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Abstract
The infectiousness of infected individuals is known to depend on the time
since the individual was infected. That is called the age of infection. Here
we study the parameter identifiability of the Kermack- McKendrick model
with the age of infection. By considering a single cohort of individuals, we
show that the daily reproduction number is the solution of a Volterra integral
equation that depends on the flow of newly infected individuals. We test
the consistency of the method by running some deterministic and stochastic
numerical simulations. Then we use the outcome of the simulations as data
to reconstruct the basic reproduction number. Finally, we apply our method
to a dataset for SARS-CoV-1 with detailed information on a single cluster
of patients. We stress the necessity of taking into account the initial data
in the analysis to ensure the identifiability of the problem.

Another essential aspect of understanding an epidemic is the contact be-
tween individuals which mainly depends on their location at home or work.
To investigate such a question, we will discuss a new model including the
people at home, commuting, and working in a city.
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Continuous time model

Recall that the age of infection a is the time since individuals become
infected. The major difficulty in matching the data and the Kermack-
McKendrick model with age of infection is to identify:

1) the initial distribution of infected individuals with respect to the
age of infection;
2) the daily reproduction number R0(a) which is the reproduction
number at the age of infection a.
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We can decompose the daily reproduction number as follows

R0(a) = τ0︸︷︷︸
(A)

× S0︸︷︷︸
(B)

× β(a)︸ ︷︷ ︸
(C)

× e−νa︸ ︷︷ ︸
(D)

,

where
(A) τ0 is the transmission rate at time t0 (we assume the transmission
rate to be constant during the period where R0(a) is evaluated).
(B) S0 is the average number of susceptible individuals at time t0
with which an infected person may come into contact (we assume the
number of susceptible individuals to be constant during the period
where R0(a) is evaluated).
(C) β(a) is the probability to be infectious (i.e. capable to transmit
the pathogen) for an infected individual with age of infection a days.
(D) e−νa is the probability for an infected individual with age of
infection a days to remain infected.
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Then the basic reproduction number (i.e. the number of secondary cases
produced by a single infected individual) is given by

R0 =
∫ ∞

0
R0(a)da.
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Here we partly solve the problem of finding the initial distribution of infected
by assuming that we start the epidemic at time t0 with a single cohort of
I0 new infected patients.

That is, the epidemic starts with I0 infected patients all with age of infection
a = 0.

The case of an epidemic starting from a single infected patient (usually
called the patient 0) corresponds to the case I0 = 1.

This is a common assumption in epidemiology. But the model is not known.
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U or M shape distribution
Here aims to investigate the shape of the distribution d 7→ R0(d) from the
data.
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Figure: In this figure, we illustrate the notion of U shape distribution in (a) and
M shape distribution in (b). Recall that R0(d) represents the ability of patients to
transmit the pathogen after d days since they got infected. The U shape or M
shape distribution means that patients can transmit the pathogen since the
beginning of their infection. Then they become less infectious in the middle of
the infected period. Finally, they become infectious again at the end of the
infected period. The only difference between U and M shape distribution is to
include days 0 and 8 and R0(0) = R0(8) = 0 in the plot.
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U or M shape distribution

The U or M shape distribution are well known in the context of influenza 1
2.

1D.L. Chao, M. E. Halloran, V. J. Obenchain, and Jr, I. M. Longini, FluTE, a
publicly available stochastic influenza epidemic simulation model. PLoS computational
biology, 6(1), e1000656 (2010).

2Y. Itoh, S. Shichinohe, M. Nakayama, M. Igarashi, A. Ishii, H. Ishigaki, H. Ishida, N.
Kitagawa, T. Sasamura, M. Shiohara, M. Doi, H. Tsuchiya, S. Nakamura, M.
Okamatsu, Y. Sakoda, H. Kida, K. Ogasawara, Emergence of H7N9 Influenza A Virus
Resistant to Neuraminidase Inhibitors in Nonhuman Primates. Antimicrobial Agents and
Chemotherapy 59 (2015), 4962-4973.
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Viral load in COVID-19 real patients 3. Here we present some figures re-
flecting patients’ viral load for COVID-19.

(a) (b)

Figure: In figure (a) the red curve corresponds to the throat swab and the blue
curve corresponds to the sputum. In figure (b) the curves correspond to several
patients (A), (B), and (C).

