2 , . . . , ad+bd
2

)
for its center of gravity. Let f(x) = 1Q(x) =

47
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d∏
j=1

1[aj ,bj ](xj) then

f̂(ξ) = |Q| e2iπ〈c,ξ〉
d∏
j=1

sincπ`jξj .

Note for future use that f̂ ∈ C0(Rd).

Let us now start detailing properties of the Fourier transform. First, it is well defined.
Indeed, let F (x, ξ) = f(x)e−2iπ〈x,ξ〉. Then, for x fixed, ξ → F (x, ξ) is continuous. More-

over, |F (x, ξ)| = |f(x)| ∈ L1(Rd), it follows that f̂(ξ) =

∫
Rd

F (x, ξ) dx is well defined and

continuous. Further,

|f̂(ξ)| ≤
∫
Rd

|F (x, ξ)|dx =

∫
Rd

|f(x)|dx = ‖f‖L1(Rd).

As f → f̂ is clearly linear, this shows that this mapping is bounded L1(Rd)→ Cb(Rd), the
space of bounded continuous functions on Rd. Actually, a bit more is true:

Theorem 1.3 (Riemann-Lebesgue Lemma). The Fourier transform F is a bounded
linear mapping L1(Rd)→ C0(Rd) with ‖Ff‖∞ ≤ ‖f‖1.

Proof. We have already seen that F is a bounded linear mapping L1(Rd)→ Cb(Rd)
with ‖Ff‖∞ ≤ ‖f‖1. It remains to prove that Ff ∈ C0(Rd) when f ∈ L1(Rd).

This is indeed the case when f = 1Q, Q a cube, thus also when f is a (finite) linear
combination of such functions, that is, when f is a step function. But step functions
are dense. Thus, if f ∈ L1(Rd), there exists a sequence fk of step functions, such that
‖fk − f‖L1 → 0 when k →∞. But then

‖Ff −Ffk‖∞ = ‖F(f − fk)‖∞ ≤ ‖f − fk‖1 → 0.

In other words, Ffk → Ff in Cb(Rd). As Ffk ∈ C0(Rd) which is closed in Cb(Rd) (see the
chapter on convolutions for a proof), we get that Ff ∈ C0(Rd). �

A second proof. In dimension 1, there is an alternative proof of the fact that f̂(ξ)→
0 when ξ → ±∞. First note that −1 = e−iπ = e−2iπξ/2ξ thus

2f̂(ξ) =

∫
R
f(t)e−2iπtξ dt−

∫
R
f(t)e2iπξ/2ξe−2iπtξ dt

=

∫
R
f(t)e−2iπtξ dt−

∫
R
f(t)e−2iπ(t+1/2ξ)ξ dt

=

∫
R

[
f(t)− f

(
t− 1

2ξ

)]
e−2iπtξ dt.

In other words, f̂(ξ) =
1

2
F [f − τ1/2ξf ](ξ). It follows that |f̂(ξ)| ≤

∥∥f − τ1/2ξf∥∥1
. Now

letting ξ → ±∞ and using the continuity of a→ τaf from R→ L1(R) shows that |f̂(ξ)| →
0.

Recall that this continuity required the same density argument. �

Let us now list the main properties of the Fourier transform. To do so, we need to
introduce some notation. For a, ω ∈ Rd, λ > 0, T ∈ GLn(Rd) (a d × d invertible matrix)
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and f a function on Rd, we define new functions on Rd

τaf(x) = f(x− a), Mωf(x) = e−2iπ〈ω,x〉f(x), δλf(x) = f(λx), ∆T f(x) = f(T−1x).

Note that τa,Mω, δλ,∆T are continuous linear mappings Lp → Lp for every p.

Proposition 1.4. Assume that f ∈ L1(Rd) then
– F [τaf ] = MaF [f ], F [Mωf ] = τ−ωF [f ],
– F [δλf ] = λ−dF [δ1/λf ] and more generally F [∆T f ] = |detT |∆[T−1]tF [f ].

– If ξjf ∈ L1(Rd) then f̂ admits a continuous partial derivative in the ξj direction with

∂f̂

∂ξj
(ξ) = −2iπF [xjf ](ξ).

– If f is C1 with
∂f

∂xj
∈ L1(Rd), then F

[
∂f

∂xj

]
(ξ) = 2iπξjF [f ]ξ).

– If f, g ∈ L1(Rd) then F [f ∗ g] = F [f ]F [g].

Proof. The first 4 follow from a simple change of variable
– changing variable y = x− a,

F [τaf ](ξ) =

∫
Rd

f(x− a)e−2iπ〈x,ξ〉 dx =

∫
Rd

f(y)e−2iπ〈y+a,ξ〉 dy

= e−2iπ〈a,ξ〉
∫
Rd

f(y)e−2iπ〈y,ξ〉 dy = e−2iπ〈a,ξ〉f̂(ξ).

– the next one is even easier

F [Mωf ](ξ) =

∫
Rd

f(x)e−2iπ〈ω,ξ〉e−2iπ〈x,ξ〉 dx =

∫
Rd

f(x)e−2iπ〈x+ω,ξ〉 dx = f̂(ξ + ω).

– changing variable y = λx,

F [δλf ](ξ) =

∫
Rd

f(λx)e−2iπ〈x,ξ〉 dx = λ−d
∫
Rd

f(y)e−2iπ〈y/λ,ξ〉 dy

= λ−d
∫
Rd

f(y)e−2iπ〈y,ξ/λ〉 dy = λ−df̂(ξ/λ).

It is a particular case of the following:

– changing variable y = T−1x, x = Ty

F [∆T f ](ξ) =

∫
Rd

f(T−1x)e−2iπ〈x,ξ〉 dx = |detT |
∫
Rd

f(y)e−2iπ〈Ty,ξ〉 dy

= |detT |
∫
Rd

f(y)e−2iπ〈y,T tξ〉 dy = |detT |f̂(T tξ).

–The next two ones are slightly more subtle. First assume that xjf ∈ L1(Rd) and consider

again F (x, ξ) = f(x)e−2iπ〈x,ξ〉. Then, for x fixed, ξ → F (x, ξ) is of class C1, |F (x, ξ)| =
|f(x)| ∈ L1(Rd) and∣∣∣∣∂F∂ξj (x, ξ)

∣∣∣∣ =
∣∣∣−2iπxjf(x)e−2iπ〈x,ξ〉

∣∣∣ = 2π|xjf | ∈ L1(Rd).

