HERMITE FUNCTIONS AND UNCERTAINTY PRINCIPLES

PHILIPPE JAMING

ABSTRACT. This notes are outlines of talks given in Vienna at the Gabor analysis conference orga-
nized by the NuHaG group in December 2001 and in Cuernavaca, Mexico in january 2002. They do
not contain any original work and are not intended for publication. All classical results are either
contained in the survey articles by Folland and Sitaram [8], Dembo, Cover and Thomas [7] as well
as in the book of Havin and Joricke [13]. The new results that are given here are issued from my
joint work with A. Bonami and B. Demange [5]. I do not intent to give further references for results
included in these papers.

1. INTRODUCTION AND NOTATIONS.

Uncertainty principles state that a function and its Fourier transform cannot be simultaneously
sharply localized. To be more precise, let d > 1 be the dimension, and let us denote by (., .) the scalar
product and by ||.|| the Euclidean norm on R?. Then, for f € L?(R?), define the Fourier transform of
[ by

Fy)= | f)e 2 gy,
Rd

For a set E, denote by |E| the Lebesgues measures of E and by x g its characteristic function.
The Hermite function of order k € N is defined for z € R by

d k
— wa? el 27a?
mia) = ae” () @)

21/t Tt is then well known that

with ¢ = (—l)km.
(1) {hk}ren is an orthonormal basis of L%(R),
(2) hy is of the form P(z)e ™" with P a polynomial of degree k,
(3) Fhy = i_khk,
(4) 2v/mzhy(z) = Vk + 1hpy1 () + VEhy 1 ().
One can tehn easily prove that
2 o _ 1R~ > 71
2115 + 1112 = glg(zk + DR 2 -
with equality if and only if f = hg. Now, applying this inequality to f.(z) = f(cz) and minimizing
over ¢ > 0, we get the celebrated uncertainty principle, due to Heisenberg and Weil :
Heisenberg’s inequality. Let f € L?(R?). Then

4
1) [l [ @|fof a> 1.
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Moreover (1) is an equality if and only if f is of the form f(x) = Ce=*" where C' is a constant and
a > 0.
The proof given here actually gives more since, if f is orthogonal to {ho,...,h,_1} then

|wf||2+H£fH ——Z 2k + D(f, ) ” > (2n +1)”f”

so that, in (1), the constant # may be replaced by some bigger constant and equality is then
achieved for hermite functions of degree n.

There are also several generalizations to higher dimensions which can take into account directionnal
considerations.

One may also give generalizations replacing the L? norms in (1) by L? norms. The following result
is due to Cowling and Price [6].
Theorem 1.1 (Cowling-Price). Let 1 < p,q < oo and a,b > 0 be such that

1 1 1 1
— >

then, there exists a constant K > 0 such that, for every f € L?(R),
b2
Mz* FINIER Fllg > KIS

2. SUPPORT CONDITIONS

It is well known that, if a funtion f € L?(R) is compactly supported, then its Fourier transform f
is an entire function. In particular, f can not be compacty supported, unless f thus f is zero.

The following theorem, independently du to Benedicks [4] and Amrein-Berthier [1] shows that the
previous fact can be generalized when compact support is replaced by support of finite measure.
Theorem 2.1 (Benedicks/Amrein-Berthier). Let f € L?(R?). Assume that f has support of finite
measure and is such that its Fourier transform has support of finite measure, then f = 0.

Proof. Let us outline the proof for dimension d = 1, the generalization to higher dimension is obvious.
First, f having support of finite measure, f € L'. Let ¥ be the support of f and ¥ be the support
of f. Up to rescaling f, we may assume that |¥| < 1.
Now,

/ > X+ Rydg = [$] < +oo.

kEZ

In particular, for (almost) every & € [0, 1], Z Xs (£ + k) < +o0, that is f (£ + k) # 0 for finitely many
keZ
k’s.
For such a &, define
INT) 3 Ze(a) = 3 flz + k)Xt = 37 fe 4 p)e?inhe,
keZ kEZ

Then, Z; is a trigonometric polynomial, so it can not be zero on a set of > 0 measure, unless it is zero
everywhere, in which case f = 0 and this would conclude the proof. But,

/ S xsn(@+k) =[] <1
0

kEZ
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so that ng(m—l—k) =0on aset E with |E| >0, thatis f(zx + k) =0 for all z € F and all k € Z.

