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PART 1: Artificial Evolution
• Definitions

PART 2: Estimation of signal regularity
• Hölderian regularity

PART 3: Applications
• Cochlear implant fitting with evolutionary algorithm
• Evolutionary computation for EEG classification
• Regularity estimation with Genetic Programming
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Artificial Darwinism
A set of techniques grouped under a generic term
Ingredients
Evolutionary loop
Example

Genetic Algorithms
Discrete representation: Genetic Algorithms

Evolution strategies
Continuous representation: Evolution Strategies

Genetic Programming
Functional representation: Genetic programming
Example: Using GP for regression
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Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Artificial Darwinism
Stochastic optimization which uses mechanisms inspired by the biological evolution,
such as:

• reproduction,

• mutation,

• selection and

• survival of the strongest individuals

Pierrick Legrand IMB/INRIA/UBX



Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

A set of techniques grouped under a generic term

Evolutionary Algorithms

Genetic Algorithms (GA)

Evolution Strategies (ES)

Genetic Programming (GP)

...
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Ingredients

Selection Population

Genetic Operators
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Evolutionary loop
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Example

Potential Solutions = Individuals in a population

Initial random population Evolved population
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Discrete representation: Genetic Algorithms

Each individual is represented by a binary string.
John H. Holland (1960, 1975), David Goldberg (1989)

Crossover Mutation

Pierrick Legrand IMB/INRIA/UBX
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Continuous representation: Evolution Strategies

Each individual is a vector in Rn. Hans-Paul Schwefel (1970)

Barycentric crossover

∀i ∈ {1, .., n}, xchildreni = αxfatheri + (1− α)xmotheri

α random value in [−ε, 1 + ε].

Gaussian mutation
∀i ∈ {1, .., n}, xchildreni = xchildreni +N(0, σ)

Two parameters Pm and σ.

Demo
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Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Continuous representation: Evolution Strategies

Each individual is a vector in Rn. Hans-Paul Schwefel (1970)

Barycentric crossover

∀i ∈ {1, .., n}, xchildreni = αxfatheri + (1− α)xmotheri

α random value in [−ε, 1 + ε].

Gaussian mutation
∀i ∈ {1, .., n}, xchildreni = xchildreni +N(0, σ)

Two parameters Pm and σ.

Demo

Pierrick Legrand IMB/INRIA/UBX



Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Artificial Darwinism
A set of techniques grouped under a generic term
Ingredients
Evolutionary loop
Example

Genetic Algorithms
Discrete representation: Genetic Algorithms

Evolution strategies
Continuous representation: Evolution Strategies

Genetic Programming
Functional representation: Genetic programming
Example: Using GP for regression

Pierrick Legrand IMB/INRIA/UBX



Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Functional representation: Genetic programming

Definition
Genetic programming (GP) is an evolutionary computation (EC) technique that
automatically solves problems without requiring the user to know or specify the form or
structure of the solution in advance [Koza, 1992].
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Example: Using GP for regression

Symbolic Regression
Given a set of input data X and a set of desired outputs Y , find a function f such that:
f(Xi) = Yi ∀i ∈ {1, N}

Pierrick Legrand IMB/INRIA/UBX
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PART 2: Estimation of signal regularity
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Hölderian regularity

Pierrick Legrand IMB/INRIA/UBX



Definitions Estimation Application

Definitions
Signal Regularity

Estimation
Oscillations
Regression of wavelet coefficients

Application
Estimation on synthetic signal
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Definitions Estimation Application

Signal Regularity

The Hölder pointwise exponent is the most common tool used to measure the
regularity of a signal at a given point.

Definition
Let f be a function from IR to IR, s > 0, s ∈ IR\IN and x0 ∈ IR. Then f ∈ Cs(x0) if
and only if there is a real η > 0, a polynomial P of degree smaller than s and a
constant c such that

∀x ∈ B(x0, η), |f(x)− P (x− x0)| ≤ c|x− x0|s

By definition, the pointwise exponent of f at x0, noted αp(x0) is the supremum of s
such as f ∈ Cs(x0).

Hölderian envelope of a signal at the point x0.