It follows that f̂(ξ) =

∫
Rd

F (x, ξ) dx is differentiable with respect to ξj with

∂f̂

∂ξj
(ξ) =

∫
Rd

∂F

∂ξj
(x, ξ) =

∫
Rd

−2iπxjf(x)e−2iπ〈x,ξ〉 dx = F [−2iπxjf ](ξ).
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– Now, assume that f ∈ C1, f,
∂f

∂ξj
∈ L1. To simplify notation, we will take j = 1. Note

that, from Fubini’s Theorem,∫
Rd

|f(x)|dx =

∫
Rd−1

(∫
R
|f(x1, x2, . . . , xd)|dx1

)
dx2 · · · dxd < +∞

so that

∫
R
|f(x1, x2, . . . , xd)|dx1 < +∞ for almost every (x2, . . . , xd). The same is true

with ∂f
∂ξj

replacing f . If two properties hold almost everywhere, they jointly hold almost

everywhere. We may thus take an (x2, . . . , xd) such that∫
R
|f(x1, x2, . . . , xd)|dx1 < +∞ and

∫
R

∣∣∣∣ ∂f∂ξj (x1, x2, . . . , xd)

∣∣∣∣dx1 < +∞

and almost every (x2, . . . , xd) is like that. The fundamental theorem of calculus then shows
that

f(x1, x2, . . . , xd) = f(0, x2, . . . , xd) +

∫ x1

0

∂f

∂ξj
(t, x2, . . . , xd)dt

→ f(0, x2, . . . , xd) +

∫ ±∞
0

∂f

∂ξj
(t, x2, . . . , xd)dt

when x1 → ±∞. Thus f(x1, x2, . . . , xd) has a limit in±∞. But then

∫
R
|f(x1, x2, . . . , xd)|dx1 <

+∞ implies that this limit is zero.
Next, write x, ξ ∈ Rd as x = (x1, x̄), ξ = (ξ1, ξ̄) with x̄, ξ̄ ∈ Rd−1. Integrating by parts,∫

R

∂f

∂ξ1
(x1, x̄)e−2iπ〈x,ξ〉dx1 =

∫
R

∂f

∂ξ1
(x1, x̄)e−2iπx1ξ1dx1e

−2iπ〈x̄,ξ̄〉

= e−2iπ〈x̄,ξ̄〉[f(x1, x̄)e−2iπx1ξ1
]+∞
−∞

+2iπξ1

∫
R
f(x1, x̄)e−2iπx1ξ1dx1e

−2iπ〈x̄,ξ̄〉

= 2iπξ1

∫
R
f(x1, x̄)e−2iπ〈x,ξ〉 dx1.

It remains to integrate with respect to the d− 1 remaining variables and to use Fubini.
The last property is a direct consequence of Fubini and the change of variable u = x−y

F [f ∗ g](ξ) =

∫
Rd

∫
Rd

f(y)g(x− y) dy e−2iπ〈x,ξ〉 dx

=

∫
Rd

f(y)

∫
Rd

g(x− y)e−2iπ〈x,ξ〉 dxdy

=

∫
Rd

f(y)

∫
Rd

g(u)e−2iπ〈u+y,ξ〉 dudy

=

∫
Rd

f(y)

∫
Rd

g(u)e−2iπ〈u,ξ〉 du e−2iπ〈y,ξ〉 dy

=

∫
Rd

f(y)ĝ(ξ) e−2iπ〈y,ξ〉 dy = ĥ(ξ)ĝ(ξ)

as claimed. �

We can now give as a second example the case of the Gaussian:
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Example 1.5. Let f be the Gaussian defined for x ∈ R by f(x) = e−πx
2

, then

f̂(ξ) = e−πξ
2

.

Indeed, first note that f̂(0) =

∫
R
e−πx

2

dx. But then, using Fubini in the first line and

changing to polar coordinates:

f̂(0)2 =

∫
R
e−πx

2

dx

∫
R
e−πy

2

dy =

∫
R2

e−π(x2+y2) dxdy

=

∫ +∞

0

∫ 2π

0

e−πr
2

dθr dr

=

∫ +∞

0

2πre−πr
2

dr = [−e−πr
2

]+∞0 = 1.

As f̂(0) is the integral of a positive function, f̂(0) ≥ 0 thus f̂(0) = 1.
Next, note that f satisfies the differential equation f ′ = −2πxf thus F [f ′] = −2πF [xf ].

As clearly f is C1 with f, xf, f ′ ∈ L1 we can use the above properties: f̂ ′ = −2iπF [xf ]

F [f ′] = 2iπξf̂ . It follows that f̂ satisfies the differential equation (f̂)′ = −2πξf̂ which is

the same equation as the one satisfied by the Gaussian. Thus f̂ = cf . Comparing values

at 0, we get f̂ = f .

In higher dimensions, we immediately get that, if γ(x) = e−π|x|
2

then γ̂(ξ) = e−π|ξ|
2

.
Now, let A be a positive definite symetric matrix and f(x) = e−π〈Ax,x〉.
As A is a real sumetric matrix, it is diagonalizable in an orthonormal matrix, A =

P∆P t with ∆ a diagonal martrix and P an orthogonal matrix. Write ∆ = diag (λ1, . . . , λd).
As A is positive definite, the λj ’s are > 0 thus we can write λj = µ2

j . Then define

B = Pdiag (µ1, . . . , µd)P
t and notice that Bt = B and that A = B2 = BtB. It follows

that 〈Ax, x〉 = 〈BtBx, x〉 = |Bx|2. As the µj ’s are > 0, B is invertible thus f(x) =

γ(Bx). It follows that f ∈ L1(Rd) and that f̂(x) = |detB−1|γ(B−1x). But B−1 =
Pdiag (1/µ1, . . . , 1/µd)P

t is symetric with (B−1)tB−1 = (B−1)2 = A−1 thus |detB−1| =
det(A)−1/2 and

|B−1x|2 =
〈
B−1x,B−1x

〉
=
〈
(B−1)tB−1x, x

〉
=
〈
A−1x, x

〉
It follows that f̂(ξ) = det(A)−1/2e−π〈A

−1x,x〉.

