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Abstract

We provide a new method to analyze the COVID-19 cumulative reported cases data based on
a two-step process: first we regularize the data by using a phenomenological model which takes
into account the endemic or epidemic nature of the time period, then we use a mathematical model
which reproduces the epidemic exactly. This allows us to derive new information on the epidemic
parameters and to compute the effective basic reproductive ratio on a daily basis. Our method has
the advantage of identifying robust trends in the number of new infectious cases and produces an
extremely smooth reconstruction of the epidemic. The number of parameters required by the method
is parsimonious: for the French epidemic between February 2020 and January 2021 we use only 11
parameters in total.

Keywords: Covid-19 outbreak, epidemic modelling, new cases data regularization, endemic phase fit-
ting, epidemic reproduction number calculation.

1 Introduction
Modeling endemic and epidemic phases of the infectious diseases such as smallpox which by the 16th

century had become a predominant cause of mortality in Europe until the vaccination by E. Jenner in
1796, and present Covid-19 pandemic outbreak has always been a means of describing and predicting
disease. D. Bernoulli proposed in 1760 a differential model [1] taking into account the virulence of the
infectious agent and the mortality of the host, which showed a logistic formula [1, p. 13] of the same
type as the logistic equation by Verhulst [2]. The succession of an epidemic phase and followed by an
endemic phase has been introduced by Bernoulli and for example appears clearly in the Figures 9 and
10 in [3].

The aim in this article is to propose a new approach to compare epidemic models with data from
reported cumulative cases. Here we propose a phenomenological model to fit the observed data of
cumulative infectious cases of COVID-19 that describe the successive epidemic phases and endemic
intermediate phases. This type of problem dates back to 70th with the work of London and York [4].
More recently, Chowel et al. [5] have proposed a specific function to model the temporal transmission
speeds τ(t). In the context of COVID-19, a two-phase model has been proposed by Liu et al. [6] to
describe the South Korean data with an epidemic phase followed by an endemic phase.

In this article, we use a phenomenological model to fit the data (see Figure 1). The phenomenological
model is used in the modelling process between the data and the epidemic models. The difficulty here
is to propose a simple phenomenological model (with limited number of parameters) that would give a
meaningful result for the time dependent transmission rates τ(t). Many models could potentially be used
as phenomenological to represent the data (ex. cubic spline and others). The major difficulty here is to
provide a model that gives a good description of the tendency for the data. It has been observed in our
previous work that it is difficult to choose between the possible phenomenological models (see Figures
12-14 in [8]). The phenomenological model can also be viewed as a regularization of data that should not
fluctuate too much in order to keep the essential information. An advantage in our phenomenological
model is the limited number of parameters (5 parameters during each epidemic phase and 2 parameters
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during each endemic phase). The last advantage of our approach is that once the phenomenological
model has been chosen, we can compute some explicit formula for the transmission rate and derive some
estimations for the other parameters.

Data

Phenomenological Model

(Limited number of parameters)

(Good description of the tendency)

EpidemicModel

(mecanistic)

- Parameters of estimations

- Basic reproduction number

- Forecasting

- etc . . .

Figure 1: We can apply statistical methods to estimate the parameters of the proposed phenomenological
model and derive their average values with some confidence intervals. The phenomenological model is
used at the first step of the modelling process, providing regularized data to the epidemic model and
allowing the identification of its parameters.

2 Material and methods

2.1 Phenomenological model
In this article, the phenomenological model is compared with the cumulative reported cases data taken

from WHO [7]. The phenomenological model deals with data series of new infectious cases decomposed
into two types of successive phases, 1) endemic phases, followed by 2) epidemic ones.

Endemic phase: During the endemic phase the dynamics of new cases appears to fluctuate around
an average value independently of the number of cases. Therefore the on average cumulative number of
cases is given by

CR(t) = N0 + (t− t0)× a, for t ∈ [t0, t1], (2.1)

where t0 denotes the beginning of the endemic phase. a is the average value of CR(t0) and N0 the average
value of the daily number of new cases.

