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PART 1: Artificial Evolution
• Definitions
• Prediction of expected performance for GP

PART 2: Estimation of signal regularity
• Hölderian regularity

PART 3: Applications
• Evolutionary computation for EEG classification
• Regularity estimation with Genetic Programming
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Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

PART 1: Artificial Evolution

Inria, CQFD Team
IMB, Institut de Mathématiques de Bordeaux, UMR CNRS 5251

Université de Bordeaux
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Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Artificial Darwinism
A set of techniques grouped under a generic term
Ingredients
Evolutionary loop
Example

Genetic Algorithms
Discrete representation: Genetic Algorithms

Evolution strategies
Continuous representation: Evolution Strategies

Genetic Programming
Functional representation: Genetic programming
Example: Using GP for regression
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Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Artificial Darwinism
Stochastic optimization which uses mechanisms inspired by the biological evolution,
such as:

• reproduction,

• mutation,

• selection and

• survival of the strongest individuals

Pierrick Legrand IMB/INRIA/UBX



Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

A set of techniques grouped under a generic term

Evolutionary Algorithms

Genetic Algorithms (GA)

Evolution Strategies (ES)

Genetic Programming (GP)

...

Pierrick Legrand IMB/INRIA/UBX



Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Ingredients

Selection Population

Genetic Operators

Pierrick Legrand IMB/INRIA/UBX



Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Evolutionary loop
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Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Example

Potential Solutions = Individuals in a population

Initial random population Evolved population

Pierrick Legrand IMB/INRIA/UBX
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Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Discrete representation: Genetic Algorithms

Each individual is represented by a binary string.
John H. Holland (1960, 1975), David Goldberg (1989)

Crossover Mutation

Pierrick Legrand IMB/INRIA/UBX
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Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Continuous representation: Evolution Strategies

Each individual is a vector in Rn. Hans-Paul Schwefel (1970)

Barycentric crossover

∀i ∈ {1, .., n}, xchildreni = αxfatheri + (1− α)xmotheri

α random value in [−ε, 1 + ε].

Gaussian mutation
∀i ∈ {1, .., n}, xchildreni = xchildreni +N(0, σ)

Two parameters Pm and σ.

Demo
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Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Functional representation: Genetic programming

Definition
Genetic programming (GP) is an evolutionary computation (EC) technique that
automatically solves problems without requiring the user to know or specify the form or
structure of the solution in advance [Koza, 1992].

Pierrick Legrand IMB/INRIA/UBX



Artificial Darwinism Genetic Algorithms Evolution Strategies Genetic Programming

Example: Using GP for regression

Symbolic Regression
Given a set of input data X and a set of desired outputs Y , find a function f such that:
f(Xi) = Yi ∀i ∈ {1, N}

Pierrick Legrand IMB/INRIA/UBX



Introduction PEP SPEP Conclusion

Prediction of expected performance for GP

This work, related to the PhD thesis of Yuliana Martínez (ITT Tijuana) and developed in the context of the European
ACOBSEC project, has been published in Genetic Programming and Evolvable Machine, Springer Verlag, 2016, 17
(4), pp.409-449. Work carried out with Yuliana Martínez, Leonardo Trujillo and Edgar Galván-López.

Pierrick Legrand IMB/INRIA/UBX
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Introduction PEP SPEP Conclusion

Introduction

Prediction of Expected Performance (PEP)
Proposal
Feature Extraction
Synthetic classification problems and classification error
Correlation between features and classification error
Building PEP model
Testing PEP models in synthetic classification problems
Testing PEP models in real-world classification problems

Specialist Prediction of Expected Performance (SPEP)
Proposal
SPEP using two groups

Conclusion
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Introduction PEP SPEP Conclusion

Expected Performance Prediction

• Research in Evolutionary Computation (EC) has produced many flexible and
robust problem solving algorithms.

• However, in many areas, particularly Genetic Programming (GP), it’s not yet clear
if a particular algorithm will perform well on an specific problem.