2. The inversion formula and the Fourier transform on S(Rd)

We are now going to show that the Fourier transform can be inverted and that it is
(almost) its own inverse. To do so, let us start with the following simple observation:

Assume that f, g ∈ L1(Rd), then f̂ , ĝ ∈ C0(Rd) so that fĝ and gf̂ are both integrable.
But as ∫

Rd

∫
Rd

|f(x)g(y)|dy dx = ‖f‖L1‖g‖L1 < +∞,

Fubini’s theorem shows that∫
Rd

f(x)ĝ(x) dx =

∫
Rd

∫
Rd

f(x)g(y)e−2iπ〈x,y〉 dy dx

=

∫
Rd

g(y)

∫
Rd

f(x)e−2iπ〈y,x〉 dxdy =

∫
Rd

g(y)f̂(y) dy.(2.16)
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Let us now replace g by Mωg so that ĝ is replaced by τω ĝ (more precisely, if we replace
g by M−ωg). We get

(2.17)

∫
Rd

f(x)ĝ(x− ω) dx =

∫
Rd

g(y)f̂(y)e2iπ〈ω,y〉 dy.

The right hand side looks like a convolution and is indeed g ∗ f̂ when g is even. Let

us take as an example g(y) = e−π|λy|
2

so that ĝ(x) = λ−de−π|x/λ|
2

. Write γλ(x) =

λ−de−π|x/λ|
2

. Then (2.17) reads

(2.18) f ∗ γλ(ω) =

∫
Rd

e−π|λy|
2

f̂(y)e2iπ〈ω,y〉 dy.

Now, since γ ∈ S(Rd), according to Theorem 6.10, f ∗γλ → f in L1(Rd). In particular,

if f1, f2 ∈ L1(Rd) are such that f̂1 = f̂2 then f1 ∗ γλ(ω) = f2 ∗ γλ(ω). Letting λ→ 0 shows
that f1 = f2. In other words, the Fourier transform is one-to-one.

What about the right hand side? Note that e−π|λy|
2

f̂(y)e2iπ〈ω,y〉 → f̂(y)e2iπ〈ω,y〉 when

λ → 0. Further, as |e−π|λy|2 f̂(y)e2iπ〈ω,y〉| = |e−π|λy|2 f̂(y)| ≤ |f̂(y)|, if f̂ ∈ L1(Rd), we can
use dominated convergence and obtain the following theorem:

Theorem 2.1 (Fourier inversion formula). The Fourier transform is one-to-one L1(Rd)→
C0(Rd). Let f ∈ L1(Rd) be such that f̂ ∈ L1(Rd), then f ∈ C0(Rd) and

f(x) =

∫
Rd

f̂(ξ)e2iπ〈ξ,x〉 dξ.

Proof. We have not fully proven the above theorem, we have only shown that the

inversion formula is valid in L1(Rd). The observation is that the right hand side is F [f̂ ](−x).

As f̂ ∈ L1(Rd), Riemann-Lebesgue’s lemma implies that the right hand side is in C0. Now
f ∗γλ → f in L1 thus has a subsequence that converges almost-everywhere, thus f is almost

everywhere equal to F [f̂ ](−x) ı.e. is in the same class as a C0 function. Our convention is
that we chose f to be this C0 function. �

The Fourier inversion theorem shows that the Fourier transform is almost its own
inverse, this explains the very symetric properties we have already observed in Proposition
1.4.

Remark 2.2. If f = 1[−1,1] then f̂ = sinc 2πt /∈ L1(R). It follows that

∫
R
f̂(ξ)e2iπξx dξ

does not make sense. We will see below that

lim
R,S→+∞

∫ S

−R
f̂(ξ)e2iπξx dξ → 1[−1,1](x)

in L2. Actually,

lim
R→+∞

∫ R

−R
f̂(ξ)e2iπξx dξ → 1[−1,1](x)

is valid pointwise, excepted at the jumps ±1. Note that we now integrate over a symetric
interval.

Remark 2.3. It is important to have in mind that the Fourier transform is not a
bijection L1(Rd)→ C0(Rd) as there are functions in C0(Rd) that are not Fourier transforms
of L1 functions.
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Now, let f ∈ S(Rd). For every α ∈ Nd, xαf ∈ S(Rd) ⊂ L1(Rd). It follows from

Proposition 1.4 that f̂ ∈ C∞(Rd) and ∂αf̂ = (−2iπ)|α|F [xαf ]. Further as xαf ∈ S, for
every β ∈ Nd, ∂β(xαf) ∈ S ⊂ L1(Rd). Applying again Proposition 1.4 we obtain that

xβ∂αf̂ = (−2iπ)|α|−|β|F [∂β(xαf)]. But then, Riemann-Lebesgue’s Lemma implies that

F [∂β(xαf)] is in C0, in particular, it is bounded. We have just shown that, f̂ ∈ C∞(Rd)
and that, for every α, β ∈ Nd, xβ∂αf̂ is bounded, that is, that f̂ ∈ S(Rd).

Finally, as S(Rd) ⊂ L1(Rd), the Fourier inversion theorem applies to every f ∈ S(Rd)
and for such an f , f(x) = F [f̂ ](−x). Writing Zf̂(y) = f̂(−y) and noticing that Zf̂ ∈ S(Rd)
and that F [f̂ ](−x) = F [Zf ](x), we see that every f ∈ S(Rd) is the Fourier transform of a
function in the Schwartz class. We have thus shown the following:

Theorem 2.4. The Fourier transform is a bijection S(Rd)→ S(Rd). The inverse map
is given by F−1[f ](ξ) = F [f ](−ξ).

3. The L2-theory

Our aim here is to extend the Fourier transform to other Lp spaces. Let us recall that
if f, g ∈ S(Rd) ⊂ L1(Rd) then∫

Rd

f(x)ĝ(x) dx =

∫
Rd

g(y)f̂(y) dy.

Now let h ∈ S(Rd), then h̄ ∈ S(Rd) and the Fourier inversion Formula reads

h̄(x) =

∫
Rd

ĥ(y)e2iπ〈y,x〉 dy =

∫
Rd

ĥ(y)e−2iπ〈y,x〉 dy = F [ĥ(y)].

We now replace g by ĥ(y) ∈ S(Rd) in the above formula. We thus obtain∫
Rd

f(x)h(x) dx =

∫
Rd

f̂(y)ĥ(y) dy, f, h ∈ S(Rd).

