Feuille de TD nº4

Classes et théorème de Lagrange

Exercice 1 nombres de Mersenne.

Soit *n* un entier supérieur à 3.

- 1. Montrer que si $2^n 1$ est premier, alors n l'est aussi.
- 2. Supposons n premier. Soit p un diviseur premier de $2^n 1$. Prouver que 2n divise p 1. *Indication*: on pourra considérer l'ordre de $\overline{2}$ dans le groupe $(\mathbb{Z}/p\mathbb{Z})^*$.
- 3. L'entier n peut-il être premier sans que $2^n 1$ le soit?

Exercice 2

Soit $H = \{ \sigma \in S_n, \, \sigma(n) = n \}$.

- 1. Montrer que H est un sous-groupe de S_n .
- 2. Trouver un ensemble T tel que S_n soit l'union disjointe des Hx pour $x \in T$.

Exercice 3

- 1. On note $GL(2,\mathbb{Z})$ les matrices 2×2 à coefficients entiers inversibles (dont les coefficients de l'inverse sont entiers). Soit $A \in \mathbf{GL}(2,\mathbb{Z})$, que peut-on dire de $\det A$?
- 2. On note $\mathbf{SL}(2,\mathbb{Z})$ les matrices de $\mathbf{GL}(2,\mathbb{Z})$ de déterminant 1. Déterminer $[\mathbf{GL}(2,\mathbb{Z}):\mathbf{SL}(2,\mathbb{Z})]$.

Sous-groupes distingués et quotients

Exercice 4

Soient $G = S_3$, $\sigma = (1 \ 2)$ et $\tau = (1 \ 2 \ 3)$.

- 1. Donner l'ordre de σ et de τ . Montrer que σ et τ engendrent G.
- 2. Soit H le sous-groupe de G engendré par τ , montrer que H est distingué dans G.

Exercice 5

Soient G un groupe et H un sous-groupe d'indice 2 dans G. Montrer que H est distingué dans G.

Exercice 6

Soient G un groupe et N un sous-groupe distingué de G.

- 1. Soit H un sous-groupe de G. Montrer que HN est un sous-groupe de G.
- 2. On suppose désormais que G est fini, que les ordres de N et G/N sont premiers entre eux et que H a même ordre que G/N. Montrer que G=HN.
- 3. Soit f un endomorphisme de G. Montrer que $f(N) \subseteq N$.

Exercice 7
Soient
$$G = \left\{ \begin{pmatrix} x^{-1} & 0 \\ y & x \end{pmatrix}, \ x \in \mathbb{C}^*, \ y \in \mathbb{C} \right\}$$
 et $H = \left\{ \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}, \ y \in \mathbb{C} \right\}$.

1. Vérifier que G est un groupe.

- 1. Vérifier que G est un groupe.
- 2. Montrer que H est un sous-groupe distingué de G.
- 3. Prouver que les groupes G/H et \mathbb{C}^* sont isomorphes.

Exercice 8

Soit (G,\cdot) un groupe. On définit le centre de G comme $Z(G)=\{a\in G,\,\forall x\in G,\,ax=xa\}.$

1. Montrer que $(Z(G), \cdot)$ est un groupe abélien.

2. On définit une application i de (G,\cdot) dans $(\operatorname{Aut}(G),\circ)$ de la manière suivante : si $a\in G$, alors

$$i(a): \left\{ \begin{array}{ccc} G & \longrightarrow & G \\ x & \longmapsto & axa^{-1} \end{array} \right.$$

Montrer que i est bien définie, que c'est un morphisme de groupes. L'image de i notée $\mathrm{Int}(G)$ est le groupe des automorphismes intérieurs de G.

- 3. Montrer que Z(G) est un sous-groupe distingué de G.
- 4. Trouver une réalisation pratique du quotient $(G/Z(G), \cdot)$.
- 5. Ce groupe quotient est-il toujours abélien?
- 6. Soit (H,\cdot) un sous-groupe de (G,\cdot) contenu dans $(Z(G),\cdot)$. Montrer que si le groupe quotient $(G/H,\cdot)$ est monogène, alors (G,\cdot) est abélien.
- 7. Déterminer le centre de S_3 .

Exercice 9

Soit (G,\cdot) un groupe. Pour g_1 et g_2 appartenant à G, on définit leur commutateur par

$$[g_1, g_2] = g_1 g_2 g_1^{-1} g_2^{-1}.$$

Soit $(D(G), \cdot)$ le groupe endendré par les commutateurs de G. On l'appelle groupe dérivé de G.

- 1. Montrer que $(D(G), \cdot)$ est un sous-groupe distingué de (G, \cdot) .
- 2. Soit (H, \cdot) un sous-groupe de (G, \cdot) . Montrer que

 $(H \text{ est distingu\'e dans } G \text{ et } G/H \text{ est ab\'elien}) \Longleftrightarrow (H \supseteq D(G)).$

3. Déterminer $D(S_3)$.

Exercice 10

Soient G et H des groupes, et $f: G \longrightarrow H$ un morphisme de groupes.

- 1. Montrer que si L est un sous-groupe distingué de H, alors $f^{-1}(L)$ est un sous-groupe distingué de G.
- 2. Montrer que si K est un sous-groupe distingué de G et f est surjective, alors f(K) est un sous-groupe distingué de H. Qu'en est-il si f n'est pas surjective?
- 3. Soit a un élément d'ordre 2 de G. Montrer que $\langle a \rangle$ est un sous-groupe distingué de G si et seulement si a est dans le centre de G.
- 4. En déduire que $\langle \tau_{1,2} \rangle$ n'est pas un sous-groupe distingué de (\mathfrak{S}_3, \circ) .

Exercice 11 normalisateur.

Soient G un groupe et H un sous-groupe de G. On note N l'ensemble des $g \in G$ tels que $gHg^{-1} = H$.

- 1. Vérifier que N est un sous-groupe de G contenant H et que H est distingué dans N.
- 2. Soit K un sous-groupe de G contenant H. Montrer que $K\subseteq N$ si et seulement si H est distingué dans K.

Exercice 12

Soient $d \in \mathbb{N}^*$ et G un groupe fini. On désigne par X l'ensemble des $g \in G$ tels que $g^d = 1$. Soit H un sous-groupe distingué de G.

- 1. La partie X est-elle un sous-groupe de G?
- 2. Montrer que si [G:H] et d sont premiers entre eux, alors $X\subseteq H$.