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The Resolvent Formula

Definition 1.1
Let A ∈Mn(R) be an n by n matrix with real elements. Define the
spectral bound

s(A) = max {Reλ : λ ∈ σ(A)}

where σ(A) is the spectrum of A and is defined by

σ(A) = {λ ∈ C : λI −A is not invertible} .

Then the following lemma holds.

Lemma 1.2

For each λ > s(A), the matrix (λI −A) is invertible and we have the
following formula

(λI −A)−1 =
∫ ∞

0
e−λteAtdt,

where (λI −A)−1 is called the resolvent of A.
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The Resolvent Formula

Remark 1.3

The integral
∫∞
0 e−λteAtdt in the resolvent formula is called the Laplace

transform of t→ eAt . Note that this integral converges since
s(A− λI) = s(A)− λ < 0 and the convergence follows from the stability
theorem.

Remark 1.4

The above formula remains true for any λ ∈ C such that

Re(λ) > s(A).

In that case we have

s(A− λI) = s(A)− Re (λ) < 0.
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The Resolvent Formula

Proof. Let λ > s(A) be given. By the stability theorem in Chapter 3, the
integral

∫∞
0 e−λteAtdt converges. We have

(λI−A)
∫ ∞

0
e−λteAtdt = −

∫ ∞
0

(−λI+A)e(−λI+A)tdt = −
[
e(−λI+A)t

]∞
0
,

which yields

(λI −A)
∫ ∞

0
e−λteAtdt =

∫ ∞
0

e−λteAtdt(λI −A) = I.

This ends the proof of the lemma.
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The Resolvent Formula

By using the Laplace transform we also prove the following lemma.

Lemma 1.5

Assume that 0 is exponentially asymptotically stable for the system

X ′(t) = AX(t).

Then s(A) < 0.
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The Resolvent Formula

Proof. Let δ > 0 and M > 1 be such that

‖eAt‖ ≤Me−δt, ∀t ≥ 0.

Let λ ∈ C with Re(λ) > −δ. Then the integral∫ ∞
0

e−λteAtdt

converges and

(λI −A)
∫ ∞

0
e−λteAtdt =

∫ ∞
0

e−λteAtdt(λI −A) = I.

Therefore the matrix (λI −A) is invertible and λ /∈ σ(A).
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A Partial Order on Rn

In this section, we introduce partial orders on Rn and Mn(R).

Definition 2.1

Let x, y ∈ Rn be given. We will use the following notations

x ≥ y ⇔ xi ≥ yi for all i = 1, · · · , n,
x > y ⇔ x ≥ y and xi0 > yi0 for some i0 ∈ {1, · · · , n},
x� y ⇔ xi > yi for all i = 1, · · · , n.
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A Partial Order on Rn

Remark 2.2

We can reformulate the above definitions by considering the difference
x− y as follows. We have

x ≥ y ⇔ x− y ≥ 0 ⇔ x− y ∈ Rn+,
x > y ⇔ x− y > 0 ⇔ x− y ∈ Rn+ \ {0},
x� y ⇔ x− y � 0 ⇔ x− y ∈ Int

(
Rn+
)

= (0,∞)n.
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A Partial Order on Rn

Remark 2.3

We can generalize the above notion of partial order by replacing Rn+ by
K ⊂ Rn, a positive cone, that is, K is a subset with the following
properties:
(i) K is closed and convex;
(ii) R+K ⊂ K, where R+K := {λx : λ ∈ R+ and x ∈ K};
(iii) K ∩ (−K) = {0}.
Then one can define the partial order ≤K by

x ≤K y ⇔ y − x ∈ K.
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A Partial Order on Rn

Similarly to the elements of Rn we can define a partial order on the space
of real matrices Mn(R) as follows: for A = (ai,j)i,j=1,··· ,n ∈Mn(R), we set

A ≥ 0 ⇔ aij ≥ 0, ∀i, j = 1, · · · , n,
A > 0 ⇔ A ≥ 0 and A 6= 0,
A� 0 ⇔ aij > 0, ∀i, j = 1, · · · , n.
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A Partial Order on Rn

Definition 2.4

Let x ∈ Cn and A ∈Mn(C) be given. We define the modulus of x and A
respectively by

|x| =


|x1|
|x2|
...
|xn|

 ∈ Rn+ and |A| =

 |a11| . . . |a1n|
...