In particular, taking h = f , we get ‖F [f ]‖L2(Rd) = ‖f‖L2(Rd) for every f ∈ S(Rd).
As S(Rd) is dense in L2(Rd), we can apply the Banach extension principle. It follows
that F extends to a continuous linear mapping L2(Rd) → L2(Rd). Further the mapping
F−1(f)(x) = F(f)(−x) also extends from S(Rd) to a continuous linear mapping L2(Rd)→
L2(Rd). As F−1

[
F [f ]

]
= F

[
F−1[f ]

]
= f for all f ∈ S(Rd), by density of S(Rd) in L2(Rd),

this identity stays true for f ∈ L2(Rd). In particular, F is a bijection L2(Rd) → L2(Rd)
and its inverse map is F−1.

Finally, the mappings τa,Mω, δλ,∆T are all continuous on L2(Rd), so the corresponding
properties in Proposition 1.4 stay true in L2(Rd).

In summary

Theorem 3.1. The Fourier transform extends into a continuous linear mapping L2(Rd)→
L2(Rd) and the extended map is a bijection. The mapping is an isometry and satisfies

– Plancherel’s identity: for all f ∈ L2(Rd)∫
Rd

|f(x)|2 dx =

∫
Rd

|f̂(ξ)|2 dξ.

– Parseval’s identity: for all f, g ∈ L2(Rd)∫
Rd

f(x)g(x) dx =

∫
Rd

f̂(ξ)g(ξ) dξ.
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Further, the identities F [τaf ] = MaF [f ], F [Mωf ] = τ−ωF [f ], F [δλf ] = λ−dF [δ1/λf ] and

F [∆T f ] = |detT |∆[T−1]tF [f ] are all valid for f ∈ L2(Rd)

Let us note that the convolution identity f̂ ∗ g = f̂ ĝ does not extend to f, g ∈ L2(Rd)
as in this case f ∗ g ∈ C0(Rd) and f̂ ∗ g might not make sense. We will see later how to
overvome this.

Example 3.2. Let a > 0 and define f on R as e+
a (t) = 1[0,+∞)e

−at and e−a (t) =

1(−∞,0]e
at. Note that e±a ∈ L1(R) ∩ L2(R) so that its Fourier transform is given by

ê+
a (ξ) =

∫ +∞

0

e−(a+2iπξ)t dt =
1

a+ 2iπξ

while

ê−a (ξ) =

∫ 0

−∞
e(a−2iπξ)t dt =

1

a− 2iπξ
.

Let c±a be defined on R by c±a (x) =
1

a± 2iπx
. Note that c±a ∈ L2 but not in L1 so

that it has an L2-Fourier transform but not an L1-Fourier transform. Never the less
c±a = F [e±a ] in L1-sense thus also in the L2-sense. Thus, the Fourier inversion theorem
gives F [c±a ](ξ) = F

[
F [e±a ]

]
(ξ) = F−1

[
F [e±a ]

]
(−ξ) = e±a (−ξ) = e∓a (ξ). This has to be

understood in the L2 sense, in particular, equalities hold only almost everywhere.
One may notice that e±a is not continuous so that, according to Riemann-Lebesgue,

they are not Fourier transforms of L1 functions.

Example 3.3. An example of a function in C0 that is not a Fourier transform
of an L1 function.

Let us define f on R by f(t) = sgn(t)
1+|t| . Note that f ∈ L2(R) but f /∈ L1(R). The

Fourier transform of f can thus not be calculated via
∫
f(t)e−2iπtξ dt but only as an L2

limit. To carry out this limit, we will need the following identity

1

1 + |t|
=

∫ +∞

0

e−(1+|t|)x dx.

Using Fubini’s Theorem, we see that

∫ R

−R

sgn(t)

1 + |t|
e−2iπtξ dt =

∫ R

−R

∫ +∞

0

sgn(t)e−(1+|t|)x dxe−2iπtξ dt

=

∫ +∞

0

∫ R

−R
sgn(t)e−(1+|t|)xe−2iπtξ dtdx

=

∫ +∞

0

e−x
∫ R

−R
sgn(t)e−|t|xe−2iπtξ dtdx(3.19)
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To see that one is allowed to apply Fubini’s theorem, one writes | sgn(t)e−(1+|t|)xe−2iπtξ| =
e−(1+|t|)x ≤ e−x ∈ L1([−R,R]× R, dtdx). But now, if ξ 6= 0, (or x 6= 0)∫ R

−R
e−|t|xe−2iπtξ dt = −

∫ 0

−R
et(x−2iπξ) dt+

∫ R

0

e−t(x+2iπξ) dt

=

[
−e

t(x−2iπξ)

x− 2iπξ

]0

−R
+

[
−e
−t(x+2iπξ)

x+ 2iπξ

]R
0

=
−1 + e−R(x−2iπξ)

x− 2iπξ
+

1− e−R(x+2iπξ)

x+ 2iπξ
=

−4iπξ

x2 + (2πξ)2
+
e−R(x−2iπξ)

x− 2iπξ
− e−R(x+2iπξ)

x+ 2iπξ
.

Inserting this into (3.19) gives∫ R

−R

e−2iπtξ

1 + |t|
dt = 4iπξ

∫ +∞

0

e−x

x2 + (2πξ)2
dx+

∫ +∞

0

(
e−R(x−2iπξ)

x− 2iπξ
− e−R(x+2iπξ)

x+ 2iπξ

)
e−x dx.

But, if x > 0

e−R(x−2iπξ)

x− 2iπξ
− e−R(x+2iπξ)

x+ 2iπξ
→ 0

when R→ +∞ while, if ξ 6= 0,∣∣∣∣(e−R(x−2iπξ)

x− 2iπξ
− e−R(x+2iπξ)

x+ 2iπξ

)
e−x

∣∣∣∣ ≤ (
e−Rx

|x− 2iπξ|
+

e−Rx

|x+ 2iπξ|

)
e−x

≤ e−x

πξ
∈ L1(R).

We may thus apply domintated convergence and obtain that, for ξ 6= 0∫ +∞

0

(
e−R(x−2iπξ)

x− 2iπξ
− e−R(x+2iπξ)

x+ 2iπξ

)
e−x dx→ 0

when R→ +∞ and thus

lim
R→+∞

∫ R

−R

e−2iπtξ

1 + |t|
dt = 4iπξ

∫ +∞

0

e−x

x2 + (2πξ)2
dx.