kezZ
It follows that for z € E,

Ze(2)| < |f(z+ )|
keZ
so that Z¢ is zero on a set of positive measure, as desired. O

Using a compacity argument (see [13]), one may deduce from this result the existence of a constant
C depending only on ¥, ¥ such that for all f € L2(R?),

£l < C([[ fxras |, + 1 Fxrasll2)-
An estimate of this constant is not known, excepted in dimension d = 1, where Nazarov [18] has
proved :
Theorem 2.2 (Nazarov). Let £, 3 be two subsets of R of finite measure. Then, for every f € L2(R?),

171, < 133 | fxgas], + 1 fxgasll)-

A slightly different result has been obtained in [20] using real varaible methods. Let p(z) =
max(1,1/||z|]), a set E C R? is e-thin if for every z € R, |EN B(z,p(z))| < €| B(z, p(z))| where
B(z,p) is the ball of center z and radius p. Then, one can prove :

Theorem 2.3 (Shubin, Vakilian, Wolff). There is €9 > such that, for every 0 < € < &g, there exists
C < 1 such that if © and ¥ are e-thin sets in R* then for any f € L2(R%),

I£1l, < C(|| Fxravsll, + ||fXRd\g||2)-

3. DECREASING CONDITIONS

An other famous uncertainty principle is du to Hardy [12] and gives conditions under which a
function and its Fourier transform can be both fastly decreasing. More precisely

Theorem 3.1 (Hardy). Let f € L?(R) be such that, for some C, N > 0,
i/ fz) <CA+|z))Ne ams,
ii/ f(§) <O+ ghNe e
Then
(1) Ifab> 1, f =0.
(2) Ifab=1, f(z) = P(m)e“”"2 for some polynomial of degree < N.
(3) Ifab < 1, there is a dense subspace of functions f € L? satisfying conditions i and ii.

There are many other results of this type, both in dimension d > 1 and involving L? norms (Cowling-
Price [6]) or bounds of the form e~2*" with 1 < p < co (Morgan [17], Gelfand-Shilov [9]). This results
are all partially implied in dimension d = 1 by the following theorem du to Beurling-Hérmander [14].

Theorem 3.2 (Beurling-Hérmander). Let f € L?(R). Then

@) // D F )21 drdy < +oo
RxR

if and only if f = 0.

Despite its strength, this theorem still has drawbacks as it is only in dimension d = 1 and further
as it does not contain any equality cases. In particular, it does not imply the equality case in Hardy’s
Theorem.
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It is not fully obvious of what |zy| should be replaced with in dimension d > 1. Three main options
d

are given to us, first |z||y| or Z x;y;, which has been achieved by Bagchi and Ray [3], or by |{z, )|,
k=1
as proved by Ray and Naranayan [19]. Both proofs use the one dimensional theorem and then either
an occillary function or a Radon transform.
However, this author do not get equality cases. We have been able to prove the following :

Theorem 3.3 (Beurling-Hérmander type, [5]). Let f € L?(R%) and N > 0. Then

~

F@NFW] e
? //Rded 1+ Nl + D™ © drdy < 400

if and only if f may be written as

f(z) = P(z)e ™40,

where A is a real positive definite symmetric matrix and P is a polynomial of degree < %.

In particular, for N < d, the function f is identically 0.
Remarks. .
— If one replaces the term e27/(@¥) in (3) by €27 2k=12i%| then one further restricts the matrix A
to be diagonal. If one further replaces €27 Xi=1 2i%il by e2rllelllivll then A has to be A = —BI with
B> 0.
— Let f(z) = P(z)e ™{(A+iB)z.2) with P polynomial, A, B positive definite matrixes. Then, if F
satisfies (3), some calculus shows that A is positive definite, B = 0 and the degree of P is < & > d So,
our aim will be to show that f is of that form.

o . 1 1

— In condition (3), we may replace rErrpv b mrEpI RN

This theorem admits several corollaries. The first one is du to Cowling and Price in dimension
d =1 and with N =0, [6].
Theorem 3.4 (Cowling-Price type, [5]). Let N > 0. Assume that f € L*(R?) satisfies

emallz||? -~ emlyl®

T ey < toe and - VWG Rme

for some positive constants a and b with ab= 1. Then f(z) = P(z)e I*I" for some polynomial P.