...
|an1| . . . |ann|

 ∈Mn(R+).
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Positivity of the Solution

Consider the linear Cauchy problem

u′(t) = Au(t), ∀t ≥ 0 and u(0) = u0 ∈ Rn.

Definition 3.1

We will say that the system is positivity-preserving if for any non-negative
initial distribution u0 ≥ 0 the corresponding solution t→ u(t) stays
positive for all time t ≥ 0. That is,

u0 ≥ 0 ⇒ u(t) ≥ 0, ∀t ≥ 0.
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Positivity of the Solution

Remark 3.2

It is clear that the system is positivity-preserving if and only if

eAt ≥ 0, ∀t ≥ 0.
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Positivity of the Solution

The main result of this section is the following theorem.

Theorem 3.3

The two following properties are equivalent
(i) The system is positivity-preserving.
(ii) The off-diagonal elements of A are all non-negative. That is,

aij ≥ 0, whenever i, j = 1, · · · , n and i 6= j.
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Positivity of the Solution

Remark 3.4

The above property (ii) is equivalent to the existence of a real number
λ ≥ 0 such that

(A+ λI) ≥ 0.
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Positivity of the Solution

Proof. (⇒) Assume that
eAt ≥ 0, ∀t ≥ 0.

Then for all λ ∈ R we also have
e−λteAt = e(A−λI)t ≥ 0, ∀t ≥ 0.

Next, using the resolvent formula stated in Lemma 1.2, we deduce that

(λI −A)−1 =
∫ ∞

0
e(A−λI)tdt ≥ 0, ∀λ > s(A).

Furthermore, for all λ > max
(
s(A), ‖A‖L(Rn)

)
one has

(λI −A)−1 = λ−1
(
I − λ−1A

)−1

= λ−1
∞∑
k=0

Ak

λk
= λ−1

(
I + A

λ
+ · · ·+ Ak

λk
+ · · ·

)
.

Hence we get

λ2(λI −A)−1 =
(
λI +A+ λA2

λ2

(
I − A

λ

)−1
)
.
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Positivity of the Solution

Let {e1, · · · , en} denote the canonical basis of Rn. Let i, j ∈ {1, . . . , n}
with i 6= j. Then we have 〈ei, ej〉 = 0 and it follows that

0 ≤ 〈ei, λ2(λI −A)−1ej〉 = 〈ei, Aej〉+
〈
ei,

λA2

λ2

(
I − A

λ

)−1
ej

〉
,

and 〈
ei,

A2

λ

(
I − A

λ

)−1
ej

〉
= O

( 1
λ

)
→ 0, as λ→∞.

Therefore
aij = 〈ei, Aej〉 ≥ 0,

and the first implication follows.
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Positivity of the Solution

(⇐) Conversely, assume that all the off-diagonal elements of A are non-
negative. Let δ > 0 such that

(A+ δI) ≥ 0.

Then one has

eδteAt =
∞∑
k=0

(A+ δI)ktk

k! ≥ 0, ∀t ≥ 0,

and the result follows. �
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The Perron–Frobenius Theorem

The theorem presented in this chapter was proved by Perron [20] and Frobe-
nius [7, 8]. This is a classical result in matrix analysis. We refer to the books
of Gantmacher [9], Seneta [22], Minc [18] and Horn and Johnson [12] for
more results on non-negative matrices.
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The Perron–Frobenius Theorem Definitions and notations for matrices

Definitions and notations for matrices

Recall that the linear operator norm of an n by n matrix A with real ele-
ments, denoted by ‖A‖L(Rn), is defined as

‖A‖L(Rn) := sup
‖x‖≤1

‖Ax‖.

By using this norm we have the following result.

Lemma 4.1

Let A ∈Mn(R) be given. The sequence
(
‖Ap‖1/pL(Rn)

)
p≥1

converges as
p→∞.
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The Perron–Frobenius Theorem Definitions and notations for matrices

The proof of this result given below is taken from the book of Kato [13,
pp. 27–28].
Proof. Set ap := ln(‖Ap‖L(Rn)) for p ≥ 0. Here A0 := I, which implies
that ‖A0‖ = 1, so that a0 = 0. Let us prove that

lim
p→+∞

ap
p

= inf
m>0

am
m
.

