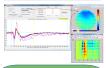
Artificial evolution, fractal analysis and applications: 10 years of collaboration with ITT

Pierrick Legrand

Inria, CQFD Team IMB, Institut de Mathématiques de Bordeaux, UMR CNRS 5251 Université de Bordeaux

December 12, 2019

université *BORDEAUX

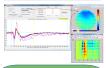


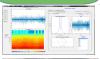
Management of research projects

Psychology and sound interactions	
Fréderique Faïta, Joseph Larralde, Pierre-Henry Vulliard, Myriam Desainte-Catherine. Internship Mathieu Carpentier	
Reduction of dimension in supervised learning. Application to the study of brain activity	
PhD Laurent Vezard (with Marie Chavent, Frederique Faita) Internships : Julien Clauzel, Nidal El Yacoubi and Emilie Drouineau	
Analysis and Classification of mental states of vigilance with evolutionary computation	_
PhD Vuliana Martinez, PhD Enrique Naredo, PhD Emigdio Flores, Internships : Victor Lopez Lopez, Uriel Lopez Islas, Enrique Hernandez and Luis Herrera	
Human monitoring (x 3)	
Jean-Marc André, Eric Grivel, Frederique Faîta, Veronique Lespinet, Liliana Audin-Garcia. Internship Vincent Lenhardt, internship Luis Herrera. Starting point for the CIFRE PhD of Bastien Berthelot	
Apport de l'analyse temps-frequence pour l'estimation de de micro-doppler	
Eric Grivel. Internship Sabrina Macchour Starting point of the CIFRE PhD of Jimmy Bondu	
Matlab toolbox for multifractal analysis and signal processing	
https://project.inria.fr/fraclab/	
	Fréderique Faita, Joseph Larralde, Pierre-Henry Vulliard, Myriam Desainte-Catherine. Internship Mathieu Carpentier Reduction of dimension in supervised learning. Application to the study of brain activity PhD Laurent Vezard (with Marie Chavent, Frederique Faita) Internships: Julien Clauzel, Nidal El Yacoubi and Emilie Drouineau Analysis and Classification of mental states of vigilance with evolutionary computation PhD Yuliana Martinez, PhD Enrique Naredo, PhD Emigdio Flores, Internships: Victor Lopez Lopez, Uriel Lopez Islas, Enrique Hernandez and Luis Herrera Human monitoring (x 3) Jean-Marc André, Eric Grivel, Frederique Faita, Veronique Lespinet, Liliana Audin-Garcia. Internship Vincent Lenhardt, internship Luis Herrera. Starting point for the CIFRE PhD of Bastien Berthelot Apport de l'analyse temps-frequence pour l'estimation de de micro-doppler Eric Grivel. Internship Sabrina Macchour Starting point of the CIFRE PhD of Jimmy Bondu Matlab toolbox for multifractal analysis and signal processing

Participation
ANR – RNTS HEVEA
ANR BNPSI
ARC M2A3PC
Micro-Projet GIS Albatros x 2

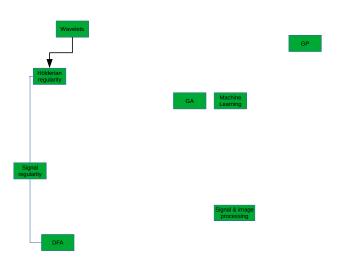
4 countries, 50 months of mobility 31 journal papers, 28 proceedings, 2 books, 1 book chapter 7 PhD defenses



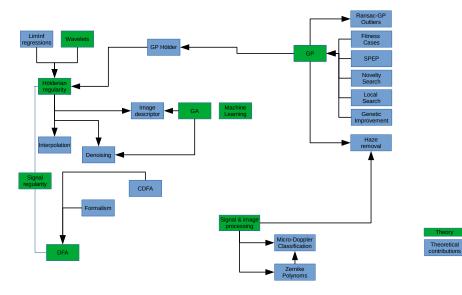

Management of research projects

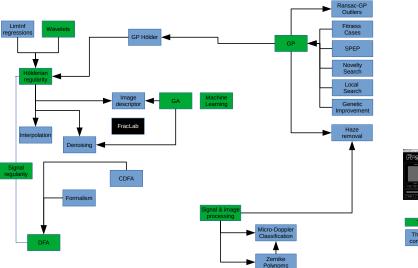
Psychology and sound interactions	
Fréderique Faita, Joseph Larralde, Pierre-Henry Vulliard, Myriam Desainte-Catherine. Internship Mathieu Carpentier	
Reduction of dimension in supervised learning. Application to the study of brain activity	
PhD Laurent Vezard (with Marie Chavent, Frederique Faita) Internships : Julien Clauzel, Nidal El Yacoubi and Emilie Drouineau	
Analysis and Classification of mental states of vigilance with evolutionary computation	
PhD Yuliana Martinez, PhD Enrique Naredo, PhD Emigdio Flores, Internships : Victor Lopez Lopez, Uriel Lopez Islas, Enrique Hernandez and Luis Herrera	
Human monitoring (x 3)	
Jean-Marc André, Eric Grivel, Frederique Faîta, Veronique Lespinet, Liliana Audin-Garcia. Internship Vincent Lenhardt, internship Luis Herrera. Starting point for the CIFRE PhD of Bastien Berthelot	
Apport de l'analyse temps-frequence pour l'estimation de de micro-doppler	
Eric Grivel. Internship Sabrina Macchour Starting point of the CIFRE PhD of Jimmy Bondu	
Matlab toolbox for multifractal analysis and signal processing	
https://project.inria.fr/fraclab/	
	Fréderique Faita, Joseph Larralde, Pierre-Henry Vulliard, Myriam Desainte-Catherine. Internship Mathieu Carpentier Reduction of dimension in supervised learning. Application to the study of brain activity PhD Laurent Vezard (with Marie Chavent, Frederique Faita) Internships: Julien Clauzel, Nidal El Yacoubi and Emilie Drouineau Analysis and Classification of mental states of vigilance with evolutionary computation PhD Yuliana Martinez, PhD Enrique Naredo, PhD Emigdio Flores, Internships: Victor Lopez Lopez, Uriel Lopez Islas, Enrique Hernandez and Luis Herrera Human monitoring (x 3) Jean-Marc André, Eric Grivel, Frederique Faita, Veronique Lespinet, Liliana Audin-Garcia. Internship Vincent Lenhardt, internship Luis Herrera. Starting point for the CIFRE PhD of Bastien Berthelot Apport de l'analyse temps-frequence pour l'estimation de de micro-doppler Eric Grivel. Internship Sabrina Macchour Starting point of the CIFRE PhD of Jimmy Bondu Matlab toolbox for multifractal analysis and signal processing