In other words, we assume that the average daily number of new cases is constant. Therefore the
daily number of new cases is given by

CR′(t) = a. (2.2)

Epidemic phase: In the epidemic phase, the new cases are contributing to produce second cases.
Therefore the daily number of new cases is no longer constant but varies with time as follows

CR(t) = Nbase +
eχ(t−t0)N0[

1 +
Nθ

0

Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ , for t ∈ [t0, t1]. (2.3)

In other words, the daily number of new cases follows the Bernoulli-Verhulst [1, 2] equation. Namely, by
setting N(t) = CR(t)−Nbase we obtain

N ′(t) = χN(t)

[
1−

(
N(t)

N∞

)θ]
(2.4)

completed with the initial value
N(t0) = N0. (2.5)

In the model Nbase + N0 corresponds to the value CR(t0) of the cumulative number of cases at time
t = t0. The parameter N∞ + Nbase is the maximal increase of the cumulative reported cases after the
time t = t0. χ > 0 is a Malthusian growth parameter, and θ regulates the speed at which the CR(t)
increases to N∞ +Nbase.
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Regularized model

Because the formula for τ(t) involves derivatives of the phenomenological model regularizing CR(t)
(see equation (2.12)), we need to connect the phenomenological models of the different phases as smoothly
as possible. We let C̃R(t) be the model obtained by placing the phenomenological models for the different
phases side by side. Outside of the time window where phenomenological models are used, we consider
that the function C̃R(t) is constant. We define the regularized model by using the convolution formula:

CR(t) =

∫ +∞

−∞
C̃R(t− s)× 1

σ
√
2π
e−

s2

2σ2 ds = (C̃R ∗ G)(t), (2.6)

where G(t) := 1
σ
√
2π
e−

t2

2σ2 is the Gaussian function of variance σ2. The parameter σ controls the trade-off
between smoothness and precision: increasing σ reduces the variations in CR(t) and reducing σ reduces
the distance between CR(t) and C̃R(t). In any case the resulting function CR(t) is very smooth (as
well as its derivatives) and close to the original model C̃R(t) when σ is not too large. In numerical
applications, we take σ = 2 days.

Procedure to fit the phenomenological model to the data

In order to fit the model to the data, we used the regularized model (2.6) where the periods of the
different phases are fixed as in Table 1. We use a standard curve-fitting algorithm to find the parameters
of the regularized model. In numerical applications we used the Levenberg–Marquardt nonlinear least
squares algorithm provided by the MATLAB© function fit. Our 95% confidence intervals are the ones
provided as an output of this algorithm. The best fit parameters and the corresponding confidence
intervals are provided in Table 1.

2.2 SI Epidemic model
The SI epidemic model used in this work is the same as in [8]. It is summarized by the flux diagram

in Figure 2.

(S)usceptibles (I)nfectious

(R)eported

(U)nreported

Dead or recovered

Asymptomatic Symptomatic

Figure 2: Schematic view showing the different compartments and transition arrows in the epidemic
model.

The goal of this article is to understand how to compare the SI model to the reported epidemic data
and therefore the model can be used to predict the future evolution of epidemic spread and to test various
possible scenarios of social mitigation measures. For t ≥ t0, the SI model is the following{

S′(t) = −τ(t)S(t)I(t),
I ′(t) = τ(t)S(t)I(t)− νI(t),

(2.7)

where S(t) is the number of susceptible and I(t) the number of infectious at time t. This system is
supplemented by initial data

S(t0) = S0 ≥ 0, I(t0) = I0 ≥ 0. (2.8)

In this model, the rate of transmission τ(t) combines the number of contacts per unit of time and the
probability of transmission. The transmission of the pathogen from the infectious to the susceptible
individuals is described by a mass action law τ(t)S(t) I(t) (which is also the flux of new infectious).
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The quantity 1/ν is the average duration of the infectious period and νI(t) is the flux of recovering
or dying individuals. At the end of the infectious period, we assume that a fraction f ∈ (0, 1] of the
infectious individuals is reported. Let CR(t) be the cumulative number of reported cases. We assume
that

CR(t) = CR0 + ν f CI(t), for t ≥ t0, (2.9)

where

CI(t) =

∫ t

t0

I(σ)dσ. (2.10)

Assumption 2.1 (Given parameters) We assume that

• the number of susceptible individuals when we start to use the model S0 = 67 millions;

• the average duration of infectious period
1

ν
= 3 days;

• the fraction of reported individuals f = 0.9;

are known parameters.

Parameters estimated in the simulations: As described in [8] the number of infectious at time t0
is

I0 =
CR′(t0)

ν f
(2.11)

The rate of transmission τ(t) at time t is given by

τ(t) =

νf

(
CR′′(t)

CR′(t)
+ ν

)
νf (I0 + S0)− CR′(t)− ν (CR(t)− CR0)

. (2.12)

Parameters estimated in the endemic phase: The initial number of infectious is given by

I0 =
a

ν f
,

and the transmission rate is given by the explicit formula

τ(t) =
ν2f

νf (I0 + S0)− a− ν(t− t0)× a
,∀t ∈ [t0, t1].