Pierrick Legrand IMB/INRIA/UBX
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Oscillations

A function f(t) is Hölderian of exponent α ∈ [0.1[ at t if there is a constant c such that
for any t′ in a neighbourhood of t,

|f(t)− f(t′)| ≤ c|t− t′|α

In terms of oscillations, this condition can be written:
A function f(t) is Hölderian of exponent α at t, with 0 < α < 1 if there is a constant c
such that for any τ ,

oscτ (t) ≤ cτα

with

oscτ (t) = sup
|t−t′|≤τ

f(t′)− inf
|t−t′|≤τ

f(t′) = sup
t′,t′′∈[t−τ,t+τ ]

|f(t′)− f(t′′)|

Then the regularity estimator will be constructed at each point as the slope of the
regression of the logarithm of the oscillation as a function of the size of the ball
in which the oscillation is calculated.

Pierrick Legrand IMB/INRIA/UBX
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Regression of wavelet coefficients

Theorem
(S. Jaffard)

|cj,k| ≤ c2−j(α+
1
2
)(1 + |2jt0 − k|)α ∀j, k ∈ Z2

Conversely ;

If ∀j, k ∈ Z2 one has |cj,k| ≤ c2−j(α+
1
2
)(1 + |2jt0 − k|)α

′

for a α′ < α then, the Hölder exponent of f in t0 is α.

Pierrick Legrand IMB/INRIA/UBX
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Regression of wavelet coefficients

Regression calculated over a point of the signal. Left image shows a dyadic wavelet
decomposition, and the right image display the actual regression calculated over the
point t0, where each dot corresponds to each log2 of the wavelet coefficient magnitude
located above t0.

Pierrick Legrand IMB/INRIA/UBX



Definitions Estimation Application

Regression of wavelet coefficients

Definition
At each point t0 of the signal, the regularity is estimated by:

α(n, t0) = −p−
1

2

with p the slope of the least square linear regression of the logarithms of the wavelet
coefficients "above" this point as a function of the scales.

Theorem
At each point t0 of the signal decomposed on n scales, we estimate the regularity by
the following formula:

α(n, t0) = −
1

2
−Kn

n∑
j=1

sj log2 |cj,k|

with Kn = 12
n(n−1)(n+1)

et sj = j − n+1
2

. The cj,k are the wavelet coefficients above
t0.

We note k but the value is b t0+1
2n−j+1 c.

Pierrick Legrand IMB/INRIA/UBX
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Estimation on synthetic signal

GWei WCR

OSC
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Cochlear implant fitting with evolutionary
algorithm
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This project is a collaboration between mathematicians, computer scientists and
medical practitioners.

The aim is to

• Simplify the process of cochlear implants fitting (after a deaf patient has been
surgically implanted).

• Make the implant more adaptable to the environment.

Pierrick Legrand IMB/INRIA/UBX
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Audition

Transmission of sound to the cochlea

The external ear receives the wave of acoustic pressure.

The middle ear transforms
the acoustic wave onto a mechanical vibration.This mechanical vibration moves the
oval window (which is connected to the middle ear) and the fluid contained in the
cochlea is set into motion. The variations of pressure in the fluid generates a
movement of the basilar membrane.
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Audition

Coding of the cochlea

The basilar membrane is a filter.
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Audition

Coding of the auditive nerve

Frequencies coding

• The movement of the basilar membrane encodes information of the frequency in
the acoustic signal.

• The sensory cells which are on the basilar membrane oscillate with the
membrane.

• The movement of the sensory cells liberates an electro-chimical substance which
leads to discharge the neurons. Then these electrical impulses correspond to an
excitation at a given position on the basilar membrane.
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Audition

Coding of the auditive nerve

Example : Transmission to the brain.
The acoustic information is conveyed to
the brain by electric impulses.
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Audition
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Deafness

Temporal and frequential informations

If the sensory cells are damaged, the
auditive system cannot transform the
acoustic pressure wave to neuronal im-
pulses.
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Cochlear implant

Goal :
To directly stimulate the neurons of the auditive nerve by inserting electrodes in the
cochlea.
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Necessary conditions
Cochlear implants allow to deaf people to hear again if
• The auditive nerve is not damaged.

In 2006, 70000 people were implanted. In 2019, 500000.

• Most of the implantations are successful
• Possibility to hear again
• Possibility to hear during a phone call
• Possibility to listen to music.
• But some people still encounter difficulties and they prefer to turn off the implant.