Participation
ANR – RNTS HEVEA
ANR BNPSI
ARC M2A3PC
Micro-Projet GIS Albatros x 2

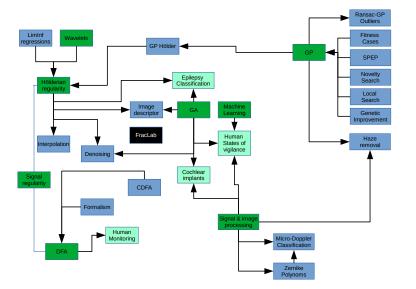


4 countries, 50 months of mobility 31 journal papers, 28 proceedings, 2 books, 1 book chapter 7 PhD defenses

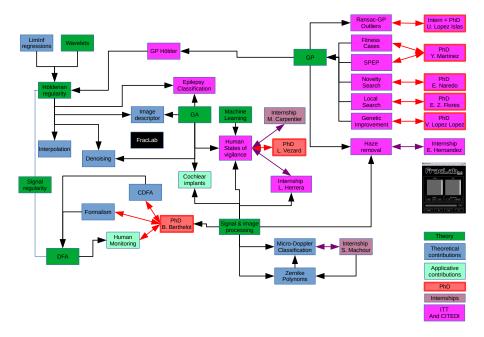


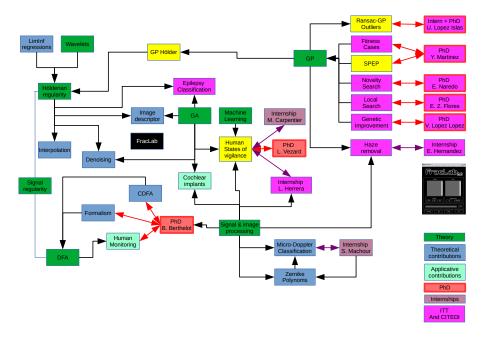


Theory




Theory


Theoretical contributions



PART 1: Artificial Evolution

- Definitions
- Prediction of expected performance for GP
- Ransac-GP

PART 2: Estimation of signal regularity

Hölderian regularity

PART 3: Applications

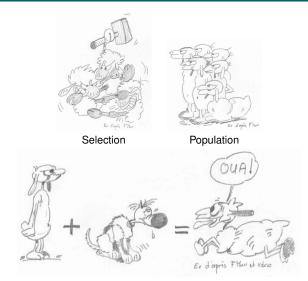
- Evolutionary computation for EEG classification
- Regularity estimation with Genetic Programming

Inria, CQFD Team
IMB, Institut de Mathématiques de Bordeaux, UMR CNRS 5251
Université de Bordeaux

Artificial Darwinism	Genetic Algorithms	Evolution Strategies	Genetic Programming
	Pierrick Legrand	IMB/INRIA/UBX	

A set of techniques grouped under a generic term Ingredients Evolutionary loop Example

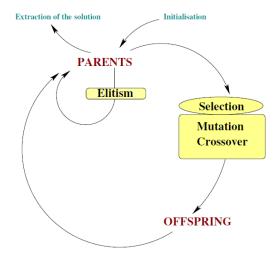
000000


Artificial Darwinism

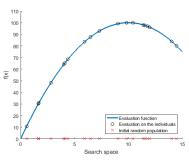
Stochastic optimization which uses mechanisms inspired by the biological evolution, such as:

- reproduction,
- mutation,
- selection and
- survival of the strongest individuals

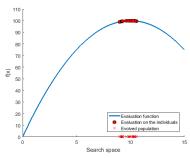
000000


Evolutionary Algorithms	Genetic Algorithms (GA)
	Evolution Strategies (ES)
	Genetic Programming (GP)

Genetic Operators


000000

Artificial Darwinism



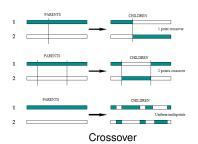
Example

Potential Solutions = Individuals in a population

Initial random population

Evolved population

A set of techniques grouped under a generic term


Genetic Algorithms

Discrete representation: Genetic Algorithms

Discrete representation: Genetic Algorithms

Each individual is represented by a binary string.

John H. Holland (1960, 1975), David Goldberg (1989)

Mutation of the genome

Evolution Strategies

Artificial Darwinism

A set of techniques grouped under a generic term

Evolution strategies

Continuous representation: Evolution Strategies

Each individual is a vector in \mathbb{R}^n .

Hans-Paul Schwefel (1970)

Barycentric crossover

$$\forall i \in \{1,..,n\}, x_i^{children} = \alpha x_i^{father} + (1-\alpha) x_i^{mother} \\ \alpha \text{ random value in } [-\epsilon, 1+\epsilon].$$

Gaussian mutation

$$\forall i \in \{1, ..., n\}, x_i^{children} = x_i^{children} + N(0, \sigma)$$

Two parameters P_m and σ .

Each individual is a vector in \mathbb{R}^n .

Hans-Paul Schwefel (1970)

Barycentric crossover

$$\forall i \in \{1,..,n\}, x_i^{children} = \alpha x_i^{father} + (1-\alpha) x_i^{mother} \\ \alpha \text{ random value in } [-\epsilon,1+\epsilon].$$

Gaussian mutation

$$\forall i \in \{1, ..., n\}, x_i^{children} = x_i^{children} + N(0, \sigma)$$

Two parameters P_m and σ .

Demo

Artificial Darwinism

A set of techniques grouped under a generic term

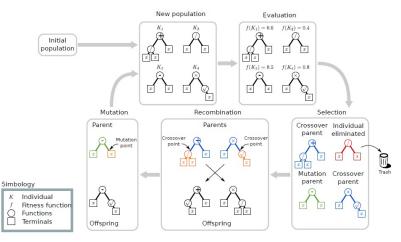
Ingredients
Evolutionary loop
Example

Genetic Algorithms

Discrete representation: Genetic Algorithms

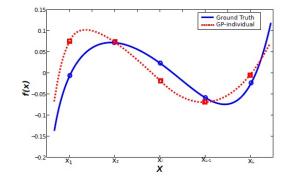
Evolution strategies

Continuous representation: Evolution Strategies


Genetic Programming

Functional representation: Genetic programming

Example: Using GP for regression


Definition

Genetic programming (GP) is an evolutionary computation (EC) technique that automatically solves problems without requiring the user to know or specify the form or structure of the solution in advance [Koza, 1992].

