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The Malthusian Model

Let N(t) be the number of individuals in a population. Probably the first
model to describe the growth of a population is the model of Malthus [66]
(1798), which reads as follows

dN(t)
dt = bN(t)︸ ︷︷ ︸

Flux of newborn

− mN(t)︸ ︷︷ ︸,
Flux of exiting or death

(1)

where b ≥ 0 is the birth rate and m ≥ 0 is the mortality rate.
Equation (1) must be supplemented by initial data

N(t0) = N0 ≥ 0, (2)

where N0 ≥ 0 is the number of individuals at time t0.
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The Malthusian Model

If we integrate equation (1) over the interval [t, t+ ∆t], we obtain

N(t+ ∆t) = N(t) +
∫ t+∆t

t
bN(σ)dσ −

∫ t+∆t

t
mN(σ)dσ. (3)

When we talk about the flux of newborn (respectively the flux of exiting or
death), we mean that by integrating in time over the interval [t, t+ ∆t] we
obtain ∫ t+∆t

t
bN(σ)dσ,

(
respectively

∫ t+∆t

t
mN(σ)dσ

)
,

the number of newborn individuals (respectively the number of exiting or
dead individuals) during the time interval [t, t+ ∆t].
The growth rate of the population is defined as r = b − m and we can
rewrite the equation as

dN(t)
dt = rN(t). (4)
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The Malthusian Model

If we assume that N(t) > 0 for all t ≥ t0, then

N′(t)
N(t) = r, ∀t ≥ t0,

⇔
∫ t

t0

N′(σ)
N(σ) dσ =

∫ t

t0
r dσ, ∀t ≥ t0,

⇔ ln(N(t))− ln(N(t0)) = r (t− t0) , ∀t ≥ t0,

therefore we obtain

N(t) = N0 exp (r (t− t0)) , ∀t ≥ t0. (5)

Remark 1.1
By computing the derivative of the formula obtained in (5) we deduce that
this formula remains a solution whenever N0 ≤ 0.
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The Malthusian Model

In practice we fix a time step ∆t (equal to one year, one month, one day
etc . . . ) and by using (4) we obtain the formula

N(t+∆t) = N(t) exp (r∆t) , ∀t ≥ t0 ⇔ ln
(N(t+ ∆t)

N(t)

)
= r∆t, ∀t ≥ t0.

(6)

This means that the function t→ ln
(N(t+ ∆t)

N(t)

)
is constant in time, and

r∆t = ln
(N(t+ ∆t)

N(t)

)
= ln (N(t+ ∆t))− ln (N(t)) , ∀t ≥ t0. (7)

Hence r is the log variation of N(t) per unit of time ∆t.
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The Malthusian Model
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Figure: In this figure we plot t→ 100 exp(rt) over the time interval [0, 10] and
choose r = 0.15, r = 0 and r = −0.15 from the top to the bottom.
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The Malthusian Model

This model predicts that
• If r = 0 the population size is stationary or constant (in time).
• If r > 0 the population size grows exponentially and never stops
growing.
• If r < 0 the population size approaches 0 as the time goes to infinity.

In other words, the population becomes extinct after an infinite time.
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The Time Periodic Population Dynamics Model
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The Time Periodic Population Dynamics Model

The continuous model assumes that the flux of newborns and the flux of
death are constant in time. In most wild populations reproduction takes
place seasonally, and mortality is also influenced by the seasons (tempera-
ture, food availability, etc...). The same is true for humans, who are more
susceptible to viruses in winter (for example), so the seasons also matter for
human populations. The cells in our body do not have the same activity
during the day as they do at night. This is the so-called circadian rhythm.
Therefore it makes sense to consider the following extended version of the
Malthusian model

dN(t)
dt = r(t) N(t), ∀t ≥ t0 and N(t0) = N0 ≥ 0. (8)

The time-dependent growth rate r(t) can be defined by

r(t) = b(t)−m(t), ∀t ≥ t0,

where b(t) and m(t) are respectively the time-dependent birth rate and
mortality rate.
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The Time Periodic Population Dynamics Model
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Figure: In this figure we plot the birth rate t→ b(t) = 2 (cos(2π(t+ 0.6)) + 1) in
figure (a), the death rate t→ m(t) = cos(2πt) + 1 in figure (b) and we plot the
growth rate t→ b(t)−m(t) in figure (c).
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The Time Periodic Population Dynamics Model

In Figure 2, if the time t0 = 0 corresponds to January 1, the mortality of
the animals will reach a maximum and therefore it makes sense to consider
a mortality rate having the following form

m(t) = cos(2πt) + 1.

The births will take place mostly around June, so it makes sense to consider
a birth rate having the following form

b(t) = 2 (cos(2π(t+ 0.6)) + 1).

The birth rate b(t), the death rate or mortality ratem(t) and the growth rate
r(t) = b(t)−m(t) are represented in Figure 2 (a), (b) and (c) respectively.
The solutions of the periodic Malthusian model are represented in Figure 3
and in Figure 4 with a log scale.
In Figures 3 and 4 we are using the following formula for the solution

N(t) = N0e
∫ t
t0
r(σ)dσ

, ∀t ≥ t0.
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The Time Periodic Population Dynamics Model

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

Figure: In this figure we plot

t→ N(t) = 100× exp
(∫ t

0
2 (cos(2π(σ + 0.6)) + 1))− (cos(2πσ) + 1) dσ

)
.
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The Time Periodic Population Dynamics Model
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Figure: In this figure we plot

t→ N(t) = 100× exp
(∫ t

0
2 (cos(2π(σ + 0.6)) + 1))− (cos(2πσ) + 1) dσ

)
.
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The Time Periodic Population Dynamics Model

By comparing Figure 3 and Figure 4 we can see that making some nonlinear
transformation on the number of individuals may completely change our
understanding of the solution. Indeed it is difficult to say anything about
Figure 3, which looks complex already, while we can see that Figure 4
involves some periodic growth. The same thing could happen for data
involving the seasonal growth of populations.
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The Discrete-Time Population Dynamics Model
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The Discrete-Time Population Dynamics Model

For the time-periodic population dynamics model, the period ∆t could be
one day (if we are talking about a cell growing in a dish); one year (if we
are considering populations subject to seasonal changes), etc...
In periodic Malthusian models, we can take advantage of the periodicity to
summarize the growth by using a single parameter over the whole period of
time ∆t. Remember that

N(t) = e
∫ t
t0
r(σ)dσ

, ∀t ≥ t0 and N(t0) = N0 ≥ 0. (9)

Assume that t→ r(t) is ∆t-periodic, that is,

r(t+ ∆t) = r(t), ∀t ∈ R.

Then
d
dt

∫ t+∆t

t
r(σ)dσ = r(t+ ∆t)− r(t) = 0,

and the map t→
∫ t+∆t
t r(σ)dσ is constant.
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The Discrete-Time Population Dynamics Model

We deduce that
N(t+ ∆t) = RN(t), ∀t ≥ t0,

where
R = exp

(∫ t0+∆t

t0
r(σ)dσ

)
.

Moreover, by defining

tn = n×∆t+ t0, ∀n ∈ N,

and
Un := N(tn), ∀n ∈ N,

we have

tn+1 = tn + ∆t and Un+1 := N(tn + ∆t), ∀n ∈ N.
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The Discrete-Time Population Dynamics Model

So we obtain the difference equation

Un = RUn−1, ∀n ∈ N with U0 = N0. (10)

The above equation can be rewritten equivalently as follows

Un = Rn U0, ∀n ∈ N, (11)

where
Rn = R×R× . . .×R︸ ︷︷ ︸

n times

.
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The Discrete-Time Population Dynamics Model

The qualitative behavior of the solution is completely determined by com-
paring R to 1:
• If R = 1 the population size is stationary or constant (in time).
• If R > 1 the population size grows exponentially and never stops
growing.
• If R < 1 the population size approaches 0 as the time goes to infinity.

In other words, the population becomes extinct in infinite time.
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The Discrete-Time Population Dynamics Model
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Figure: In this figure we plot n→ 100×Rn over the time interval [0, 10] and
choose R = exp(0.15) (green), R = 1 (orange) and R = exp(−0.15) (blue) from
the top to the bottom.
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The Discrete-Time Population Dynamics Model

In vitro experiments allow the computation of r and R. For example, the
above formula is used to compute the so-called growth rate in cell cultures
(in a Petri dish). In vivo, exponentially growing populations can also be
observed by looking at an invading population. Otherwise, after the popu-
lation has become well established, some limitations (for food, space, etc...)
will limit the exponential growth and another behavior (with a saturation)
will occur.
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The Discrete-Time Population Dynamics Model

A natural question to address is the following:
Does a population (without limitation) always grow exponentially?

We can also ask the following question:
Is there a unique growth rate for the population that does not
depend on how much time has elapsed since the population was
established?

To investigate this question, in the next section we consider a discrete-time
age-structured model and we will see what can be kept from the Malthusian
models.
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The Discrete-Time Leslie Model With Two Age Classes
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The Discrete-Time Leslie Model With Two Age Classes

In this section, we consider the so-called Leslie model (1945) [50, 51]. The
Leslie model is a discrete-time age-structured population dynamics model.
When we consider only two age classes, this model reads as follows{

N1(t+ 1) = β1N1(t) + β2N2(t),
N2(t+ 1) = π1N1(t), (12)

for each t ∈ N (time in year) with the initial distribution(
N1(0)
N2(0)

)
=
(
N0

1
N0

2

)
. (13)
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The Discrete-Time Leslie Model With Two Age Classes

The parameters of the system as well as the state variables are defined
below.
• β1 is the average number of offspring produced per individuals in the

first age class (i.e. with age a ∈ [0, 1));
• β2 is the average number of offspring produced per individuals in the

second age class (i.e. with age a ∈ [1, 2));
• π1 ∈ [0, 1] is the probability to survive from the first age class to the

second age class;
• N1(t) is the number of individuals in the first age class at time t.
That is, the number of individuals with age a ∈ [0, 1) at time t;
• N2(t) is the number of individuals in the second age class at time t.
That is, the number of individuals with age a ∈ [1, 2) at time t.
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The Discrete-Time Leslie Model With Two Age Classes

The total number of individuals in the population at time t is given by

N(t) := N1(t) +N2(t).
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The Discrete-Time Leslie Model With Two Age Classes

The diagram of flux is presented in Figure 6. The loop for the first age class
corresponds to the individuals that reproduce immediately after their birth.
This is possible if we consider some insects like mosquitoes, for example.

