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Darwinism, evolutionism

Charles Robert Darwin (1809-1882).
1831 - 5 years on the HMS Beagle to Galapagos Islands.

November 1859, book "On the origin of species".
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The Darwin Finch

"We can say, by metaphor, that natural selection seeks, at every moment and
worldwide, the slightest variations; it repels those that are harmful, it preserves and
accumulates those that are useful; she works in silence, imperceptibly, everywhere and
always, as soon as the opportunity arises, to improve all organized beings relative to
their organic and inorganic living conditions" (Darwin, 1859).
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Simple mecanisms

1 Variations, macroscopic and microscopic, within species.

2 Fight for survival.

3 Natural selection: triumph of the lineage that has a useful variation in its
environment.

Pierrick Legrand IMB/INRIA/UBX



Darwinism Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Darwinism

Artificial Darwinism
A set of techniques grouped under a generic term
Ingredients
Evolutionary loop
Example

Genetic Algorithms
Discrete representation: Genetic Algorithms

Evolution strategies
Continuous representation: Evolution Strategies

Genetic Programming
Functional representation: Genetic programming
Example: Using GP for regression

Pierrick Legrand IMB/INRIA/UBX



Darwinism Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Artificial Darwinism
Stochastic optimization which uses mechanisms inspired by the biological evolution,
such as:

• reproduction,

• mutation,

• selection and

• survival of the strongest individuals
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A set of techniques grouped under a generic term

Evolutionary Algorithms

Genetic Algorithms (GA)

Evolution Strategies (ES)

Genetic Programming (GP)

...
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Ingredients

Selection Population

Genetic Operators
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Evolutionary loop
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Example

Potential Solutions = Individuals in a population

Initial random population Evolved population
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Discrete representation: Genetic Algorithms

Each individual is represented by a binary string.
John H. Holland (1960, 1975), David Goldberg (1989)

Crossover Mutation
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Continuous representation: Evolution Strategies

Each individual is a vector in Rn. Hans-Paul Schwefel (1970)

Barycentric crossover

∀i ∈ {1, .., n}, xchildreni = αxfatheri + (1− α)xmother
i

α random value in [−ε, 1 + ε].

Gaussian mutation
∀i ∈ {1, .., n}, xchildreni = xchildreni +N(0, σ)

Two parameters Pm and σ.

Demo
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Functional representation: Genetic programming

Definition
Genetic programming (GP) is an evolutionary computation (EC) technique that
automatically solves problems without requiring the user to know or specify the form or
structure of the solution in advance [Koza, 1992].
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Example: Using GP for regression

Symbolic Regression
Given a set of input data X and a set of desired outputs Y , find a function f such that:
f(Xi) = Yi ∀i ∈ {1, N}
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Evolutionary computation for EEG
classification

This work is related to the PhD thesis of Laurent Vezard and developed in the context of the PSI Region Project and
the ACOBSEC European project. A slightly different version has been published in a book chapter. Eduardo
Miranda; Julien Castet; Benjamin Knapp. Guide to Brain-Computer Music Interfacing, Springer, 2014. Work carried
out with Laurent Vézard, Marie Chavent, Frédérique Faïta-Aïnseba.
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Goal

- Characterize the state of alertness of a person from his
electroencephalogram (EEG).
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Acquisition Protocole

- First EEG recording: subject in a normal state of alertness: "normal"

- Second EEG recording: subject in a state of low vigilance: "relax"
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Acquisition Protocole
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- EEG headset installation time: 45 minuts.

- Subject with open eyes.

- Sampling frequency: 256Hz.

- Recording time: 3 minuts (46000 sample points).
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Acquisition Protocole

Campaigns:

- 58 electrodes renumbered from 1 to 58

- Subjects under 35, right-handed and non-smoker

- 58 subjects⇒ 16 preserved

Relaxation session
20 minutes with a recorded voice offering 3 exercises:

- Autogenic training [Schultz1958]: repetition of sentences, self-hypnosis.

- Progressive muscle relaxation [Jacobson1974].

- Mental visualization (familiar places, smells, noises).
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Acquisition Protocole

3 minutes of EEG recording before relaxation.
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Acquisition Protocole

3 minutes of EEG recording after relaxation.

