Feuille de TD nº6

Actions de groupes

Exercice 1

On fait agir le groupe $(\mathbb{Z}/22\mathbb{Z})^*$ par multiplication sur l'ensemble $\mathbb{Z}/22\mathbb{Z}$, c'est-à-dire par l'application

$$\left\{ \begin{array}{ccc} \left(\mathbb{Z}/22\mathbb{Z}\right)^{\star} \times \mathbb{Z}/22\mathbb{Z} & \longrightarrow & \mathbb{Z}/22\mathbb{Z} \\ (a,x) & \longmapsto & a \cdot x \end{array} \right..$$

Décrire les orbites de cette action.

Exercice 2

On considère l'application qui à $(\theta, z) \in \mathbb{R} \times \mathbb{C}$ associe $\theta \cdot z = e^{i\theta}z$.

- 1. Montrer qu'il s'agit d'une action du groupe $(\mathbb{R}, +)$ sur \mathbb{C} .
- 2. Décrire l'ensemble des orbites de cette action.

Exercice 3 lemme de Cauchy

Soient G un groupe fini et p un nombre premier tel que p divise #G. Notons X l'ensemble des applications $\phi: \mathbb{Z}/p\mathbb{Z} \to G$ telles que $\phi(\overline{1}) \cdots \phi(\overline{p}) = 1$.

En faisant agir le groupe $\mathbb{Z}/p\mathbb{Z}$ sur X, montrer qu'il existe un élément de G d'ordre p.

Exercice 4

Soit G un groupe fini d'ordre pair. En faisant agir le groupe $\{-1,1\}$ sur G, montrer qu'il existe un élément de G d'ordre 2.

Exercice 5 formule de Burnside.

Soit G un groupe fini opérant sur un ensemble fini E de cardinal $n \ge 2$. On note k le nombre d'orbites de E sous l'action de G. Pour tout $g \in G$, on note f(g) le nombre de points fixes de g.

1. En considérant le cardinal de l'ensemble $\{(g,x)\in G\times E,\,g\cdot x=x\}$, montrer la formule

$$k = \frac{1}{\#G} \sum_{g \in G} f(g).$$

2. En faisant agir G sur E^2 , montrer l'inégalité $\frac{1}{\#G}\sum_{g\in G}f(g)^2\geqslant 2.$

Exercice 6

Un groupe G d'ordre 32 agit sur un ensemble X à 55 éléments. Cette action possède 5 orbites. Donner la liste des cardinaux des orbites possibles.

Exercice 7

Soit G un groupe.

- 1. On note Z le centre de G. On suppose que le groupe G/Z est monogène. Montrer que G est abélien.
- 2. Soit p un nombre premier. On suppose G d'ordre p^2 . Montrer que G est abélien.

Groupe symétrique

Si cela n'est pas précisé, n désigne un entier naturel non nul.

Exercice 8 Calculer dans S_8 le produit de cycles suivant :

Donner sa décomposition en cycles. Quel est son ordre? Sa signature?

Exercice 9

Donner la liste des éléments du groupe S₃. Écrire la table de la loi du groupe. Donner la liste des sous-groupes.

Exercice 10

Dans S_{10} , quelles sont les permutations qui commutent avec $\sigma = (1\ 2\ 3\ 4\ 5)(6\ 7\ 8\ 9\ 10)$?

Exercice 11

Soit
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix} \in S_5$$
.

- 1. Décomposer σ en produit de cycles à supports disjoints.
- 2. Décomposer σ en produit de transpositions.
- 3. Calculer σ^{201} .
- 4. Calculer l'ordre de σ .
- 5. Décrire une méthode générale permettant de calculer l'ordre d'une permutation.

Exercice 12

Montrer que S_n est engendré par chacun des sous-ensembles suivants :

- 1. $A = \{(1i), 2 \le i \le n\},\$
- 2. $B = \{(i, i+1), 1 \le i < n\},\$
- 3. $C = \{(12), (12 \dots n)\}.$

Exercice 13 un sous-groupe distingué de S_4

- 1. Montrer que les permutations suivantes sont des éléments de A_4 : $\sigma_1 = (12)(34)$, $\sigma_2 = (13)(24)$, $\sigma_3 = (14)(23)$.
- 2. Déterminer le groupe G engendré par $\sigma_1, \sigma_2, \sigma_3$, donner sa table de multiplication.
- 3. Soient $\sigma \in G \setminus \{id\}$ et $\tau \in S_4$. Montrer que $\tau \sigma \tau^{-1}$ n'a pas de point fixe.
- 4. Montrer que $\tau \sigma \tau^{-1}$ est d'ordre 2.
- 5. En déduire que G est un sous-groupe distingué de S_4 .

Exercice 14

Soit n un entier supérieur à 4. Montrer que le centre de A_n est trivial.

Exercice 15

Montrer que les seuls homomorphismes de groupes entre (S_n, \circ) et (\mathbb{C}^*, \times) sont le morphisme trivial et la signature.

Exercice 16

On définit une action de
$$S_n$$
 sur \mathbb{R}^n par $\forall \sigma \in S_n$, $\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$, $\sigma \cdot X = \begin{pmatrix} x_{\sigma^{-1}(1)} \\ \vdots \\ x_{\sigma^{-1}(n)} \end{pmatrix}$.

- 1. Vérifier que cela définit une action de S_n sur \mathbb{R}^n .
- 2. On note (X_1, \ldots, X_n) les colonnes de la matrice identité d'ordre n. Étant donné $\sigma \in S_n$, on définit la matrice $P(\sigma)$ dont les colonnes sont $(\sigma \cdot X_1, \ldots, \sigma \cdot X_n)$. Montrer que cela définit un morphisme de groupes $P: S_n \longrightarrow \operatorname{GL}_n(\mathbb{R})$.
- 3. Soit $\tau \in S_n$ une transposition. Montrer que $\det P(\tau) = -1$. En déduire que pour tout $\sigma \in S_n$, $\det P(\tau) = \varepsilon(\sigma)$.

Exercice 17

Soit m un entier naturel impair. Soit G un groupe d'ordre 2m. On choisit un élément $g \in G$ d'ordre 2.

- 1. Montrer que l'application $\sigma: \left\{ \begin{array}{ccc} G & \longrightarrow & G \\ x & \longmapsto & gx \end{array} \right.$ est une permutation impaire de G.
- 2. En déduire que G contient un sous-groupe d'indice 2.

Exercice 18 Sous-groupes de S_n d'indice 2

Soient $n \ge 2$ et H un sous-groupe de S_n d'ordre $\frac{n!}{2}$. On note $K = S_n \setminus H$.

- 1. Déterminer les ensembles σH , σK , $H\sigma$, $K\sigma$, suivant que $\sigma \in H$ ou $\sigma \in K$.
- 2. En déduire que si deux permutations sont conjuguées, alors elles sont toutes deux dans H ou toutes deux dans K.
- 3. Montrer que $H = A_n$.