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Spectral Theorem for compact self-adjoint
operators
Aim : give an example which illustrates the spectral theorem

Theorem (Spectral Theorem)
H separable, infinite dimnesional, Hilbert space. T : H → H compact,
self-adjoint operator.
∃ (ek )k∈N orthonormal basis of H ;
∃ (λk )k∈N real,λk → 0 ;

Tx =
∑
k∈N

λk 〈x ,ek 〉ek .

Difficulty : no characteristic polynomial to find eigenvectors
Necessary to develop strategies which will depend on the (family of)
operators considered.
Here : convolutions on L2(T).
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Philippe Jaming (Université de Bordeaux) Spectral Theorem 2 Master Math & Applications 3 / 14



Spectral Theorem for compact self-adjoint
operators
Aim : give an example which illustrates the spectral theorem

Theorem (Spectral Theorem)
H separable, infinite dimnesional, Hilbert space. T : H → H compact,
self-adjoint operator.
∃ (ek )k∈N orthonormal basis of H ;
∃ (λk )k∈N real,λk → 0 ;

Tx =
∑
k∈N

λk 〈x ,ek 〉ek .

Difficulty : no characteristic polynomial to find eigenvectors
Necessary to develop strategies which will depend on the (family of)
operators considered.
Here : convolutions on L2(T).
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The operator

Hilbert space : H = L2(T)

= {f : R→ C, f 1-periodic, ‖f‖22 =
∫ 1

0 |f (t)|2 dt < +∞}.

Operator : T : L2 → L2, Tf (x) = H ∗ f (x) =

∫ 1

0
f (t)H(x − t) dt with

H(t) =


0 si t ∈ (−1/2,0)

1 si t ∈ (0,1/2)

1/2 if t = 0 or t = 1/2
.
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T is self-adjoint

〈Tf ,g〉 =

∫ 1

0
Tf (x)g(x) dx =

∫ 1

0

∫ 1

0
f (t)H(x − t) dtg(x) dx

Fubini

=

∫ 1

0

∫ 1

0
f (t)H(x − t)g(x) dx dt =

∫ 1

0
f (t)

(∫ 1

0
H(x − t)g(x) dx

)
dt

=

∫ 1

0
f (t)

(∫ 1

0
H(x − t)g(x) dx

)
dt =

∫ 1

0
f (t)H ∗ g(t) dt = 〈f ,Tg〉.

We are allowed to use Fubini :Cauchy-Schwarz∫ 1

0

∫ 1

0
|f (t)H(x − t)g(x)|dx dt≤∫ 1

0
|f (t)|

(∫ 1

0
|H(x − t)|2 dt

)1/2

‖g‖2 dt≤
∫ 1

0 |f (t)|‖H‖2‖g‖2 dt < +∞.
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T is compact - Method 1

Tf (x) =

∫ 1

0
K (x , t)f (t) dt

with K (x , t) = H(x − t).∫ 1

0

∫ 1

0
|K (x , t)|2 dx dt =

∫ 1

0

∫ 1

0
|H(x − t)|2 dx dt =

∫ 1

0
‖H‖22 dt

= ‖H‖22 < +∞.
T is Hilbert-Schmidt thus compact.
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Philippe Jaming (Université de Bordeaux) Spectral Theorem 2 Master Math & Applications 6 / 14



T is compact - Method 1

Tf (x) =

∫ 1

0
K (x , t)f (t) dt

with K (x , t) = H(x − t).∫ 1

0

∫ 1

0
|K (x , t)|2 dx dt =

∫ 1

0

∫ 1

0
|H(x − t)|2 dx dt =

∫ 1

0
‖H‖22 dt

= ‖H‖22 < +∞.
T is Hilbert-Schmidt thus compact.
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T is compact - Method 2 : Ascoli-Arzela

Theorem (Arzéla-Ascoli)
K compact metric and X ⊂ C(K ) is compact⇔

1 X is pointwise bounded : ∀x ∈ K , ∃Mx > 0 s.t. ∀f ∈ X, |f (x)| ≤ Mx .
2 X is equi-continuous : ∀ε > 0, x ∈ K , ∃ηx s.t. d(x , y) < ηx ⇒
∀f ∈ X, |f (x)− f (y)| < ε.

3 X is closed.

K ⊂ C(T) (continuous 1-periodic) compact⇒ K ⊂ L2(T) and K
compact in L2(T) :
(fn)n ⊂ K extract (fnk )k uniformly convergent sequence⇒ (fnk )k
convergent in L2(T).
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Philippe Jaming (Université de Bordeaux) Spectral Theorem 2 Master Math & Applications 7 / 14



T is compact - Method 2 : Ascoli-Arzela

Theorem (Arzéla-Ascoli)
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T is compact - Method 2 : Ascoli-Arzela

f ,H ∈ L2(T) thus f ∗ H ∈ C([0,1]).
– [0,1] is compact ;
– if ‖f‖2 ≤ 1 then (Cauchy-Schwarz) |H ∗ f (x)| =

∣∣∣∫ 1
0 H(x − t)f (t) dt

∣∣∣ ≤(∫ 1
0 |H(x − t)|2 dt

)1/2
‖f‖2 ≤ ‖H‖2(Cauchy-Schwarz) ;

T (B) is pointwise bounded ;
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T is compact - Method 2 : Ascoli-Arzela

– if ‖f‖2 ≤ 1 then H ∗ f (x) =
∫ 1

0 τx Ȟ(t)f (t) dt
where Ȟ(s) = H(−s) τxϕ(s) = ϕ(s − x).

|H∗f (x)−H∗f (y)| =

∣∣∣∣∣
∫ 1

0

(
τx Ȟ(t)− τy Ȟ(t)