Age class 1 (N1)

Age class 2 (N2)

π1N1

β1N1

β2N2

(1 − π1)N1

Mortality

N2

Mortality

Figure: Diagram of flux for the two age classes model (12).
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The Discrete-Time Leslie Model With Two Age Classes

This model is obtained by using the following description

N1(t+ 1) = number of offspring produced by the first age during the
period [t, t+ 1]

+ number of offspring produced by the second age during the
period [t, t+ 1]

and

N2(t+ 1) = number of individuals in the first age class who survived the period
of time [t, t+ 1].
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The Discrete-Time Leslie Model With Two Age Classes

The system (12) can be rewritten in matrix form as(
N1(t+ 1)
N2(t+ 1)

)
=
(
β1 β2
π1 0

)(
N1(t)
N1(t)

)
, (14)

where the matrix
L =

(
β1 β2
π1 0

)
(15)

is called a Leslie matrix.
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The Discrete-Time Leslie Model With Two Age Classes

We observe that(
N1(2)
N2(2)

)
= L×

(
N1(1)
N2(1)

)
= L× L

(
N1(0)
N2(0)

)

therefore by using an induction argument we obtain(
N1(n)
N2(n)

)
= Ln

(
N1(0)
N2(0)

)
, ∀n ≥ 0,

where
Ln = L× L× . . .× L︸ ︷︷ ︸

n times

.
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The Discrete-Time Leslie Model With Two Age Classes The special case β1 = 0

The special case β1 = 0

In the special case β1 = 0 the Leslie matrix L has the following form

L =
(

0 β2
π1 0

)
,

and it follows that

L2 = L× L =
(
β2π1 0

0 β2π1

)
= β2π1

(
1 0
0 1

)
.
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The Discrete-Time Leslie Model With Two Age Classes The special case β1 = 0

Therefore
L2 = γ2I,

where
I =

(
1 0
0 1

)
and γ =

√
β2π1.

By using this observation we deduce that

L2 = γ2I,
L3 = L× L× L = γ2L,
L4 = L× L× L× L = L2 × L2 = γ4I,

and by induction, we deduce that for each integer n ≥ 0

L2n = L2 × L2 × . . .× L2︸ ︷︷ ︸
n times

= γ2nI

and
L2n+1 = L2n × L = γ2nL.
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The Discrete-Time Leslie Model With Two Age Classes The special case β1 = 0

In this special case the population grows but the direction of the distribution
(N1(n), N2(n)) may change a lot.
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Figure: In this figure we plot (N1(n), N2(n)) where n varies from 0 to 6.
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The Discrete-Time Leslie Model With Two Age Classes The special case β1 = 0
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Figure: In this figure we plot n→ N(n) = N1(n) +N2(n) over the time interval
[0, 6].
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The Discrete-Time Leslie Model With Two Age Classes The special case β1 = 0

By using Figures 7 and 8 we obtain undamped oscillations for the direction
of the population distribution. The population grows like an exponential,
but with a large oscillation.
In this special case, we may try to find some initial distribution that gives a
constant direction (i.e. we can look for some non-negative eigenvector). In
other words, we look for a non-negative vector (N?

1 , N
?
2 ) such that

L

(
N?

1
N?

2

)
= γ

(
N?

1
N?

2

)
,

where γ =
√
β2π1. We have

L

(
N?

1
N?

2

)
= γ

(
N?

1
N?

2

)
⇔
{
β2N

?
2 = γN?

1
π1N

?
1 = γN?

2
⇔ N?

1 =
√
β2
π1
N?

2 .
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The Discrete-Time Leslie Model With Two Age Classes The special case β1 = 0

Therefore starting from

N?
1 =

√
β2
π1

and N?
2 = 1,

the direction of the population distribution does not change over time.
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The Discrete-Time Leslie Model With Two Age Classes The special case β1 = 0

In Figure 9 we observe that this direction is preserved.
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Figure: In this figure we plot (N1(n), N2(n)) where n varies from 0 to 6. The

MATLAB code uses the initial distribution N1(0) =
√
β2

π1
and N2(0) = 1.
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The Discrete-Time Leslie Model With Two Age Classes The special case β1 = 0

In Figure 10 we observe a Malthusian growth with no oscillations around
the exponential.
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Figure: In this figure we plot n→ N(n) = N1(n) +N2(n) over the time interval

[0, 6]. The MATLAB code uses the initial distribution N1(0) =
√
β2

π1
and

N2(0) = 1.

Pierre Magal Lecture 1 Winter School Valparaíso 39 / 128



The Discrete-Time Leslie Model With Two Age Classes The special case β2 = 0

The special case β2 = 0

In the special case β2 = 0 the Leslie matrix L has the following form

L =
(
β1 0
π1 0

)
and it follows that

L2 =
(

β2
1 0

π1β1 0

)
and by induction

Ln =
(

βn1 0
π1β

n−1
1 0

)
= βn−1

1 L, ∀n = 1, 2, 3, . . . .

We deduce that

Ln
(

1
0

)
= βn−1

1

(
β1
π1

)
, and Ln

(
0
1

)
=
(

0
0

)
.
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The Discrete-Time Leslie Model With Two Age Classes The special case β2 = 0
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Figure: In this figure we plot (N1(n), N2(n)) where n varies from 0 to 6. The
MATLAB code uses the initial distribution (N1(0), N2(0)) is either (1, 0), (0, 1)
or (1, 1). We use π1 = 0.5 and β1 = 2.5.

Pierre Magal Lecture 1 Winter School Valparaíso 41 / 128



The Discrete-Time Leslie Model With Two Age Classes The special case β2 = 0
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Figure: In this figure we plot n→ N(n) = N1(n) +N2(n) over the time interval
[0, 6]. The MATLAB code uses the initial distribution (N1(0), N2(0)) is either
(1, 0), (0, 1) or (1, 1). We use π1 = 0.5 and β1 = 2.5.
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The Discrete-Time Leslie Model With Two Age Classes The special case β1 > 0 and β2 > 0

The special case β1 > 0 and β2 > 0

The case β1 > 0 and β2 > 0 is considered in Chapter 4, devoted to the
so-called Perron–Frobenius theorem (see [72] and [25, 26]). Actually from
this theorem, we obtain an asynchronous exponential growth result.
In Chapter 4, we will see that there exists a constant λ > 0 and two
strictly positive vectors Vr ∈ (0,+∞)2, a right eigenvector of L (i.e. LVr =
λVr), and Vl ∈ (0,+∞)2, a left eigenvector of L (i.e. V T

l L = λV T
r ), with

〈Vl, Vr〉 = 1 such that

lim
n→+∞

1
λn
LnU(0) = 〈Vl, U0〉Vr,

where 〈·, ·〉 is the Euclidean scalar product.
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The Discrete-Time Leslie Model With Two Age Classes The special case β1 > 0 and β2 > 0
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Figure: In this figure we plot (N1(n), N2(n)) where n varies from 0 to 6. The
MATLAB code uses the initial distribution (N1(0), N2(0)) is either (1, 0), (0, 1)
or (1, 1). We use π1 = 0.5 and β1 = β2 = 1.01.
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The Discrete-Time Leslie Model With Two Age Classes The special case β1 > 0 and β2 > 0
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Figure: In this figure we plot n→ N(n) = N1(n) +N2(n) over the time interval
[0, 6]. The MATLAB code uses the initial distribution (N1(0), N2(0)) is either
(1, 0), (0, 1) or (1, 1). We use π1 = 0.5 and β1 = β2 = 1.01.
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Leslie Models With an Arbitrary Number of Age Classes
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Leslie Models With an Arbitrary Number of Age Classes

Before describing the general Leslie model, let us consider the Leslie model
with three age classes. By using the same notation and the same idea as
the model with two age classes we can write the following model

N1(t+ 1) = β1N1(t) + β2N2(t) + β3N3(t),
N2(t+ 1) = π1N1(t),
N3(t+ 1) = π2N2(t),

(16)

for each t ∈ N (time in year) with the initial distribution N1(0)
N2(0)
N3(0)

 =

 N0
1

N0
2

N0
3

 .
The Leslie system (16) can be rewritten in the following matrix form N1(t+ 1)

N2(t+ 1)
N3(t+ 1)

 =

 β1 β2 β3
π1 0 0
0 π2 0


 N1(t)
N2(t)
N3(t)

 .
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Leslie Models With an Arbitrary Number of Age Classes

Therefore the Leslie matrix corresponding to three age groups takes the
following form

L =

 β1 β2 β3
π1 0 0
0 π2 0

 .
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Leslie Models With an Arbitrary Number of Age Classes

Age class 1 (N1)

Age class 2 (N2)

Age class 3 (N3)

π1N1

π2N2

β1N1

β2N2

β3N3

(1 − π1)N1

Mortality

(1 − π2)N2

Mortality

N3

Mortality

Figure: Diagram of flux for the three age classes model. The loop for the first age
class corresponds to the individuals that reproduce immediately after their birth
(as in some insects, like mosquitoes).
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Leslie Models With an Arbitrary Number of Age Classes

The Leslie model can be extended to an arbitrary number of age classes
n ≥ 2 

N1(t+ 1) = β1N1(t) + β2N2(t) + · · ·+ βnNn(t),
N2(t+ 1) = π1N1(t),
...
Nn(t+ 1) = πn−1Nn−1(t),

(17)

for each t ∈ N (time in years) with the initial distribution
N1(0)
N2(0)

...
Nn(0)

 =


N0

1
N0

2
...
N0
n

 .
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Leslie Models With an Arbitrary Number of Age Classes

Age class 1 (N1)

Age class 2 (N2)

Age class n (Nn)

π1N1

β1N1

β2N2

βnNn

(1 − π1)N1

Mortality

(1 − π2)N2

Mortality

Nn

Mortality

Figure: Diagram of flux for the n age classes model. The loop for the first age
class corresponds to individuals that reproduce immediately after their birth.
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Leslie Models With an Arbitrary Number of Age Classes

The system (17) can be rewritten in matrix form as the following vector-
valued difference equations


N1(t+ 1)
N2(t+ 1)

...
Nn(t+ 1)

 =


β1 β2 β3 . . . βn
π1 0 0 . . . 0
0 π2 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 πn−1 0




N1(t)
N2(t)

...
Nn(t)

 , ∀t = 0, 1, . . . .