• Therefore, it would be desirable to be able to grade each problem based on its
difficulty.

• Such a grade will depend upon the solution method used. In this case we will
use Genetic Programming (GP).

Pierrick Legrand IMB/INRIA/UBX



Introduction PEP SPEP Conclusion

In GP search, several works have attempted to determine the difficulty that a problem
poses. Two broad groups of methods are available.

1 Evolvability Indicators (EI), focuse their analysis on the fitness landscape and
how it relates to the difficulty of a search
[Altenberg, 1994, Vanneschi et al., 2007, Poli and Vanneschi, 2007, Tomassini et al., 2005, O’Neill et al.,

2010, McDermott et al., 2010, Malan and Engelbrecht, 2013].

2 Predictors of Expected Performance (PEP), characterize problem difficulty
using the problem domain as the frame of reference and to measure problem
difficulty based on the expected performance of the GP search, derived using a
domain specific description of each problem.
[Graff and Poli, 2010, Graff and Poli, 2011, Graff et al., 2013, Trujillo et al., 2011a, Trujillo et al., 2011b,

Trujillo et al., 2011c].

Pierrick Legrand IMB/INRIA/UBX
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Why not use Evolvability Indicators?
Fitness landscape, epistasis, neutrality, locality, Fitness Distance Correlation
(FDC), Negative Slope Coefficient (NSC), fitness cloud
• It is necessary to execute the evolutionary process.
• In GP unlike GA, to represent the fitness landscape is a difficult task.
• A comparative study between EI and PEP, presented in [Martinez et al., 2012],

showed that GP-PEP models are more correlated with the classification error
than the NSC measure.

Pierrick Legrand IMB/INRIA/UBX
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Proposal

Set of
classification
problems (Q)

Training
Set Q_i

Testing
Set Q_i

PGPC
classifier

Average Classification error
CEμi (ground truth)

Features extraction: βi 
(βi,CEμi) 

Problem Q_1

Problem Q_i

Problem Q_n (βn,CEμn) 

(β1,CEμ1) 

(β1,CEμ1) (βi,CEμi) (βn,CEμn) 

Supervised symbolic regression problem solved using GP. Find PEP such that PEP(βi)=CEμi

Fitness cases

GP PEP model

β CEμ predNew problem
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Feature Extraction

Geometric mean (SD):
Measures the homogeneity of covariances [Michie1994,So1999].

SD = exp

{
M

m
∑C
i=1(ni − 1)

}
where C is the number of classes, ni is the number of the instances for i-th class and
m is the number of attributes in the data. Si and S are the unbiased estimators of the
ith sample covariance matrix and the pooled covariance matrix respectively.
n =

∑C
i=1 ni.

M = γ
C∑
i=1

(ni − 1)log|S−1
i S|

γ = 1−
2m2 + 3m− 1

6(m+ 1)(C − 1)

C∑
i=1

(
1

ni − 1
−

1

n− C

)

S =
1

n− C

C∑
i=1

(ni − 1)Si
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Feature Extraction
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Feature Efficiency (FE):
Measures the amount by which each dimension contributes to the separation of both
classes. This measure is computed for the jth dimension by

FEj =
(
1−

ηj

n

)
where ηj represent the number of points inside the overlapping region and n is the total
number of sample points. Finally, FE = max({FEj}) with j integer in [1,m].
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Feature Extraction
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Class Distance Ratio (CDR):
Compares the dispersion within the classes to the gap between the classes [Ho2002].
For each data sample, compute the Euclidean distance to its nearest neighbor within
the class (intraclass distance) and nearest-neighbor from the other class (interclass
distance). The CDR is the ratio of the averages of all intraclass and interclass
distances.
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Feature Extraction
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Volume of Overlap Region (VOR):
Provides an estimate of the amount of overlap between both classes [Ho2002]. The
VOR is computed by finding, for each dimension, the maximum and minimum value of
each class and then calculating the length of the overlap region. The length obtained
from each dimension is then multiplied to measure the overlapping region. The VOR is
zero when there is at least one dimension in which the two classes do not overlap.
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Feature Extraction