But, the L2-limit of this integral (seen as a function of ξ) is the Fourier transform of f . It
follows that, for almost every ξ,

f̂(ξ) = 4iπξ

∫ +∞

0

e−x

x2 + (2πξ)2
dx = 2i sgn(ξ)

∫ +∞

0

e−2π|ξ|u

u2 + 1
du

with a change of variable x = 2π|ξ|u.
One may observe that this function is continuous except at 0 where it has a jump

discontinuity and goes to 0 at infinity. This follows immediately from Lebesgue’s theorem:

if we write F (ξ, u) =
e−2π|ξ|u

u2 + 1
then

– |F (ξ, u)| =
∣∣∣∣e−2π|ξ|u

u2 + 1

∣∣∣∣ ≤ 1

1 + u2
∈ L1(R+);

– if we fix u, ξ → F (ξ, u) thus ξ →
∫ +∞

0
F (ξ, u) du is continuous over R. In particular∫ +∞

0

F (ξ, u) du =

∫ +∞

0

1

1 + u2
du =

π

2

– if we fix u > 0, F (ξ, u)→ 0 when ξ → ±∞. Thus
∫ +∞

0
F (ξ, u) du→ 0 as well.



56 4. THE FOURIER TRANSFORM

Thus f̂(ξ) = 2i sgn(ξ)
∫ +∞

0
F (ξ, u) du has the properties we just announced with

f̂(0+) = −f̂(0−) = iπ.

One should also note that limR→+∞
∫ R
−R f(t) dt = 0 since f is odd.

Let us now erase the jump discontinuities with the help of the previous example. Let

g = f + iπ(c+1 − c−1 ) = sgn(t)
1+|t| + 4πt

1+(2πt)2 . Note that g(t) ∼ 3 sgn(t)/t in ±∞ so that

g ∈ L2(R) but not in L1(R). By linerity ĝ = f̂ − iπe+
1 + iπe−1 . All three functions f̂ , e+

1 , e
−
1

are continuous outside 0 and f̂(0±) = ±iπ, e±1 (0∓) = 0, e±1 (0±) = 1. Thus the jump
discontinuities cancel.

4. Solving the heat equation

The aim of this section is to show how Fourier analysis can be used to solve some
partial differential equations. As an example, we will here take the heat equation:

(E)

{
∂tu(x, t) = ∆x(x, t)
u(x, 0) = u0(x)

where ∆xu(x, t) = (∂2
x1

+ · · ·+ ∂2
xd

)u(x, t). The unknown is a function u on Rd × (0,+∞)
and the variable t represents time while the x variable is a space variable. The meaning of
u(x, 0) = u0(x) has to be taken as u(x, 0)→ u0(x) when t→ 0 in some sense that we will
make precise later.

For the moment, we will leave a side all mathematical rogour and compute the space

Fourier transform: for ξ ∈ Rd, write û(ξ, t) =

∫
Rd

u(x, t)e−2iπ〈x,ξ〉 dx.

If u is a resonable function, then

(4.20) ∂tû(ξ, t) = ∂t

∫
Rd

u(x, t)e−2iπ〈x,ξ〉 dx =

∫
Rd

∂tu(x, t)e−2iπ〈x,ξ〉 dx.

Note that we are not trying to justify the fact that the differentiation can be entered into
the integral. Further, under good circonstances, we may integrate by parts to obtain∫

Rd

∂xi
u(x, t)e−2iπ〈x,ξ〉 dx = −

∫
Rd

u(x, t)∂xj
e−2iπ〈x,ξ〉 dx = 2iπξj

∫
Rd

u(x, t)e−2iπ〈x,ξ〉 dx

(at least if u vaniashes at infinity). Repating this∫
Rd

∂2
xi
u(x, t)e−2iπ〈x,ξ〉 dx = −4π2ξ2

j

∫
Rd

u(x, t)e−2iπ〈x,ξ〉 dx

and summing up, we get∫
Rd

∆xu(x, t)e−2iπ〈x,ξ〉 dx = −4π2|ξ|2û(ξ, t).

Together with (4.20), this shows that (E) implies{
∂tû(ξ, t) = −4π2|ξ|2û(ξ, t)∂tû(ξ, 0) = û0(ξ) .

Notice that, when ξ is fixed, this is an ordinary differential equation which admits as a
unique solution

û(ξ, t) = e−4π2|ξ|2tû0(ξ).

Remmebering that e−π|x|
2

is its own Fourier transform, a simple computation shows that, if

pt(x) = (4πt)−d/2e−|x|
2/4t, then p̂t(ξ) = e−4π2|ξ|2t thus û(ξ, t) = p̂t(ξ)û0(ξ) = F [pt ∗ u0](ξ)
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with the convolution theorem. It remains to invert the Fourier transform and

(4.21) u(x, t) = pt ∗ u0(x) =

∫
Rd

u0(y)pt(x− y) dx.

So far, we have not been rigourous and have not been looking for any justification.
There are two things to do

– justify that this is indeed a solution of ∂tu = ∆xu. To do so, one first checks that
p(t, x) = pt(x) satistifies the heat equation. Then u(x, t) = pt ∗u0 will also satisfy the heat
equation if one can enter the differentiation operators inside the integral apearing in (4.21).
This can be done with Lebesgue’s differentiation theorem and the fact that, if t0 < t < t1,

for every α ∈ Nd+1 there is a constant C = C(α, t0, t1) such that |∂αp(t, x)| ≤ Ce−|x|
2/C

(∂α means differentiation in space and time).
– Once one knows that ∂tu = ∆xu, one notices that pt is an approximation of unity so

that, if u0 ∈ Lp for some 1 ≤ p <∞, then pt ∗ u0 → u0 in Lp.
– The only thing this method does not provide is the fact that there is no other solution.

Of course, it is the only solution that can be obtained via a Fourier transform. We will see
in the next chapter how to deal with that issue.





CHAPTER 5

Distributions

1. Definition and examples

Definition 1.1. A distribution T ∈ D′(Rd) is a linear functional on C∞c (Rd) such that,
for every R > 0, there exists N ∈ N and C > 0 such that, for every ϕ ∈ C∞c (Rd) with
suppϕ ⊂ B(0, R),

(1.22) |〈T, ϕ〉| ≤ C sup
α∈Nd,|α|≤N

sup
x∈Rd

|∂αϕ(x)|.

If N can be chosen independent of R, we say that T is of finite order and the order of
T is the smallest such N .