Since we have

‖Ap+q‖L(Rn) ≤ ‖Ap‖L(Rn)‖Aq‖L(Rn), ∀p, q ∈ N,

we deduce that the sequence (ap)p≥0 is sub-additive, namely it satisfies

ap+q ≤ ap + aq ∀p, q ∈ N.

Let m > 0 be a fixed integer. Applying this last inequality to p = m×q+r,
for some q ∈ N and r ∈ {0, ...,m− 1}, we have

ap ≤ amq + ar ≤ qam + ar.
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The Perron–Frobenius Theorem Definitions and notations for matrices

Hence for all p large enough (such that q > 0) we have
ap
p
≤ q

p
am + 1

p
ar ≤

1
m+ r

q

am + 1
p
ar

and since q → +∞ whenever p→ +∞, we obtain

lim sup
p→+∞

ap
p
≤ am

m
.

Now since this inequality must be true for all m > 0 we deduce that

lim sup
p→+∞

ap
p
≤ inf

m>0

am
m
.

Now for each integer p > 0 we have
ap
p
≥ inf

m>0

am
m
,

so that we get
lim inf
p→+∞

ap
p
≥ inf

m>0

am
m
≥ lim sup

p→+∞

ap
p
.

The result follows. �
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The Perron–Frobenius Theorem Definitions and notations for matrices

Definition 4.2

The spectral radius r(A) of a matrix A ∈Mn(R) is defined by

r(A) := lim
p→+∞

‖Ap‖
1
p

L(Rn).

By using the Jordan normal form of A we deduce the following result.

Lemma 4.3

The following equality holds

r(A) = sup{|λ| : λ ∈ σ(A)}.

Exercise 4.4

Prove the above lemma (Hint: Use Jordan’s reduction of A).
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The Perron–Frobenius Theorem Definitions and notations for matrices

By using the same arguments as for the above discrete time case we have
the following result.

Lemma 4.5

Let A ∈Mn(R) be given. The limit lim
t→+∞

1
t

ln ‖etA‖L(Rn) exists.
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The Perron–Frobenius Theorem Definitions and notations for matrices

Definition 4.6

The growth rate of the semigroup {eAt}t≥0 is defined as

Gr(A) := lim
t→+∞

1
t

ln ‖etA‖L(Rn).
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The Perron–Frobenius Theorem Definitions and notations for matrices

By using the Jordan normal form of A again we also deduce the following
result.
Lemma 4.7

The growth rate and the growth bound coincide. That is,

Gr(A) = sup{Re (λ) : λ ∈ σ(A)} =: s(A).
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The Perron–Frobenius Theorem Definitions and notations for matrices

Figure 1 summarizes the above notions for the spectrum.
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Re( )=s(A)
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Figure: In this figure the black dots represent the point of the spectrum in the
complex plane. In general, the spectral radius does not belong to the spectrum of
A. The growth bound s(A) corresponds to the green line. The peripheral
spectrum is the spectrum of A (i.e. the black dots) belonging to the red circle.
Observe that, in general, the growth bound (green line) is strictly smaller than
the spectral radius r(A). The Perron–Frobenius theorem implies that the growth
bound and the spectral radius are equal for non-negative matrices (because for
non-negative matrices r(A) belongs to the spectrum of A).
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The Perron–Frobenius Theorem Definitions and notations for matrices

Definition 4.8

The peripheral spectrum of A is defined as

σper(A) = {λ ∈ σ(A) : |λ| = r(A)}.
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The Perron–Frobenius Theorem Definitions and notations for matrices

Definition 4.9

The algebraic multiplicity of an eigenvalue λ0 of A is the dimension of the
generalized eigenspace of A associated to the eigenvalue λ0 and is also its
multiplicity as a root of the characteristic polynomial of A, i.e. the
algebraic multiplicity of λ0 is the integer n0 ≥ 1 satisfying

det(λI −A) = (λ− λ0)n0g(λ),

where λ→ g(λ) is a polynomial satisfying g(λ0) 6= 0. The geometric
multiplicity of an eigenvalue λ0 of A is the dimension of the eigenspace
N(λ0I −A).
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The Perron–Frobenius Theorem Definitions and notations for matrices