3Y. Pan, D. Zhang, P. Yang, L. L. M. Poon, and Q. Wang (2020), Viral load of
SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases, 20(4), 411-412.
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Kermack-McKendrick model with age of infection
Partial differential equation formulation of the model

The age of infection a is the time since individuals become infected. Let
a→ i(t, a) be the distribution of population of infected individuals at time t
(with respect to a the age of infection). The term distribution of population
means that the integral ∫ a2

a1
i(t, a)da

is the number of infected at time t with infection age between a1 and a2.
Therefore the total number of infected individuals at time t is

I(t) =
∫ +∞

0
i(t, a)da.
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Let β(a) ∈ [0, 1] be the probability to be contagious or infectious (i.e.
capable to transmit the pathogen) at the age of infection a. The quantity
β(a) can be interpreted as the fraction of infected individuals with age
of infection a that are infectious. Then the total number of contagious
individuals (or also called infectious individuals) (i.e., the individuals capable
of transmitting the pathogen) at time t is

C(t) =
∫ +∞

0
β(a)i(t, a)da.
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The model of Kermack-McKendrick 4 with age of infection is the following,
for each t ≥ t0



S′(t) = −τ(t)S(t)
∫ +∞

0
β(a) i(t, a)da,

∂ti+ ∂ai = −ν i(t, a), for a ≥ 0,

i(t, 0) = τ(t)S(t)
∫ +∞

0
β(a) i(t, a)da,

(1)

this system is supplemented by initial data

S(t0) = S0 ≥ 0, and i(t0, a) = i0(a) ∈ L1
+(0,∞). (2)

where L1
+(0,∞) is the positive cone of non-negative integral function.

4W. O. Kermack and A. G. McKendrick (1932), Contributions to the
mathematical theory of epidemics: II, Proc. R. Soc. Lond. Ser. B, 138, 55-83.
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In the model, S(t) is the number of susceptible individuals at time t, and
t→ τ(t) is the transmission rate at time t, and ν ≥ 0 is the rate at which
individuals die or recover.
The time changes of the transmission rate τ(t) is the combination of three
factors.

The coefficient of virulence, linked to the infectious agent. The
coefficient of virulence may change over time due to mutations of the
pathogen.
The coefficient of susceptibility, linked to the host. This two first
factors are all summarized into the probability of transmission.
The number of contacts per unit of time between individuals (this
number is directly connected to the mitigation measures). Here, the
parameter ν is assumed to be independent of the age of infection a.
This is a simplifying assumption to improve the readability of the
paper. The parameter ν combines both the specific fatality rate and
the recovery rate.
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The number of infected satisfies the folloiwng equation

I ′(t) = τ(t)S(t)
∫ +∞

0
β(a) i(t, a)da︸ ︷︷ ︸

(I)

−
∫ +∞

0
ν i(t, a)da︸ ︷︷ ︸
(II)

,

where (I) is the flow of new infected, and (II) is the flow of individuals who
die or recover.
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We make the following assumption.

Assumption 0.1

We assume that
(i) The transmission rate t→ τ(t) is a continuous function (no jumps)

τ(t) ≥ 0,∀t ≥ t0.

(ii) β(a) the probability to be infectious at the age of infection a is a
continuous function (no jumps)

0 ≤ β(a) ≤ 1, ∀a ≥ 0.
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Kermack-McKendrick model with age of infection
Volterra integral equation formulation of the model

In the model (1), the quantity

N(t) := τ(t)S(t)
∫ +∞

0
β(a) i(t, a)da, (3)

is the flow of new infected individuals at time t. By using the S-equation
in system (1), we obtain

S(t) = S0 −
∫ t

t0
N(σ)dσ, ∀t ≥ t0. (4)

By integrating the second equation of system (1) along the characteristics,
we obtain

i(t, a) =

 e−ν (t−t0) i0 (a− (t− t0)) , if a ≥ t− t0,

e−ν aN(t− a), if t− t0 ≥ a.
(5)



17/60

By using (5), we deduce that t → N(t) satisfies the following Volterra
integral equation

