$TP n^{o}2$

Les exercices que vous devez rendre sont à la fin de l'énoncé, vous pouvez les traiter au fur et à mesure du TP (les outils pour l'exercice 1 sont dans la première partie, pour l'exercice 2, dans les deux premières parties et pour les exercices 3, 4 et 5, dans la troisième partie) ou à la fin du TP.

1 Tracés en deux dimensions

Tracé de courbes

Dans le TP n°1, nous avons vu que tracer la courbe représentative de la fonction tangente sur [-5, 5] créait une fenêtre aux dimensions inadaptées. Nous allons voir comment corriger ce problème.

Dans la console SCILAB

> x=linspace(-5,5,200);	
> y=tan(x);	
> plot(x,y)	// On peut changer les propriétés de la
	// courbe grâce au menu "Édition" ou
	<pre>// avec les commandes suivantes.</pre>
<pre> > a=get('current_axes');</pre>	<pre>// On peut aussi taper a=gca();</pre>
> a.data_bounds	<pre>// Affiche [xmin,ymin;xmax,ymax].</pre>
> a.data_bounds= [-%pi,-3;%pi,3];	<pre>// Quelles sont les bornes de tracé?</pre>

En fait, toutes les propriétés de la fenêtre sont accessibles via get('current_axes'). Par exemple, on peut donner un titre à la courbe avec

Dans la console SCILAB

> a.title.text="Mon_titre";

Le résultat n'est pas forcément satisfaisant, le tracé fait apparaître des droites verticales en $-\frac{\pi}{2}$ et $\frac{\pi}{2}$. Pour les faire disparaître, on va éviter des intervalles autour de $-\frac{\pi}{2}$ et $\frac{\pi}{2}$.

Dans la console SCILAB

Tracé de figures

La fonction plot de SCILAB prend en argument deux vecteurs et relie les points de coordonnées correspondantes.

Dans la console SCILAB

> clf	
> x = [0,	1,2]
> y = [2,	3,-2]
> plot(x,	y) // Interpréter le tracé.
> clf	
> x = [0,	1,2,0]
> y = [2,	3,-2,2]
> plot(x,	y) // Quelle figure obtient-on?

2 Matrices

Dans la console SCILAB

> clf	
> A = [1 2 ; -1 1]	// On peut séparer avec des espaces
> B = [1,3,2; -1,0,0]	// ou des virgules.
> A'	// Transposition.
> A+A'	
> A*B	
> B*A	// Pourquoi un message d'erreur?
> B'*A'	
> A+1	
> size(B)	
> X=[0;1]	
> A*X	
> B'*X	
> A^2	// Carré pour le produit matriciel.
> A.^2	<pre>// Opération coordonnée par coordonnée.</pre>

On peut utiliser le produit coordonnée par coordonnée pour tracer un polynôme.

Dans la console SCILAB

>	clf					
>	<pre>x= linspace(-4,4,200);</pre>					
>	y= x.*x.*x +3*x -1;	// 0	n peut	aussi	écrire	x.^3+3*x-1.
>	<pre>plot(x,y)</pre>					

Dans les versions plus anciennes de SCILAB, la commande x^2 n'était pas applicable pour un vecteur ligne, désormais, elle revient à $x.^2$ pour les vecteurs lignes.

3 Tracés en trois dimensions

Nous allons voir comment tracer des surfaces définies par des équations de la forme z = f(x, y). Comme pour les fonctions d'une variable, SCILAB trace les surfaces grâce à un maillage.

Dans la console SCILAB

```
-- > clf
-- > X= linspace(-1,1,3)
-- > Y= linspace(-1,1,3)
-- > [x,y]=meshgrid(X,Y)
-- > z= x.* y;
-- > surf(x,y,z)
```


Graphic window number <u>File Tools Edit ?</u> 9 2 2 0 Graphic window number P (3,3) 0.8 P_____(3,2) 0.6 -0.4 P_(3,1) P_(2,3) z 0.2 -0.0 1 -P_____(2,2) -0.2 -0.4 P (1,3) P_(2,1) -0.6 -0.8 P (1,2) -1.8 P_(1,1) 0.2 0.0

Voici le maillage construit par la commande meshgrid de SCILAB à partir des vecteurs Xet Y.

En ajoutant des points pour X et Y, on obtient un maillage et un tracé plus précis.

Dans la console SCILAB

```
-- > clf
-- > X= linspace(-1,1,20);
-- > Y= linspace(-1,1,20);
-- > [x,y]=meshgrid(X,Y)
-- > z= x.* y;
-- > surf(x,y,z)
```

```
// Observer le point col
```

4 Exercices à rendre

Dans l'éditeur de textes SCINOTES (disponible dans le menu « Applications »), créez le fichier TP2scilab.sci. Vous devrez taper les instructions utiles à la résolution des exercices suivants dans ce fichier.

Au début de ce fichier, indiquez vos noms et prénoms en commentaire.

// Étudiant 1
// Étudiant 2

Indiquez le début de chaque exercice en commentaire.

// Exercice 1

Exercice 1

Tracez le carré de sommets (0, 0), (0, 1), (1, 0) et (1, 1).

Exercice 2

Sur le même graphique, tracer les courbes représentatives des fonctions $x \mapsto \sqrt{16 - x^2}$ et d'une autre couleur celle de $x \mapsto \frac{1}{x}$ pour $-4 \leq x \leq 4$. On supprimera les droites verticales éventuelles.

Exercice 3

Tracer les surfaces d'équations respectives $z = x^2 + y^2$ et $z = x^2 - y^2$ pour $-1 \le x \le 1$ et $-1 \le y \le 1$. Indiquez (en commentaire) les éventuels maxima locaux, minima locaux ou points cols.

Exercice 4

Tracer la surface d'équation $z = (x^2 - y^2)e^{-x^2 - y^2}$ pour $-2 \le x \le 2$ et $-2 \le y \le 2$. Combien cette surface admet-elle de minima locaux, de maxima locaux, de points cols ?

Exercice 5

Faire une représentation graphique de la surface d'équation $z = \sin(x) \cdot \sin(y)$ avec $0 \le x \le 4\pi$ et $0 \le y \le 4\pi$.

Enregistrez votre fichier, puis, grâce au navigateur web, envoyez-le par mail à l'adresse

pierre.lezowski@math.u-bordeaux1.fr.