Remark 4.10

By considering the Jordan normal form of a given matrix we can prove that
the algebraic multiplicity is always greater than or equal to the geometric
multiplicity. More precisely, the geometric multiplicity is equal to the
number of Jordan blocks, while the algebraic multiplicity is the number of
times that the eigenvalue appears on the diagonal of the Jordan reduction.

Definition 4.11

We will say that an eigenvalue of A is simple if its algebraic multiplicity is
1.
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The Perron–Frobenius Theorem Definitions and notations for matrices

Remark 4.12

An eigenvalue λ0 is simple if and only if

dim(N(λ0I −A)) = 1

and
N(λ0I −A) = N(λ0I −A)2.
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The Perron–Frobenius Theorem The Perron–Frobenius theorem for strictly positive matrices

The Perron–Frobenius theorem for strictly positive matrices

Theorem 4.13

Let A ∈Mn(R) be a strictly positive matrix (i.e. A� 0). Then A satisfies
the following properties
(i) r(A) > 0.
(ii) r(A) is an eigenvalue of A.
(iii) r(A) is the unique eigenvalue of A with modulus r(A) or equivalently

σper(A) = {r(A)}.
(iv) There exists a vr � 0 (a right eigenvector of A) and there exists a

vl � 0 (a left eigenvector of A) such that

Avr = r(A)vr and vTl A = r(A)vTl .

(v) r(A) is a simple eigenvalue of A.
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The Perron–Frobenius Theorem The Perron–Frobenius theorem for strictly positive matrices

Example. In order to illustrate this theorem we consider the transition
matrix of a homogeneous Markov chain (see Seneta [22] for more results
on this topic). Namely consider a random variable with a finite number of
states 1, . . . , n. Assume that the system is in the ith state at time t and the
next jump will take it to the jth state (at time t+ 1) with probability mij .
Therefore

P [X = j|X = i] = mij .

Then it holds that
n∑
j=1

mij = 1, ∀i = 1, · · · , n.

Pierre Magal Lecture 2 Winter School Valparaíso 37 / 133



The Perron–Frobenius Theorem The Perron–Frobenius theorem for strictly positive matrices

Define
M = (mij)i,j=1,...,n.

Then, one has

M

 1
...
1

 =

 1
...
1

 .
As an example with n = 4 we consider the following matrix

M = 1
10


1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

 .
The matrix M is said to be Markovian because

M


1
1
1
1

 =


1
1
1
1

 .
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The Perron–Frobenius Theorem The Perron–Frobenius theorem for strictly positive matrices

Now by the Perron–Frobenius theorem for strictly positive matrices, there
exists a vector V � 0 such that

V TM = r(M)V T .

So we obtain

V T


1
1
1
1

 = V TM


1
1
1
1

 = r(M)V T


1
1
1
1

 .
This yields

V T


1
1
1
1

 = r(M)V T


1
1
1
1

 ,
and since V � 0, one deduces that r(M) = 1.
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The Perron–Frobenius Theorem The Perron–Frobenius theorem for strictly positive matrices

Let Πt denote the row vector of the probability distribution of Xt at time
t. Then it satisfies

Πt+1 = ΠtM, ∀t ≥ 0.

Then whenever M is primitive we have

lim
t→∞

1
Πt

1 + · · ·+ Πt
n

Πt = 1
V1 + · · ·+ Vn

V,

and since Πt
1 + · · ·+ Πt

n = 1 this is also equivalent to

lim
t→∞

Πt = 1
V1 + · · ·+ Vn

V.
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The Perron–Frobenius Theorem The Perron–Frobenius theorem for strictly positive matrices

Remark 4.14

For the example M = 1
10


1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

 the left eigenvector is also

V = (1, 1, 1, 1)T .
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The Perron–Frobenius Theorem The Perron–Frobenius theorem for strictly positive matrices

In Figure 2 we plot the eigenvalues of the matrix M in the complex plane.

