Feuille de TD nº5

Sous-groupes distingués et quotients (suite)

Exercice 1 lemme de Frobenius.

Soient G un groupe fini et H un sous-groupe de G d'indice m. On pose $X = G/H \setminus \{H\}$.

- 1. Soit $h \in H$. Construire une bijection $f(h): X \longrightarrow X$ qui à xH associe hxH pour tout $x \in G \setminus H$.
- 2. Vérifier que $f: H \longrightarrow S(X)$ est un morphisme de groupes.
- 3. Montrer que tout diviseur premier de #(Im f) est inférieur à m-1.
- 4. Supposons que tout diviseur premier de #H est supérieur à m. Montrer que H est distingué dans G.

Exercice 2

Soient G un groupe et N un sous-groupe de G d'indice 2. Soit H un sous-groupe simple de G d'ordre supérieur à 3. Ici, un groupe simple est un groupe non trivial qui ne possède pas de sous-groupe distingué autre que lui-même et son sous-groupe trivial.

- 1. Montrer que N est un sous-groupe distingué de G.
- 2. En déduire que $H \cap N$ est un sous-groupe distingué de G.
- 3. Prouver que $H \subseteq N$.

Exercice 3

Soient G un groupe et H un sous-groupe distingué de G. On suppose H d'ordre 2. Montrer que H est contenu dans le centre de G.

Groupe cyclique

Exercice 4

- 1. Pour $n \in \mathbb{Z}_{\geq 1}$, on note μ_n le groupe des racines n-ièmes de l'unité dans \mathbb{C} .
 - (a) Montrer que μ_n est un sous-groupe de \mathbb{C}^* , cyclique d'ordre n.
 - (b) Combien y a-t-il d'isomorphismes de groupes entre μ_n et $\mathbb{Z}/n\mathbb{Z}$?
- 2. Soit $U_1 \subset \mathbb{C}^*$ le sous-groupe des nombres complexes de module 1.
 - (a) Montrer que tout sous-groupe fini de U_1 est cyclique, engendré par une racine de l'unité.
 - (b) Montrer que tout sous-groupe infini de U_1 est dense.

Exercice 5

Soit $n \in \mathbb{N}$, et G le groupe cyclique d'ordre n, $G = \mathbb{Z}/n\mathbb{Z}$.

- 1. Montrer que tout sous-groupe de G est cyclique.
- 2. Montrer que tout quotient de G est aussi cyclique.
- 3. Montrer que, si d|n, il existe un unique sous-groupe de G d'ordre d.
- 4. En déduire que $n=\sum_{d|n} \varphi(d)$ où φ désigne la fonction d'Euler.
- 5. Donner un exemple d'un groupe H dont tous les sous-groupes *propres* sont cycliques, mais qui n'est pas abélien. Si H est abélien, est-il cyclique?

Exercice 6

Soit G un groupe ayant exactement deux sous-groupes *propres* non triviaux. Montrer que G est ou bien cyclique d'ordre pq où p et q sont des nombres premiers distincts, ou bien G est cyclique d'ordre p^3 où p est un nombre premier.

Exercice 7 Structure des groupes $(\mathbb{Z}/n\mathbb{Z})^*$

- 1. Soit p un nombre premier *impair*.
 - (a) Pour tout entier $k \ge 1$, montrer qu'il existe un entier a_k , premier avec p, tel que

$$(1+p)^{p^k} = 1 + a_k p^{k+1}.$$

- (b) Quel est l'ordre de 1+p dans le groupe multiplicatif $(\mathbb{Z}/p^k\mathbb{Z})^*$?
- (c) En déduire un isomorphisme de groupes :

$$(\mathbb{Z}/p^k\mathbb{Z})^* \simeq \mathbb{Z}/p^{k-1}(p-1)\mathbb{Z}, \quad \forall k.$$

- 2. On considère maintenant le cas p=2.
 - (a) Pour n=1 ou n=2, montrer que le groupe $(\mathbb{Z}/2^n\mathbb{Z})^*$ est cyclique.
 - (b) Pour tout entier $k \ge 0$, montrer qu'il existe un entier $u_k \ge 0$ impair tel que $5^{2^k} = 1 + 4 \times 2^k u_k$.
 - (c) Si $n \geq 2$, quel est l'ordre de la classe de 5 dans $(\mathbb{Z}/2^n\mathbb{Z})^*$?
 - (d) En déduire, pour $n \ge 3$, un isomorphisme de groupes :

$$(\mathbb{Z}/2^n\mathbb{Z})^* \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}.$$

3. Pour quels entiers $n \geq 1$, le groupe multiplicatif $(\mathbb{Z}/n\mathbb{Z})^*$ est-il cyclique?

Groupe diédral

Exercice 8

- 1. Déterminer le centre du groupe diédral D_{2n} .
- 2. Si $n \geq 3$. Montrer que D_{2n} contient un seul sous-groupe cyclique d'ordre n.

Exercice 9

Soit p un entier premier impair et G un groupe de cardinal 2p.

- 1. Montrer que G contient d'un élément d'ordre p.
- 2. Si G contient un élément d'ordre 2p. Montrer que $G \simeq \mathbb{Z}/2p\mathbb{Z}$.
- 3. Supposer maintenant qu'aucun élément n'est d'ordre 2p. Soit alors $a \in G$ un élément d'ordre p, et noter $H = \langle a \rangle$ le sous-groupe engendré par p.
 - (a) Soit $b \in G H$. Montrer que $G = \{1, a, \dots, a^{p-1}, b, ba, \dots, ba^{p-1}\}$.
 - (b) Montrer que $b^2 = e$.
 - (c) Montrer l'égalité suivante : $ab = ba^{p-1}$.
 - (d) En déduire que $G \simeq D_{2p}$.
- 4. Montrer que $S_3 \simeq D_6$.

Exercice 10

Prouver que si $n \ge 3$, D_{2n} est isomorphe à un sous-groupe de S_n et que c'est faux si n = 2.