N(t) = τ(t)S(t)
∫ +∞

t−t0
β(a) e−ν (t−t0)i0 (a− (t− t0)) da︸ ︷︷ ︸

(I)

+τ(t)S(t)
∫ t−t0

0
β(a)e−ν aN(t− a) da,︸ ︷︷ ︸

(II)

(6)

where
(I) is the flow of new infected individuals at time t produced by the
infected individuals already present on day t0;
(II) is the flow of new infected individuals at time t produced by the
new infected individuals since day t0.
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By using equations (6), we can summarize the epidemic model (1), by saying
that t→ N(t) is the unique continuous map satisfying

N(t) = τ(t)S(t)
[
Λ(t) +

∫ t−t0

0
β(a)e−ν aN(t− a) da

]
,∀t ≥ t0,

(7)
where

S(t) = S0 −
∫ t

t0
N(σ)dσ, ∀t ≥ t0, (8)

and

Λ(t) := e−ν (t−t0)
∫ +∞

t−t0
β(a) i0 (a− (t− t0)) da,∀t ≥ t0. (9)

The function Λ(t) is the number of infectious individuals (capable to trans-
mit the pathogen) at time t among the infected individuals already present
at time t0.
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The function t → Λ(t) plays a fundamental role in solving the Volterra
equation. Indeed, the quantity∫ t2

t1
τ(σ)S(σ)Λ(σ)dσ,

is the number of infected produced between the instants t1 and t2 by the
infected already present at time t0.

So, for example, if no new infected are produced by the infected already
present at time t0, that is if Λ(t) = 0, ∀t ≥ t0, then there will be no new
infected at all after the time t0, that is

N(t) = 0,∀t ≥ t0.

The function t→ Λ(t) can be regarded as the initial condition (or initial
distribution) for the Volterra integral equation.
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Kermack-McKendrick model with age of infection
Connection with the standard SI model

In the case of the standard SI model, which is{
S′(t) = −τ(t)S(t)I(t),
I ′(t) = τ(t)S(t)I(t)− νI(t),

for t ≥ t0.

by applying the variation of constant formula to I-equation, we obtain

I(t) = e−ν(t−t0)I0 +
∫ t

t0
e−ν(t−s)N(s)ds.

Replacing I(t) by the above formula in N(t) = τ(t)S(t)I(t), we obtain

N(t) = τ(t)S(t) e−ν (t−t0)I0︸ ︷︷ ︸
(I)

+ τ(t)S(t)
∫ t−t0

0
e−ν aN(t− a) da︸ ︷︷ ︸

(II)

. (10)
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In the special case, we have β(a) = 1, for all a ≥ 0, and the remaining
number of infectious individuals at time t from the infectious individuals
that was present at time t0 is

Λ(t) = e−ν (t−t0)I0.
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Kermack-McKendrick model with age of infection
Connecting the data and the model

The data are represented by the function t→ CR(t) which is the cumulative
number of reported cases at time t. We propose as a model that the flow of
reported cases is a fraction 0 ≤ f ≤ 1 of the flow of recovering individuals,
that is

CR′(t) = f ν

∫ +∞

0
i(t, a)da. (11)

By using (5), we can compute the number of infected at time t. That is∫ +∞

0
i(t, a)da = e−ν (t−t0)I0 +

∫ t−t0

0
e−ν aN(t− a) da, (12)

where
I0 =

∫ +∞

0
i0(a)da

is the total number of infected at time t0.
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By using equations (11) and (12), we obtain

CR′(t) = fν

[
e−ν (t−t0)I0 +

∫ t−t0

0
e−ν aN(t− a)da

]
,

or equivalently (by using the change of variable σ = t− a)

CR′(t) = fν

[
e−ν (t−t0)I0 +

∫ t

t0
e−ν (t−σ)N(σ)dσ

]
.

By choosing t = t0 we obtain

I0 = CR′(t0)
fν

,

and ∫ t

t0
eνσN(σ)dσ = eν tCR′(t)

fν
− eν t0I0,

and by differentiating both sides of the above equation, we obtain

eνtN(t) = νeν tCR′(t) + eν tCR′′(t)
fν

.
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Therefore we obtain the following connection between the data and the
model.