Canberra Distance (CD):
Provides a numerical measure of the distance between pairs of points in a vector space.
Suppose a problem has m dimensions, we take a rank statistic of the samples of each
class, call it xi for class 1 and yi for class 2, for the i-th dimension. This produces two
vectors x and y, such that x = (x1, ..., xm) and y = (y1, ..., ym). The CD is given by:

CD(x,y) =
1

m

m∑
i=1

|xi − yi|
|xi|+ |yi|

.

In this work, we use the CD to describe the distance between both classes using three
rank statistics: (1) CD-1 uses the 1st quartile; (2) CD-2 uses the median; and (3) CD-3
uses the 3rd quartile.

Pierrick Legrand IMB/INRIA/UBX
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Synthetic problems

Examples of synthetic classification problems, specifying the CEµ and standard
deviation σ achieved by PGPC. These ordered from the lowest CEµ (easiest) to the
highest CEµ (hardest).

Pierrick Legrand IMB/INRIA/UBX
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Correlation

Relationship between the CEµ (x-axis) and each descriptive feature (y-axis) for all
problems p ∈ Q, where ρ specifies Pearson’s correlation coefficient.

Pierrick Legrand IMB/INRIA/UBX
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Building PEP model

Three versions of the problem are posed, each with a different terminal set defined as
subsets of all extracted features(4F, 5F, 7F).
• Set 4F uses the features with the four highest correlation coefficients (FE, CDR,

VOR and CD-1),
• set 5F uses the features with the five highest correlation coefficients (SD, FE,

CDR, VOR and CD-1),
• and 7F uses all of the seven features.

Pierrick Legrand IMB/INRIA/UBX
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Building PEP model

Set of
classification
problems (Q)

Training
Set Q_i

Testing
Set Q_i

PGPC
classifier

Average Classification error
CEμi (ground truth)

Features extraction: βi 
(βi,CEμi) 

Problem Q_1

Problem Q_i

Problem Q_n (βn,CEμn) 

(β1,CEμ1) 

(β1,CEμ1) (βi,CEμi) (βn,CEμn) 

Supervised symbolic regression problem solved using GP. Find PEP such that PEP(βi)=CEμi

Fitness cases

GP PEP model

β CEμ predNew problem
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Testing PEP models in synthetic classification problems
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(a) [PEP-4F: RMSE = 0.0318]
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(b) [PEP-5F: RMSE = 0.0295]
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(c) [PEP-7F: RMSE = 0.0317]
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(d) [PEP-4F: ρ = 0.9634]
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(e) [PEP-5F: ρ = 0.9688]
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(f) [PEP-7F: ρ = 0.9636]

Performance prediction of the best PEP models evolved with the different feature set:
PEP-4F(left), PEP-5F(middle) and PEP-7F(right). First line: PCE of the best solution
and the know CEµ. Second line: scatter plots of the PCE and the CEµ.
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Testing PEP models in real-world classification problems
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(a) [PEP-4F: RMSE = 0.0828]
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(b) [PEP-5F: RMSE = 0.0929]
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(c) [PEP-7F: RMSE =0.0930]
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(e) [PEP-5F: ρ = 0.8823]
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(f) [PEP-7F: ρ = 0.8046]

Performance prediction of the best PEP models evolved with the different feature set.
PEP-4F (left), PEP-5F (middle) and PEP-7F (right). First line: PCE of the best solution
and the know CEµ. Second line: scatter plots of the PCE and the CEµ.
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Proposal
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SPEP using two groups
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(b) [5F: RMSE = 0.0736]
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(c) [7F: RMSE = 0.0897]

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Classification Errror

P
re

d
ic

te
d

 C
la

ss
if

ic
at

io
n

 E
rr

o
r

(d) [4F: ρ = 0.8717]
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(e) [5F: ρ = 0.8981]
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(f) [7F: ρ = 0.8514]