(18)
The corresponding Leslie matrix is the following

L =


β1 β2 β3 . . . βn
π1 0 0 . . . 0
0 π2 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 πn−1 0

 .
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Leslie Models With an Arbitrary Number of Age Classes

Figure: In this figure we plot a solution t→ u(t, a) of the Leslie model with
a ∈ [0, 20]. The reproduction function is defined by β(a) = 0.8 ∗∆a if a > 5 and
β(a) = 0 otherwise. The survival rate is π(a) = exp(−0.1 ∗∆a). The initial
distribution is constant, equal to 1. We observe that it takes 40 years for the
distribution of population to grow exponentially.
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Leslie Models With an Arbitrary Number of Age Classes

Figure: In this figure we plot a normalized solution t→ u(t, a)/Σi=0,...,20u(t, i) of
the Leslie model a ∈ [0, 20]. The reproduction function is defined by
β(a) = 0.8 ∗∆a if a > 5 and β(a) = 0 otherwise. The survival rate is
π(a) = exp(−0.1 ∗∆a). The initial distribution is constant, equal to 1. We
observe the convergence of the normalized distribution when the time becomes
large enough.
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Leslie Models With an Arbitrary Number of Age Classes

Remark 5.1
The above convergence result of the normalized distribution is a
consequence of the Perron–Frobenius theorem. This example will be
reconsidered in the lecture devoted to Perron–Frobenius theorem.
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The Continuous-Time Leslie Models With an Arbitrary Number of
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The Continuous-Time Leslie Models With an Arbitrary Number of
Age Classes

Instead of considering a discrete-time age-structured model we can also look
at a continuous-time model with a discrete number of age classes as before.
By using the same notations and the same model idea as the model with
two age classes we can write the following model

N1(t)′ = β1N1(t) + · · ·+ βnNn(t)︸ ︷︷ ︸
Flux of newborn

− µ1 N1(t)︸ ︷︷ ︸
Exit or death

− η1N1(t),︸ ︷︷ ︸
Flux going to class 2

N2(t)′ = η1N1(t)− µ2 N2(t)︸ ︷︷ ︸
Exit or death

− η2N2(t),︸ ︷︷ ︸
Flux going to class 3

...
Nn(t)′ = ηn−1Nn−1(t)− µn Nn(t)︸ ︷︷ ︸

Exit or death

− ηnNn(t),︸ ︷︷ ︸
Flux of individuals

getting older

(19)
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The Continuous-Time Leslie Models With an Arbitrary Number of
Age Classes

for each t ∈ N (time in years) with the initial distribution
N1(0)
N2(0)

...
Nn(0)

 =


N0

1
N0

2
...
N0
n

 .
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The Continuous-Time Leslie Models With an Arbitrary Number of
Age Classes

The system (19) can be rewritten in matrix form as
N(t)′ = M N(t),

where the matrix of the system is the difference of two matrices
M = L−D,

where L is again a Leslie matrix defined by

L =


β1 β2 β3 . . . βn
η1 0 0 . . . 0
0 η2 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 ηn−1 0


and D is the diagonal matrix

D =


µ1 + η1 0 . . . 0

0 µ2 + η2
. . .

...
...

. . . . . . 0
0 . . . 0 µn + ηn

 .
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A Patch Model With Two Cities
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A Patch Model With Two Cities

In this section, we follow an idea of Sattenspiel and Dietz [82]. We present
a patch model adapted to intercity movement. Our goal is to explain how
to derive the parameters of the model in practice.
Our goal is to propose a short-term patch model to describe the movement
of individuals during a few months (1–6 months). Therefore we can neglect
the vital birth and death dynamic. In the case of an epidemic, we assume
that the number of deaths does not significantly change the number of
individuals in a given city.
To build our patch model, we make the following assumptions.

Assumption 7.1
We assume that the time spent in city 2 by visitors from city 1 follows an
exponential law, and the average length of stay is 1/ρ21.
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A Patch Model With Two Cities

Let us start with two cities. Define
1) U11(t) the number of individuals from city 1 staying in city 1
and
2) U21(t) the number of individuals from city 1 traveling in city 2 if
i = 2.

The total number of individuals originating from city 1 is

U1 = U11(t) + U21(t), (20)

which is assumed to be constant for simplicity.
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A Patch Model With Two Cities

The model is given by



U ′11(t) = −Γ12(t) +ρ21U21

U ′21(t) = + Γ12(t)︸ ︷︷ ︸
Flux of individuals
traveling to city 2

from city 1

− ρ21U21︸ ︷︷ ︸
Flux of individuals

returning back home

(21)

In our model ρ21U21 is the flux of individuals returning back home to city
1 after a trip in city 2. In order to apply our model we need to determine
1/ρ21, the average length of stay in city 2 for individuals originating from
city 1. Moreover, Γ12 is the flux of individuals living in city 1 who are
traveling in city 2.
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A Patch Model With Two Cities

Assumption 7.2
We assume that the number of individuals originating from city 1 who are
traveling in city 2 is

U21 = f21 U11, (22)

where f21 ≥ 0.
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A Patch Model With Two Cities

Remark 7.3

From (20) and (22) we have

U1 = (1 + f21)U11 ⇔ U11 = 1
1 + f21

U1,

therefore (22) is equivalent to

U21 = f21
1 + f21

U1 = p21 U1.

We observe that

p21 = f21
1 + f21

⇔ f21 = p21
1− p21

.

Therefore the parameter f21 in (22) can be computed by using p21 ∈ (0, 1),
which is the fraction of individuals living in city 1 and traveling in city 2.
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A Patch Model With Two Cities

By substituting U21 = p21U1 (on the left-hand side) and U21 = f21 U11 (on
the right-hand side) of the U2-equation into the second equation of (21) we
get

0 = +Γ12(t)− ρ21f21 U11(t). (23)

Therefore we obtain
Γ12(t) = ρ21 f21 U11(t).

Hence the patch model describing the movement of individuals living in city
1 must be {

U ′11 = −ρ21f21 U11 +ρ21 U21
U ′21 = +ρ21f21 U11 −ρ21 U21.

(24)
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A Patch Model With Two Cities

Remark 7.4

Conversely by summing the two equations of (24), we obtain U1(t)′ = 0.
Moreover, by replacing U11 by U1 − U21 in the second equation of (24),
we obtain

U ′21 = +ρ21f21 (U1 − U21)− ρ21 U21 (25)

which is equivalent to

U ′21 = +ρ21f21 U1 − ρ21 (1 + f21)U21. (26)

Therefore
lim
t→∞

U21(t) = f21
1 + f21

U1 = p21U1.

Similarly,
lim
t→∞

U11(t) = (1− p21)U1.
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A Patch Model With Two Cities The model with two cities

The model with two cities

The movement of individuals living in city 1 with 2 cities is described by

(Individuals from city 1)
{
U ′11 = −ρ21f21 U11 +ρ21 U21
U ′21 = +ρ21f21 U11 −ρ21 U21.

(27)

City 1 City 2

ρ21f21U11

ρ21U21

Figure: Movement of individuals originating from city 1 with 2 cities.
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A Patch Model With Two Cities The model with two cities

The movement of individuals living in city 2 with 2 cities is described by

(Individuals from city 2)
{
U ′22 = −ρ12f12 U22 +ρ12 U12
U ′12 = +ρ12f12 U22 −ρ12 U12,

(28)

where U12 is the number of individuals originating from city 2 who are
traveling in city 1 and U22 is the number of individuals originating from city
2 staying in city 2. The total number of individuals in city 2 is

U2 = U12 + U22.

City 1 City 2

ρ12U12

ρ12f12U22

Figure: Movement of individuals originating only from city 2 with 2 cities.
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A Patch Model With Two Cities The model with two cities and without origin distinction

The model with two cities and without origin distinction

The previous models (27) and (28) allow more freedom in the movement
of individuals. Indeed, such models allow different behaviors for the people
who originate from each city. However, to simplify the model, we may wish
to reduce the number of parameters. The following reduction procedure can
be helpful.

To simplify the previous models (27) and (28), we write a model without dis-
tinguishing the origin of individuals. Indeed, the total number of individuals
staying in city 1 at time t is given by

U1. = U11 + U12

and the total number of individuals staying in city 2 at time t is given by

U2. = U21 + U22.
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A Patch Model With Two Cities The model with two cities and without origin distinction

By summing the first equation of (27) and the second equation of (28) we
obtain

U ′1. = −ρ21f21 U11 + ρ21 U21 + ρ12f12 U22 − ρ12 U12,

and by summing the second equation of (27) and the first equation of (28)
we obtain

U ′2. = +ρ21f21 U11 − ρ21 U21 − ρ12f12 U22 + ρ12 U12.

Assumption 7.5
Assume that ρ21f21 = ρ12 and ρ21 = ρ12f12.
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A Patch Model With Two Cities The model with two cities and without origin distinction

Under the above assumption, we obtain a model with two cities without
origin distinction {

U ′1. = −ρ12U1. +ρ12U2.,
U ′2. = ρ12U1. −ρ12U2..

