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Spectral Theorem for compact self-adjoint
operators

Aim : give an example which illustrates the spectral theorem

Theorem (Spectral Theorem)
H separable, infinite dimnesional, Hilbert space.
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Spectral Theorem for compact self-adjoint
operators

Aim : give an example which illustrates the spectral theorem

Theorem (Spectral Theorem)
H separable, infinite dimnesional, Hilbert space. T : H — H compact,
self-adjoint operator.

3 (ex)ken Orthonormal basis of H ;
3 ()‘k)kEN real,)\k — 0,'

Tx = Z )\k<X, ek>ek.
keN

Difficulty : no characteristic polynomial to find eigenvectors

Necessary to develop strategies which will depend on the (family of)
operators considered.
Here : convolutions on L2(T).
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The operator

Hilbert space : H = L?(T)

Philippe Jaming (Université de Bordeaux) Spectral Theorem 2 Master Math & Applications 4/14



The operator

Hilbert space : H = L?(T)
= {f : R — C, f 1-periodic,

Philippe Jaming (Université de Bordeaux) Spectral Theorem 2 Master Math & Applications 4/14



The operator

Hilbert space : H = L?(T)
= {f :R— C, f 1-periodic, ||f||2 = [ |f(t)[2dt < +o0}.

Philippe Jaming (Université de Bordeaux) Spectral Theorem 2 Master Math & Applications 4/14



The operator

Hilbert space : H = L?(T)
= {f :R— C, f 1-periodic, ||f||2 = [ |f(t)[2dt < +o0}.

Operator : T : L% — 2, Tf(x) = H x f(x)

Philippe Jaming (Université de Bordeaux) Spectral Theorem 2 Master Math & Applications 4/14



The operator

Hilbert space : H = L?(T)
= {f :R— C, f 1-periodic, ||f||2 = [ |f(t)[2dt < +o0}.

]
Operator : T : L2 — 2, Tf(x) = Hx f(x) = / f(t)H(x — t)dt
0

Philippe Jaming (Université de Bordeaux) Spectral Theorem 2 Master Math & Applications 4/14



The operator

Hilbert space : H = L?(T)
= {f :R—C, f 1-periodic, ||f||2 = [ |(t) |2dt< +o0}.

Operator : T : L2 — 2, Tf(x) = H x f(x / f(t)H(x — t)dt with
0 site(-1/2,0)

H(t) =<1 site(0,1/2)
1/2 ift=0o0rt=1/2
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R
T is compact - Method 1

Th(x) = / " Kix bt dt
0
with K(x, t) = H(x — t).
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R
T is compact - Method 1

Th(x) = / " Kix bt dt
0
with K(x, t) = H(x — t).

1 1 1 1 1
//\K(x,t)|2dxdt:/ / |H(x—t)]2dxdt:/ |H|2dt
0 0 0 0 0

= [|H||5 < +o0.
T is Hilbert-Schmidt thus compact.
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T is compact - Method 2 : Ascoli-Arzela

Theorem (Arzéla-Ascoli)
K compact metric and X C C(K) is compact <
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@ X is pointwise bounded :Vx € K, My > 0 s.t. Vf € X, |f(x)| < M.

© X is equi-continuous : Ve > 0, x € K, Jnx s.t. d(x,y) < nx =
Ve X, |f(x) — f(y)| <e.

© X isclosed.

K c C(T) (continuous 1-periodic) compact = K c L2(T) and K
compact in L3(T) :

(fa)n C K extract (fn, ), uniformly convergent sequence = (fy, )«
convergent in L2(T).
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T is compact - Method 2 : Ascoli-Arzela

f,H € L2(T) thus f x H € C([0, 1]).
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T is compact - Method 2 : Ascoli-Arzela
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where H(s) = H(—s) mx¢(S) = ¢(s — x).
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T is compact - Method 3 : Kolmogorov-Riesz

Theorem (Kolmogorov-Riesz)
X C L2(R) is compact <
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Theorem (Kolmogorov-Riesz)
X C L2(R) is compact <
Q@ X isclosed;
Q X is bounded 3M > 0Vfe X, ||f|, < M;
@ X is equi-integrable : Ve > 0 3R > 0,Vf € X, [, plf(x (x)]?dx < e.

@ Translations are equi-continuous on X :Ve >0,3p >0 s.t. |y| <p
f— Tny2 <e.
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T is compact - Method 3 : Kolmogorov-Riesz

Theorem (Kolmogorov-Riesz)
X C L3(T) is compact <
Q@ X isclosed;
©Q X is bounded;
@ Translations are equi-continuous on X.

Checking these conditions is done exactly in the same way.
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The spectral decomposition of T

When speaking about convolution, Fourier can’t be far!
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The spectral decomposition of T

When speaking about convolution, Fourier can't be far!
ex(t) = €2 — (ex)kez is an orthonormal basis of L2(T)

H « ex(x / H(t)ex(x — t)dt _/ H(t )92i7rk(x—t)dt

1 . .
— [ H(te 2 dte?k — oy (H)ey (x).
0

ek is an eigenvector of T the corresponding eigenvalue is

1

5 ifk=0
ck(H)=<¢0 if kiseven, k 20 .

1 ey

or if k is odd

(simple computation, exercice)
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The spectral decomposition of T

= ck(H)(f, ex)ex(x)

keZ
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The spectral decomposition of T

X):= ZZ:C%( f ek ek }::Ck )

keZ keZ
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The spectral decomposition of T

X):= ZZ:C%( f ek ek }::Ck )

keZ keZ

1 1 2ir(2p+1)x
- Zco(f)—i—’(;zi(zp_i_”ﬂCng(f)e .
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The spectral decomposition of T

X):: }E:Cm( f ek ek }::Ck )

keZ keZ

1 1 2ir(2p+1)x
- Zco(f)+F;Zi(2p+1)7r02p+1(f)e .

Note that we have not really used the spectral theorem to obtain this
expression as we could do with out the first sum by using directly that
ck(H * f) = ce(H)ck(F).
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.
That’s all!

Thank you for your attention! J
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Thank you for your attention! J

Next video : Elements of the proof.

http://www.u-bordeaux.fr/” pjaming/enseignement/M1.htm!
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