Symbolic Regression

Given a set of input data X and a set of desired outputs Y, find a function f such that: $f(X_i) = Y_i \quad \forall i \in \{1, N\}$

	X	Y
1	0.2	0.00
2	0.4	0.06
 N	0.9	-0.03

Prediction of expected performance for GP

This work, related to the PhD thesis of Yuliana Martínez (ITT Tijuana) and developed in the context of the European ACOBSEC project, has been published in Genetic Programming and Evolvable Machine, Springer Verlag, 2016, 17 (4), pp.409-449. Work carried out with Yuliana Martínez, Leonardo Trujillo and Edgar Galván-López.

Introduction

Prediction of Expected Performance (PEP)

Proposal

Feature Extraction

Synthetic classification problems and classification error

Correlation between features and classification error

Building PEP model

Testing PEP models in synthetic classification problems

Testing PEP models in real-world classification problems

Specialist Prediction of Expected Performance (SPEP)

Proposal

SPEP using two groups

Conclusion

Introduction

Prediction of Expected Performance (PEP

Proposa

Feature Extraction

Synthetic classification problems and classification error

Building PEP mode

Testing PEP models in synthetic classification problems

Specialist Prediction of Expected Performance (SPEP)

Proposal

SPEP using two groups

Conclusion

Expected Performance Prediction

- Research in Evolutionary Computation (EC) has produced many flexible and robust problem solving algorithms.
- However, in many areas, particularly Genetic Programming (GP), it's not yet clear
 if a particular algorithm will perform well on an specific problem.
- Therefore, it would be desirable to be able to grade each problem based on its difficulty.
- Such a grade will depend upon the solution method used. In this case we will use Genetic Programming (GP).

In GP search, several works have attempted to determine the difficulty that a problem poses. Two broad groups of methods are available.

In GP search, several works have attempted to determine the difficulty that a problem poses. Two broad groups of methods are available.

1 Evolvability Indicators (EI), focuse their analysis on the fitness landscape and how it relates to the difficulty of a search

[Altenberg, 1994, Vanneschi et al., 2007, Poli and Vanneschi, 2007, Tomassini et al., 2005, O'Neill et al., 2010. McDermott et al., 2010. Malan and Engelbrecht, 2013].

In GP search, several works have attempted to determine the difficulty that a problem poses. Two broad groups of methods are available.

- Evolvability Indicators (EI), focuse their analysis on the fitness landscape and how it relates to the difficulty of a search
 - [Altenberg, 1994, Vanneschi et al., 2007, Poli and Vanneschi, 2007, Tomassini et al., 2005, O'Neill et al., 2010. McDermott et al., 2010. Malan and Engelbrecht, 2013].
- Predictors of Expected Performance (PEP), characterize problem difficulty using the problem domain as the frame of reference and to measure problem difficulty based on the expected performance of the GP search, derived using a domain specific description of each problem.

[Graff and Poli, 2010, Graff and Poli, 2011, Graff et al., 2013, Trujillo et al., 2011a, Trujillo et al., 2011b, Trujillo et al., 2011c].

Why not use Evolvability Indicators?

Fitness landscape, epistasis, neutrality, locality, Fitness Distance Correlation (FDC), Negative Slope Coefficient (NSC), fitness cloud

- It is necessary to execute the evolutionary process.
- In GP unlike GA, to represent the fitness landscape is a difficult task.
- A comparative study between EI and PEP, presented in [Martinez et al., 2012], showed that GP-PEP models are more correlated with the classification error than the NSC measure.

Introduction

Prediction of Expected Performance (PEP)

Proposal

Feature Extraction

Synthetic classification problems and classification error

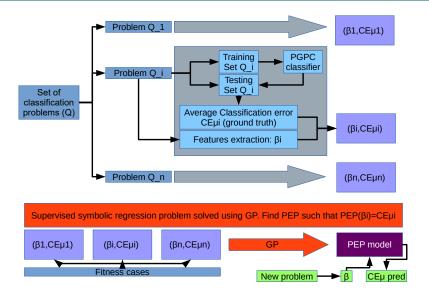
Correlation between features and classification error

PFP

•000000000000

Building PEP model

Testing PEP models in synthetic classification problems


Testing PEP models in real-world classification problems

Specialist Prediction of Expected Performance (SPEP)

SPEP using two groups

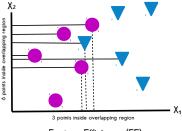
Conclusion

Proposal

Geometric mean (SD):

Measures the homogeneity of covariances [Michie1994,So1999].

$$SD = exp\left\{\frac{M}{m\sum_{i=1}^{C}(n_i - 1)}\right\}$$


where C is the number of classes, n_i is the number of the instances for i-th class and m is the number of attributes in the data. S_i and S_i are the unbiased estimators of the i-th sample covariance matrix and the pooled covariance matrix respectively. $n = \sum_{i=1}^{C} n_i$.

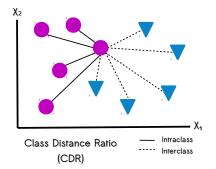
$$M = \gamma \sum_{i=1}^{C} (n_i - 1) \log |S_i^{-1}S|$$

$$\gamma = 1 - \frac{2m^2 + 3m - 1}{6(m+1)(C-1)} \sum_{i=1}^{C} \left(\frac{1}{n_i - 1} - \frac{1}{n - C}\right)$$

$$S = \frac{1}{n - C} \sum_{i=1}^{C} (n_i - 1) S_i$$

Feature Extraction

Feature Efficiency (FE)

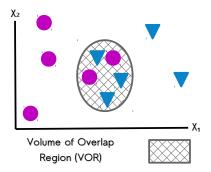

Feature Efficiency (FE):

Measures the amount by which each dimension contributes to the separation of both classes. This measure is computed for the j^{th} dimension by

$$FE_j = \left(1 - \frac{\eta_j}{n}\right)$$

where η_i represent the number of points inside the overlapping region and n is the total number of sample points. Finally, $FE = max(\{FE_i\})$ with j integer in [1, m].