-1 -0.5 0 0.5 1 1.5 2 2.5 3

IR

-1

-0.5

0

0.5

1

i 
IR

Eigenvalues

Figure: In the figure we plot the eigenvalues of M in the complex plane. We
observe that two eigenvalues are real (the spectral radius 1 and a negative
eigenvalue −0.2) and the two last eigenvalues are complex conjugates −0.2±0.2i.

End example.
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The Perron–Frobenius Theorem The Perron–Frobenius theorem for strictly positive matrices

Lemma 4.15

Let z1, z2, . . . , zn ∈ C \ {0} be given, for some n ≥ 2. Then∣∣∣∣∣
n∑
k=1

zk

∣∣∣∣∣ =
n∑
k=1
|zk|

if and only if for each j ∈ {2, . . . , n}, there exists an αj > 0 such that

zj = αjz1.
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The Perron–Frobenius Theorem The Perron–Frobenius theorem for strictly positive matrices

Proof. The proof of the above lemma is based on an induction argument.
For n = 2, note that using polar coordinates one can rewrite z1 and z2 as
z1 = r1eiθ1 and z2 = r2eiθ2 . Hence we get

|z1 + z2| = |z1|+ |z2|
⇔ |r1eiθ1 + r2eiθ2 | = r1 + r2
⇔ |r1 + r2ei(θ2−θ1)| = r1 + r2
⇔ |r1 + r2 cos((θ2 − θ1)) + ir2 sin((θ2 − θ1))| = r1 + r2
⇔ (r1 + r2 cos((θ2 − θ1)))2 + (r2 sin((θ2 − θ1)))2 = (r1 + r2)2

and after simplification this leads us to

2r1r2 cos((θ2 − θ1)) = 2r1r2.

Now since by assumption we have z1 6= 0 and z2 6= 0, we end up with
cos((θ2− θ1)) = 1, that is (θ2− θ1) = 2kπ, for some integer k ∈ Z. Hence
we deduce that the result holds true for n = 2.
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The Perron–Frobenius Theorem The Perron–Frobenius theorem for strictly positive matrices

Assume that the result holds true for each integer 2 ≤ n ≤ n0, for some
integer n0 ≥ 2 and let us prove that the property also holds true for n0 + 1.
So assume that

|z1 + z2 + · · ·+ zn0+1| = |z1|+ |z2|+ · · ·+ |zn0+1|. (1)

By using the triangle inequality we have

|z1 + · · ·+ zn0 + zn0+1| ≤ |z1 + · · ·+ zn0 |+ |zn0+1|.

Next by using (1) and again the triangle inequality we deduce that

|z1|+ · · ·+ |zn0 | ≤ |z1 + · · ·+ zn0 | ≤ |z1|+ · · ·+ |zn0 |.

This implies that

|z1|+ · · ·+ |zn0 | = |z1 + · · ·+ zn0 |.
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The Perron–Frobenius Theorem The Perron–Frobenius theorem for strictly positive matrices

By using our induction assumption we obtain that for each j ∈ {2, . . . , n0},
there exists an αj > 0 such that

zj = αjz1,

and setting C := 1 + α2 + . . .+ αn0 > 0 the equality (1) becomes

|Cz1 + zn0+1| = |Cz1|+ |zn0+1|.

The result follows by using the case n = 2. This completes the proof of the
lemma. �
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Proof of Theorem 4.13. Proof of (i). The trace of A is given by

tr(A) =
n∑
i=1

aii =
n∑
i=1

λi,

where the λi ∈ C are eigenvalues of A (listed according to their algebraic
multiplicities).

Since aii > 0 for all i = 1, · · · , n we obtain that tr(A) > 0, which implies
that r(A) > 0.

Indeed if r(A) = 0, then λi = 0 for all i = 1, · · · , n, and tr(A) = 0, which
is a contradiction.
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Proof of (ii). Since r(A) > 0 by the previous step, multiplying A by r(A)−1

we can assume that
r(A) = 1.

Moreover, due to Lemma 4.3, there exists at least one eigenvalue λ ∈ C of
A such that

|λ| = r(A) = 1.