(29)
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The model with N cities
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The model with N cities

City 1

City NCity 2

City 3 City N − 1

ρN
1
UN

1ρN
1
fN

1
U 1

1ρ
21 U

21ρ
21 f

21 U
11

ρ31U31

ρ31f3
1U11

ρN−1,1U
N−1,1

ρN−1,1fN−1,1U
N−1,1

Figure: Movement of individuals originating from city 1.
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The model with N cities

City i

City i− 1City i+ 1

City i+ 2 City i− 2

ρ i
−1

,i
U i
−1

,i

ρ i
−1

,i
f i−

1,
i
U i
,i

ρ
i+
1,i U

i+
1,i

ρ
i+
1,i f

i+
1,i U

i,i

ρi+2,i
Ui+2,i

ρi+2,i
fi+2,i

Ui,i ρi−2,iUi−2,i

ρi−2,ifi−2,iUi−2,i

Figure: Movement of individuals originating from city i.
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The model with N cities

The model describing the movement of individuals originating from city 1 is

(Individuals from city 1)

U ′11 = −
(

N∑
i=2

ρi1fi1

)
U11 +

∑N
i=2 ρi1 Ui1

U ′21 = +ρ21f21 U11 −ρ21 U21
...

...
...

U ′N1 = +ρN1fN1 U11 −ρN1 UN1.

(30)
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The model with N cities

The model describing the movement of individuals originating from city i is

(Individuals from city i)

U ′1,i = +ρ1,if1,i Ui,i −ρ1,i U1,i

...
...

...
U ′i−1,i = +ρi−1,ifi−1,i Ui,i −ρi−1,i Ui−1,i

U ′i,i = −

 ∑
j=2,...,i−1,i+1,...,N

ρj,ifj,i

 Ui,i +

 ∑
j=2,...,i−1,i+1,...,N

ρj,i Uj,i


U ′i+1,i = +ρi+1,ifi+1,i Ui,i −ρi+1,i Ui+1,i

...
...

...
U ′N,i = +ρN,ifN,i Ui,i −ρN,i UN,i.

(31)
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The model with N cities

Assumption 8.1

We assume that each city i = 1, . . . , N satisfies

ρj,ifj,i > 0, ∀j = 1, . . . , i− 1, i+ 1, . . . , N.
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The model with N cities

Due to Assumption 8.1, by using the Perron–Frobenius theorem there exists
a unique distribution p1,i > 0, . . . , pN,i > 0 such that

p1,i + · · ·+ pN,i = 1

and satisfying

0 = +ρ1,if1,i pi,i −ρ1,i p1,i
...

...
...

0 = +ρi−1,ifi−1,i pi,i −ρi−1,i pi−1,i

0 = −

 ∑
j=2,...,i−1,i+1,...,N

ρj,ifj,i

 pi,i +

 ∑
j=2,...,i−1,i+1,...,N

ρj,i pj,i


0 = +ρi+1,ifi+1,i pi,i −ρi+1,i pi+1,i
...

...
...

0 = +ρN,ifN,i pi,i −ρN,i pN,i.
(32)
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The model with N cities

Definition 8.2
The quantity pj,i is the proportion of individuals moving from city i to city
j.

As before we express the parameters fj,i as a function of pj,i

f1,i = p1,i
pi,i

...
fi−1,i = pi−1,i

pi,i
fi+1,i = pi+1,i

pi,i
...

fN,i = pN,i
pi,i

.

(33)
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The model with N cities

Remark 8.3
Due to seasonal variation between business trips and personal trips the
parameters of the model should vary in time. For example, the proportion
pj,i of individuals traveling from city i to city j and the length of stay
1/ρj,i in city j should both vary in time.
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A Diffusion Process Between N Aligned Cities

In this section we consider the heat equation. This equation is commonly
used in population dynamics to describe the movement of individuals. It
reads as follows 

∂tu(t, x) = ε∂2
xu(t, x), for x ∈ (0, 1) ,

∂xu(t, 0) = ∂xu(t, 1) = 0,
u(0, ·) = ϕ ∈ L2 (0, 1) .

The boundary conditions mean that there is no flux at the boundary.
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A Diffusion Process Between N Aligned Cities

To write the numerical scheme for this equation (i.e. a discrete version of
it) we set

uni = u(n∆t, i∆x).
Then the main part of the equation may be written for i = 2, ..., N − 1 as

un+1
i − uni

∆t = ε
1

∆x2
(
uni+1 − 2uni + uni−1

)
.

For i = 1 we obtain
un+1

1 − un1
∆t = ε

1
∆x2 [(un2 − un1 )− (un1 − un0 )]

and the boundary condition (un1 − un0 ) /∆x = 0 gives

un+1
1 − un1

∆t = ε
1

∆x2 (un2 − un1 ) .

Similarly for i = N we should have

un+1
N − unN

∆t = ε
1

∆x2
(
unN − unN−1

)
.
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A Diffusion Process Between N Aligned Cities

So we obtain the following explicit numerical scheme for the heat equation
for n ≥ 0

un+1 = un + ε∆t
∆x2Du

n,

with the initial distribution

u0 = u0 ≥ 0,

where

D =



−1 1 0 0

1 −2 1
0 1 −2 1

0

−2 1
0 0 1 −1


.
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A Diffusion Process Between N Aligned Cities

The numerical scheme may be rewritten as

un+1
i = uni + ε

∆t
∆x2

(
uni+1 − 2uni + uni−1

)
.

So we obtain for i = 2, . . . , N − 1,

un+1
i = p

2u
n
i+1 + (1− p)uni + p

2u
n
i−1

and for i = 1
un+1

1 = p

2u
n
2 +

(
1− p

2

)
un1

and for i = N

un+1
N =

(
1− p

2

)
unN + p

2u
n
N−1,

where
p := 2ε ∆t

∆x2 .
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A Diffusion Process Between N Aligned Cities

Therefore we can interpret the discrete model as follows. An individual in
city i, with 2 ≤ i ≤ N − 1, will move to city i− 1 or to city i+ 1, each with
probability p/2, or stay in city i with probability 1− p. An individual in city
1 or N will move to city 2 or N − 1, respectively, with probability p/2, or
stay with probability 1− p/2.

...
City 1 City 2 City N

p/2 p/2 p/2

p/2p/2p/2

1− p

2
1− p

2

1− p

Figure: Diagram of flux for a diffusion process between N aligned cities.

Pierre Magal Lecture 1 Winter School Valparaíso 87 / 128



A Diffusion Process Between N Aligned Cities

City N − 1 City Np/2

1− p

2

Figure: Diagram of flux of individuals leaving city N .
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A Diffusion Process Between N Aligned Cities

City i− 1 City i City i+ 1

p/2

p/2

1− p

Figure: Diagram of flux of individuals leaving city i.
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A Diffusion Process Between N Aligned Cities

City 1 City 2

p/2

1− p

2

Figure: Diagram of flux of individuals leaving city 1.
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A Diffusion Process Between N Aligned Cities

Definition 9.1
The condition p = 2 ε∆t∆x2 < 1 is called the Courant–Friedrichs–Lax
condition (CFL condition for short).

Let 1 := (1, . . . , 1)T . Then we obtain

D1 = 0 and 1TD = 0T

thus
(I + ε∆t

∆x2D)1 = 1 and 1T (I + ε∆t
∆x2D) = 1

T .

Therefore for each u0 ≥ 0,〈
1, un+1

〉
=
〈
1, un + ε∆t

∆x2Du
n
〉

= 〈1, un〉

and it follows that
N∑
i=0

uni =
N∑
i=0

u0i, ∀n ≥ 0.
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A Diffusion Process Between N Aligned Cities

Moreover, as a consequence of the Perron–Frobenius theorem, we have

lim
n→+∞

un =
(

N∑
i=0

u0i

)
1/N
1/N
...

1/N

 .
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A Diffusion Process Between N Aligned Cities

Figure 27 illustrates this convergence result.

Figure: In this figure we plot a solution of the heat equation with x ∈ [0, 10]. The
diffusion coefficient is equal to ε = 2. The initial distribution is equal to
u0(x) = 1 + sin(x). We observe the quite rapid convergence to the constant
distribution.
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A Diffusion Process Between N Aligned Cities

Remark 9.2
The above convergence result of the distribution is a consequence of the
Perron–Frobenius theorem. This example will be reconsidered in the
Chapter devoted to the Perron–Frobenius theorem.

Pierre Magal Lecture 1 Winter School Valparaíso 94 / 128



A Discrete Diffusion Process on a Ring of Cities
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A Discrete Diffusion Process on a Ring of Cities

In this section we again consider the heat equation
∂tu(t, x) = ε∂2

xu(t, x), for x ∈ (0, 1) ,
u(t, 0) = u(t, 1),
u(0, ·) = ϕ ∈ L2 (0, 1) .

The boundary conditions mean that there is no flux at the boundary.
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A Discrete Diffusion Process on a Ring of Cities

To write the numerical scheme for this equation (i.e. a discrete version of
it) we set

uni = u(n∆t, i∆x).
Then the main part of the equation may be written for i = 2, ..., N − 1 as

un+1
i − uni

∆t = ε
1

∆x2
(
uni+1 − 2uni + uni−1

)
.

For i = 1 we obtain
un+1

1 − un1
∆t = ε

1
∆x2 [(un2 − un1 )− (un1 − un0 )]

and the boundary condition un0 = unN gives

un+1
1 − un1

∆t = ε
1

∆x2 (un2 + unN − 2un1 ) .

Similarly for i = N we should have

un+1
N − unN

∆t = ε
1

∆x2
(
unN−1 + un1 − 2unN

)
.
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A Discrete Diffusion Process on a Ring of Cities

So we obtain the following explicit numerical scheme for the heat equation
for n ≥ 0

un+1 = un + ε∆t
∆x2Du

n,

with the initial distribution

u0 = u0 ≥ 0,

where

D =



−2 1 0 0 1

1 −2 1 0

0

0

0 1
1 0 0 1 −2


.
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A Discrete Diffusion Process on a Ring of Cities

The numerical scheme may be rewritten as

un+1
i = uni + ε

∆t
∆x2

(
uni+1 − 2uni + uni−1

)
.