|/ ()] dy < 400
Rd

This results follows from Theorem 3.3 and Cauchy Schwarz : 2||z||jy|| < allz||” + %||y||2
If one further uses H” older instead of Cauchy-Schwarz, one would obtain a result in terms of e™/#I”
However, this result is not optimal since we have:

Theorem 3.5 (Morgan type, [5]). Let 1 < p < 2, and let g be the conjugate exponent. Assume that
f € L?(R?) satisfies

1f(@)|e*™ % 11" dz < 400 and 1Fw)leX™ s dy < 400
Rd Rd

1
for some j = 1,--- ,d and for some positive constants a and b. Then f =0 if ab > |cos(”7“)|".
If ab < |cos(BF
3.

Finally, note that in theorem 3.4, on may replace |f(z)| by |f(z)|P using the following

1
)|P , one may find a dense subset of functions which satisfy the above conditions for all

erallzll? e , emallal? ; 1 AN
[ et < [V ets) (L) <+

ma|z||?

provided K is big enough and [, |f(x)|p(f+||wdm < +400. So, one gets
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Theorem 3.6 (Cowling-Price type, [5]). Let N > 0,1 < p < 400 and % + % = 1. Assume that
f € L3(R?) satisfies
/ P2 g < v and [ @Iy < oo
R4 1+ [l=l)™ Rd (L+[lylh™
for some positive constants a and b. Then, if “Z > 1, f = 0 whereas if Z_Z = 1. Then f(z) =

P(z)e™"» #12l® for some polynomial P.

4. PROOF OF THEOREM 3.3

We will here only give the full proof in the case d = 1 and N = 0, that is, the proof of Beurling-
Hoérmander’s original Theorem. This proof simplifies Hormander’s argument and contains already the
main ideas for the general case. We will then sketch the main steps of our theorem.

4.1. The case d = 1, N = 0. We want to prove that a function f € L'(R) which satisfies the
inequality

(4) //RR 2)[|F(€)|e2™?El dzde < 400

is identically 0. It is sufficient to show that the function g = e x f is identically 0. Indeed, the
> ~

Fourier transform of g is equal to e~™¢ f. If it is 0, then f vanishes also. Now g extends to an entire

function of order 2 in the complex plane. We note also g its extension. We claim that, moreover,

(5) // 2)|[§(8)|e2 el dzde < +o00

Indeed, replacing g and g by their values in terms of f and f and using Fubini’s theorem, we are led
to prove that the quantity

/e—n[(z—y>2—2|z|\s|+2|y||£|+s2]dm
R

is bounded independently of y and £. Taking z — y as the variable, it is sufficient to prove that

/ o2 —2[allg+€7] g
R

is bounded by 2, which follows from the fact that 2> — 2|z||£| + €2 is either (z — £)2 or (z + £)2.
Now, for all z € C, we have the elementary inequality

2) < /R §(6) 4 Elag

so that there exists some constant C such that
“+oo

(6) |l sup [9(a)ldr <O
—00 zZ|=|x

We claim that the holomorphic function

G(z) = / " g(ugliv)du

is bounded by C. Once we know this, the end of the proof is immediate: G is constant by Liouville’s
Theorem; so g(u)g(iu) is identically 0, which implies that g is identically 0.

We will need the following version of Phragmen-Lindelh6f’s principle which may be found in [10]:
let ¢ be an entire function of order 2 in the complex plane and let o €]0, 7 /2[; assume that |¢(z)| is
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bounded by C(1 + |z|) on the boundary of some angular sector {re?® :r > 0,8, < 8 < Bo + a}.
Then the same bound is valid inside the angular sector (when replacing C by 2NV C).

It is clear from (6) that G is bounded by C on the axes. Let us prove that it is bounded by C for
z = ret in the first quadrant. Assume that 6 is in the interval (0,7/2). By continuity, it is sufficient
to prove that

Gal) = / " gleu)giu)du

is bounded by C for all & € (0,0). But the function G, is an entire function of order 2, which is
bounded by C on the y-axis and on the half-line pe’®. By Phagmeén-Lindelhdf principle, it is bounded
by C inside the angular sector, which gives the required bound for |G4(2)|. A similar proof gives the
same bound in the other quadrants.