Parameters estimated in the epidemic phase: The initial number of infectious is given by

I0 =

χN0

[
1−

(
N0

N∞

)θ]
ν f

,

and the transmission rate is given by the explicit formula

τ(t) =

νf

(
N ′′(t)

N ′(t)
+ ν

)
νf (I0 + S0)−N ′(t)− ν (N(t)−N0)

,

and since

N ′(t) = χN(t)

[
1−

(
N(t)

N∞

)θ]
(2.13)

and

N ′′(t) = χN ′(t)

[
1− (1 + θ)

(
N(t)

N∞

)θ]
, (2.14)
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we obtain an explicit formula

τ(t) =

νf

(
χ

[
1− (1 + θ)

(
N(t)

N∞

)θ]
+ ν

)

νf (I0 + S0)− χN(t)

[
1−

(
N(t)

N∞

)θ]
− ν (N(t)−N0)

, (2.15)

with

N(t) =
eχ(t−t0)N0[

1 +
Nθ

0

Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ . (2.16)

By using the Bernoulli-Verhulst model to represent the data, the daily number of new cases is nothing
but the derivative N ′(t) (whenever the unit of time is one day). The daily number of new cases reaches
its maximum at the turning point t = tp, and by using (2.14), we obtain

N ′′(tp) = 0⇔ N(tp) =

(
1

1 + θ

)1/θ

N∞.

Therefore by using (2.13) the maximum of the daily number of cases equals

N ′(tp) = χN(tp)

[
1−

(
N(tp)

N∞

)θ]
.

By using the above formula, we obtain a new indicator for the amplitude of the epidemic.

Theorem 2.2 The maximal daily number of cases in the course of the epidemic phase is given by

χ×N∞ × θ ×
(

1

1 + θ

) 1
θ+1

. (2.17)

2.3 Parameter bounds
The epidemic model (2.7) with time-dependent transmission rate is consistent only insofar as the

transmission rate remains positive. This gives us a criterion to judge if a set of epidemic parameters has
a chance of being consistent with the observed data: since we know the parameters N0, N∞, χ and θ
from the phenomenological model, the formula (2.18) allows us to compute a criterion on ν and f which
decides whether a given parameter values are compatible with the observed data or not. That is to say
that, a set of parameter values is compatible if the transmission rate τ(t) in (2.18) remains positive for
all t ≥ t0, and it is not compatible if the sign of τ(t) in (2.18) changes for some t ≥ t0.

The value of the parameter ν is compatible with the model (2.18) if and only if

0 ≤ 1

ν
≤ 1

χθ
, (2.18)

and the value of the parameter f is compatible with the model (2.18) if and only if

f ≥ N∞ −N0

I0 + S0
. (2.19)

Therefore, we obtain an information on the parameters ν and f , even though they are not directly
identifiable (two different values of ν or f can produce exactly the number same cumulative reported
cases).

2.4 Computation of the basic reproduction number
In order to compute the reproduction number in Figure 5 with use the Algorithm 2 in [8] and the

day by day values of the phenomenological model.
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3 Results

3.1 Phenomenological model compared to the French data
In Figure 3 we present the best fit of our phenomenological model for the cumulative reported cases

data of COVID-19 epidemic in France. The yellow regions correspond to the endemic phases and the
blue regions correspond to the epidemic phases. Here we consider the two epidemic waves for France,
and the chosen period as well as the parameters values for each period are listed in Table 1. In Table 1
we also give 95% confidence intervals for the parameters values.

Figure 3: The red curve corresponds to the phenomenological model and the black dots correspond to the
cumulative number of reported cases in France.

Figure 4 shows the corresponding daily number of new reported cases data (black dots) and the first
derivative of our the phenomenological model (red curve).

