Feuille de TD nº6

11 Barycentres et coordonnées barycentriques

Exercice 45

Soient $\mathcal{E} = \mathbb{R}^2$ le plan affine et $\mathcal{R} = \{A, B, C\}$ un repère affine de \mathcal{E} . Étant donné un point M de coordonnées barycentriques (α, β, γ) dans \mathcal{R} , caractériser par des conditions sur (α, β, γ) les conditions suivantes :

- 1. $M \in (AC)$,
- 2. $M \in [AB]$,
- 3. M est du même côté que A par rapport à (BC).

Exercice 46 équation barycentrique d'une droite.

Soient \mathcal{E} un plan affine et (A, B, C) une base affine de \mathcal{E} . Soient alors trois points M, M' et M" de \mathcal{E} de coordonnées barycentriques respectives (α, β, γ) , $(\alpha', \beta', \gamma')$ et $(\alpha'', \beta'', \gamma'')$. Montrer que M, M' et M" sont alignés si et seulement si

$$\left| \begin{array}{ccc} \alpha & \beta & \gamma \\ \alpha' & \beta' & \gamma' \\ \alpha'' & \beta'' & \gamma'' \end{array} \right| = 0.$$

Exercice 47 théorème de Ménélaüs.

Dans le plan \mathbb{R}^2 , soit ABC un triangle (non aplati). On considère trois points $A' \in (BC)$, $B' \in (AC)$ et $C' \in (AB)$ distincts des sommets A, B, C. Montrer que A', B' et C' sont alignés si et seulement si

$$\frac{\overline{A'B}}{\overline{A'C}} \cdot \frac{\overline{B'C}}{\overline{B'A}} \cdot \frac{\overline{C'A}}{\overline{C'B}} = 1.$$

Exercice 48

Soit \mathcal{E} un plan affine. On considère un triangle non aplati ABC de \mathcal{E} et deux points $D \in (AB)$ et $E \in (AC)$ distincts des sommets A, B, C.

1. Montrer qu'il existe deux uniques réels α et β différents de 0 et 1 tels que

$$A = \text{Bar}\{(D, \alpha), (B, 1 - \alpha)\}\$$
 et $A = \text{Bar}\{(E, \beta), (C, 1 - \beta)\}.$

2. Montrer que (DE) et (BC) sont sécantes si et seulement si $\alpha \neq \beta$, en ce cas, écrire leur point d'intersection comme barveentre de B et C.

Exercice 49 théorème de Ceva.

Soit A, B, C trois points d'un plan affine \mathcal{E} non alignés. Soient D, E, F trois points distincts des sommets placés respectivement sur (BC), (AC) et (AB). Montrer que les droites (AD), (BE) et (CF) sont concourantes ou parallèles si et seulement si

$$\frac{\overline{BD}}{\overline{DC}} \cdot \frac{\overline{CE}}{\overline{EA}} \cdot \frac{\overline{AF}}{\overline{FB}} = 1$$

Exercice 50

On considère un espace affine \mathcal{E} , un point $O \in \mathcal{E}$ et deux repères $\mathcal{R} = (O, A_1, \dots, A_n)$ et $\mathcal{R}' = (O, A'_1, \dots, A'_n)$ de même origine. On note \mathcal{V} l'ensemble des points de \mathcal{E} ayant mêmes coordonnées dans les deux repères.

- 1. Justifier l'existence d'une application affine $f: \mathcal{E} \longrightarrow \mathcal{E}$ telle que f(O) = O et $f(A_i) = A'_i$ pour $1 \leq i \leq n$.
- 2. Montrer que $\mathcal{V} = \text{Fix}(f)$ et en déduire que \mathcal{V} est un sous-espace affine de \mathcal{E} de dimension $n \text{rang}\left\{\overrightarrow{A_iA_i'}, 1 \leqslant i \leqslant n\right\}$.
- 3. On se place dans le cas où dim $\mathcal{E} = 2$. On suppose que $A_1' \neq A_1$, $A_2' \neq A_2$ et que les droites $(A_1 A_1')$ et $(A_2 A_2')$ sont parallèles. Déterminer \mathcal{V} .
- 4. On se place dans le cas où dim $\mathcal{E}=3$. On suppose que A_1' , A_2' et A_3' sont les milieux respectifs de $[A_2A_3]$, $[A_1A_3]$ et $[A_1A_2]$. Déterminer \mathcal{V} .

Exercice 51

Dans l'espace, les droites (AA'), (BB') et (CC') sont concourantes en O, $O \notin (ABC)$ et les points ABC ne sont pas alignés. Soient G et G' les isobarycentres des triangles ABC et A'B'C', montrer alors que les plans (ABC) et (A'B'C') sont parallèles si et seulement si O, G et G' sont alignés.

Indication: on pourra se placer dans le repère $\left(O,\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}\right)$.

Exercice 52 polygone des milieux.

Soit $P = A_1 A_2 \dots A_n$ un polygone à n sommets, on lui associe le polygone $P' = A'_1 A'_2 \dots A'_n$ où A'_i est le milieu de A_i et A_{i+1} (et $A_{n+1} = A_1$). On définit alors une suite de polygones par récurrence :

- $P_0 = P$, - $\forall k \in \mathbb{N}, P_{k+1} = (P_k)'$.

Montrer que chaque sommet de P_k converge vers le centre de gravité de P_0 lorsque k tend vers l'infini.

Indication : écrire un sommet de P_k comme barycentre des points A_1, \ldots, A_n .

Exercice 53 isobarycentre de tous les points sauf un.

Soit $P = A_1 A_2 \dots A_n$ un polygone à n sommets, on lui associe le polygone $P' = A'_1 A'_2 \dots A'_n$ où A'_i est l'isobarycentre de tous les points de P sauf A_i . On définit alors une suite de polygones par récurrence :

 $- P_0 = P,$ $- \forall k \in \mathbb{N}, P_{k+1} = (P_k)'.$

Montrer que chaque sommet de P_k converge vers le centre de gravité de P_0 lorsque k tend vers l'infini.