4.2. Sketch of the general case. Our aim is now to prove that if f € L?(R?) is such that, for some
positive integer IV,

~

If(x)llf(y)l 27|(z,y)|
! e T e ot <,

then f may be written as
f(iI?) — f)(x)e—7r((,»ﬁl—i—iB)av,:/v)7
where A and B are two symmetric matrices and P is a polynomial.
We may assume that f # 0.
First step. Both f and f are in L*(R?).
For almost every y,
2 £ ()]
FWI | e
ra (14 [zl

As f # 0, the set of all y’s such that f(y) # 0 has positive measure. In particular, there is a basis

~

y'...y? of R? such that, fori =1,...,d, f(y?) # 0 and

@) x| (ea®)]
/Rd (1+”$”)Ne ¥ dr < 4o0.

Since, clearly, there exists a constant C' such that

(e} < 03 exp a0,
i=1

we get f € L'(R?). Exchanging the roles of f and f, we get f € L1(R?). o

Second step. The function g defined by g(y) = )?(y)e_””y”2 satisfies the following properties (with C
depending only on f)

> @ dy < +o0.

° /Rd 15(y) ™" dy < oo;
Y l(y)| < CemlI*,
l9@NGW)| 2y
10 T mﬁ'/)‘d d < :
" //““X}R”‘ L+ [l + D~ © ray < +00

(1) [ [ ls@lawenten sy < ca+ B,
lzl<R /R4
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Property (8) is obvious from the definition of g and the fact that fisin L'(RY). As f € L'(R?), fis
bounded thus (9) is also obvious. To prove (10), we have

l9(2)[19(y) 27| (z,y)| ~ 27 (t3)|
//Rded A+ Nzl + lyD¥ € Vdzdy < // [f O f(y) At y)e ™ dtdy

with

4 e*”||w|\2*7r||y||2+27f\(ﬂv,y)l p
ty) = .
(t9) / A=+ eny “

It is thus enough to prove that
(12) A(t,y) <O+ it + Iyl

which is done by seperating the cases of (z,y) being positive or negative, and then suitably cutting
the resulting integrals.
To prove (11), fix ¢ > 2, and cut the integral over y into two parts:

/ l9(2) ( / G(w)]e 9 dy + / |§<y)|e2“'<z’y>'dy> da
[[z]|<R [lyl|>cR lly||<cR
</ lg(z)] (/ Ce—(w—2£)||y||2dy+/ |§(y)|e2n(z,y)ldy> dr
[lzlI<R [lyll>cR llyll<cR

< K||g||L1 + / / ( )|627r\(a:,y>|d$dy
lz||<R \yH<cR
Then, if we multiply and divide by (1+ ||z||+||y||)"¥ in the integral of right side, we get the required
inequality (11). This completes the proof of the claim. o

Third step. The function g admits an holomorphic extension to C? that is of order 2. Moreover, there
exists a polynomial R such that for all z € C?, g(2)g(iz) = R(2).
It follows from (9) and Fourier inversion that g admits an holomorphic extension to C? which we
again denote by g. Moreover,
l9(2)| < eI,
with C' the L' norm of g. Tt follows that g is of order 2. On the other hand, for all z € R? and e?’ of
modulus 1

(13) gDl < [ Gy

The occilary function that we consider is essentially the same, up to an adaptation to dimension

d>1:
zZ1 zZd
G:z—)/ /
0 0

As g is entire of order 2, so is G. By differentiation of G, the proof of this step is complete once we
show that G is a polynomial.

We first reduce the problem to a one complex dimensional problem by considering G¢(z) = G(2£)
with z € C,£ € C?. The proof is then essentially the same as in the previous section : we prove
that G¢ has at most polynomial growth inside each quadrant by using property 11 and then apply
Phragmen-Lindelhof’s principle. (There is again a small adaptation to stay inside the quadrants).

Step 4. A lemma about entire functions of several variables.

In the previous section, the polynomial R was 0 and the proof was complete after step 3. Here, we
can conclude with the help of the following Lemma, :
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Lemma 4.1. Let ¢ be an entire function of order 2 on C? such that, on every complex line, either ¢
is identically O or it has at most N zeros. Then, there exists a polynomial P with degree at most N
and a polynomial Q with degree at most 2 such that ¢(z) = P(z)e®?(?).

This is essentially du to the fact that, in one variable, entire functions of finite type are characterized
by there zeros.

