Feuille de TD n°8

Exercice 60

Soit \mathcal{E} un plan affine (sur \mathbb{R}). Dans cet exercice, on s'intéresse à la conique \mathcal{C} décrite par l'équation $ax^2 + by^2 + 2cxy + 2dx + 2ey + f$, où $a, b, c, d, e, f, g \in \mathbb{R}$. On considère les matrices réelles suivantes :

$$A = \begin{pmatrix} a & c & d \\ c & b & e \\ d & e & f \end{pmatrix} \text{ et } B = \begin{pmatrix} a & c \\ c & b \end{pmatrix}.$$

- 1. Montrer que \mathcal{C} est propre (non dégénérée) si et seulement si $\det(A) \neq 0$.
- 2. On suppose que \mathcal{C} est propre. Préciser la nature de \mathcal{C} en fonction de $\det(B)$.
- 3. Préciser la nature de \mathcal{C} en fonction de $\det(B)$ lorsque $\det(A) = 0$.

Exercice 61

Soit \mathcal{E} l'ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. On note M le point de \mathcal{E} de coordonnées (-a,0). Soit \mathcal{D} la droite de pente t passant par M. Déterminer les coordonnées de l'autre point d'intersection de \mathcal{D} et \mathcal{E} en fonction de a, b et t, s'il existe.

Exercice 62

On se place dans un plan affine \mathcal{E} . On définit la conique \mathcal{C} par l'équation $x^2 - 3y^2 = 1$. On définit une loi sur \mathcal{C} par

$$(r,s) \oplus (t,u) = (rt + 3su, ru + st).$$

- 1. Montrer que \oplus définit une loi de composition interne associative sur \mathcal{C} .
- 2. Trouver l'élément neutre pour \oplus . Étant donné $(r,s) \in \mathcal{C}$, déterminer l'inverse $(r',s') \in \mathcal{C}$ pour la loi \oplus .
- 3. Soit $M=(2,1)\in\mathcal{C}$. Montrer que le sous-groupe de \mathcal{C} engendré par M est infini. En déduire que l'équation $x^2-3y^2=1$ admet une infinité de solutions entières.

13 Parties convexes, enveloppe convexe

Exercice 63

Soient \mathcal{E} un espace affine et $\mathcal{C}_1, \mathcal{C}_2$ deux parties convexes de \mathcal{E} . On définit l'ensemble

$$\mathcal{I} = \{ \text{milieu de } [M_1 M_2], M_1 \in \mathcal{C}_1, M_2 \in \mathcal{C}_2 \}.$$

Montrer que \mathcal{I} est une partie convexe de \mathcal{E} .

Exercice 64 théorème de Gauss-Lucas

Soit $k \in \mathbb{N}^*$. On considère k nombres complexes $z_1, \ldots z_k$. On voit \mathbb{C} comme un plan affine réel, on peut donc définir l'enveloppe convexe de (z_1, \ldots, z_k) .

- 1. On définit le polynôme $P = (X z_1)^{n_1} (X z_2)^{n_2} \cdots (X z_k)^{n_k} \in \mathbb{C}[X]$, avec $n_i \in \mathbb{N}^*$. En déterminant la fraction rationnelle $\frac{P'(X)}{P(X)}$, montrer que l'ensemble des racines de P' est inclus dans l'enveloppe convexe des racines de P.
- 2. Si $P(X) = (X a_1)(X a_2) \cdots (X a_n)$ et $P'(X) = n(X b_1)(X b_2) \cdots (X b_{n-1})$, montrer que l'isobarycentre des (a_i) coïncide avec l'isobarycentre des (b_i) .