Introduction



Class Distance Ratio (CDR):

Compares the dispersion within the classes to the gap between the classes [Ho2002]. For each data sample, compute the Euclidean distance to its nearest neighbor within the class (intraclass distance) and nearest-neighbor from the other class (interclass distance). The CDR is the ratio of the averages of all intraclass and interclass distances.

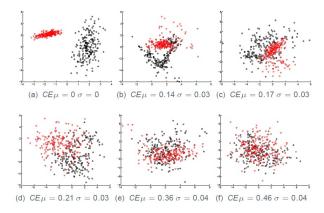
Feature Extraction

Introduction

Volume of Overlap Region (VOR):

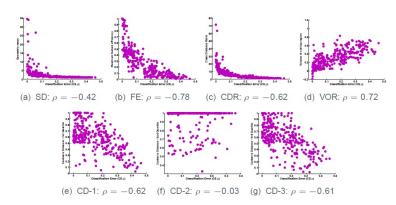
Provides an estimate of the amount of overlap between both classes [Ho2002]. The VOR is computed by finding, for each dimension, the maximum and minimum value of each class and then calculating the length of the overlap region. The length obtained from each dimension is then multiplied to measure the overlapping region. The VOR is zero when there is at least one dimension in which the two classes do not overlap.

Feature Extraction


Canberra Distance (CD):

Provides a numerical measure of the distance between pairs of points in a vector space. Suppose a problem has m dimensions, we take a rank statistic of the samples of each class, call it x_i for class 1 and y_i for class 2, for the i-th dimension. This produces two vectors $\mathbf x$ and $\mathbf y$, such that $\mathbf x=(x_1,...,x_m)$ and $\mathbf y=(y_1,...,y_m)$. The CD is given by:

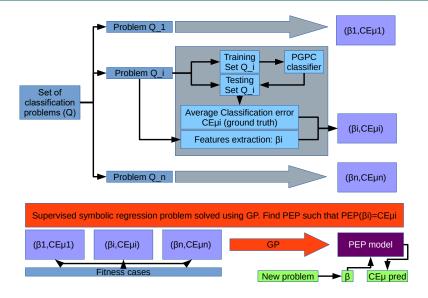
$$CD(\mathbf{x}, \mathbf{y}) = \frac{1}{m} \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i| + |y_i|}.$$

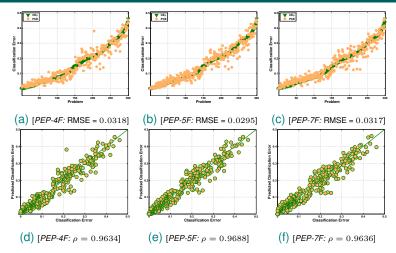

In this work, we use the CD to describe the distance between both classes using three rank statistics: (1) CD-1 uses the 1st quartile; (2) CD-2 uses the median; and (3) CD-3 uses the 3rd quartile.

Introduction

Examples of synthetic classification problems, specifying the $CE\mu$ and standard deviation σ achieved by PGPC. These ordered from the lowest CE μ (easiest) to the highest $CE\mu$ (hardest).

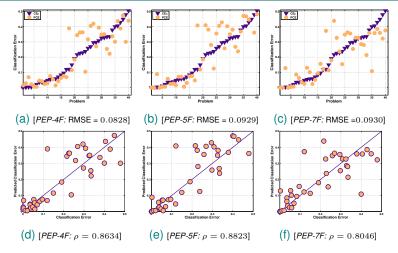
Introduction




Relationship between the $CE\mu$ (x-axis) and each descriptive feature (y-axis) for all problems $p \in \mathcal{Q}$, where ρ specifies Pearson's correlation coefficient.

Conclusion

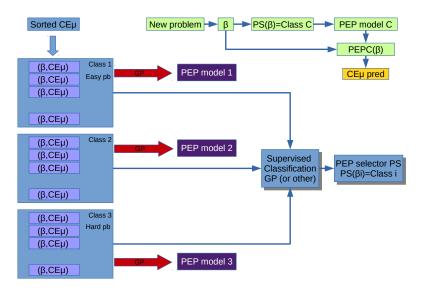
Three versions of the problem are posed, each with a different terminal set defined as subsets of all extracted features(4F, 5F, 7F).


- Set 4F uses the features with the four highest correlation coefficients (FE, CDR, VOR and CD-1).
- set 5F uses the features with the five highest correlation coefficients (SD, FE, CDR, VOR and CD-1),
- and 7F uses all of the seven features.

Performance prediction of the best PEP models evolved with the different feature set: PEP-4F(left), PEP-5F(middle) and PEP-7F(right). First line: PCE of the best solution and the know CE μ . Second line: scatter plots of the PCE and the CE μ .

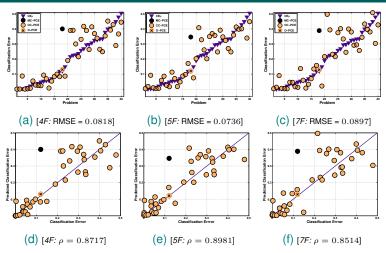
Testing PEP models in real-world classification problems

Performance prediction of the best PEP models evolved with the different feature set. PEP-4F (left), PEP-5F (middle) and PEP-7F (right). First line: PCE of the best solution and the know $CE\mu$. Second line: scatter plots of the PCE and the $CE\mu$.


SPFP

Introduction

Specialist Prediction of Expected Performance (SPEP)


Proposal SPEP using two groups

Proposal

SPEP

000

Performance prediction of the best Ensemble-2 solutions for each feature set: 4F (left), 5F (middle) and 7F (right). First line: ground truth CE_{μ} of each problem (triangles) and the corresponding PCE (circles). Second line: scatter plots between the CE_{μ} and the corresponding PCE. The PCE is presented in three different cases: (1) the PCE of a correctly classified problem (CC-PCE, circle); (2) the PCE of a misclassified problem (MC-PCE, dark circle); and (3) the oracle PCE of a misclassified problem using the correct SPEP (O-PCE, circle with a cross).

Conclusion

 The proposed models predict the performance of the GP classifier when they are evaluated on the test set of fitness cases.

- The proposed models predict the performance of the GP classifier when they are evaluated on the test set of fitness cases.
- An ensemble of SPEPS built for each group improving the prediction accuracy.