5. THE SHORT TIME FOURIER TRANSFORM

One way one might hope to overcome uncertainty principles is by the use of the short-time Fourier
transform, also known as the windowed Fourier transform.

To define it, fix a function v € L2(R?), called the windowed. The windowed Fourier transform of
u € L?(R?) is then the Fourier of u seen through the slides v(- — ) of v. More precisely,

Foulz,y) = }'[u(.)m] (y) = /}Rdu(t)me—zmydt_

A particular case is when v is a Gaussian, in which case F, is known as the Bargmann transform.
We prefer working with the radar ambiguity function, defined by

Au,v)(z,y) = / u (t + g) v (t + E)e*%’”@’/dt.

i 2 2

Note that A(u,v) and F,u have same modulus, so there is no change in using A(u,v) instead of F,u

bellow. Basic properties of A(u,v) can be found in [2].
Another closely linked transform is the Wigner transform, that is the R?? Fourier transform of

A(u,v), and is given by
W(u,v)(z,y) = / U (g; + f) v (m + f) e 2imty gy
R4 2 2

This, up to a change of variable, may also be expressed as an ambiguity function (exercise) so that
all results of this section can be stated in terms of W.
Let us recall here a few properties of the ambiguity function that we may use in the sequel.

For u,v in L2(R?), A(u,v) is continuous on R*? and A(u,v) € L?(R2?). Further,
1A (w, )| 2 (m2ay = [l L2 gy 1V]] L2 ()
In particular, A(u,v) = 0 if and only if u = 0 or v = 0.
Finally, we will also need the following lemma from [15], [16]:
Lemma 5.1. Let u,v,w € L?(R?). Then, for every z,y € R?,

A(U, U) (37 t)A(Ua U)) (Sa t) e2iw(<s’z>+<t’y>)d3dt = A(U, U)(_ya .CL')A(’U, U))(_y, .CE)
R2d

This lemma, is the key fact in proving uncertainty principles for the ambiguity function as it states
that A(u,v)A(v,w) is essentially its own Fourier transform. One can then for instance prove
Theorem 5.2 (Jaming [15], Janssen [16], Wilczok [21]). If the support of A(u,v) is of finite Lebesgue
measure, then u =0 or v = 0.

Proof. Assume v # 0. For every w € L?, A(u,v)A(v,w) has support of finite measure. As this
function is essentially its own Fourier transform (up to a rotation of the variables), its Fourier
transform also has a support of finite measure. By Benedicks/Amrien-Berthier, this implies that
A(u,v)(z,y)A(v,w)(z,y) = 0, and this, whatever w. But, for z,y fixed, it is not hard, look-
ing at A(v,w) as a scalar product, to find a w such that A(v,w)(z,y) # 0 so that for every z,y,
A(u,v)(z,y) =0 and then u = 0. O
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One might also prove uncertainty principles for the ambiguity function. There are some results in
this direction in [11]. Other results can be found in [5], for instance we proved :

Theorem 5.3. For u,v € L(R), one has the following inequality :

4 4
u v
a9 ] Pl ) sy [ P 1ACw,0) (a0 Py > T Wiy
R2 R2 7

Moreover equality holds in (14), with u and v non identically 0, if and only if there exists pu,v €
L2(R¥1), @ > 0 and B3, € R such that

. _ 2
U(t) =e2z7rﬂte a/2|t—| ,

v(t) :e2iwﬂte—a/2|t—7\2_

Finally, we have extended Theorem 3.3 to the ambiguity function:
Theorem 5.4. Let u,v € L>(R?) be non identically vanishing. If

|Au, 0) (z,y) 2.4 |lylI2
15 // el 191®) ey < 400,
(1 coses (L+ 2l + Tl /

then there exists a,w € R? such that both u and v are of the form P(a:)ezhr(w’””)e”‘”‘”’“”2 with P a
polynomial.

Note that we have not been able to replace el +lyll*) by e27{z:¥)| in this theorem.

As a conclusion, we would like to stress out that most of the theorems stated here admit slightly
storonger statements in [5], in particular, they admit directionnal versions.

Note also that Grochenig and Zimmermann [11] have slightly simpler arguments to deduce uncer-
tainty principles for the short-time Fourier transform from there counterparts for the usual Fourier
transform and Lemma 5.1.
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