Connection between the data and the model

Let t → CR(t) be the cumulative number of reported cases. Then
the initial number of infected is given by

I0 = CR′(t0)
fν

, (13)

and the flow of new infected individuals N(t) at time t is given by

N(t) = νCR′(t) + CR′′(t)
fν

,∀t ≥ t0. (14)
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In practice it is possible but not easy to have a reliable evaluation of t →
CR′(t) and especially t → CR′′(t). This problem was considered by using
some averaging (or phenomenological models) procedure of the reported
sanitary data 5,6,7,8.

5A. Bakhta, T. Boiveau, Y. Maday, & O. Mula, (2020), Epidemiological
forecasting with model reduction of compartmental models. application to the covid-19
pandemic, Biology, 10(1),22.

6J. Demongeot, Q. Griette, and P. Magal (2020), SI epidemic model applied to
COVID-19 data in mainland China. R. Soc. Open Sci. 7.12, 201878.

7Q. Griette, J. Demongeot, and P. Magal (2021), A robust phenomenological
approach to investigate COVID-19 data for France . Math. Appl. Sci. Eng., 2021.

8Q. Griette, J. Demongeot, and P. Magal (2022), What can we learn from
COVID-19 data by using epidemic models with unidentified infectious cases?
Mathematical Biosciences and Engineering, 19.1, 537-594.
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Kermack-McKendrick model starting from a single
and multiple cohorts of infected patients

The major difficulty to compare the model with the data is to identify the
functions a → i0(a) and a → β(a). To simplify the discussion, let us
consider the model at the early stage of the epidemic. When the epidemic
just starts we can assume that the transmission rate t → τ(t) remains
constant, and the number of susceptible individuals t → S(t) is constant
and equal to S0. Under such a simplifying assumption the Volterra equation
becomes

N(t) = τ S0

[
Λ(t) +

∫ t−t0

0
β(a)e−ν aN(t− a) da

]
,∀t ≥ t0. (15)
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Kermack-McKendrick model starting from a single
and multiple cohorts of infected patients
A single cohort initial distribution for the PDE model

In order to understand the mathematical concept of Dirac mass centered at
0, we first consider an approximation by an exponential law

i0(a) = I0 κ e
−κa, (16)

with mean and standard deviation equal to 1/κ. Then a Dirac mass centered
at age 0 can be understood as the limit of such a distribution when κ goes
to +∞. The limit needs some explanations. Recall that∫ a2

a1
i0(a)da = I0

[
e−κa1 − e−κa2

]
,

is the initial number of infected individuals with infection age a in between
a1 and a2 at time t = 0.
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We deduce that

lim
κ→∞

∫ a2

a1
i0(a)da =

{
0, if a2 > a1 > 0,
I0, if a2 > a1 = 0.

That is to say that, when κ tends to +∞, the initial distribution of popula-
tion i0(a) is approaching the case where all the infected individuals at time
t0 have the same age of infection a = 0.
For short, we write

i0(a) = I0 δ0(a),

where δ0(a) is called the Dirac mass centered at age 0.
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Kermack-McKendrick model starting from a single
and multiple cohorts of infected patients
A single cohort initial distribution for the Volterra integral equation

Recall that

Λ(t) = e−ν (t−t0)
∫ +∞

0
β (a+ (t− t0)) i0 (a) da,

so when i0(a) is replaced by I0 κ e
−κa we obtain

Λκ(t) := I0 e
−ν (t−t0)

∫ +∞

0
β (a+ (t− t0)) κ e−κada.
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From now on, every function that depends on κ will be indexed by κ.
In order to derive the Kermack-McKendrick model with Dirac mass initial
distribution as limit, we first need the following result. The proof of the
following can be found in the supplementary material.

Lemma 0.2

Let Assumption 0.1 be satisfied. Then we have

lim
κ→∞

Λκ(t) = I0e
−ν (t−t0)β (t− t0) ,

where the limit is uniform in t ≥ t0.
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The initial condition Λ(t) of the Volterra integral equation becomes at the
limit

Λ(t) = I0e
−ν (t−t0)β (t− t0) .