- The proposed models predict the performance of the GP classifier when they are evaluated on the test set of fitness cases.
- An ensemble of SPEPS built for each group improving the prediction accuracy.
- This methodology can be used for many classifiers and then build an expert system for classifier selection.

- The proposed models predict the performance of the GP classifier when they are evaluated on the test set of fitness cases.
- An ensemble of SPEPS built for each group improving the prediction accuracy.
- This methodology can be used for many classifiers and then build an expert system for classifier selection.
- This methodology could be extended to GP-based symbolic regression.

RANSAC-GP: Dealing with outliers in symbolic regression with genetic programming

This work, related to the master thesis and the PhD thesis of Uriel Lopez Islas (ITT Tijuana) and developed in the context of the European ACOBSEC project, has been presented at EUROGP 2017 and published in the LNCS Volume 10196, Springer 2017. Work carried out with Uriel Lopez Islas, Leonardo Trujillo Reyes, Yuliana Martinez, Enrique Naredo and Sara Silva.

Introduction

Outliers Outliers and GP

Random Sample Consensus (RANSAC)

RANSAC-GP

Results

Introduction

Outliers Outliers and GP

Random Sample Consensus (RANSAC)

RANSAC-GP

Results

Introduction

- GP has been shown to be very competitive in symbolic regression tasks
- However, the effect that outliers have on GP performance has not been studied in depth.

Results

- GP has been shown to be very competitive in symbolic regression tasks
- However, the effect that outliers have on GP performance has not been studied in depth.

Definition

An outlier is a measurement of a system that is anomalous with respect to the behavior of the system.

- GP has been shown to be very competitive in symbolic regression tasks
- However, the effect that outliers have on GP performance has not been studied in depth.

Definition

Introduction

An outlier is a measurement of a system that is anomalous with respect to the behavior of the system.

 We do not focus on the dataset that results after a measuring session of a system of interest, and instead we focus on the behavior of the actual system under observation.

Introduction

- GP has been shown to be very competitive in symbolic regression tasks
- However, the effect that outliers have on GP performance has not been studied in depth.

Definition

An outlier is a measurement of a system that is anomalous with respect to the behavior of the system.

- We do not focus on the dataset that results after a measuring session of a system of interest, and instead we focus on the behavior of the actual system under observation.
- One may ask, if the outliers are a majority in a dataset, then are they truly outliers?

- GP has been shown to be very competitive in symbolic regression tasks
- However, the effect that outliers have on GP performance has not been studied in depth.

Definition

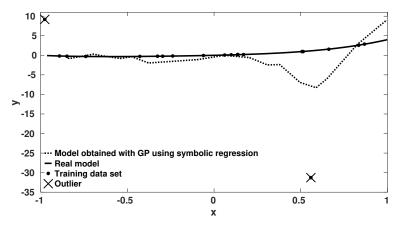
Introduction

An outlier is a measurement of a system that is anomalous with respect to the behavior of the system.

- We do not focus on the dataset that results after a measuring session of a system of interest, and instead we focus on the behavior of the actual system under observation.
- One may ask, if the outliers are a majority in a dataset, then are they truly outliers?
- That is why it is important to distinguish between a given measurement (observation) and the true value of a variable of interest.

- GP has been shown to be very competitive in symbolic regression tasks
- However, the effect that outliers have on GP performance has not been studied in depth.

Definition


Introduction

An outlier is a measurement of a system that is anomalous with respect to the behavior of the system.

- We do not focus on the dataset that results after a measuring session of a system of interest, and instead we focus on the behavior of the actual system under observation.
- One may ask, if the outliers are a majority in a dataset, then are they truly outliers?
- That is why it is important to distinguish between a given measurement (observation) and the true value of a variable of interest.
- It is therefore reasonable for a dataset to be contaminated by a majority of outliers, which can be produced by several factors including measurement errors, equipment malfunction, human errors or missing data points.

000 **Outliers and GP**

Introduction

Comparison of the model found by GP using symbolic regression (shown in dashed line) using a training set \mathbb{T} (shown in dots) with two outliers (crosses), compared against the real model (shown in a solid line).

Introduction

Outliers
Outliers and GF

Random Sample Consensus (RANSAC)

RANSAC-GP

Results

Introduction

1 Take a random sample set (MSS_j) of size m from the training set \mathbb{T}

parameters:

m size of the Minimal Sample Set

- 1 Take a random sample set (MSS_j) of size m from the training set \mathbb{T}
- 2 Build a model K_j using the data in MSS_j .

parameters:

m size of the Minimal Sample Set

- $oldsymbol{1}$ Take a random sample set (MSS_j) of size m from the training set ${\mathbb T}$
- 2 Build a model K_j using the data in MSS_j .
- 3 Compute the residuals r_j for all the data points in $\mathbb{T} \setminus MSS_j$.

parameters:

m size of the Minimal Sample Set

- $oldsymbol{1}$ Take a random sample set (MSS_j) of size m from the training set ${\mathbb T}$
- 2 Build a model K_j using the data in MSS_j .
- 3 Compute the residuals r_j for all the data points in $\mathbb{T} \setminus MSS_j$.
- 4 Build the Consensus Set CS_j with all the data points in $\mathbb{T}\setminus MSS_j$ for which $r_j < t$

parameters:

- m size of the Minimal Sample Set
- t threshold applied to all the data point to make them as inliers or not

RANSAC pseudo-code

- $oldsymbol{1}$ Take a random sample set (MSS_j) of size m from the training set ${\mathbb T}$
- 2 Build a model K_j using the data in MSS_j .
- 3 Compute the residuals r_j for all the data points in $\mathbb{T} \setminus MSS_j$.
- 4 Build the Consensus Set CS_j with all the data points in $\mathbb{T}\setminus MSS_j$ for which $r_j < t$
- **5** If $|CS_j| \ge v$ then return K_j as the final model.

parameters:

- m size of the Minimal Sample Set
- t threshold applied to all the data point to make them as inliers or not
- v estimated total of inliers

[FishlerAndBolles1981]