This population motivated our work

Pierrick Legrand IMB/INRIA/UBX
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A The sound is captured by the microphone, digitalized and processed.
B The signal is sent to the implant through the skin.
C The implant gets informations from the outer processor and distributes these

informations to the electrodes in the cochlea. Each electrode corresponds to a
frequency band of the sound.

D The nerve endings transmit the electric impulses to the brain and they are
interpreted as sounds.

Pierrick Legrand IMB/INRIA/UBX
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Difficulties

Complexity

• Which frequency for each electrode ?
• Which intensity range for each electrode ?
• How many electrodes simultaneously activated ?
• Should we avoid the activation of two consecutive electrodes ?
• ...

Finding the answer to these questions is a difficult optimization problem. This
difficulty is not only related to the dimension of the search space but also to other
causes: Environment, Tiredness, brain adaptation...
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Manual fitting

Fitting of the electrodes

• Determinate the functional electrodes.

• Determinate the intensity thresholds T (threshold) and C (comfort).
• The practitioner distributes logarithmically the frequency bands on the electrodes

(by his background).
• Then many tests with the patient.

The results are often good but the complete process can take years for some
patients.

Each blue rectangle is a [T,C] interval for each electrode.Pierrick Legrand IMB/INRIA/UBX
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Contribution: Interactive Evolutionary Algorithm
Stochastic optimization which uses mechanisms inspired by the biological evolution,
such as reproduction, mutation, selection and survival of the strongest individuals.
An interactive evolutionary algorithm is a classical evolutionary algorithm with a
fitness function given by a human.

The potential solutions of the problem are individuals in a population.

Genotype of an individual
NbOfElectrode Min Intensity Max Intensity Min Frequency Max Frequency

22 6.45 7.94 506 689
21 9.25 9.43 676 729
... ... ... ... ...
1 7.41 8 6765 7137
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Automatic fitting method

Algorithm

• Manual fitting by an expert (for this patient).

• Initial Population : 4 parents (=4 fittings P1, P2, P3, P4) randomly generated
(in the range [T,C] of each electrode).

• Evaluation of the population by the patient during auditive tests (VCV and
ASSE). Each individual obtains an evaluation : N1, N2, N3, N4.

• Generation of children (3 individuals, E1, E2, E3). Two individuals are
randomly selected, the best is selected with a high probability. The previous
selection is repeated. In this way, two individuals are selected and then crossed
in order to obtain a child. This child undergo mutation with a probability pm.

• Evaluation of the 3 children by the patient: NE1, NE2, NE3.
• Generation of the new population among P1, P2, P3, P4, E1, E2, E3.

Random selection of 2 individuals, selection of the best evaluation. A new
population is obtained: F1, F2, F3 and F4.
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On mobile device
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Audio test

VCV test
The Vowel-Consonant-Vowel (VCV) test is used in clinics to evaluate how well a listener
can recognize consonants under different conditions. The stimuli consist of audio
recordings of an adult speaking VCV nonsense words. The vowel context is /a/-/a/.

1 2 3 4

ASSE test

• Fifteen speech sounds that can be selected
• Selected speech sound presented 3 times
• Scoring is binary

• Correct: sound heard
• False: sound not heard

Pierrick Legrand IMB/INRIA/UBX


vfaba03.wav
Media File (audio/wav)


vmini03.wav
Media File (audio/wav)


vfushu03.wav
Media File (audio/wav)


vmaka03.wav
Media File (audio/wav)



Introduction Audition Implants Fitting Evolutionary Algorithm Experiments Classif Conclusions

Results

Patient ASSE manual ASSE auto VCV manual VCV auto
S1 4/7 7/7 20% 27%
S2 5/7 6/7 35% 37%
S3 5/7 6/7 45% 52%
S4 4/7 7/7 20% 27%

- This method allows to explore a large number of various possible fitting.
- First evolutionary algorithm on mobile device.
- Fast and easy to use.
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The aim of this project is to

• Simplify the process of fitting of cochlear implants.

• Make the implant more adaptable to sound environment.