So we obtain for i = 2, . . . , N − 1,

un+1
i = p

2u
n
i+1 + (1− p)uni + p

2u
n
i−1

and for i = 1
un+1

1 = p

2u
n
2 + (1− p)un1 + p

2u
n
N

and for i = N
un+1
N = p

2u
n
1 + (1− p)unN + p

2u
n
N−1,

where
p := 2ε ∆t

∆x2 .
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A Discrete Diffusion Process on a Ring of Cities

Therefore we can interpret the discrete model as follows. An individual in
city i, with 2 ≤ i ≤ N − 1, will move to city i− 1 or to city i+ 1, each with
probability p/2, or stay in city i with probability 1− p. An individual in city
1 will move to city 2 or city N , each with probability p/2, or stay in city 1
with probability 1−p, and an individual in city N will move to city 1 or city
N − 1, each with probability p/2, or stay in city N with probability 1− p.
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A Discrete Diffusion Process on a Ring of Cities

City 1

City NCity 2

City 3

...
City N − 1

...

p/2

p/2p/2

p/2

p/2

p/2

p/2

p/2

p/2

p/2

p/2

p/2

1− p

1− p

1− p

1− p

1− p

Figure: Diagram of flux for a diffusion process between a ring of N cities.
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A Discrete Diffusion Process on a Ring of Cities

Let 1 := (1, . . . , 1)T . Then we obtain

D1 = 0 and 1TD = 0T ,

thus (
I + ε∆t

∆x2D

)
1 = 1 and 1T

(
I + ε∆t

∆x2D

)
= 1

T .

Therefore for each u0 ≥ 0,〈
1, un+1

〉
=
〈
1, un + ε∆t

∆x2Du
n
〉

= 〈1, un〉

and it follows that the total number of individuals is constant
N∑
i=0

uni =
N∑
i=0

u0i, ∀n ≥ 0.
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A Discrete Diffusion Process on a Ring of Cities

Moreover, as a consequence of the Perron–Frobenius theorem, we have

lim
n→+∞

un =
(

N∑
i=0

u0i

)
1/N
1/N
...

1/N

 .
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A Discrete Diffusion Process on a Ring of Cities

Figure 29 illustrates this convergence result.

Figure: In this figure we plot a solution to the heat equation with x ∈ [0, 3π]. The
diffusion coefficient is equal to ε = 2. The initial distribution is equal to
u0(x) = 1 + sin(x+ π). We observe the quite rapid convergence to the constant
distribution.
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A Discrete Diffusion Process on a Ring of Cities

Remark 10.1
The above convergence result of the distribution is a consequence of the
Perron–Frobenius theorem. This example will be reconsidered in the
Chapter devoted to the Perron–Frobenius theorem.
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Remarks and Notes
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Remarks and Notes

In this section, we provide some references. The topics mentioned below
are so rich, active, and extensive that it would be impractical to provide an
exhaustive list. Instead, we have chosen an illustrative selection.

Population dynamics has a long history which starts with Fibonacci in 1202
who, in his book entitled Liber Abaci (Book of Calculation) [17], introduced
his famous sequence

P1 = 1, P2 = 2, Pn+1 = Pn + Pn−1, ∀n ≥ 0.

This turned out to be a special case of the Leslie model with two age classes,
introduced in 1945.

Pierre Magal Lecture 1 Winter School Valparaíso 107 / 128



Remarks and Notes

As we will see several times in this book, in 1760 Daniel Bernoulli [4] pro-
posed a mechanistic model and a phenomenological model to describe the
epidemic of smallpox. We already mentioned the work of Malthus [66] in
this chapter. In 1838 Verhulst rediscovered Bernoulli’s generalized logistic
equation [92].

Pierre Magal Lecture 1 Winter School Valparaíso 108 / 128



Remarks and Notes

The so-called Bernoulli–Verhulst equation is a scalar ordinary differential
equation that takes the following form

N ′(t) = λN(t) (1− (N(t)/κ)α) , ∀t ≥ 0, and N(0) = N0 ≥ 0,

where λ > 0, α > 0, and κ > 0. The Bernoulli–Verhulst equation is studied
in Chapter 5, as well as some n dimensional extensions of it.
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Remarks and Notes

Ronald Ross was awarded a Nobel prize for his famous work on malaria in
1911 [78, 79, 80, 81]. His work is partly based on the following system
of two differential equations. The first equation for H(t), the number of
infected humans, is the following

H ′(t) = α (NH −H(t))︸ ︷︷ ︸
number of non-infected humans

M(t)− βH(t),

which is coupled with an equation forM(t), the number of infected mosquitoes,

M ′(t) = γ (NM −M(t))︸ ︷︷ ︸
number of non-infected mosquitoes

H(t)− ηM(t).

Ross’s model was later extended by Macdonald [59, 58, 60] in the 1950s.
Therefore, nowadays this model is commonly called the Ross–Macdonald
model.
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Remarks and Notes

The Lotka–Volterra predator-prey model is a celebrated example of a sys-
tem of differential equations representing a biological system. It was first
developed by Alfred Lotka in 1920 in the context of a plant-herbivorous
interaction [55], although a similar system of equations had already been
employed by the same author in the context of autocatalytic chemical reac-
tions [54]. Vito Volterra developed a similar model in 1926 independently
from Lotka, in the context of a predator-prey model for different species of
fishes [45, 93]. The model reads as follows:{

d
dtu(t) = u(t)

(
r − βv(t)

)
,

d
dtv(t) = v(t)

(
γu(t)− δ

)
.

Here u(t) stands for the population of prey, v(t) for the population of preda-
tors; r > 0 is the reproduction rate of prey, β > 0 is the predation rate of
a predator, γ > 0 is the prey uptake for a predator and δ > 0 is the natural
mortality rate of the predator.
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Remarks and Notes

In the second volume, we will also consider the equation introduced by Fisher
[24] and discovered separately by Kolmogorov, Petrovski and Piskunov [24,
46] in 1937. This equation describes the genetic evolution of a population
by using diffusion combined with a logistic equation term, and takes the
following form, for t ≥ 0 and x ∈ R

∂tu(t, x) = ∂2
x u(t, x)+λu(t, x)

[
1− u(t, x)

κ

]
, with initial value u(0, x) = u0(x),

where λ > 0 and κ > 0.
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Remarks and Notes

In 1926–1927 Kermack and McKendrick [37, 38, 39] introduced the first SIR
epidemic model, by combining the ideas of Bernoulli and Ross. Kermack
and McKendrick’s model takes the following form

S′(t) = −βS(t)I(t)
I ′(t) = βS(t)I(t)− γI(t)
R′(t) = γI(t).

Here S(t) is the density of susceptible individuals, I(t) the density of infected
individuals, and R(t) the density of reported individuals. The constant
β > 0 is the transmission rate, defined as the fraction of all possible contacts
between S and I that result in a new infection per unit of time; the constant
γ > 0 is the recovery rate, meaning that 1/γ is the average duration of
infection.
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Remarks and Notes

As we will see in the second volume, Ricker’s model, which was presented
in 1954 [76], takes the following form for t ≥ 0 and x ∈ R,

N(t+ 1) = βN(t) exp (−αN(t)) , with N(0) = N0 ≥ 0,

where β > 0 is the growth rate of the population and the term exp(−αN(t))
(with α ≥ 0) describes the intra-specific competition. This model was
introduced to describe the migration of adult salmon returning back to
their natal stream for reproduction.

Ricker’s model is known to generate chaos. Such chaos was first described
by Sharkovsky [83, 84] in 1964, with his famous order of appearance for
periodic orbits. This result was also rediscovered by Li and Yorke [52] in
1975, who proved that the existence of a period three orbit implies the
existence of an orbit of any period (a special case of Sharkovsky’s theorem),
but they prove in addition the existence of ergodic invariant measures.
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Remarks and Notes Age in population dynamics

Age in population dynamics

(i) Chronological age: The chronological age is the time since birth. This
age is used by all of us to describe life history. It serves, for example,
to describe the maturity of individuals, that is, the time at which
individuals start to be able to produce newborns. Continuous-time
chronological age will be reconsidered by using Volterra’s integral
equations in Chapter 2.

(ii) Age as a clock: Chronological age is nothing but a measure of time
determined by a clock which is started at birth. It is very convenient
to describe the history of a process by considering other kinds of
clocks, such as the time since infection takes place (which is called
the age of infection, introduced by Kermack and McKendrick [38]). It
is indeed possible to extend this idea to many kinds of clocks to track
the history of a process.
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Remarks and Notes Age in population dynamics

Leslie’s matrix model was extended by Usher [91] in 1969. An application
of Usher matrices to demography is presented in Gaudard et al. [28]. For
models with discrete age groups, we refer Caswell [13] and Newman [70] for
more results.

For continuous age-structured models, we refer to Cushing [15], Thieme
[88], Smith and Thieme [87], Webb [94, 95], Iannelli [32], Inaba [34], and
[21, 23, 64, 63, 65] for more results on the subject.
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Remarks and Notes Age and diffusion

Age and diffusion

Since Gurtin’s work [29] in the early 1970s, the interplay between the spatial
motion of individuals and age structure has also been widely considered in
the literature, for single populations and also for interacting species. Similar
types of models (both linear and nonlinear) have been studied. We refer for
instance to the papers of Gurtin and MacCamy [30], Di Blasio [18], Garroni
and Langlais [27], Langlais [48, 49], and Ducrot and Magal [22].
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Remarks and Notes Age and diffusion

We also refer to the monograph of Busenberg and Cooke [10], where both
diffusive population models with chronological age structure and with age
since infection in epidemic problems are presented. We refer to Busenberg
and Iannelli [11] for the study of age-structured problems with nonlinear
diffusion and to Aniţa [1] and the references cited therein for results on the
control of age-structured problems with spatial diffusion. Let us also refer
to Di Blasio [19] for epidemic problems coupling age since infection and
spatial diffusion and [21, 23, 64] for some studies of the spatial spread of
infection with age since infection. Population models taking into account
the interplay between age structure and non-local diffusion have also been
developed. We refer, for instance, to Kang and Ruan [35] and the references
cited therein.