RANSAC pseudo-code

- $oldsymbol{1}$ Take a random sample set (MSS_j) of size m from the training set ${\mathbb T}$
- 2 Build a model K_j using the data in MSS_j .
- 3 Compute the residuals r_j for all the data points in $\mathbb{T} \setminus MSS_j$.
- 4 Build the Consensus Set CS_j with all the data points in $\mathbb{T}\setminus MSS_j$ for which $r_j < t$
- 5 If $|CS_j| \ge v$ then return K_j as the final model.
- 6 If not, repeat |1 trough 4| until a maximum number of iterations l, and return K_j with maximum $|CS_j|$.

parameters:

- m size of the Minimal Sample Set
- t threshold applied to all the data point to make them as inliers or not
- v estimated total of inliers
- l maximum number of iterations

[FishlerAndBolles1981]

RANSAC pseudo-code

- f 1 Take a random sample set (MSS_j) of size m from the training set ${\mathbb T}$
- 2 Build a model K_j using the data in MSS_j .
- 3 Compute the residuals r_j for all the data points in $\mathbb{T} \setminus MSS_j$.
- 4 Build the Consensus Set CS_j with all the data points in $\mathbb{T}\setminus MSS_j$ for which $r_j < t$
- 5 If $|CS_j| \ge v$ then return K_j as the final model.
- 6 If not, repeat |1 trough 4| until a maximum number of iterations l, and return K_j with maximum $|CS_j|$.

4 parameters:

- m size of the Minimal Sample Set
- ullet threshold applied to all the data point to make them as inliers or not
- v estimated total of inliers
- l maximum number of iterations

[FishlerAndBolles1981]

RANSAC-GP

•0

Introduction

Outliers
Outliers and GF

Random Sample Consensus (RANSAC)

RANSAC-GP

Results

RANSAC-GP pseudo-code

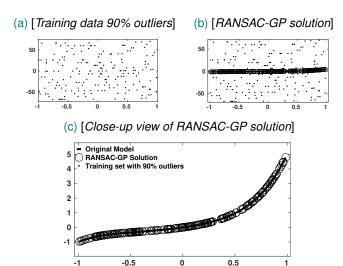
- 1 Take a random MSS_j of size m from the training set \mathbb{T}
- 2 Build a model K_j with GP search (Least Median Square measure for fitness) using the data in MSS_j .
- 3 Compute the residuals r_i for all the data points in $\mathbb{T} \setminus MSS_i$.
- 4 Build the consensus set CS_i with all the data points in $\mathbb{T} \setminus MSS_i$ for which $r_i < t$
- 5 If $|CS_i| \ge v$ then return K_i as the final model.
- **6** Repeat |1 trough 4| until a maximum number of iterations l, otherwise return K_j with maximum $|CS_j|$.

4 parameters:

- m size of the Minimal Sample Set
- t threshold applied to all the data point to make them as inliers or not
- v estimated total of inliers
- l maximum number of iterations

Introduction

Outliers
Outliers and GF


Random Sample Consensus (RANSAC)

RANSAC-GF

Results

Introduction

RANSAC-GP

Solution found by RANSAC-GP with 90% outliers for benchmark 4.

PART 2: Estimation of signal regularity

Hölderian regularity

Definitions

Signal Regularity

Estimation

Oscillations

Regression of wavelet coefficients

Application

Estimation on synthetic signal

Definitions

Signal Regularity

Estimation

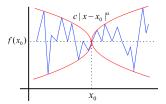
Oscillations

Regression of wavelet coefficients

Application

Estimation on synthetic signa

Signal Regularity


The Hölder pointwise exponent is the most common tool used to measure the regularity of a signal at a given point.

Definition

Let f be a function from $I\!\!R$ to $I\!\!R$, s>0, $s\in I\!\!R\setminus I\!\!N$ and $x_0\in I\!\!R$. Then $f\in C^s(x_0)$ if and only if there is a real $\eta>0$, a polynomial P of degree smaller than s and a constant c such that

$$\forall x \in B(x_0, \eta), \quad |f(x) - P(x - x_0)| \le c|x - x_0|^s$$

By definition, the pointwise exponent of f at x_0 , noted $\alpha_p(x_0)$ is the supremum of s such as $f \in C^s(x_0)$.

Hölderian envelope of a signal at the point x_0 .

Definitions

Signal Regularity

Estimation

Oscillations

Regression of wavelet coefficients

Application

Estimation on synthetic signa

A function f(t) is Hölderian of exponent $\alpha \in [0.1[$ at t if there is a constant c such that for any t' in a neighbourhood of t,

$$|f(t) - f(t')| \le c|t - t'|^{\alpha}$$

In terms of oscillations, this condition can be written:

A function f(t) is Hölderian of exponent α at t, with $0<\alpha<1$ if there is a constant c such that for any τ ,

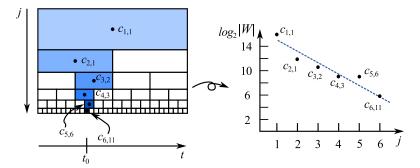
$$osc_{\tau}(t) \le c\tau^{\alpha}$$

with

$$osc_{\tau}(t) = \sup_{|t-t'| \le \tau} f(t') - \inf_{|t-t'| \le \tau} f(t') = \sup_{t',t'' \in [t-\tau,t+\tau]} |f(t') - f(t'')|$$

Then the regularity estimator will be constructed at each point as the slope of the regression of the logarithm of the oscillation as a function of the size of the ball in which the oscillation is calculated.

Theorem


(S. Jaffard)

$$|c_{j,k}| \le c2^{-j(\alpha + \frac{1}{2})} (1 + |2^j t_0 - k|)^{\alpha} \quad \forall j, k \in \mathbb{Z}^2$$

Conversely;

If
$$\forall j, k \in \mathbb{Z}^2$$
 one has $|c_{j,k}| \leq c2^{-j(\alpha + \frac{1}{2})} (1 + |2^j t_0 - k|)^{\alpha'}$

for a $\alpha' < \alpha$ then, the Hölder exponent of f in t_0 is α .

Regression calculated over a point of the signal. Left image shows a dyadic wavelet decomposition, and the right image display the actual regression calculated over the point t_0 , where each dot corresponds to each log_2 of the wavelet coefficient magnitude located above t_0 .

Definition

At each point t_0 of the signal, the regularity is estimated by:

$$\alpha(n,t_0) = -p - \frac{1}{2}$$

with p the slope of the least square linear regression of the logarithms of the wavelet coefficients "above" this point as a function of the scales.