One may observe that the above limit can be obtained for many types of
approximation of the Dirac mass at centered 0 (probability distribution on
(0,+∞)). So formula (16) can be replaced by another formula.
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Kermack-McKendrick model starting from a single
and multiple cohorts of infected patients
A single cohort Volterra integral equation model

Define
Γ(a) = e−ν aβ (a) ,∀a ≥ 0. (17)

Then by using (6), the Kermack-McKendrick model can be reformulated for
t ≥ t0, as the following system

Nκ(t) = τ(t)Sκ(t)
[
Λκ(t) +

∫ t−t0

0
Γ(a)Nκ(t− a)da

]
,

where Λκ(t) is defined above, and

Sκ(t) = S0 −
∫ t

t0
Nκ(σ)dσ.
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By taking the limit when κ → +∞, we obtain the model starting from a
single cohort of infected.

Kermack-McKendrick model starting from a single cohort of
infected

Assume that the initial distribution of infected only contains a single
cohort composed of I0 individuals all with age of infection a = 0
at time t0. Then the flow of new infected t → N(t) is the unique
continuous solution of the Volterra integral equation

N(t) = τ(t)S(t)
[
I0 × Γ (t− t0) +

∫ t−t0

0
Γ(a)N(t− a)da

]
,∀t ≥ t0,

(18)
where

Γ(a) = e−ν aβ (a) ,∀a ≥ 0.

and
S(t) = S0 −

∫ t

t0
N(σ)dσ, ∀t ≥ t0.
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The PDE model starting from Dirac mass has no continuous time
solution.

So the PDE model does not extend to initial distributions in the space
of measures.

But the Volterra equation integral equation can be extended to the
case of initial distributions, which are measures.
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In the case of multiple cohorts, the initial distribution becomes

i0(a) = I1
0 δa1(a) + . . .+ In0 δan(a),

where a1 < a2 < . . . < an are the ages of infection for each cohort at
time t0, and Ij0 is the number of infected in the jth-cohort at time t0. By
analogy to the case of a single cohort, we can approach the initial condition
as follows

Λκ(t) :=
n∑
j=1

Ij0 e
−ν (t−t0)

∫ +∞

0
β (a+ (t− t0)) κ e−κ(a−aj)

1 (a− aj) da,
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Kermack-McKendrick model starting from multiple cohorts of
infected

Assume that the initial distribution of infected consists in n ≥ 1
cohorts of infected with age of infection a1 < a2 < . . . < an at time
t0. That is

i0(a) = I1
0 δa1(a) + . . .+ In0 δan(a).

where Ij0 is the number of infected in the jth-cohort at time t0.
Then the flow of infected t → N(t) satisfies the following Volterra
integral equation

N(t) = τ(t)S(t)

 n∑
j=1

Γ(t− t0 + aj)
Ij0

e−νaj
+
∫ t−t0

0
Γ(a)N(t− a)da

 ,
where

S(t) = S0 −
∫ t

t0
N(σ)dσ, ∀t ≥ t0.
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Kermack-McKendrick model starting from a single
and multiple cohorts of infected patients
Basic reproduction number

Define the daily reproduction numbers

R0(a) = τ × S0 × Γ(a) = τ × S0 × β (a)× e−ν a,∀a ≥ 0.
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Assume that the transmission t→ S(t) and t→ τ(t) are constant functions,
we obtain

N(t) = I0 ×R0(t− t0) +
∫ t−t0

0
R0(a)N(t− a)da, ∀t ≥ t0.

By using the change of variable s = t− t0,

N(s+ t0) = I0 ×R0(s) +
∫ s

0
R0(a)N(s+ t0 − a)da, ∀s ≥ 0.

Replacing the notation s by t, and define

Nt0(t) = N(t+ t0), ∀t ≥ 0,

the equation (18) becomes

Nt0(t) =
[
I0 ×R0(t) +

∫ t

0
R0(a)Nt0(t− a)da

]
,∀t ≥ 0. (19)
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Convolution of functions defined only for positive
numbers
We define the convolution between two functions a ∈ [0,∞) 7→ U(a) and
a ∈ [0,∞) 7→ V (a),

(U ∗ V )(t) =
∫ t

0
U(a)V (t− a)da =

∫ t

0
U(t− a)V (a)da.

(
U∗(2)

)
(t) = (U ∗ U)(t),

and for each integer n ≥ 3,(
U∗(n)

)
(t) =

(
U∗(n−1) ∗ U

)
(t)