Figure 4: The red curve corresponds to the first derivative of the phenomenological model and the black
dots correspond to daily number of new reported cases in France.
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Period Parameters value Method 95% Confidence interval
Period 1: Endemic phase

Jan 03 - Feb 27
N0 = −4.368
a = 1.099× 10−1

computed
fitted a ∈ [−8.582× 101, 8.604× 101]

Period 2: Epidemic phase
Feb 27 - May 17

Nbase = 0
N0 = 1.675
N∞ = 1.445× 105

χ = 1.263
θ = 6.315× 10−2

fixed
fitted
fitted
fitted
fitted

N0 ∈ [−3.807× 101, 4.142× 101]
N∞ ∈ [1.367× 105, 1.523× 105]
χ ∈ [−1.171× 101, 1.424× 101]
θ ∈ [−6.086× 10−1, 7.349× 10−1]

Period 3: Endemic phase
May 17 - Jul 05

N0 = 1.405× 105

a = 3.11× 102
computed
computed

Period 4: Epidemic phase
Jul 05 - Nov 18

Nbase = 1.403× 105

N0 = 1.517× 104

N∞ = 1.953× 106

χ = 3.671× 10−2

θ = 7.679

fitted
fitted
fitted
fitted
fitted

Nbase ∈ [1.367× 105, 1.439× 105]
N0 ∈ [1.427× 104, 1.607× 104]
N∞ ∈ [1.92× 106, 1.986× 106]
χ ∈ [3.62× 10−2, 3.722× 10−2]
θ ∈ [6.256, 9.102]

Period 5: Endemic phase
Nov 18 - Jan 04

N0 = 4.45× 10−84

a = 1.099× 10−1
computed
fitted a ∈ [1.222× 104, 1.265× 104]

Table 1: Fitted parameters and computed parameters for the whole epidemic.

3.2 SI epidemic model compared to the French data
Some parameters of the model are known like S0 = 67 millions for France (this is questionable). Some

parameters of the epidemic model can not be precisely evaluated [8].

Result

By using (2.18) we obtain the following conditions for the average duration of infectious period

• 0 <
1

ν
≤ 1/(χθ) = 12.5 days during the first epidemic wave;

• 0 <
1

ν
≤ 1/(χθ) = 3.5 days during the second epidemic wave.

We obtain no constraint for the fraction f ∈ (0, 1] of reported new cases (between 0 and 1 for
France).

Moreover by using the formula (2.17) we deduce that the maximal daily number of cases is

• 4110 during the first epidemic wave;

• 47875 during the second epidemic wave.

Importantly, by combining the phenomenological model from Section 3.1 and the epidemiological
model from Section 2.2, we can reconstruct the time-dependent transmission rate given by (2.12) and
the corresponding time-dependent basic reproduction number R0(t) = τ(t)S(t)/ν (sometimes called
“effective basic reproductive ratio”). The obtained basic reproduction number if presented in Figure 5.
We observe that R0(t) is decreasing during each epidemic wave, except at the very end where it becomes
increasing. This is not necessarily surprising since the lockdown becomes less strictly respected towards
the end. During the endemic phases, the R0(t) becomes effectively equal to one, except again near the
end. The variations observed close to the transition between two phases may be partially due to the
smoothing method, which has an impact on the size of the “bumps”. However they remain very limited
in number and size.
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Figure 5: In this figure we plot the time dependent basic reproduction number R0(t) := τ(t)S(t)/ν. We
fix the average length of the asymptotic infectious period to 3 days.

4 Discussion
In our paper we use a phenomenological model to reduce the number of the parameters necessary

for summarizing observed data without loss of pertinent information. The process of reduction consists
of three stages: qualitative or quantitative detection of the boundaries between the different phases of
the dynamics (here endemic and epidemic phases), choice of a reduction model (among different possible
approaches: logistic, regression polynomials, splines, autoregressive time series, etc.) and smoothing of
the derivatives at the boundary points corresponding to the breaks in the model.

In Figure 3, we have a very good agreement between the data and the phenomenological model, for
both the original curve and its derivative. The relative error in Figure 3 is of order 10−2, which means
that the error is at most of order of 100 000 individuals. In Figure 4 the red curve also gives a good
tendency of the black dots corresponding to raw data.

In Figure 5, the phenomenological models are necessary to derive a significant basic reproduction
number. Otherwise the resulting R0(t) is not interpretable and even not computable after sometime.
Similar results were obtained in Figures 12-14 in [8]. The method to compute R0 can also be applied
directly to the original data. We did not show the result here because the noise in the data is amplified by
the method and the results are not usable. This shows that it is important to use the phenomenological
model to provide a good regularization of the data.

In Figure 5, the major difficulty is to know how to make the transition from an epidemic phase to
an endemic phase and vice versa. This is a non-trivial problem which is solved by our regularization
approach (using a convolution with a Gaussian). As we can see in Figure 5, the number of oscillations
is very limited between two phases. Without regularization, there is a sharp corner at the transition
between two phases which leads to infinite values in τ(t). The choice of the convolution with a Gaussian
kernel for the regularization method is the result of an experimental process. We tried several different
regularization methods, including a smooth explicit interpolation function and Hermite polynomials.
Eventually, the convolution with a Gaussian kernel gives the best results.