Definition

At each point t_0 of the signal, the regularity is estimated by:

$$\alpha(n, t_0) = -p - \frac{1}{2}$$

with p the slope of the least square linear regression of the logarithms of the wavelet coefficients "above" this point as a function of the scales.

Theorem

At each point t_0 of the signal decomposed on n scales, we estimate the regularity by the following formula:

$$\alpha(n, t_0) = -\frac{1}{2} - K_n \sum_{j=1}^n s_j \log_2 |c_{j,k}|$$

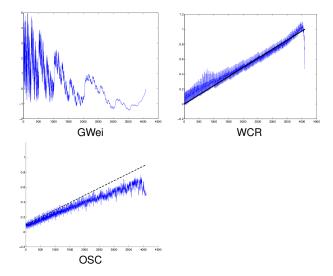
with $K_n=\frac{12}{n(n-1)(n+1)}$ et $s_j=j-\frac{n+1}{2}$. The $c_{j,k}$ are the wavelet coefficients above t_0 .

We note k but the value is $\lfloor \frac{t_0+1}{2^{n-j+1}} \rfloor$.

Definitions

Signal Regularity

Estimation


Oscillations

Regression of wavelet coefficients

Application

Estimation on synthetic signal

Estimation on synthetic signal

PART 3: Applications

Evolutionary computation for EEG classification

This work is related to the PhD thesis of Laurent Vezard and developed in the context of the PSI Region Project and the ACOBSEC European project. A slightly different version has been published in a book chapter. Eduardo Miranda; Julien Castet; Benjamin Knapp. Guide to Brain-Computer Music Interfacing, Springer, 2014. Work carried out with Laurent Vézard, Marie Chavent, Frédérique Faïta-Aïnseba and Leonardo Truilllo.

EEG data Acquisition

Acquisition Protocole

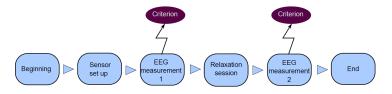
Feature Extraction

Slope Criterion

Evolutionary Algorithm

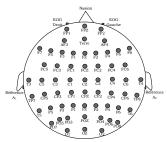
Design Results

Goal


 Characterize the state of alertness of a person from his electroencephalogram (EEG).

EEG data Acquisition Acquisition Protocole

Feature Extraction


Evolutionary Algorithm Design Results

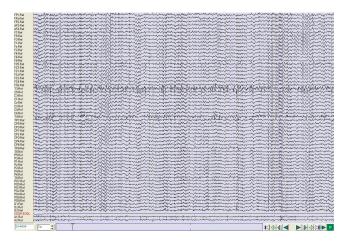
- First EEG recording: subject in a normal state of alertness: "normal"
- Second EEG recording: subject in a state of low vigilance: "relax"

Acquisition Protocole

- EEG headset installation time: 45 minuts.
- Subject with open eyes.
- Sampling frequency: 256Hz.
- Recording time: 3 minuts (46000 sample points).

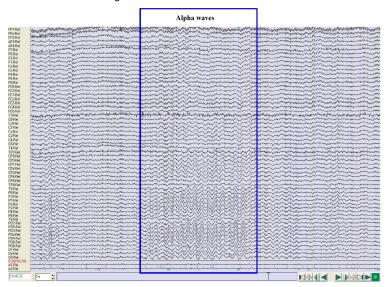
Acquisition Protocole

Campaigns:


- 58 electrodes renumbered from 1 to 58
- Subjects under 35, right-handed and non-smoker
- 58 subjects ⇒ 16 preserved

Relaxation session

20 minutes with a recorded voice offering 3 exercises:

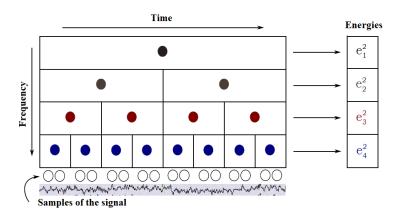

- Autogenic training [Schultz1958]: repetition of sentences, self-hypnosis.
- Progressive muscle relaxation [Jacobson1974].
- Mental visualization (familiar places, smells, noises).

3 minutes of EEG recording before relaxation.

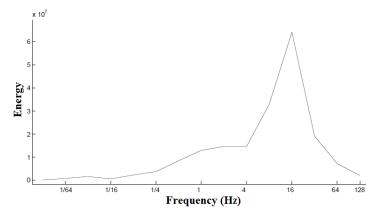
Acquisition Protocole

3 minutes of EEG recording after relaxation.

EEG data Acquisition

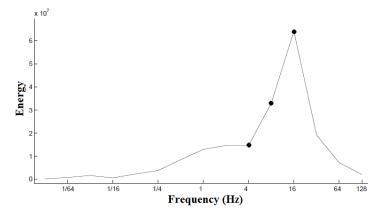

Acquisition Protocole

Feature Extraction Slope Criterion

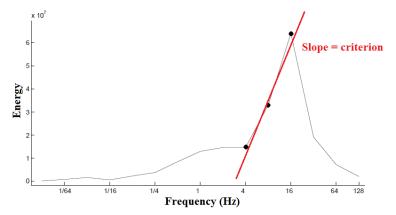

Evolutionary Algorithm

Design

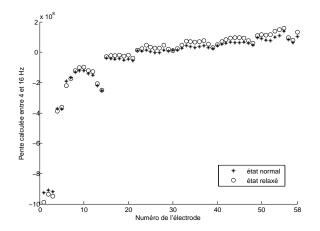
The dyadic grid gives a spatio-frequential representation of the discrete dyadic wavelet decomposition



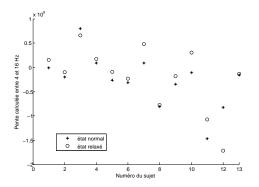
- Alpha: 8 12Hz.
- Waves characteristics of a relaxed state.


Linear regression between 4 and 16Hz.

- Alpha: 8 12Hz.
- Waves characteristics of a relaxed state.


Linear regression between 4 and 16Hz.

- Alpha: 8 12Hz.
- Waves characteristics of a relaxed state.


Linear regression between 4 and 16Hz.

Slope Criterion

Slope criterion, sum on subjects for each electrode

Slope Criterion

Slope criterion, sum on electrodes for each subjects

- ⇒ Very strong inter-subject variability
- This criterion that does not allow to build a powerful classifier for different subjects.