=
(
U ∗ U∗(n−1)

)
(t)

= (U ∗ U ∗ . . . ∗ U)︸ ︷︷ ︸
n times

(t).
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By replacing Nt0(t) by the right hand side of the previous Volterra equation
in the integral term of (19) we obtain by induction

Nt0(t) = I0R0(t)

+I0(R0 ∗R0)(t)

+I0(R0 ∗R0 ∗R0)(t)
...
+I0 (R0 ∗R0 ∗ . . . ∗R0)︸ ︷︷ ︸

n times

(t)

...
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We can interpret the N -equation concretely as follows

Nt0(t) = I0R0(t)︸ ︷︷ ︸
Flow of new infected produced by the first generation of infected individuals

+ I0
(
R
∗(2)
0

)
(t)︸ ︷︷ ︸

Flow of infected produced the second generation of infected individuals

+ I0
(
R
∗(3)
0

)
(t)︸ ︷︷ ︸

Flow of infected produced by the third generation of infected individuals

+
...
+ I0

(
R
∗(n)
0

)
(t)︸ ︷︷ ︸

Flow of infected produced by the nth generation of infected individuals

+
...
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Basic reproduction number

The total number of the first generation of new infected produced by
a single infected patient with age of infection a = 0 at time t = t0 is
called the basic reproduction number. That is

R0 =
∫ ∞

0
R0(a) da.

The flow of the first generation of new infected produced by a single
infected patient who has been infected for a days is called the daily
reproduction numbers. When the time unit is one day, the function
R0(a) is also the average daily number of case produced by a single
patient at the age of infection a.
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Computing the age dependent reproduction number
Γ(a) from the data

Computing Γ(a) from the data

Assume in addition that the parameters t0, S0 > 0, I0 > 0, ν > 0,
and the function t → τ(t) are known. Then the function t → Γ(t)
can be obtained from the flow of new infected t → N(t), as the
unique solution of the Volterra integral equation

Γ(t− t0) = 1
I0

(
N(t)

τ(t)S(t) −
∫ t−t0

0
Γ(a)N(t− a)da

)
,∀t ≥ t0,

where
S(t) = S0 −

∫ t

t0
N(σ)dσ, ∀t ≥ t0.
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Day by day Kermack-McKendrick model with age of
infection

Day by day single cohort model and daily basic reproduction
number

Assume that t → τ(t) equal τ0, and t → S(t) is constant equal to
S0. Assume that the epidemic starts at time t0 with a cohort of I0
new infected patients (i.e. with age of infection a = 0). The model
with a single cohort of infected becomes a discrete Volterra equation

N(t) =
[
R0(t− t0)× I0 +

t−t0∑
d=1

R0(d− 1)×N(t− d)
]
,∀t ≥ t0.

Define a = t − t0, the age since t0, we obtain an equation for the
daily reproduction number

R0(a) = N(t0 + a)
I0

− 1
I0

a∑
d=1

R0(d− 1)×N(t0 + a− d),∀a ≥ 0.
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This gives

N(t0) = R0(0)I0,

N(t0 + 1) = R0(1)I0 +R0(0)N(t0),

N(t0 + 2) = R0(2)I0 +R0(1)N(t0 + 2− 2) +R0(0)N(t0 + 2− 1)

N(t0 + 3) = R0(3)I0 +R0(2)N(t0 + 3− 3) +R0(1)N(t0 + 3− 2)

+R0(0)N(t0 + 3− 1),
...
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We obtain
N(t0) = R0(0)I0,

N(t0 + 1) = R0(1)I0 +R0(0)N(t0),

N(t0 + 2) = R0(2)I0 +R0(1)N(t0) +R0(0)N(t0 + 1)

N(t0 + 3) = R0(3)I0 +R0(2)N(t0) +R0(1)N(t0 + 1) +R0(2)N(t0 + 2),
...

which is equivalent to
R0(0) = N(t0)/I0,

R0(1) =
(
N(t0 + 1)−R0(0)N(t0)

)
/I0,

R0(2) =
(
N(t0 + 2)−R0(1)N(t0)−R0(0)N(t0 + 1)

)
/I0,

R0(3) =
(
N(t0 + 3)−R0(2)N(t0)−R0(1)N(t0 + 1)−R0(2)N(t0 + 2)

)
/I0,

...
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Numerical simulations

In the simulations, the unit of time is one day, and we fix

S0 = 107 = 10 000 000, 1/ν = 9 days, and R0 = 1.1.