Performance prediction of the best Ensemble-2 solutions for each feature set: 4F (left), 5F (middle) and 7F (right).
First line: ground truth CEµ of each problem (triangles) and the corresponding PCE (circles). Second line: scatter
plots between the CEµ and the corresponding PCE. The PCE is presented in three different cases: (1) the PCE of a
correctly classified problem (CC-PCE, circle); (2) the PCE of a misclassified problem (MC-PCE, dark circle); and (3)
the oracle PCE of a misclassified problem using the correct SPEP (O-PCE, circle with a cross).
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• The proposed models predict the performance of the GP classifier when they are
evaluated on the test set of fitness cases.

• An ensemble of SPEPS built for each group improving the prediction accuracy.
• This methodology can be used for many classifiers and then build an expert

system for classifier selection.
• This methodology could be extended to GP-based symbolic regression.
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PART 2: Estimation of signal regularity
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Hölderian regularity
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Definitions Estimation Application

Signal Regularity

The Hölder pointwise exponent is the most common tool used to measure the
regularity of a signal at a given point.

Definition
Let f be a function from IR to IR, s > 0, s ∈ IR\IN and x0 ∈ IR. Then f ∈ Cs(x0) if
and only if there is a real η > 0, a polynomial P of degree smaller than s and a
constant c such that

∀x ∈ B(x0, η), |f(x)− P (x− x0)| ≤ c|x− x0|s

By definition, the pointwise exponent of f at x0, noted αp(x0) is the supremum of s
such as f ∈ Cs(x0).

Hölderian envelope of a signal at the point x0.
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Definitions Estimation Application

Oscillations

A function f(t) is Hölderian of exponent α ∈ [0.1[ at t if there is a constant c such that
for any t′ in a neighbourhood of t,

|f(t)− f(t′)| ≤ c|t− t′|α

In terms of oscillations, this condition can be written:
A function f(t) is Hölderian of exponent α at t, with 0 < α < 1 if there is a constant c
such that for any τ ,

oscτ (t) ≤ cτα

with

oscτ (t) = sup
|t−t′|≤τ

f(t′)− inf
|t−t′|≤τ

f(t′) = sup
t′,t′′∈[t−τ,t+τ ]

|f(t′)− f(t′′)|

Then the regularity estimator will be constructed at each point as the slope of the
regression of the logarithm of the oscillation as a function of the size of the ball
in which the oscillation is calculated.
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Definitions Estimation Application

Regression of wavelet coefficients

Theorem
(S. Jaffard)

|cj,k| ≤ c2−j(α+
1
2
)(1 + |2jt0 − k|)α ∀j, k ∈ Z2

Conversely ;

If ∀j, k ∈ Z2 one has |cj,k| ≤ c2−j(α+
1
2
)(1 + |2jt0 − k|)α

′

for a α′ < α then, the Hölder exponent of f in t0 is α.
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Definitions Estimation Application

Regression of wavelet coefficients

Regression calculated over a point of the signal. Left image shows a dyadic wavelet
decomposition, and the right image display the actual regression calculated over the
point t0, where each dot corresponds to each log2 of the wavelet coefficient magnitude
located above t0.
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Definitions Estimation Application

Regression of wavelet coefficients

Definition
At each point t0 of the signal, the regularity is estimated by:

α(n, t0) = −p−
1

2

with p the slope of the least square linear regression of the logarithms of the wavelet
coefficients "above" this point as a function of the scales.

Theorem
At each point t0 of the signal decomposed on n scales, we estimate the regularity by
the following formula:

α(n, t0) = −
1

2
−Kn

n∑
j=1

sj log2 |cj,k|

with Kn = 12
n(n−1)(n+1)

et sj = j − n+1
2

. The cj,k are the wavelet coefficients above
t0.

We note k but the value is b t0+1
2n−j+1 c.