Steps

• Determinate the sound environment of the patient.
• The patient records these environments (with a software implemented on a

pocket PC)
• Develop a tool to characterize these environments (classification/learning).
• Develop a tool to recognize a previously recorded environment.
• Record the corresponding fitting of the prothesis.
• Fit the prothesis automatically to the environment.

Result : A "smart" cochlear implant.
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wav

Wavelets and energy

A discrete wavelet transform is used in order to estimate the energy of the signal.

Wavelet coefficient
Cj,k denotes the wavelet coefficient at scale j and time k.

Cj,k = 2−
j
2

∫ ∞
−∞

f(t)ψ(2−jt− k)dt

Energy at scale j

E2
j =

2j−1∑
k=1

[Cj,k]
2

Dyadic grid. Abscissa: Time, Ordinate: Frequency. At the bottom,
each point is a point of the signal. The matching discrete wavelet
coefficients are the circle in the grid. At low frequencies, the
computation of the wavelet coefficient uses large windows in time,
then we only have few coefficients. Oppositely, at high frequencies
the computation uses small windows.
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Results

Characterization of sound environments

Abscissa: frequency, Ordinate: Energy. Left up: "Car-radio" environment. middle up:
"Birds" environment. Right up: "Supermarket" environment. Left down : "road corner"
environment. Middle down: "School-yard" environment. Right down: "Lawn mower"
environment. Set of values of the energy for each frequency (fine lines), envelope and
mean criterion (thick lines).
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Results

Classification of sound environment

Family Learning set Test set matching family Confidence
Car-radio 16 8 Car-radio 100%

Cross-roads 24 13 Crossroads 84 %
Birds 12 7 Birds 100%

School-yard 22 11 School-yard 100%
Supermarket 35 15 Supermarket 100%
Lawn-mower 10 5 Lawn-mower 80%
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Conclusions

Exploitation of the results

• If an environment is "recognized" with a probability of being in a class higher than
50% then the fitting corresponding to this class is sent into the prothesis.

• If an environment is "recognized" with a probability of being in a class lower than
50% then the fitting corresponding to this class is used as a parent in a new run
of the evolutionary algorithm in order to "learn" a new environment.

Conclusion

• Simplify the process of fitting of cochlear implants.
• Adapt the fitting to the sound environment.
• The programming on pocket PC simplify the use of the developed softwares.
• This work can also be useful for people which do not encounter difficulties with

their implant.
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Evolutionary computation for EEG
classification

This work is related to the PhD thesis of Laurent Vezard and developed in the context of the PSI Region Project and
the ACOBSEC European project. A slightly different version has been published in a book chapter. Eduardo
Miranda; Julien Castet; Benjamin Knapp. Guide to Brain-Computer Music Interfacing, Springer, 2014. Work carried
out with Laurent Vézard, Marie Chavent, Frédérique Faïta-Aïnseba.
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Goal

- Characterize the state of alertness of a person from his
electroencephalogram (EEG).
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Acquisition Protocole

- First EEG recording: subject in a normal state of alertness: "normal"

- Second EEG recording: subject in a state of low vigilance: "relax"
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Acquisition Protocole
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- EEG headset installation time: 45 minuts.

- Subject with open eyes.

- Sampling frequency: 256Hz.

- Recording time: 3 minuts (46000 sample points).
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Acquisition Protocole

Campaigns:

- 58 electrodes renumbered from 1 to 58

- Subjects under 35, right-handed and non-smoker

- 58 subjects⇒ 16 preserved

Relaxation session
20 minutes with a recorded voice offering 3 exercises:

- Autogenic training [Schultz1958]: repetition of sentences, self-hypnosis.

- Progressive muscle relaxation [Jacobson1974].

- Mental visualization (familiar places, smells, noises).
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Acquisition Protocole

3 minutes of EEG recording before relaxation.
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Acquisition Protocole

3 minutes of EEG recording after relaxation.

⇒ Oscillations characteristic of a state of passive awakening between 8 and 12 Hz.Pierrick Legrand IMB/INRIA/UBX
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EEG data Acquisition
Acquisition Protocole

Feature Extraction
Slope Criterion

Evolutionary Algorithm
Design
Results
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion

The dyadic grid gives a spatio-frequential representation of the discrete dyadic wavelet
decomposition
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion

- Alpha: 8− 12Hz.