Let x 6= 0 be an eigenvector associated to λ. Recall that we have defined
the modulus of a matrix |M | as the matrix with elements |mij |. With this
notation we have

|x| = |λ||x| = |λx| = |Ax| ≤ |A||x|.

Since the matrix A is positive, we have A = |A| and we obtain

|x| ≤ A|x|.
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Let us prove that A|x| = |x|. To see this, assume that

A|x| > |x| ⇔ A|x| − |x| > 0.

Since A� 0, we deduce that

A(A|x| − |x|) = A2|x| −A|x| � 0.

So there exists an ε > 0 such that

A2|x| −A|x| > εA|x| ⇔ 1
1 + ε

A2|x| > A|x|.
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By setting
B := 1

1 + ε
A,

the above inequality can be rewritten as

BA|x| > A|x|.

By applying the positive matrix B on both sides of this inequality we obtain

B2A|x| > BA|x| > A|x|,

and by induction we obtain for each integer k > 1,

BkA|x| > Bk−1A|x| > · · · > BA|x| > A|x|.

Hence for each k > 1 one has

BkA|x| > A|x|. (2)
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On the other hand we also have

r(B) = 1
1 + ε

r(A) = 1
1 + ε

< 1,

which implies that
lim
k→∞

Bk = 0.

Taking the limit as k goes to +∞ in (2), we obtain

0 ≥ A|x|,

which is impossible since A� 0 and |x| > 0 imply that A|x| � 0. Therefore
we deduce that

A|x| = |x|,

and 1 is an eigenvalue of A.
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Proof of (iii). We still assume that r(A) = 1. Let λ be an eigenvalue with
modulus 1. Let x ∈ Cn\{0} be an eigenvector of A associated to λ. Then
from the previous part of the proof we have

A|x| = |x|. (3)

This equality implies first that |x| � 0 (since A� 0 and |x| > 0). Therefore

xj 6= 0, ∀j ∈ {1, . . . , n}.
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By using again A|x| = |x|, we have for each j ∈ {1, . . . , n}

|xj | =
n∑
k=1

ajk|xk| =
n∑
k=1
|ajkxk|

and since Ax = λx we also have

|xj | = |λ||xj | = |(λx)j | = |(Ax)j | =
∣∣∣∣∣
n∑
k=1

ajkxk

∣∣∣∣∣ .
Coupling the above two equalities we obtain, for each j ∈ {1, . . . , n},

n∑
k=1
|ajkxk| =

∣∣∣∣∣
n∑
k=1

ajkxk

∣∣∣∣∣ .
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Let j ∈ {1, . . . , n} be fixed and set

zk := ajkxk ∈ C, ∀k ∈ {1, . . . , n}.

Then the above equality can be rewritten as∣∣∣∣∣
n∑
k=1

zk

∣∣∣∣∣ =
n∑
k=1
|zk| .
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Next Lemma 4.15 applies and ensures that for each k ∈ {2, . . . , n}, there
exists an αk > 0 such that

zj = αjz1.

Hence we can find positive real numbers α2 > 0, . . . , αn > 0 such that for
each k ∈ {2, . . . , n},

ajkxk = αkaj1x1,

so that the vector x can be rewritten as

x = x1


1

α2
aj1
aj2
...

αn
aj1
ajn

.
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But since Ax = λx, by dividing both sides of this equality by x1 we obtain

λ


1

α2
aj1
aj2
...

αn
aj1
ajn

 = A


1

α2
aj1
aj2
...

αn
aj1
ajn

.

Thus λ ∈ (0,∞) and since |λ| = 1, one obtains λ = 1. As a consequence
1 is the only eigenvalue with modulus 1.
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Proof of (iv). Here we still assume that r(A) = 1.

Let x ∈ Cn\{0} be an eigenvector of A associated to the eigenvalue 1.

Then from the proof of (ii) we have

A|x| = |x| and |x| � 0

since A� 0 and |x| > 0.

Therefore one can choose vr = |x|.

Similarly since r(A) = r(AT ) we can apply the same argument to the
transposed matrix AT and we can find vl � 0 such that AT vl = vl.
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Proof of (v). Let us first prove that the geometric multiplicity of r(A) = 1
is 1.