A tempered distribution T ∈ S ′(Rd) is a linear functional on S(Rd) such that there
exists M,N ∈ N and D > 0 such that, for every ϕ ∈ S(Rd),

(1.23) |〈T, ϕ〉| ≤ D sup
α∈Nd,|α|≤N

sup
x∈Rd

(1 + |x|)M |∂αϕ(x)|.

If N can be chosen independent of R, we say that T is of finite order and the order of T
is the smallest such N .

In the previous definition, 〈T, f〉 stands for T (f) and is here a more convenient notation.
Let us recall that C∞c (Rd) ⊂ S(Rd). Further if we fix R > 0 and ϕ ∈ C∞c (Rd) with

suppϕ ⊂ B(0, R), then for every α ∈ Nd, ∂αϕ(x) = 0 if |x| > R. It follows that

(1 + |x|)M |∂αϕ(x)| ≤ (1 +R)M |∂αϕ(x)|.
Thus, (1.23) implies (1.22) with C = D(1 + R)M . In particular, T ∈ D′(Rd) and T has
order of at most N . In other words: we just proved the following;

Lemma 1.2. Every tempered distribution is a distribution of finite order.

Before developping the properties of distributions, let us first notice that every locally
integrable function can be identified with a distribution.

Example 1.3. Locally integrable functions
Let f ∈ L1

loc(Rd). Recall that this means that, for every R > 0, f1B(0,R) ∈ L1(Rd). Note

also that, for every ϕ ∈ C∞c (Rd),

〈Tf , ϕ〉 =

∫
Rd

f(x)ϕ(x) dx

is well defined. Also Tf uniquely determines f . Indeed, fix ϕ ∈ Cc(Rd) and let R > 0 such
that suppϕ ⊂ B(0, R). Write ϕt(x) = t−dϕ(x/t) so that ϕt(x) = 0 if |x| ≥ tR. Then
for 0 < t < 1 and y ∈ B(0, S), ϕt(y − x) = 0 if |x| ≥ R + S since |y − x| ≥ |x| − |y| ≥
R+ S − S = R ≥ tR. It follows that

1B(0,S)(y)

∫
Rd

f(x)ϕt(y−x) dx = 1B(0,S)(y)

∫
Rd

1B(0,R+S)(x)f(x)ϕt(y−x) dx = 1B(0,S)(y)(1B(0,R+S)f)∗ϕt(y).

59
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Now 1B(0,R+S)f so that (1B(0,R+S)f) ∗ ϕt → 1B(0,R+S)f in L1 as t→ 0. Therefore, there
exists a sequence tj → 0 such that 1B(0,S)(y)(1B(0,R+S)f) ∗ ϕt → 1B(0,S)(y)1B(0,R+S)f =
1B(0,S)(y)f almost everywhere. It follows that f is determined almost everywhere on

B(0, S). As S is arbitrary, f is determined almost everywhere on Rd by Tf .
Finally, if ϕ ∈ C∞c with suppϕ ⊂ B(0, R),

|〈Tf , ϕ〉| =
∣∣∣∣∫

Rd

f(x)ϕ(x) dx

∣∣∣∣ =

∣∣∣∣∣
∫
B(0,R)

f(x)ϕ(x) dx

∣∣∣∣∣ ≤
∫
B(0,R)

|f(x)ϕ(x)|dx ≤
∫
B(0,R)

|f(x)|dx sup
x∈Rd

|ϕ(x)|.

This shows that Tf is a distribution of order 0.
However, it does not show that Tf is a tempered distribution. For this, we require that

f be tempered in the sense that there exists an integerm such that

∫
Rd

|f(x)|
(1 + |x|)m

dx < +∞

then Tf is a tempered distribution since

|〈Tf , ϕ〉| =
∣∣∣∣∫

Rd

f(x)ϕ(x) dx

∣∣∣∣ ≤ ∫
Rd

|f(x)|
(1 + |x|)m

(1+|x|)m|ϕ(x)|dx ≤
∫
Rd

|f(x)|
(1 + |x|)m

dx sup
x∈Rd

(1+|x|)m|ϕ(x)|.

In summary:

Lemma 1.4. For f ∈ L1
loc(Rd), define Tf : ϕ→ 〈Tf , ϕ〉 =

∫
Rd

f(x)ϕ(x) dx.

Then Tf ∈ D′(Rd), is of order 0 and f → Tf is one-to-one.

Further, if f is tempered in the sense that there exists an integer m such that

∫
Rd

|f(x)|
(1 + |x|)m

dx <

+∞ then Tf ∈ S ′(Rd).

We leave as an exercice to extend the previous lemma to 〈Tµ, f〉 =

∫
Rd

ϕ(x) dµ(x)

where µ is a locally finite measure, i.e. µ
(
B(0, R)

)
< +∞ for every R > 0. In this case,

Tµ ∈ D′(Rd). If further the measure µ is tempered: there exists an integer m such that∫
Rd

dµ(x)

(1 + |x|)m
< +∞, then Tµ ∈ S ′(Rd).

Example 1.5. Dirac and Dirac comb
We can now give two further examples. The Dirac δ “function”: for x0 ∈ Rd and ϕ ∈
Cc(Rd), define 〈δx0

, ϕ〉 = ϕ(x0) and notice that this is a finite measure, thus a tempered
distribution of order 0.

More generally, we can define the Dirac comb as
∑
k∈Z δk. More precisely, for ϕ ∈

Cc(R), define
〈∑

k∈Z δk, ϕ
〉

=
∑
k∈Z ϕ(k). Note that this sum is finite so that it is well

defined and if suppϕ ⊂ [−N,N ] then∣∣∣∣∣
〈∑
k∈Z

δk, ϕ

〉∣∣∣∣∣ =

∣∣∣∣∣∑
k∈Z

ϕ(k)

∣∣∣∣∣ ≤
N∑

k=−N

|ϕ(k)| ≤ (2N + 1) sup
x∈R
|ϕ(x)|.