Pierre Magal Lecture 1 Winter School Valparaíso 118 / 128



Remarks and Notes The Kermack and McKendrick model with age of infection

The Kermack and McKendrick model with age of infection

Let a > 0 be the time since the first infection of an individual in a population
by a pathogen. Then the Kermack and McKendrick model with age of
infection can be rewritten as follows. The number of susceptible individuals
S(t) satisfies the following equation

S′(t) = λ−ηS(t)−ν S(t)
∫ ∞

0
β(a)i(t, a)da, for t ≥ 0, with S(0) = S0 ≥ 0,

and the distribution of population of infected a→ i(t, a) at time t satisfies

i(t, a) =


Π(a)

Π(a− t) i0(a− t), if a > t,

Π(a) ν S(t− a)B(t− a), if t > a,

where a → i0(a) ∈ L1
+(0,∞) is the initial distribution of population of

infected.
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Remarks and Notes The Kermack and McKendrick model with age of infection

Here distribution of population refers to the number of infected individuals
with age of infection in between a1 and a2 at time t = 0 (respectively at
time t > 0), that is,∫ a2

a1
i0(a)da

(
respectively

∫ a2

a1
i(t, a)da

)
.
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Remarks and Notes The Kermack and McKendrick model with age of infection

The function a → β(a) ∈ L∞+ (0,∞) gives the fraction of infectious (i.e.
capable of transmitting the pathogen to the susceptible) for individuals with
infection age a, and a → Π(a) gives the probability of remaining infected
for individuals with infection age a.
Define

B(t) =
∫ ∞

0
β(a)i(t, a)da,

then we deduce that t → B(t) ∈ C+([0,∞),R) is the unique solution of
the Volterra integral equation for t ≥ 0,

B(t) =
[∫ ∞
t

β(a) Π(a)
Π(a− t) i0(a− t)da+

∫ t

0
β(a)Π(a) ν S(t− a)B(t− a)da

]
,

where
S′(t) = λ− ηS(t)− ν S(t)B(t),

or equivalently

S(t) = e−
∫ t

0 η+νB(σ)dσS0 +
∫ t

0
e−
∫ t
s
η+νB(σ)dσλds.
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Remarks and Notes The Kermack and McKendrick model with age of infection

The existence and uniqueness of solutions for Volterra’s integral equation
will be briefly explained in Chapter 2, where it will also provide one of the
motivations to consider several types of methods to prove the existence of
solutions. We will reconsider the Kermack–McKendrick model with age of
infection in the remarks and notes section of Chapter 8.

The global dynamics of the Kermack and McKendrick model with age of
infection was first completely understood by Magal, McCluskey and Webb
[62]. We also refer to Magal and McCluskey [61] for a version of this result
with two groups. A more elementary presentation of such a result with
Liapunov function arguments is presented in Ma and Magal [56].
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Remarks and Notes Movement in space in population dynamics

Movement in space in population dynamics

(i) Patch models: Patches can be defined as spatial areas which are
sufficiently small so that spatial effects can be neglected. Patch
models have been used in population genetics since the 1940s with
the introduction by Wright of the so-called “Island models” [96],
which he used to study the genetic effects of isolation. Let us also
mention the “Stepping stones” model, introduced by Kimura in 1953
[43] and developed in more detail by Kimura and Weiss [44].
Stepping stones are patches on which there exists a one-dimensional
structure, meaning that the motion of an individual from a given node
is constrained to two neighboring patches (and no other). Patch
models are often used in the context of meta-populations, which are
populations divided into different spatial locations. In the context of
human epidemiology, patch models have been used to describe the
spread of epidemics across cities [2, 42].
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Remarks and Notes Movement in space in population dynamics

(ii) Diffusion processes: Diffusion processes and the heat equation were
originally developed to describe the random motion of microscopic
particles. Their use to model the behavior of living bodies can be
traced back to the seminal works of Kolmogorov, Petrovski and
Piskuov [46] and Fisher [24]. These two studies were published
simultaneously in 1937, and are concerned with a population genetics
model

∂tu(t, x) = ∂xxu(t, x) + ru(t, x) (1− u(t, x)) ,

where u(t, x) stands for the proportion at time t ≥ 0 of individuals
possessing a genetic advantage measured by the rate r > 1, in a
population structured by a space variable x ∈ R.
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Remarks and Notes Movement in space in population dynamics

This equation, called the Fisher–KPP equation, can be obtained in
some sense as a limit of differential equations on large lattices, which
will be presented in Chapter 8 of this book. Skellam [86] may have
been the first biologist to use this equation in the context of a
biological invasion, the invasion of the muskrat Ondatra zibethica L.
after its introduction in central Europe in 1910. We refer to the
books of Okubo [71] and Cantrell and Cosner [12] for a review.
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Remarks and Notes Movement in space in population dynamics

(iii) Lévy flight process: To understand the laws of human displacement, a
comparison between the Lévy flight process and real data was made
by Brockmann et al. [9]. Since then the Lévy flight process, which is
a mixture between patch model (long-distance) and daily motion
(short distance), has been observed in many contexts.

(iv) Long-short distance dispersal: Shigesada Kawasaki [85], Bennett and
Sherratt [3].
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(i) Ecology: Iannelli and Pugliese [33], Murray [68, 69], Turchin [90],
Bolker [5], Keyfitz and Caswell [41], Kot [47], Cushing [15, 16] ,
Tuljapurkar [89], Perthame [73, 74], Thieme [88], Smith and Thieme
[87].

(ii) Demography: Keyfitz [40].

(iii) Evolution: Roff [77], Pianka [75].

(iv) Epidemics: Busenberg and Cooke [10], Diekmann and Heesterbeek
[20] , Brauer and Castillo-Chávez [6], Brauer, Van den Driessche, Wu
[8], Ma, Zhou and Wu [57], Chen, Moulin and Wu [14], Brauer,
Castillo-Chavez and Feng [7], Li, Yang and Martcheva [53], Marcheva
[67], Murray [68, 69], Keeling and Rohani [36], and Smith and
Thieme [87].

(v) Others: Hofbauer and Sigmund [31].

Pierre Magal Lecture 1 Winter School Valparaíso 127 / 128



Remarks and Notes Various classes of practical problems

Thank you for listening

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128



Remarks and Notes Various classes of practical problems

Aniţa, S.: Analysis and control of age-dependent population dynamics,
Mathematical Modelling: Theory and Applications, vol. 11.
Kluwer Academic Publishers, Dordrecht (2000).
DOI 10.1007/978-94-015-9436-3.
URL https://doi.org/10.1007/978-94-015-9436-3

Arino, J., van den Driessche, P.: A multi-city epidemic model.
Mathematical Population Studies. An International Journal of
Mathematical Demography 10(3), 175–193 (2003).
DOI 10.1080/08898480306720.
URL https://doi.org/10.1080/08898480306720

Bennett, J.J.R., Sherratt, J.A.: Long-distance seed dispersal affects
the resilience of banded vegetation patterns in semi-deserts.
J. Theoret. Biol. 481, 151–161 (2019).
DOI 10.1016/j.jtbi.2018.10.002.
URL https://doi.org/10.1016/j.jtbi.2018.10.002

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1007/978-94-015-9436-3
https://doi.org/10.1080/08898480306720
https://doi.org/10.1016/j.jtbi.2018.10.002


Remarks and Notes Various classes of practical problems

Bernoulli, D.: Essai d’une nouvelle analyse de la petite Vérole, & des
avantages de l’Inoculation pour la prévenir.
Mémoire Académie Royale des Sciences, Paris (1760)

Bolker, B.M.: Ecological models and data in R.
Princeton University Press, Princeton, NJ (2008)

Brauer, F., Castillo-Chávez, C.: Mathematical models in population
biology and epidemiology, Texts in Applied Mathematics, vol. 40.
Springer-Verlag, New York (2001).
DOI 10.1007/978-1-4757-3516-1.
URL https://doi.org/10.1007/978-1-4757-3516-1

Brauer, F., Castillo-Chavez, C., Feng, Z.: Mathematical models in
epidemiology, Texts in Applied Mathematics, vol. 69.
Springer, New York (2019).
DOI 10.1007/978-1-4939-9828-9.
URL https://doi.org/10.1007/978-1-4939-9828-9.
With a foreword by Simon Levin

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1007/978-1-4757-3516-1
https://doi.org/10.1007/978-1-4939-9828-9


Remarks and Notes Various classes of practical problems

Brauer, F., Van den Driessche, P., Wu, J.: Mathematical
epidemiology, vol. 1945.
Springer (2008).
DOI 10.1007/978-3-540-78911-6

Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human
travel.
Nature 439(7075), 462–465 (2006).
DOI 10.1038/nature04292

Busenberg, S., Cooke, K.: Vertically transmitted diseases,
Biomathematics, vol. 23.
Springer-Verlag, Berlin (1993).
DOI 10.1007/978-3-642-75301-5.
URL https://doi.org/10.1007/978-3-642-75301-5.
Models and dynamics

Busenberg, S., Iannelli, M.: A degenerate nonlinear diffusion problem
in age-structured population dynamics.