HDR Legrand IMB/INRIA/UBX



Definitions Estimation Application

Regression of wavelet coefficients

Definition
At each point t0 of the signal, the regularity is estimated by:

α(n, t0) = −p−
1

2

with p the slope of the least square linear regression of the logarithms of the wavelet
coefficients "above" this point as a function of the scales.

Theorem
At each point t0 of the signal decomposed on n scales, we estimate the regularity by
the following formula:

α(n, t0) = −
1

2
−Kn

n∑
j=1

sj log2 |cj,k|

with Kn = 12
n(n−1)(n+1)

et sj = j − n+1
2

. The cj,k are the wavelet coefficients above
t0.

We note k but the value is b t0+1
2n−j+1 c.

HDR Legrand IMB/INRIA/UBX



Definitions Estimation Application

Definitions
Signal Regularity

Estimation
Oscillations
Regression of wavelet coefficients

Application
Estimation on synthetic signal

HDR Legrand IMB/INRIA/UBX



Definitions Estimation Application

Estimation on synthetic signal

GWei WCR

OSC
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Evolutionary computation for EEG
classification

This work is related to the PhD thesis of Laurent Vezard and developed in the context of the PSI Region Project and
the ACOBSEC European project. A slightly different version has been published in a book chapter. Eduardo
Miranda; Julien Castet; Benjamin Knapp. Guide to Brain-Computer Music Interfacing, Springer, 2014. Work carried
out with Laurent Vézard, Marie Chavent, Frédérique Faïta-Aïnseba and Leonardo Trujillo.
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Goal

- Characterize the state of alertness of a person from his
electroencephalogram (EEG).
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EEG data Acquisition
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Acquisition Protocole

- First EEG recording: subject in a normal state of alertness: "normal"

- Second EEG recording: subject in a state of low vigilance: "relax"
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Acquisition Protocole

FP1
FPZ

FP2

AF3 Terre

Référencet
A1

Référencet
A2

AF4

F1 F2F3 F4F5 F6F7 F8

FC1 FC2FC3 FC4FC5 FC6FCZ

FZ

C1 C2C3 C4C5 C6CZT3 T4

TP7
CP5 CPZCP1 CP2CP3 CP4 CP6 TP8

T6T5
P3 P1 PZ P2 P4

P5 P6

POZPO3 PO4PO5 PO6
PO7 PO8

O1 O2OZ

Nasion

EOGt
Droit

EOGt
Gauche

- EEG headset installation time: 45 minuts.

- Subject with open eyes.

- Sampling frequency: 256Hz.

- Recording time: 3 minuts (46000 sample points).
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Acquisition Protocole

Campaigns:

- 58 electrodes renumbered from 1 to 58

- Subjects under 35, right-handed and non-smoker

- 58 subjects⇒ 16 preserved

Relaxation session
20 minutes with a recorded voice offering 3 exercises:

- Autogenic training [Schultz1958]: repetition of sentences, self-hypnosis.

- Progressive muscle relaxation [Jacobson1974].

- Mental visualization (familiar places, smells, noises).
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Acquisition Protocole

3 minutes of EEG recording before relaxation.
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Acquisition Protocole

3 minutes of EEG recording after relaxation.

⇒ Oscillations characteristic of a state of passive awakening between 8 and 12 Hz.Pierrick Legrand IMB/INRIA/UBX
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EEG data Acquisition
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion

The dyadic grid gives a spatio-frequential representation of the discrete dyadic wavelet
decomposition
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion

- Alpha: 8− 12Hz.

- Waves characteristics of a relaxed state.

Linear regression between 4 and 16Hz.

Pierrick Legrand IMB/INRIA/UBX



EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion

- Alpha: 8− 12Hz.

- Waves characteristics of a relaxed state.

Linear regression between 4 and 16Hz.