For each function β(a) described below, the parameter τ is obtained nu-
merically by using the following formula

τ = R0
S0
∫∞

0 β(a)e−νada,

where the integral is computed by using the Simpson integration method.
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Numerical simulations
Stochastic simulations: Individual Based Model (IBM)

In order to estimate the uncertainty expected in real datasets, we use
stochastic simulations that reproduce the first stages of the epidemic in
finite populations.
We consider a population composed of a finite number

N = S0 + I0

of individuals. We start the simulation a time t = 0 with
S0 ∈ N susceptible individuals
and
I0 ∈ N infected individuals all with age of infection a = 0.

For each infected individuals we also compute the time spent in the I-
compartment which follows an exponential law with parameters 1/ν.
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The principles of the simulations are as follows:
1 Individuals meet at random at rate τ > 0. In other words, each pair

of individual in the population has a contact which occurs at a time
following an exponential law of average 1/τ .

2 When a contact occurs between an infected individual of age a and a
susceptible individual, the contact results in a newly infected
individual of age 0 with probability β(a).

3 When the infection occurs, the newly infected individual is assigned a
duration of infection which follows an exponential law of rate ν.
Therefore individuals stay infected on average for a duration of 1/ν.

4 The age of all individuals is updated at fixed intervals of time of size
∆t. Simultaneously the life-span of each infected invidual is decreased
by ∆t and individuals whose life-span has become negative are
removed from the system.

The MATLAB code of the IBM is available online at:
https://github.com/romainvieme/2022-kermack-mckendrick-single-cohort.
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Numerical simulations
Numerical evidence of the convergence of the IBM to the deterministic model

It is common to see biphasic flu clinically: after incubation of one day,
there is a high fever, then a drop in temperature before rising again, hence
the term "V" fever9. Such a biphasic contagiousness is also observed in
COVID-19. The viral load in throat swab and sputum has been measured
for COVID-19 patients, which leads to biphasic contagiousness10,11 .

9D. L. Chao, M. E. Halloran, V. J. Obenchain, & Jr, I. M Longini (2010),
FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS
computational biology, 6(1), e1000656.

10Y. Pan, D. Zhang, P. Yang, L. L. M. Poon, and Q. Wang (2020), Viral load of
SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases, 20(4), 411-412.

11J. Demongeot, K. Oshinubi, M. Rachdi, H. Seligmann, F. Thuderoz & J.
Waku (2021), Estimation of Daily Reproduction Rates in COVID-19 Outbreak.
Computation, 9, 109.
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To cover these type of infectious diseases, we introduce the following form
for the probability to be infectious

β(a) = 0.5× 4q {(a− a0) (1− q(a− a0))}+ + 4q {(a− pa0) (1− q(a− pa0))}+
,

(20)
with a0 = 3 days, p = 2.5, and q = 0.3.
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Figure: On the left-hand side, we plot the function a→ β(a). On the right-hand
side, we plot the function a→ R0(a) = τ0 × S0 × β(a)× e−νa.



52/60

(a)

0 2 4 6 8 10 12 14 16 18 20

Age since infection

0

0.2

0.4

0.6

0.8

1

S
e
c
o

n
d

a
ry

 c
a
s
e
s

Standard Deviation

95% Confidence Interval

Average

Deterministic

(b)

0 2 4 6 8 10 12 14 16 18 20

Age

0

0.05

0.1

0.15

0.2

0.25

0.3

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

s
e
c
o

n
d

a
ry

 c
a
s
e
s

(c)