)
f (t) dt

∣∣∣∣∣ ≤ ∥∥τx Ȟ − τy Ȟ
∥∥

2‖f‖2

with Cauchy-Schwarz. |Tf (x)− Tf (y)| ≤
∥∥τx Ȟ − τy Ȟ

∥∥
2 → 0 when

x → y ,
T (B) is equicontinuous.
Arzela-Ascoli⇒ T (B) is compact in C([0,1])
⇒ T (B) is compact in L2(T)
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∥∥

2‖f‖2

with Cauchy-Schwarz. |Tf (x)− Tf (y)| ≤
∥∥τx Ȟ − τy Ȟ
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∥∥

2‖f‖2

with Cauchy-Schwarz. |Tf (x)− Tf (y)| ≤
∥∥τx Ȟ − τy Ȟ
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)
f (t) dt

∣∣∣∣∣ ≤ ∥∥τx Ȟ − τy Ȟ
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τx Ȟ(t)− τy Ȟ(t)
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∥∥
2 → 0 when

x → y ,
T (B) is equicontinuous.
Arzela-Ascoli⇒ T (B) is compact in C([0,1])
⇒ T (B) is compact in L2(T)
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T is compact - Method 3 : Kolmogorov-Riesz

Theorem (Kolmogorov-Riesz)

X ⊂ L2(R) is compact⇔
i X is closed ;
ii X is bounded :∃M > 0 ∀f ∈ X, ‖f‖2 ≤ M ;
iii X is equi-integrable : ∀ε > 0 ∃R > 0, ∀f ∈ X,

∫
|x |≥R |f (x)|2 dx ≤ ε.

iv Translations are equi-continuous on X : ∀ε > 0, ∃ρ > 0 s.t. |y | < ρ
⇒ ∀f ∈ X,

∥∥f − τy f
∥∥

2 ≤ ε.
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∫
|x |≥R |f (x)|2 dx ≤ ε.

iv Translations are equi-continuous on X : ∀ε > 0, ∃ρ > 0 s.t. |y | < ρ
⇒ ∀f ∈ X,

∥∥f − τy f
∥∥

2 ≤ ε.

Philippe Jaming (Université de Bordeaux) Spectral Theorem 2 Master Math & Applications 10 / 14



T is compact - Method 3 : Kolmogorov-Riesz

Theorem (Kolmogorov-Riesz)

X ⊂ L2(R) is compact⇔
i X is closed ;
ii X is bounded :∃M > 0 ∀f ∈ X, ‖f‖2 ≤ M ;
iii X is equi-integrable : ∀ε > 0 ∃R > 0, ∀f ∈ X,

∫
|x |≥R |f (x)|2 dx ≤ ε.

iv Translations are equi-continuous on X : ∀ε > 0, ∃ρ > 0 s.t. |y | < ρ
⇒ ∀f ∈ X,

∥∥f − τy f
∥∥

2 ≤ ε.
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T is compact - Method 3 : Kolmogorov-Riesz

Theorem (Kolmogorov-Riesz)

X ⊂ L2(T) is compact⇔
i X is closed ;
ii X is bounded ;
iii Translations are equi-continuous on X.

Checking these conditions is done exactly in the same way.
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Philippe Jaming (Université de Bordeaux) Spectral Theorem 2 Master Math & Applications 11 / 14



T is compact - Method 3 : Kolmogorov-Riesz

Theorem (Kolmogorov-Riesz)

X ⊂ L2(T) is compact⇔
i X is closed ;
ii X is bounded ;
iii Translations are equi-continuous on X.

Checking these conditions is done exactly in the same way.
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The spectral decomposition of T

When speaking about convolution, Fourier can’t be far !
ek (t) = e2iπkt → (ek )k∈Z is an orthonormal basis of L2(T)

H ∗ ek (x) =

∫ 1

0
H(t)ek (x − t) dt =

∫ 1

0
H(t)e2iπk(x−t) dt

=

∫ 1

0
H(t)e−2iπkt dte2iπkx = ck (H)ek (x).

ek is an eigenvector of T the corresponding eigenvalue is

ck (H) =


1
2

if k = 0

0 if k is even, k 6= 0
1

ikπ
if k is odd

.

(simple computation, exercice)
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Philippe Jaming (Université de Bordeaux) Spectral Theorem 2 Master Math & Applications 12 / 14



The spectral decomposition of T

When speaking about convolution, Fourier can’t be far !
ek (t) = e2iπkt → (ek )k∈Z is an orthonormal basis of L2(T)

H ∗ ek (x) =

∫ 1

0
H(t)ek (x − t) dt =

∫ 1

0
H(t)e2iπk(x−t) dt

=

∫ 1

0
H(t)e−2iπkt dte2iπkx = ck (H)ek (x).

ek is an eigenvector of T the corresponding eigenvalue is

ck (H) =


1
2

if k = 0

0 if k is even, k 6= 0
1

ikπ
if k is odd

.

(simple computation, exercice)
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The spectral decomposition of T

Tf (x) =
∑
k∈Z

ck (H)〈f ,ek 〉ek (x) =
∑
k∈Z

ck (H)ck (f )ek (x)

=
1
2

c0(f ) +
∑
p∈Z

1
i(2p + 1)π

c2p+1(f )e2iπ(2p+1)x .

Note that we have not really used the spectral theorem to obtain this
expression as we could do with out the first sum by using directly that
ck (H ∗ f ) = ck (H)ck (f ).
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That’s all !

Thank you for your attention !

Next video : Elements of the proof.

http://www.u-bordeaux.fr/˜pjaming/enseignement/M1.html
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