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1007/978-3-642-75301-5


Remarks and Notes Various classes of practical problems

Nonlinear Anal. 7(12), 1411–1429 (1983).
DOI 10.1016/0362-546X(83)90009-3.
URL https://doi.org/10.1016/0362-546X(83)90009-3

Cantrell, R.S., Cosner, C.: Spatial ecology via reaction-diffusion
equations.
Wiley Series in Mathematical and Computational Biology. John Wiley
& Sons, Ltd., Chichester (2003).
DOI 10.1002/0470871296.
URL https://doi.org/10.1002/0470871296

Caswell, H.: Matrix population models, vol. 1.
Sinauer Sunderland, MA, USA (2000)

Chen, D., Moulin, B., Wu, J.: Analyzing and modeling spatial and
temporal dynamics of infectious diseases.
Wiley Online Library (2015)

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1016/0362-546X(83)90009-3
https://doi.org/10.1002/0470871296


Remarks and Notes Various classes of practical problems

Cushing, J.M.: An introduction to structured population dynamics,
CBMS-NSF Regional Conference Series in Applied Mathematics,
vol. 71.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA (1998).
DOI 10.1137/1.9781611970005.
URL https://doi.org/10.1137/1.9781611970005

Cushing, J.M.: Integrodifferential equations and delay models in
population dynamics, vol. 20.
Springer Science & Business Media (2013)

Debnath, L.: A short history of the Fibonacci and golden numbers
with their applications.
Internat. J. Math. Ed. Sci. Tech. 42(3), 337–367 (2011).
DOI 10.1080/0020739X.2010.543160.
URL https://doi.org/10.1080/0020739X.2010.543160

Di Blasio, G.: Nonlinear age-dependent population diffusion.

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1137/1.9781611970005
https://doi.org/10.1080/0020739X.2010.543160


Remarks and Notes Various classes of practical problems

J. Math. Biol. 8(3), 265–284 (1979).
DOI 10.1007/BF00276312.
URL https://doi.org/10.1007/BF00276312

Di Blasio, G.: Mathematical analysis for an epidemic model with
spatial and age structure.
Journal of Evolution Equations 10(4), 929–953 (2010)

Diekmann, O., Heesterbeek, J.A.P.: Mathematical epidemiology of
infectious diseases: model building, analysis and interpretation, vol. 5.
John Wiley & Sons (2000)

Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age
structured model with diffusion.
Proc. Roy. Soc. Edinburgh Sect. A 139(3), 459–482 (2009)

Ducrot, A., Magal, P.: A center manifold for second order semilinear
differential equations on the real line and applications to the existence
of wave trains for the gurtin–mccamy equation.

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1007/BF00276312


Remarks and Notes Various classes of practical problems

Transactions of the American Mathematical Society 372(5),
3487–3537 (2019)

Ducrot, A., Magal, P., Ruan, S.: Travelling wave solutions in
multigroup age-structured epidemic models.
Archive for rational mechanics and analysis 195(1), 311–331 (2010)

Fisher, R.A.: The wave of advance of advantageous genes.
Annals of Eugenics 7(4), 355–369 (1937).
DOI 10.1111/j.1469-1809.1937.tb02153.x.
URL
http://dx.doi.org/10.1111/j.1469-1809.1937.tb02153.x

Frobenius, G.F.: Ueber matrizen aus positiven elementen, sitzungsber.
Preus. Akad. Wiss Berlin pp. 471–476 (1908)

Frobenius, G.F.: Über matrizen aus positiven elementen, 2?,
sitzungsber.
Königl. Preuss. Akad. Wiss pp. 514–518 (1909)

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

http://dx.doi.org/10.1111/j.1469-1809.1937.tb02153.x


Remarks and Notes Various classes of practical problems

Garroni, M.G., Langlais, M.: Age-dependent population diffusion with
external constraint.
Journal of Mathematical Biology 14(1), 77–94 (1982)

Gaudart, J., Ghassani, M., Mintsa, J., Rachdi, M., Waku, J.,
Demongeot, J.: Demography and diffusion in epidemics: malaria and
black death spread.
Acta Biotheoretica 58(2), 277–305 (2010).
DOI 10.1007/s10441-010-9103-z

Gurtin, M.E.: A system of equations for age-dependent population
diffusion.
Journal of Theoretical Biology 40(2), 389–392 (1973).
DOI 10.1016/0022-5193(73)90139-2.
URL https://www.sciencedirect.com/science/article/pii/
0022519373901392

Gurtin, M.E., MacCamy, R.C.: Product solutions and asymptotic
behavior for age-dependent, dispersing populations.

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://www.sciencedirect.com/science/article/pii/0022519373901392
https://www.sciencedirect.com/science/article/pii/0022519373901392


Remarks and Notes Various classes of practical problems

Math. Biosci. 62(2), 157–167 (1982).
DOI 10.1016/0025-5564(82)90080-3.
URL https://doi.org/10.1016/0025-5564(82)90080-3

Hofbauer, J., Sigmund, K.: Evolutionary games and population
dynamics.
Cambridge University Press, Cambridge (1998).
DOI 10.1017/CBO9781139173179.
URL https://doi.org/10.1017/CBO9781139173179

Iannelli, M.: Mathematical theory of age-structured population
dynamics.
Giardini Editori e Stampatori in Pisa (1995).
URL https://ci.nii.ac.jp/naid/10010355596/en/

Iannelli, M., Pugliese, A.: An Introduction to Mathematical Population
Dynamics: Along the Trail of Volterra and Lotka, Unitext, vol. 79.
Springer (2015)

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1016/0025-5564(82)90080-3
https://doi.org/10.1017/CBO9781139173179
https://ci.nii.ac.jp/naid/10010355596/en/


Remarks and Notes Various classes of practical problems

Inaba, H.: Age-structured population dynamics in demography and
epidemiology.
Springer (2017)

Kang, H., Ruan, S.: Nonlinear age-structured population models with
nonlocal diffusion and nonlocal boundary conditions.
Journal of Differential Equations 278, 430–462 (2021)

Keeling, M.J., Rohani, P.: Modeling infectious diseases in humans and
animals.
Princeton University Press, Princeton, NJ (2008)

Kermack, W.O., McKendrick, A.G.: A contribution to the
mathematical theory of epidemics.
Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 115(772), 700–721 (1927).
DOI 10.1098/rspa.1927.0118.
URL http:
//rspa.royalsocietypublishing.org/content/115/772/700

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

http://rspa.royalsocietypublishing.org/content/115/772/700
http://rspa.royalsocietypublishing.org/content/115/772/700


Remarks and Notes Various classes of practical problems

Kermack, W.O., McKendrick, A.G.: Contributions to the
mathematical theory of epidemics. II. The problem of endemicity.
Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 138(834), 55–83 (1932).
DOI 10.1098/rspa.1932.0171.
URL http:
//rspa.royalsocietypublishing.org/content/138/834/55

Kermack, W.O., McKendrick, A.G.: Contributions to the
mathematical theory of epidemics. III. Further studies of the problem
of endemicity.
Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 141(843), 94–122 (1933).
DOI 10.1098/rspa.1933.0106.
URL http:
//rspa.royalsocietypublishing.org/content/141/843/94

Keyfitz, N.: Applied mathematical demography.
Springer (2005)

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

http://rspa.royalsocietypublishing.org/content/138/834/55
http://rspa.royalsocietypublishing.org/content/138/834/55
http://rspa.royalsocietypublishing.org/content/141/843/94
http://rspa.royalsocietypublishing.org/content/141/843/94


Remarks and Notes Various classes of practical problems

Keyfitz, N., Caswell, H.: Applied Mathematical Demography.
Statistics for Biology and Health. Springer, New York, NY (2005).
DOI 10.1007/b139042

Khan, K., McNabb, S.J., Memish, Z.A., Eckhardt, R., Hu, W.,
Kossowsky, D., Sears, J., Arino, J., Johansson, A., Barbeschi, M.,
McCloskey, B., Henry, B., Cetron, M., Brownstein, J.S.: Infectious
disease surveillance and modelling across geographic frontiers and
scientific specialties.
The Lancet Infectious Diseases 12(3), 222–230 (2012).
DOI 10.1016/S1473-3099(11)70313-9.
URL https://www.sciencedirect.com/science/article/pii/
S1473309911703139

Kimura, M.: “stepping stone” model of population.
Annual Report of the National Institute of Genetics Japan 3, 62–63
(1953)

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://www.sciencedirect.com/science/article/pii/S1473309911703139
https://www.sciencedirect.com/science/article/pii/S1473309911703139


Remarks and Notes Various classes of practical problems

Kimura, M., Weiss, G.H.: The stepping stone model of population
structure and the decrease of genetic correlation with distance.
Genetics 49(4), 561 (1964)

Kingsland, S.: Alfred J. Lotka and the origins of theoretical population
ecology.
Proceedings of the National Academy of Sciences 112(31), 9493–9495
(2015).
DOI 10.1073/pnas.1512317112

Kolmogorov, A.N., Petrovski, I.G., Piskunov, N.S.: Étude de
l’équation de la diffusion avec croissance de la quantité de matière et
son application à un problème biologique.
Bull. Univ. Moskow, Ser. Internat., Sec. A 1, 1–25 (1937)

Kot, M.: Elements of mathematical ecology.
Cambridge University Press, Cambridge (2001).
DOI 10.1017/CBO9780511608520.
URL https://doi.org/10.1017/CBO9780511608520

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1017/CBO9780511608520


Remarks and Notes Various classes of practical problems

Langlais, M.: A nonlinear problem in age-dependent population
diffusion.
SIAM J. Math. Anal. 16(3), 510–529 (1985).
DOI 10.1137/0516037.
URL https://doi.org/10.1137/0516037

Langlais, M.: Large time behavior in a nonlinear age-dependent
population dynamics problem with spatial diffusion.
J. Math. Biol. 26(3), 319–346 (1988).
DOI 10.1007/BF00277394.
URL https://doi.org/10.1007/BF00277394

Leslie, P.H.: On the use of matrices in certain population
mathematics.
Biometrika 33, 183–212 (1945).
DOI 10.1093/biomet/33.3.183.
URL https://doi.org/10.1093/biomet/33.3.183

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1137/0516037
https://doi.org/10.1007/BF00277394
https://doi.org/10.1093/biomet/33.3.183


Remarks and Notes Various classes of practical problems

Leslie, P.H.: Some further notes on the use of matrices in population
mathematics.
Biometrika 35, 213–245 (1948).
DOI 10.1093/biomet/35.3-4.213.
URL https://doi.org/10.1093/biomet/35.3-4.213