In order to minimize the variations of the curve of R0(t), the choice of the transition dates between
two phases is critical. In Figure 5 we choose the transition dates so that the derivatives of the phe-
nomenological model do not oscillate too much. Other choices lead to higher variations or increase the
number of oscillations. Finally, the qualitative shape of the curve presented in Figure 5 is very robust to
changes in the epidemic parameters, even though the quantitative values of R0(t) are different for other
values of the parameters ν and f .

In Figure 5, we observe that the quantitative value of the R0(t) during the first part of the second
epidemic wave (second blue region) is almost constant and equals 1.11. This value is significantly lower
than the one observed at the beginning of the first epidemic wave (first blue region). Yet the number of
cases produced during the second wave is much higher than the number of cases produced during the
first wave.

We observe that the values of the parameters of the phenomenological model are quantitatively

8



different between the first wave and the second wave. Several phenomena can explain this difference.
The population was better prepared for the second wave. The huge difference in the number of daily
reported cases during the second phase can be partially attributed to the huge increase in the number of
tests in France during this period. But this is only a partial explanation for the explosion of cases during
the second wave. We also observe that the average duration of infectious period varies between the
first epidemic wave (12.5 days) and the second epidemic wave (3.5 days). This may indicate a possible
adaptation of the virus SARS CoV-2 circulating in France during the two periods, or the effect of the
mitigation measures, with a better respect of the social distancing and compulsory mask wearing.

The huge difference between the initial values of R0(t) in the first and the second waves is an apparent
paradox which shows that R0(t) has a limited explanatory value regarding the severity of the epidemic:
even if the quantitative value of R0(t) is higher at the start of the first wave, the number of cases
produced during an equivalent period in the second wave is much higher. This paradox can be partially
resolved by remarking that the R0(t) behaves like an exponential rate and the number of secondary
cases produced in the whole population is therefore very sensitive to the number of active cases at time
t. In other words, R0(t) is blind to the epidemic state of the population and cannot be used as a reliable
indicator of the severity of the epidemic. Other indicators have to be found for that purpose; we propose,
for instance, the maximal value of the daily number of new cases, which can be forecasted by our method
(see equation (2.17)), although other indicators may possibly be imagined.

Aug Sep Oct Nov

2020   

200 000

400 000

600 000

800 000

1 000 000

1 200 000

1 400 000

1 600 000

1 800 000

2 000 000
Data

Original  simulation

Modified simulation

Figure 6: Cumulative number of cases for the second epidemic wave obtained by using the SI model (2.7)
with τ(t) given by (2.12), the parameters from Table 1. We start the simulation at time t0 = July 05

with the initial value I0 = CR′(t2)
νf for red curve and with I0 =

1

10
CR′(t2)
νf for yellow curve. The remaining

parameters used are ν = 1/3, f = 0.9, S0 = 66841266. We observe the number is five times lower than
then the original number of cases.

In Figure 6 we present an exploratory scenario assuming that during the endemic period preceding
the second epidemic wave (May 17 - Jul 05) the daily number of cases is divided by 10. The resulting
cumulative number of cases obtain is five lower the original one. We summarize this observation into the
following statement.

Result

• The level of the daily number of cases during an endemic phase preceding an epidemic phase
strongly influences the severity of this epidemic wave.

• In other words, maintaining social distancing between epidemic waves is essential.

In Figure 4, there is two order of magnitude in the daily number of cases in between CR′(t1) ≈ 1
(with t1 = Feb 27) at the early beginning of the first epidemic wave and CR′(t2) = 422 (with t2 =
July 05) at the early beginning of the second epidemic wave. That confirms our result. After the second
wave, the average daily number of cases CR′(t) in France is stationary and approximately equal to 12440.
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Therefore, if the above observation remains true and if a third epidemic wave occurs, the third epidemic
wave is expected to be more severe than the first and second epidemic waves.

Our study can be extended in several directions. A statistical study of the parameters obtained
by using our phenomenological model with data at the regional scale could be interesting. We could
in particular investigate statistically the correlations existing between the parameters changes and the
variations with demographic parameters as the median age and the population density, as well as geocli-
matic factors as the elevation and temperature, etc. We also plan to extend our method to more realistic
epidemic models, like the SEIUR model from [9], which includes the possibility of transmission from
asymptomatic unreported patients.
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