In particular,
∑
k∈Z δk is a locally finite measure and thus a distribution of order 0. It is

actually also a tempered distribution: if ϕ ∈ S(R) then |ϕ(x)| ≤ (1 + |x|)−2 supx∈R(1 +
|x|)2|ϕ(x)| thus∣∣∣∣∣

〈∑
k∈Z

δk, ϕ

〉∣∣∣∣∣ =

∣∣∣∣∣∑
k∈Z

ϕ(k)

∣∣∣∣∣ ≤∑
k∈Z

1

(1 + |k|)2
sup
x∈R

(1 + |x|)2|ϕ(x)|.
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Definition 1.6. A distribution T ∈ D′(Rd) is said to be positive and we write T ≥ 0
if, for every ϕ ∈ C∞c (Rd) with ϕ ≥ 0, we have 〈T, ϕ〉 ≥ 0.

Lemma 1.7. A positive distribution is of order 0.

Proof. Let T be a positive distribution and ϕ ∈ C∞c (Rd). Let R > 0 be such that
ϕ(x) = 0 when |x| ≥ R and let ψ ∈ C∞c (Rd) be such that ψ(x) = 1 if |x| ≤ R. Let
f± = ‖ϕ‖∞ψ ± ϕ so that f± ∈ C∞c (Rd) and f± ≥ 0. It follows that

0 ≤ 〈T, f±〉 = 〈T, ‖ϕ‖∞ψ ± ϕ〉 = ‖ϕ‖∞〈T, ψ〉 ± 〈T, ϕ〉.
It follows that

|〈T, ϕ〉| ≤ 〈T, ψ〉‖ϕ‖∞
which is exactly saying that T is of order 0. Note that the “constant” 〈T, ψ〉 depends on
ψ which only depends on R. �

Example 1.8. Principle value Note that x→ 1/x is not in L1
loc(Rd) so that it does

not fall in the scope of Example 1.3. We will now propose a substitute for it.
Let us define the following, for ϕ ∈ S(R), let

〈vp
1

x
, ϕ〉 = lim

ε→0

∫
|x|≥ε

ϕ(x)

x
dx.

It is important to understand that this limit is not

∫
R

ϕ(x)

x
dx as this integral is divergent

when ϕ(0) 6= 0. For the limit to exist, we will use in a crucial way that we are integrating
over a symetric set (−∞,−ε] sup[ε,+∞). We then write∫

|x|≥ε

ϕ(x)

x
dx =

∫
ε≤|x|≤1

ϕ(x)

x
dx+

∫
|x|≥1

ϕ(x)

x
dx.

For the second integral, write ϕ(x) = x−1xϕ(x) and use the fact that, as ϕ ∈ S(R), xϕ is
bounded. Then ∣∣∣∣∣

∫
|x|≥1

ϕ(x)

x
dx

∣∣∣∣∣ ≤
∫
|x|≥1

dx

x2
sup
x∈R
|xϕ(x)| = 2 sup

x∈R
|xϕ(x)|.

For the first integral, we use the fact that∫
ε≤|x|≤1

dx

x
=

∫ −ε
−1

dx

x
+

∫ 1

ε

dx

x
= 0.

Note that we are integrating an odd function over a symetric interval. It follows that∫
ε≤|x|≤1

ϕ(x)

x
dx =

∫
ε≤|x|≤1

ϕ(x)

x
dx− ϕ(0)

∫
ε≤|x|≤1

dx

x

=

∫
ε≤|x|≤1

ϕ(x)− ϕ(0)

x
dx.

But, as ϕ ∈ C1, x → ϕ(x)− ϕ(0)

x
is continuous. Further, according to the mean value

theorem,

∣∣∣∣ϕ(x)− ϕ(0)

x

∣∣∣∣ ≤ sup
t∈R
|ϕ′(t)|. It follows that

lim
ε→0

∫
ε≤|x|≤1

ϕ(x)

x
dx =

∫ 1

−1

ϕ(x)− ϕ(0)

x
dx.
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and ∣∣∣∣∫ 1

−1

ϕ(x)− ϕ(0)

x
dx

∣∣∣∣ ≤ 2 sup
t∈R
|ϕ′(t)|.

All together this shows that vp
1

x
is a well defined tempered distribution of order at most

1:

〈vp
1

x
, ϕ〉 =

∫ 1

−1

ϕ(x)− ϕ(0)

x
dx+ +

∫
|x|≥1

ϕ(x)

x
dx

ans

|〈vp
1

x
, ϕ〉| ≤ 2

(
sup
t∈R

(1 + |t|)|ϕ(t)|+ sup
t∈R
|ϕ′(t)|

)
.

To check that the order is exactly 1, we consider functions sequence ϕn ∈ C∞c (R) with
0 ≤ ϕn ≤ 1, suppϕn ⊂ (0, 2) (in particular ϕn = 0 in a neighbourhood of 0) and ϕn = 1
on (1/n, 1). Then

〈vp
1

x
, ϕn〉 =

∫ +∞

0

ϕn(x)

x
dx ≥

∫ 1

1/n

ϕn(x)

x
dx =

∫ 1

1/n

1

x
dx = lnn→ +∞

while ‖ϕn‖∞ = 1. It follows that an inequality of the form 〈vp 1
x , ϕ〉 ≤ C‖ϕ‖∞ can not

hold for all functions ϕ ∈ C∞c (Rd) with support in [−2, 2] and vp 1
x is not of order 0.

In particular, this distribution is not of the form Tf for any locally integrable function
f .

2. Convergence de suites de distributions

Definition 2.1. Let (Tn)n≥0 and T be distributions, Tn, T ∈ D′(Rd). We say that
Tn → T in D′(Rd) if, for every ϕ ∈ C∞c (Rd), 〈Tn, ϕ〉 → 〈T, ϕ〉.

Let (Tn)n≥0 and T be tempered distributions, Tn, T ∈ S ′(Rd). We say that Tn → T
in S ′(Rd) if, for every ϕ ∈ S(Rd), 〈Tn, ϕ〉 → 〈T, ϕ〉.

Of course, convergence in S ′(Rd) implies convergence in D′(Rd).
Donnons quelques exemples

Example 2.2. Let Tn =
∑n
k=−n δk and T =

∑
k∈Z δk, then Tn → T in S ′(Rd).

Indeed, this was already proved when we defined the Dirac comb and just amounts to
saying that the series

∑
k∈Z ϕ(k) converges when ϕ ∈ S(Rd). Note also that convergence

in D′(Rd) is much easier: if ϕ ∈ Cc(Rd) then there exists an integer N such that ϕ(x) = 0
if |x| ≥ N + 1. But then 〈T, ϕ〉 = 〈Tn, ϕ〉 for every n ≥ N .

Example 2.3. Weak convergence in Lp.