Pierrick Legrand IMB/INRIA/UBX



EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion

- Alpha: 8− 12Hz.
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion
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⇒ Very strong inter-subject variability
⇒ This criterion that does not allow to build a powerful classifier for different

subjects.
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Slope Criterion

Classification: Usual methods

K nearest Binary Random Discriminant Sparse Discriminant

neighbors decision trees forests PLS PLS

Mean 37.28 33.98 32.03 40.63 36.25

Standard Deviation 10.47 5.15 6.46 8.55 7.96

Mean and standard deviations of Correct Classification Rates for different classification
methods applied on slope criterion.

This approach is not efficient
Our contribution: Design a relevant evolutionary algorithm to solve this task of
classification.
⇒ Find the relevant electrodes.
⇒ Find the relevant frequencies for the calculation of the slope criterion.
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Design

Example of a genome in the evolutionary algorithm
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EEG data Acquisition Feature Extraction Evolutionary Algorithm

Design

Relationship between the genome and the calculation of the slope criterion

Pierrick Legrand IMB/INRIA/UBX



EEG data Acquisition Feature Extraction Evolutionary Algorithm

Results

Average correct classification rate

Evaluation CCR

Method Mean Standard deviation

CART 86.68 1.87

SVC 83.49 2.37

Average and standard deviations of the correct classification rates obtained for the 100
runs of the evolutionary algorithm and for two methods of evaluation.

Pierrick Legrand IMB/INRIA/UBX



EEG data Acquisition Feature Extraction Evolutionary Algorithm

Results

Best genome

Evaluation BEST genome

method Selected Selected Correct classification

electrode frequency (Hz) rates

CART F4 1/8, 1/4, 2, 4 et 64 89, 33%

SVC F2 1/32, 1/16, 2, 4, 8, 64 et 128 89, 33%

Table summarizing the two best genomes found during the 100 runs of the genetic
algorithm with two methods of evaluation.
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Hölderian Regularity Contribution Results

Regularity estimation with Genetic
Programming

Joint work with Leonardo Trujillo, Gustavo Olague and Jacques Levy-Vehel. Evolving estimators of the pointwise
Hölder exponent with Genetic Programming. Information Sciences 209 (Nov. 2012), 61-79.
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Hölderian Regularity Contribution Results

Hölder exponent

Mathematical tool that measures the regularity of a signal around each point.
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Hölderian Regularity Contribution Results

General motivation

• For real-world signals the Hölder exponent must be estimated for each point.

• Several estimation methods exist, but most methods are slow or highly
parameterized;

• Therefore there use is not common (particularly in applications where speed
can be of importance)
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Hölderian Regularity Contribution Results

Contribution

• Evolve estimators of the pointwise Hölder exponent for 2D signals with Genetic
Programming.

• GP evolves estimators that are accurate and fast.
• Evolution is a one-shot process, evolved estimators can be used easily.

Awards

• Best Paper Award in the track Genetic Programming, GECCO 2010, Portland,
Oregon.

• Humies Award Finalist, GECCO 2013, Amsterdam, The Netherland.
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Hölderian Regularity Contribution Results

Training set

We generate three groups of images with FracLab, using three different functions that
take as input the point coordinates (x, y) of an image and provide as output the desired
regularity; these functions are:

1 a Polynomial p1(x, y) = 0.1 + 0.8xy;

2 a Sine p2(x, y) = 0.5 + 0.2(sin(2πx))(cos( 3
2
πy));

3 an Exponential p3(x, y) = 0.3 + 0.3
1+e−100(x−0.7) .

These functions provide the prescribed regularity needed to build the synthetic images
used for training and testing of our evolved operators.
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Hölderian Regularity Contribution Results

Training set

(a) Polynomial p1 (b) Sine p2

(c) Exponential p3

Prescribed regularity of our experimental data.
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Hölderian Regularity Contribution Results

Training set

(a) Polynomial (b) Sine (c) Exponential

(d) Polynomial (e) Sine (f) Exponential

These images have a prescribed regularity given by functions p1 (Polynomial), p2
(Sine) and p3 (Exponential).
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