Assume by contradiction that

dim(N(A− r(A)I)) > 1.

Then we can find two linearly independent (non-null) vectors u ∈ Rn \ {0}
and v ∈ Rn \ {0} such that

Au = u and Av = v.

From part (ii), we have A|u| = |u| and A|v| = |v|, which implies that
|u| � 0 (⇔ ui 6= 0,∀i = 1, . . . , n) and |v| � 0 (⇔ vi 6= 0, ∀i = 1, . . . , n) .
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Define
w := v1 u− u1 v.

Then by construction w1 = 0. Moreover, since u1 6= 0 and v1 6= 0 and u
and v are linearly independent, we must have

w 6= 0,

and since u and v are two eigenvectors associated to r(A) = 1, we must
have

Aw = w.

We deduce that
A|w| = |w| � 0,

and we obtain a contradiction with the fact that w1 = 0.

We deduce that the geometric multiplicity of r(A) = 1 is 1, that is,

dim(N(A− I)) = 1.
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Next, assume by contradiction that the algebraic multiplicity of r(A) = 1 is
not 1. This implies that

N(A− I)2 6= N(A− I).

Remember that N(A − I) ⊂ N(A − I)2. It follows that we can find x ∈
N(A− I)2 such that

x /∈ N(A− I).
Therefore we can find

Ax = x+ y with Ay = y and y � 0.

But we also have for each integer k ∈ N

A(x+ ky) = (x+ ky) + y.

Choosing k large enough, one can assume that z := x+ ky � 0 and

Az = z + y.

We obtain z � Az and z � 0, which is impossible from the proof of part
(ii). This completes the proof of the theorem. �
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Consider the linear operator Π : Rn → Rn defined by

Πx := 〈vl, x〉
〈vl, vr〉

vr.

Then Π is a projector, that is,

Π2 = Π.

Moreover, Π commutes with A and we have

AΠ = ΠA = r(A)Π.

We deduce that
A(I −Π) = (I −Π)A,

and we obtain a state space decomposition

Rn = R(Π)⊕ R(I −Π),

where R(Π) (respectively R(I −Π)) is the range of Π (respectively I −Π).
Moreover, we have

A(R(Π)) ⊂ R(Π) and A(R(I −Π)) ⊂ R(I −Π).
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From the Perron–Frobenius theorem we know that r(A) is an eigenvalue of
A with algebraic multiplicity 1, so we have

σ(A|R(I−Π)) = σ(A)\{r(A)}.

Furthermore, since r(A) is the only eigenvalue in the peripheral spectrum
of A, we deduce that

r(A|R(I−Π)) < r(A).

Therefore by choosing δ ∈
(
r(A|R(I−Π))

r(A) , 1
)
, one can find a constant M =

M(δ) ≥ 1 such that∥∥∥∥ 1
r(A)kA

k(I −Π)
∥∥∥∥ ≤Mδk,∀k ∈ N.
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As a consequence of the Perron–Frobenius theorem, we obtain the following.

Corollary 4.16

Let A ∈Mn(R) be a strictly positive matrix (i.e. A� 0). Then the rank 1
projector Π ∈Mn(R) defined by

Πx := 〈vl, x〉
〈vl, vr〉

vr

satisfies
AΠ = ΠA = r(A)Π and lim

k→+∞

1
r(A)kA

k = Π.

More precisely, we can find two constants M > 1 and δ ∈ (0, 1) such that
for any x ∈ Rn one has∥∥∥∥Πx− 1

r(A)kA
kx

∥∥∥∥ =
∥∥∥∥ 1
r(A)kA

k(I −Π)x
∥∥∥∥ ≤Mδk‖(I −Π)x‖.
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Remark 4.17
The above property is also called the asynchronous exponential growth
property. This means that the normalized distribution converges to a
distribution that is independent of the initial distribution.
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Remark Let A ∈Mn(R) be a strictly positive matrix (i.e. A� 0). Assume
that the dynamical distribution of population is described by the difference
equation in Rn

N(t+ 1) = AN(t), ∀t ∈ N and N(0) = N0 ≥ 0.