Let 1 < p, p′ < +∞ with
1

p
+

1

p′
= 1. Let fn, f ∈ Lp(Rd) and assume that fn ⇀ f i.e.

weakly in Lp, that is

∫
Rd

fn(x)ϕ(x) dx→
∫
Rd

f(x)ϕ(x) dx for every ϕ ∈ Lp′(Rd).

But S(Rd) ⊂ Lp
′
(Rd), it follows that 〈Tfn , ϕ〉 → 〈Tf , ϕ〉 for every ϕ ∈ S(Rd), thus

Tfn → Tf in S ′(Rd).
Note that if fn ∈ Lploc converges in Lploc to some f ∈ Lploc then fn → f in the sense

of distributions i.e. in D′(Rd). This is because convergence in Lploc means that, for every

R > 0, fn1B(0,R) converges to f1B(0,R) strongly in Lp thus weakly, thus in D′(Rd). But

then, if ϕ ∈ C∞c (Rd), there exists R > 0 such that suppϕ ⊂ B(0, R). It follows that

〈fn, ϕ〉 =
〈
fn1B(0,R), ϕ

〉
→
〈
f1B(0,R), ϕ

〉
= 〈f, ϕ〉.
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Example 2.4. Approximation of unity Let g ∈ S(Rd) be a function with
∫
Rd g(x) dx =

1 and let gn = ndg(nx). We have seen in Theorem 6.10 that, if ϕ ∈ S(Rd) ⊂ C0(Rd) and
ϕ̌(x) = ϕ(−x) then gn ∗ ϕ̌→ ϕ̌ uniformly, in particular gn ∗ ϕ̌(0)→ ϕ̌(0) = ϕ(0) = 〈δ0, ϕ〉.
But

gn ∗ ϕ̌(0) =

∫
Rd

gn(y)ϕ̌(0− y) dy =

∫
Rd

gn(y)ϕ(y) dy = 〈Tgn , ϕ〉.

Thus Tgn → δ0 which is usually denoted by gn → δ0 in the sense of (tempered) distributions.
Note that |gn(x)| = nd|g(nx)| ≤ Cnd(1 + |nx|)−d−1 → 0 for every x 6= 0. So almost

everywhere convergence does not imply convergence in the sense of distributions.
According to the remark following the proof of Theorem 6.10, the result stays valid for

g ∈ L1(Rd).

Example 2.5. Let ω ∈ Rd with |ω| = 1. Consider the functions fn given on Rd by

fn(x) = e−2iπ〈x,nω〉 and Tn = Tfn . Then, for ϕ ∈ S(Rn), 〈Tn, ϕ〉 =

∫
Rd

ϕ(x)e−2iπ〈x,nω〉 dx =

ϕ̂(nω)→ 0 according to the Riemann-Lebesgue Lemma. Thus Tn → 0 in the sense of dis-
tributions.

Finally, we will accept without proof the following result (the proof relies on a refined
verion of Banach-Steinhaus’s theorem adapted to semi-norms and is beyond the scope of
this course)

Theorem 2.6. Let (Tn) be a sequence in D′(Rd). Assume that, for every ϕ ∈ C∞c (Rd),
〈Tn, ϕ〉 has a limit. Define 〈T, ϕ〉 = limn→+∞ 〈Tn, ϕ〉. Then T ∈ D′(Rd).

Let (Tn) be a sequence in S ′(Rd). Assume that, for every ϕ ∈ S(Rd), 〈Tn, ϕ〉 has a
limit. Define 〈T, ϕ〉 = limn→+∞ 〈Tn, ϕ〉. Then T ∈ S ′(Rd).

3. Operations on distributions

Recall that, for a, ω ∈ Rd, λ > 0, A ∈ GLn(Rd) (a d × d invertible matrix) and f a
function on Rd, we defined new functions on Rd

τaf(x) = f(x− a), Mωf(x) = e−2iπ〈ω,x〉f(x), δλf(x) = f(λx), ∆Af(x) = f(A−1x).

Also, if f is locally integrable, then f is uniquely determined by Tf , that is, by 〈Tf , ϕ〉
for all ϕ. Thus, for instance τaf is determined by

〈Tτaf , ϕ〉 =

∫
Rd

f(x− a)ϕ(x) dx =

∫
Rd

f(y)ϕ(y + a) dy = 〈Tf , τ−af〉.

This can then be used as definition for τaT for any distribution T . A similar reasoning
applies the the 3 other transforms and leads to the following

Definition 3.1. For a, ω ∈ Rd, λ > 0, A ∈ GLn(Rd) and T ∈ D′(Rd) –resp. T ∈
S ′(Rd)—, define

– τaT : 〈τaT, ϕ〉 = 〈T, τ−aϕ〉 for all ϕ ∈ C∞c (Rd) –resp. ϕ ∈ S(Rd);
– MωT : 〈MωT, ϕ〉 = 〈T,Mωϕ〉 for all ϕ ∈ C∞c (Rd) –resp. ϕ ∈ S(Rd);
– δλT : 〈δλT, ϕ〉 = λ−d

〈
T, δ1/λϕ

〉
–resp. ϕ ∈ S(Rd);

– ∆AT :〈δAT, ϕ〉 = det(A)−1〈T, δA−1ϕ〉 –resp. ϕ ∈ S(Rd).
Then τaT , MωT , δλT and ∆AT are in D′(Rd) –resp. S ′(Rd)– and have same order as

T .

We leave as an exercice that the notation is coherent for all four operations when
T = Tf . Also, we leave as an exercice that those operation indeed lead to new distributions.
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Finally, if b ∈ C∞ such that ∂αb is bounded for every α ∈ Nd, and T ∈ D′(Rd) or
S ′(Rd) then MbT defined as 〈MbT, ϕ〉 = 〈T, bϕ〉 also defines a distribution of same order
as T .

Definition 3.2. A distribution is said to be homogeneous if

Example 3.3. δ0 is homogeneous of degree

3.1. Elementary operations.

3.2. Differentiation.

Definition 3.4. Differentiation

Lemma 3.5. Let T ∈ D′(R) and Th = T−τhT
h . Then Th → T ′ in D′(Rd) when h→ 0.

If T ∈ S ′(R) then Th → T ′ in S ′(Rd) when h→ 0.

Proof. �

!

Lemma 3.6. If T is homogeneous of degree κ then ∂αT is homogeneous of degree κ+|α|