0 1 2 3 4 5 6 7

Number of secondary cases

0

0.1

0.2

0.3

0.4

0.5

P
ro

b
a

b
il

it
y

Figure: In these figures, we present sets of 500 samples of secondary cases
produced by a single infected individual in a population of S = 107 susceptible
hosts. Theses samples are produced by using the IBM. (a) Statistical summary:
the blue curve represents the average number of cases at age of infection a; the
dark blue area is the 95% confidence interval of this average obtained by fitting a
Gaussian distribution to the data; the light blue area corresponds to the standard
deviation; the orange curve is the deterministic daily basic reproductive number at
age a. (b) Bar graph of the average number of secondary cases as a function of
the age since infection. (c) Histogram of the total number of secondary cases
produced during the whole infection. This estimates the probability of a single
infected to generate n secondary cases (with n in the abscissa).
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Figure: On the left-hand side, we plot the function t→ N(t) solution of the
continuous Volterra integral equation. On the right-hand side, we plot the
function t→

∫ t
t−1 N(s)ds (for t = 1, 2, . . .) which corresponds to the daily

number of cases obtained by solving our Volterra equation, and we compare it
with the daily number of cases obtained from 500 runs of the IBM. The top two
figures correspond to I0 = 10, and the bottom two figures to I0 = 1 000.
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Figure: On the left hand side, we plot the daily number of t→
∫ t
t−1 N(s)ds (for

t = 0, 1, 2, . . .) by using the continuous Volterra integral equation for N(t) with
I0 = 10 (top) and I0 = 1 000 (bottom). On the right-hand side, we apply formula
(44) to the flow of new infected obtained from the deterministic model. In the
top two figures we vary I0 = 6, 10, 14. In the bottom two figures we vary
I0 = 600, 1000, 1400. In both cases, the yellow curve gives the best visual fit, and
the R0(a) becomes negative whenever I0 becomes too small.
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Figure: On the left-hand side, we plot the daily number of cases t→ N(t) (for
t = 0, 1, 2, . . .) obtained on the top from a single run of the IBM, and the bottom
by summing the daily number of cases for 500 IMB runs. On the right-hand side,
we apply formula the continuous Volterra integral equation for R0(t) (with
I0 = 10) to the daily number of cases obtained from the IBM. The top two
figures correspond to I0 = 10, and the bottom two figures to I0 = 500× 10.
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Figure: On the left-hand side, we plot the daily number of cases t→ N(t) (for
t = 0, 1, 2, . . .) obtained on the top from a single run of the IBM, and the bottom
by summing the daily number of cases for 500 IMB runs. On the right-hand side,
we apply formula the continuous Volterra integral equation for R0(t) (with
I0 = 1 000) to the daily number of cases obtained from the IBM. The top two
figures correspond to I0 = 1 000, and the bottom two figures to I0 = 500× 1 000.
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Application to SARS-CoV-1
(a) (b)
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Figure: (a) We plot the contact network of the five super spreader cases in the
SARS epidemic in Singapore in 2003 (CDC report). The super spreaders are
patient 1, patient 6, patient 35, patient 130 and patient 127. (b) Daily reported
cases from Singapore for the epidemic of SARS in 2003. Case 1 generated 21
cases and 3 suspected cases, case 2 generated 23 cases and 5 suspected cases,
case 3 generated 23 cases and 18 suspected cases, case 4 generated 40 cases and
22 suspected cases, case 5 generated 15 cases and 0 suspected cases (CDC
report). The cases 1,2,3,4,5 correspond respectively to the patients 1, 6, 35, 130
and 127. (c) Regularizations of the daily cases data from the SARS-CoV-1
outbreak in Singapore (CDC report). The blue curve corresponds to a step
function, the orange curve to a Gaussian weekly average, and the gray curve to a
rolling weekly average. The applications in the next Figure are done with the
“Rolling Weekly” regularization.



58/60

Mar 04 Mar 11 Mar 18 Mar 25 Apr 01 Apr 08 Apr 15

2003   

0

2

4

6

8
Model

Data

0 10 20 30 40 50 60
-1

-0.5

0

0.5

1

I
0
=30

I
0
=50

I
0
=100

Figure: Left: Regularized data of the SARS-CoV-1 outbreak in Singapore in 2003
(CDC report) (black line) and the numerical solution of the Volterra integral
equation with I0 = 30 and R0(a) computed by using the single cohort model. The
solutions N(t) of the model with I0 = 50 and I0 = 100 are exactly the same than
the data when we use the corresponding R0(a), therefore they are not represented
here. Right: numerical solution of the R0(a) function computed by using the
continuous model Volterra integral equation with I0 = 30, I0 = 50 and I0 = 100.
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Thank you for listening