⇒ Oscillations characteristic of a state of passive awakening between 8 and 12 Hz.Pierrick Legrand IMB/INRIA/UBX
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Slope Criterion

The dyadic grid gives a spatio-frequential representation of the discrete dyadic wavelet
decomposition
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Slope Criterion

- Alpha: 8− 12Hz.

- Waves characteristics of a relaxed state.

Linear regression between 4 and 16Hz.
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Slope Criterion
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Slope Criterion
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⇒ Very strong inter-subject variability
⇒ This criterion that does not allow to build a powerful classifier for different

subjects.
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Slope Criterion

Classification: Usual methods

K nearest Binary Random Discriminant Sparse Discriminant

neighbors decision trees forests PLS PLS

Mean 37.28 33.98 32.03 40.63 36.25

Standard Deviation 10.47 5.15 6.46 8.55 7.96

Mean and standard deviations of Correct Classification Rates for different classification
methods applied on slope criterion.

This approach is not efficient
Our contribution: Design a relevant evolutionary algorithm to solve this task of
classification.
⇒ Find the relevant electrodes.
⇒ Find the relevant frequencies for the calculation of the slope criterion.
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Design

Example of a genome in the evolutionary algorithm
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Design

Relationship between the genome and the calculation of the slope criterion
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Results

Average correct classification rate

Evaluation CCR

Method Mean Standard deviation

CART 86.68 1.87

SVC 83.49 2.37

Average and standard deviations of the correct classification rates obtained for the 100
runs of the evolutionary algorithm and for two methods of evaluation.
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Results

Best genome

Evaluation BEST genome

method Selected Selected Correct classification

electrode frequency (Hz) rates

CART F4 1/8, 1/4, 2, 4 et 64 89, 33%

SVC F2 1/32, 1/16, 2, 4, 8, 64 et 128 89, 33%

Table summarizing the two best genomes found during the 100 runs of the genetic
algorithm with two methods of evaluation.
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Hölderian Regularity Contribution Results

Regularity estimation with Genetic
Programming

Joint work with Leonardo Trujillo, Gustavo Olague and Jacques Levy-Vehel. Evolving estimators of the pointwise
Hölder exponent with Genetic Programming. Information Sciences 209 (Nov. 2012), 61-79.
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Hölderian Regularity Contribution Results

Hölder exponent

Mathematical tool that measures the regularity of a signal around each point.
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Hölderian Regularity Contribution Results

General motivation

• For real-world signals the Hölder exponent must be estimated for each point.

• Several estimation methods exist, but most methods are slow or highly
parameterized;

• Therefore there use is not common (particularly in applications where speed
can be of importance)
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Hölderian Regularity Contribution Results

Contribution

• Evolve estimators of the pointwise Hölder exponent for 2D signals with Genetic
Programming.

• GP evolves estimators that are accurate and fast.
• Evolution is a one-shot process, evolved estimators can be used easily.

Awards

• Best Paper Award in the track Genetic Programming, GECCO 2010, Portland,
Oregon.

• Humies Award Finalist, GECCO 2013, Amsterdam, The Netherland.
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Training set

We generate three groups of images with FracLab, using three different functions that
take as input the point coordinates (x, y) of an image and provide as output the desired
regularity; these functions are:

1 a Polynomial p1(x, y) = 0.1 + 0.8xy;

2 a Sine p2(x, y) = 0.5 + 0.2(sin(2πx))(cos( 3
2
πy));

3 an Exponential p3(x, y) = 0.3 + 0.3
1+e−100(x−0.7) .

These functions provide the prescribed regularity needed to build the synthetic images
used for training and testing of our evolved operators.
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Training set

(a) Polynomial p1 (b) Sine p2

(c) Exponential p3

Prescribed regularity of our experimental data.
Pierrick Legrand IMB/INRIA/UBX
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Training set

(a) Polynomial (b) Sine (c) Exponential

(d) Polynomial (e) Sine (f) Exponential

These images have a prescribed regularity given by functions p1 (Polynomial), p2
(Sine) and p3 (Exponential).
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