Li, T.Y., Yorke, J.A.: Period three implies chaos.
Amer. Math. Monthly 82(10), 985–992 (1975).
DOI 10.2307/2318254.
URL https://doi.org/10.2307/2318254

Li, X.Z., Yang, J., Martcheva, M.: Age Structured Epidemic
Modeling, vol. 52.
Springer Nature (2020)

Lotka, A.J.: Contribution to the theory of periodic reactions.
The Journal of Physical Chemistry 14(3), 271–274 (1910).
DOI 10.1021/j150111a004

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1093/biomet/35.3-4.213
https://doi.org/10.2307/2318254


Remarks and Notes Various classes of practical problems

Lotka, A.J.: Analytical note on certain rhythmic relations in organic
systems.
Proceedings of the National Academy of Sciences 6(7), 410–415
(1920).
DOI 10.1073/pnas.6.7.410

Ma, Z., Magal, P.: Global asymptotic stability for gurtin-maccamy’s
population dynamics model.
Proc of AMS (to appear) (2021)

Ma, Z., Zhou, Y., Wu, J.: Modeling and dynamics of infectious
diseases, vol. 11.
World Scientific (2009)

Macdonald, G.: Epidemiological basis of malaria control.
Bulletin of the World Health Organization 15(3-5), 613 (1956)

Macdonald, G., et al.: The analysis of the sporozoite rate.
Tropical Diseases Bulletin 49(6) (1952)

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128



Remarks and Notes Various classes of practical problems

Macdonald, G., et al.: The epidemiology and control of malaria.
The Epidemiology and Control of Malaria (1957)

Magal, P., McCluskey, C.: Two-group infection age model including an
application to nosocomial infection.
SIAM J. Appl. Math. 73(2), 1058–1095 (2013).
DOI 10.1137/120882056

Magal, P., McCluskey, C.C., Webb, G.F.: Lyapunov functional and
global asymptotic stability for an infection-age model.
Appl. Anal. 89(7), 1109–1140 (2010).
DOI 10.1080/00036810903208122

Magal, P., Ruan, S.: Center manifolds for semilinear equations with
non-dense domain and applications to Hopf bifurcation in age
structured models.
American Mathematical Soc. (2009)

Magal, P., Ruan, S.: Sustained oscillations in an evolutionary
epidemiological model of influenza A drift.

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128



Remarks and Notes Various classes of practical problems

Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 466(2116), 965–992 (2010)

Magal, P., Ruan, S.: Theory and applications of abstract semilinear
Cauchy problems.
Springer (2018)

Malthus, T.R.: An essay on the principle of population.
The Works of Thomas Robert Malthus, London, Pickering & Chatto
Publishers (1798)

Martcheva, M.: An introduction to mathematical epidemiology, Texts
in Applied Mathematics, vol. 61.
Springer (2015)

Murray, J.D.: Mathematical biology. I An introduction,
Interdisciplinary Applied Mathematics, vol. 17, third edn.
Springer-Verlag, New York (2002)

Murray, J.D.: Mathematical biology. II Spatial models and biomedical
applications, Interdisciplinary Applied Mathematics, vol. 18, third edn.

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128



Remarks and Notes Various classes of practical problems

Springer-Verlag, New York (2003)

Newman, M.E.J.: The structure and function of complex networks.
SIAM Rev. 45(2), 167–256 (2003).
DOI 10.1137/S003614450342480.
URL https://doi.org/10.1137/S003614450342480

Okubo, A., et al.: Diffusion and ecological problems: mathematical
models.
Springer-Verlag, Berlin-Heidelberg-New York (1980)

Perron, O.: Zur Theorie der Matrices.
Math. Ann. 64(2), 248–263 (1907).
DOI 10.1007/BF01449896.
URL https://doi.org/10.1007/BF01449896

Perthame, B.: Transport equations in biology.
Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007)

Perthame, B.: Parabolic equations in biology.

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1137/S003614450342480
https://doi.org/10.1007/BF01449896


Remarks and Notes Various classes of practical problems

Lecture Notes on Mathematical Modelling in the Life Sciences.
Springer, Cham (2015).
DOI 10.1007/978-3-319-19500-1.
URL https://doi.org/10.1007/978-3-319-19500-1.
Growth, reaction, movement and diffusion
Pianka, E.R.: Evolutionary ecology.
Eric R. Pianka (2011)

Ricker, W.E.: Stock and recruitment.
Journal of the Fisheries Board of Canada 11(5), 559–623 (1954).
DOI 10.1139/f54-039

Roff, D.: Evolution of life histories: theory and analysis.
Springer Science & Business Media (1993)

Ross, R.: Some quantitative studies in epidemiology.
Nature 87, 466–467 (1911).
DOI 10.1038/087466a0

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1007/978-3-319-19500-1


Remarks and Notes Various classes of practical problems

Ross, R.: An Application of the Theory of Probabilities to the Study
of a priori Pathometry. Part I.
Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 92(638), 204–230 (1916).
DOI 10.1098/rspa.1916.0007.
URL http:
//rspa.royalsocietypublishing.org/content/92/638/204

Ross, R., Hudson, H.P.: An Application of the Theory of Probabilities
to the Study of a priori Pathometry. Part II.
Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 93(650), 212–225 (1917).
DOI 10.1098/rspa.1917.0014.
URL http:
//rspa.royalsocietypublishing.org/content/93/650/212

Ross, R., Hudson, H.P.: An Application of the Theory of Probabilities
to the Study of a priori Pathometry. Part III.

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

http://rspa.royalsocietypublishing.org/content/92/638/204
http://rspa.royalsocietypublishing.org/content/92/638/204
http://rspa.royalsocietypublishing.org/content/93/650/212
http://rspa.royalsocietypublishing.org/content/93/650/212


Remarks and Notes Various classes of practical problems

Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 93(650), 225–240 (1917).
DOI 10.1098/rspa.1917.0015.
URL http:
//rspa.royalsocietypublishing.org/content/93/650/225

Sattenspiel, L., Dietz, K.: A structured epidemic model incorporating
geographic mobility among regions.
Mathematical Biosciences 128(1-2), 71–91 (1995).
DOI 10.1016/0025-5564(94)00068-B

Sharkovsky, O.M.: Coexistence of cycles of a continuous map of the
line into itself.
Urain. Mat. Zh. 16(1), 61–71 (1964)

Sharkovsky, O.M., Kolyada, S.F., Sivak, A.G., Fedorenko, V.V.:
Dynamics of one-dimensional maps, Mathematics and its Applications,
vol. 407.
Kluwer Academic Publishers Group, Dordrecht (1997).
DOI 10.1007/978-94-015-8897-3.

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

http://rspa.royalsocietypublishing.org/content/93/650/225
http://rspa.royalsocietypublishing.org/content/93/650/225


Remarks and Notes Various classes of practical problems

URL https://doi.org/10.1007/978-94-015-8897-3.
Translated from the 1989 Russian original by Sivak, P. Malyshev and
D. Malyshev and revised by the authors

Shigesada, N., Kawasaki, K.: Biological invasions: theory and
practice.
Oxford University Press, UK (1997)

Skellam, J.G.: Random dispersal in theoretical populations.
Biometrika 38(1-2), 196 (1951).
DOI 10.1093/biomet/38.1-2.196.
URL +http://dx.doi.org/10.1093/biomet/38.1-2.196

Smith, H.L., Thieme, H.R.: Dynamical systems and population
persistence, Graduate Studies in Mathematics, vol. 118.
American Mathematical Society, Providence, RI (2011).
DOI 10.1090/gsm/118.
URL https://doi.org/10.1090/gsm/118

Thieme, H.R.: Mathematics in Population Biology.

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128

https://doi.org/10.1007/978-94-015-8897-3
+ http://dx.doi.org/10.1093/biomet/38.1-2.196
https://doi.org/10.1090/gsm/118


Remarks and Notes Various classes of practical problems

Princeton Series in Theoretical and Computational Biology. Princeton
University Press, Princeton, NJ (2003)

Tuljapurkar, S.: Population Dynamics in Variable Environments.
Lecture Notes in Biomathematics. Springer, Berlin, Heidelberg (1990).

DOI 10.1007/978-3-642-51652-8

Turchin, P.: Complex population dynamics: a theoretical/empirical
synthesis, Monographs in Population Biology, vol. 35.
Princeton University Press, Princeton, NJ (2003)

Usher, M.: A matrix model for forest management.
Biometrics pp. 309–315 (1969).
DOI 10.2307/2528791

Verhulst, P.F.: Notice sur la loi que la population poursuit dans son
accroissement.
Correspondance Mathématique et Physique vol.X, 113–121 (1838)

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128



Remarks and Notes Various classes of practical problems

Volterra, V.: Fluctuations in the abundance of a species considered
mathematically 1.
Nature (1926).
DOI 10.1038/118558a0

Webb, G.F.: Theory of nonlinear age-dependent population dynamics,
Monographs and Textbooks in Pure and Applied Mathematics,
vol. 89.
Marcel Dekker, Inc., New York (1985)

Webb, G.F.: Population models structured by age, size, and spatial
position.
In: Structured population models in biology and epidemiology, pp.
1–49. Springer (2008)

Wright, S.: Isolation by distance.
Genetics 28(2), 114 (1943)

Pierre Magal Lecture 1 Winter School Valparaíso 128 / 128


	The Malthusian Model
	The Time Periodic Population Dynamics Model
	The Discrete-Time Population Dynamics Model
	The Discrete-Time Leslie Model With Two Age Classes
	The special case beta10
	The special case beta20
	The special case beta10 and beta20

	Leslie Models With an Arbitrary Number of Age Classes
	The Continuous-Time Leslie Models With an Arbitrary Number of Age Classes
	A Patch Model With Two Cities
	The model with two cities
	The model with two cities and without origin distinction

	The model with N cities
	A Diffusion Process Between N Aligned Cities
	A Discrete Diffusion Process on a Ring of Cities
	Remarks and Notes
	Age in population dynamics
	Age and diffusion
	The Kermack and McKendrick model with age of infection
	Movement in space in population dynamics
	Various classes of practical problems