Slope Criterion

Classification: Usual methods

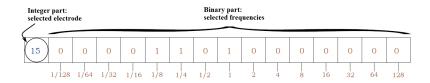
	K nearest	Binary	Random	Discriminant	Sparse Discriminant
	neighbors	decision trees	forests	PLS	PLS
Mean	37.28	33.98	32.03	40.63	36.25
Standard Deviation	10.47	5.15	6.46	8.55	7.96

Mean and standard deviations of Correct Classification Rates for different classification methods applied on slope criterion.

This approach is not efficient

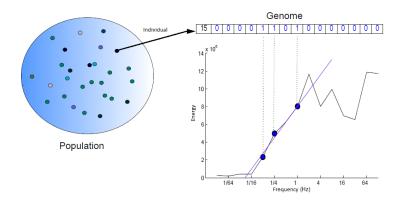
Our contribution: Design a relevant **evolutionary algorithm** to solve this task of classification.

- ⇒ Find the relevant electrodes.
- ⇒ Find the relevant frequencies for the calculation of the slope criterion.


EEG data Acquisition Acquisition Protocole

Feature Extraction
Slope Criterion

Evolutionary Algorithm
Design
Results


Design

Example of a genome in the evolutionary algorithm

Design

Relationship between the genome and the calculation of the slope criterion

Results

Average correct classification rate

Evaluation	CCR		
Method	Mean	Standard deviation	
CART	86.68	1.87	
SVC	83.49	2.37	

Average and standard deviations of the correct classification rates obtained for the 100 runs of the evolutionary algorithm and for two methods of evaluation.

Results

Best genome

Evaluation	BEST genome					
method	Selected	Selected	Correct classification			
	electrode	frequency (Hz)	rates			
CART	F4	1/8, 1/4, 2, 4 et 64	89,33%			
SVC	F2	1/32, 1/16, 2, 4, 8, 64 et 128	89, 33%			

Table summarizing the two best genomes found during the $100\ \mathrm{runs}$ of the genetic algorithm with two methods of evaluation.

Regularity estimation with Genetic Programming

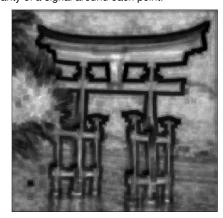
Joint work with Leonardo Trujillo, Gustavo Olague and Jacques Levy-Vehel. Evolving estimators of the pointwise Hölder exponent with Genetic Programming. Information Sciences 209 (Nov. 2012), 61-79.

Hölderian Regularity

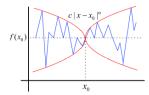
Contribution Training set

Results

Hölderian Regularity

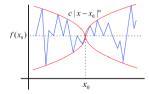

Contribution Training set

Results


Hölder exponent

Mathematical tool that measures the regularity of a signal around each point.

General motivation

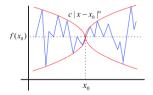


$$\alpha_p(x_0) = \liminf_{h \to 0} \frac{\log |f(x_0 + h) - f(x_0)|}{\log |h|}$$

Hölderian envelope of signal f at point x_0

• For real-world signals the Hölder exponent must be estimated for each point.

General motivation



$$\alpha_p(x_0) = \liminf_{h \to 0} \frac{\log |f(x_0 + h) - f(x_0)|}{\log |h|}$$

Hölderian envelope of signal f at point x_0

- For real-world signals the Hölder exponent must be estimated for each point.
- Several estimation methods exist, but most methods are slow or highly parameterized;

General motivation

$$\alpha_p(x_0) = \liminf_{h \to 0} \frac{\log |f(x_0 + h) - f(x_0)|}{\log |h|}$$

Hölderian envelope of signal f at point x_0

- For real-world signals the Hölder exponent must be **estimated** for each point.
- Several estimation methods exist, but most methods are slow or highly parameterized;
- Therefore there use is not common (particularly in applications where speed can be of importance)

Hölderian Regularity

Contribution Training set

Results

 Evolve estimators of the pointwise Hölder exponent for 2D signals with Genetic Programming.

 Evolve estimators of the pointwise Hölder exponent for 2D signals with Genetic Programming.

Contribution

00000

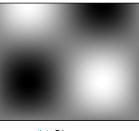
• GP evolves estimators that are accurate and fast.

- Evolve estimators of the pointwise Hölder exponent for 2D signals with Genetic Programming.
- GP evolves estimators that are accurate and fast.
- Evolution is a one-shot process, evolved estimators can be used easily.

- Evolve estimators of the pointwise Hölder exponent for 2D signals with Genetic Programming.
- GP evolves estimators that are accurate and fast.
- Evolution is a one-shot process, evolved estimators can be used easily.

Awards

- Best Paper Award in the track Genetic Programming, GECCO 2010, Portland, Oregon.
- Humies Award Finalist, GECCO 2013, Amsterdam, The Netherland.

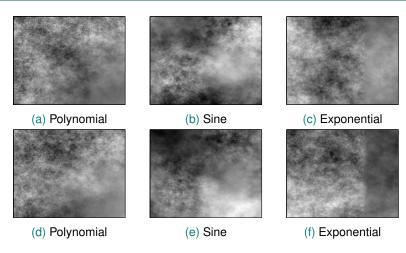

Training set

We generate three groups of images with **FracLab**, using three different functions that take as input the point coordinates (x,y) of an image and provide as output the desired regularity; these functions are:

- **1** a *Polynomial* $p_1(x,y) = 0.1 + 0.8xy$;
- 2 a Sine $p_2(x,y) = 0.5 + 0.2(sin(2\pi x))(cos(\frac{3}{2}\pi y));$
- 3 an Exponential $p_3(x,y) = 0.3 + \frac{0.3}{1 + e^{-100(x-0.7)}}$.

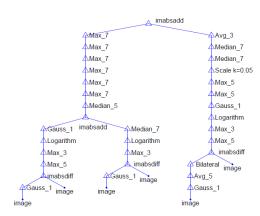
These functions provide the prescribed regularity needed to build the synthetic images used for training and testing of our evolved operators.

Training set



(a) Polynomial p_1

(c) Exponential p_3



These images have a prescribed regularity given by functions p_1 (Polynomial), p_2 (Sine) and p_3 (Exponential).

Hölderian Regularity

Contribution Training set

Results

Results: Real Images

Original Image

GP-Estimator

Traditional Method

GP-Estimator