- Waves characteristics of a relaxed state.

Linear regression between 4 and 16Hz.

Pierrick Legrand IMB/INRIA/UBX



EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion

- Alpha: 8− 12Hz.

- Waves characteristics of a relaxed state.

Linear regression between 4 and 16Hz.

Pierrick Legrand IMB/INRIA/UBX



EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion

- Alpha: 8− 12Hz.

- Waves characteristics of a relaxed state.

Linear regression between 4 and 16Hz.

Pierrick Legrand IMB/INRIA/UBX



EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion
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⇒ Very strong inter-subject variability
⇒ This criterion that does not allow to build a powerful classifier for different

subjects.
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion

Classification: Usual methods

K nearest Binary Random Discriminant Sparse Discriminant

neighbors decision trees forests PLS PLS

Mean 37.28 33.98 32.03 40.63 36.25

Standard Deviation 10.47 5.15 6.46 8.55 7.96

Mean and standard deviations of Correct Classification Rates for different classification
methods applied on slope criterion.

This approach is not efficient
Our contribution: Design a relevant evolutionary algorithm to solve this task of
classification.
⇒ Find the relevant electrodes.
⇒ Find the relevant frequencies for the calculation of the slope criterion.
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Design

Example of a genome in the evolutionary algorithm
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Design

Relationship between the genome and the calculation of the slope criterion
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Results

Average correct classification rate

Evaluation CCR

Method Mean Standard deviation

CART 86.68 1.87

SVC 83.49 2.37

Average and standard deviations of the correct classification rates obtained for the 100
runs of the evolutionary algorithm and for two methods of evaluation.
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Results

Best genome

Evaluation BEST genome

method Selected Selected Correct classification

electrode frequency (Hz) rates

CART F4 1/8, 1/4, 2, 4 et 64 89, 33%

SVC F2 1/32, 1/16, 2, 4, 8, 64 et 128 89, 33%

Table summarizing the two best genomes found during the 100 runs of the genetic
algorithm with two methods of evaluation.
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Hölderian Regularity Contribution Results

Regularity estimation with Genetic
Programming

Joint work with Leonardo Trujillo, Gustavo Olague and Jacques Levy-Vehel. Evolving estimators of the pointwise
Hölder exponent with Genetic Programming. Information Sciences 209 (Nov. 2012), 61-79.
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Hölderian Regularity Contribution Results

Hölder exponent

Mathematical tool that measures the regularity of a signal around each point.
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Hölderian Regularity Contribution Results

General motivation

• For real-world signals the Hölder exponent must be estimated for each point.

• Several estimation methods exist, but most methods are slow or highly
parameterized;

• Therefore there use is not common (particularly in applications where speed
can be of importance)
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Hölderian Regularity Contribution Results

Contribution

• Evolve estimators of the pointwise Hölder exponent for 2D signals with Genetic
Programming.

• GP evolves estimators that are accurate and fast.
• Evolution is a one-shot process, evolved estimators can be used easily.

Awards

• Best Paper Award in the track Genetic Programming, GECCO 2010, Portland,
Oregon.

• Humies Award Finalist, GECCO 2013, Amsterdam, The Netherland.
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Hölderian Regularity Contribution Results

Training set

We generate three groups of images with FracLab, using three different functions that
take as input the point coordinates (x, y) of an image and provide as output the desired
regularity; these functions are:

1 a Polynomial p1(x, y) = 0.1 + 0.8xy;

2 a Sine p2(x, y) = 0.5 + 0.2(sin(2πx))(cos( 3
2
πy));

3 an Exponential p3(x, y) = 0.3 + 0.3
1+e−100(x−0.7) .

These functions provide the prescribed regularity needed to build the synthetic images
used for training and testing of our evolved operators.
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Hölderian Regularity Contribution Results

Training set

(a) Polynomial p1 (b) Sine p2

(c) Exponential p3

Prescribed regularity of our experimental data.
Pierrick Legrand IMB/INRIA/UBX



Hölderian Regularity Contribution Results

Training set

(a) Polynomial (b) Sine (c) Exponential

(d) Polynomial (e) Sine (f) Exponential

These images have a prescribed regularity given by functions p1 (Polynomial), p2
(Sine) and p3 (Exponential).
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