Consider a left eigenvector vl � 0 associated to the spectral radius r(A).
Then one has

〈vl, N(t+ 1)〉 = 〈vl, AN(t)〉 = r(A)〈vl, N(t)〉

and by induction we get

〈vl, N(t)〉 = r(A)t〈vl, X0〉, ∀t ∈ N.
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In addition, observe that the map

‖x‖1 := 〈vl, |x|〉, ∀x ∈ Rn

is a norm on Rn.
As a consequence, when a population density is described by such a discrete-
time model, the Perron–Frobenius theorem provides an equivalent indicator
of the Malthusian growth. Namely, we have

‖N(t)‖1 = r(A)t‖N0‖1, ∀t ∈ N.

Moreover, for N0 > 0 in Rn, the asynchronous exponential growth as stated
in Corollary 4.16 means the following convergence for the normalized distri-
bution

lim
t→+∞

N(t)
‖N(t)‖1

= ΠN0
〈vl, N0〉

= vr
〈vl, vr〉

.

Herein vr � 0 denotes a right eigenvector associated to the spectral radius
r(A).
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Primitive and irreducible matrices

In this section, we extend the Perron–Frobenius theorem to a larger class of
matrices, the class of so-called primitive and irreducible matrices.

Definition 4.18
Let A ∈Mn (R) be a non-negative matrix. We will say that A is primitive
if there exists an integer m ≥ 1 such that

Am � 0.

We will say that a matrix A ∈Mn (R) is irreducible if there exists an
integer m ≥ 1 such that

I +A+A2 + · · ·+Am � 0.

Pierre Magal Lecture 2 Winter School Valparaíso 67 / 133



The Perron–Frobenius Theorem Primitive and irreducible matrices

Remark 4.19
A matrix is reducible if it is not irreducible. For a reducible matrix A, one
can find that a permutation of the elements of the basis, such that the
matrix of A expressed in the permuted basis is block lower triangular

B =
[
B11 0
B21 B22

]
,

where B11 and B22 are both square blocks.
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Definition 4.20
Let A = (aij) be an n× n non-negative matrix. Consider n distinct points
P1, P2, . . . , Pn in the plane, which we call nodes. If aij > 0, we connect
node Pj to Pi by means of a directed path. The graph obtained is called
the graph G(A) associated with the matrix A.

Definition 4.21
A directed graph G(A) is strongly connected if for any pair of nodes Pi
and Pj there exists a directed path connecting Pi to Pj (such a direct
path can eventually be composed by several single paths joining some
intermediate nodes).
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Proposition 4.22
The following properties are equivalent
(i) A is irreducible.
(ii) The matrix εI +A is primitive for all ε > 0.
(iii) For each i, j ∈ 1, . . . , n, there exists an integer m = m(i, j) > 0 such

that
〈ej , Amei〉 > 0,

where {e1, . . . , en} denotes the canonical basis of Rn.
(iv) The directed graph G(A) of A is strongly connected.
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Proof. Proof of (i) ⇔ (ii). Let m > 0 be a given integer and ε > 0. By
using the binomial formula we have

(εI +A)m =
∑

k=0,...,m
Cknε

n−kAk

with A0 = I. Next we can find two numbers 0 < c− < c+ such that

c−(I +A+A2 + · · ·+Am) ≤ (εI +A)m ≤ c+(I +A+A2 + · · ·+Am).

The proofs of (i)⇔ (iii) and (i)⇔ (iv) are left as an exercise.
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The following theorem can be found in the book of Horn and Johnson [12,
Theorem 8.5.3, p. 517].

Theorem 4.23

A non-negative matrix A is primitive if and only if G(A) is strongly
connected and the greatest common divisor of the lengths of all paths
from Pi to itself is one.
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Remark 4.24
Horn and Johnson [12, Corollary 8.5.9, p. 520] proved by using graph
theory applied to G(A) that the matrix A is primitive if and only if

An
2 � 0.

whenever A is a n by n matrix.
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Remark 4.25
Observe that if A is primitive then A is irreducible. The converse is false.

Indeed, consider the Leslie matrix A =
[

0 1
1 0

]
. Then one has

I +A� 0.

So A is irreducible. But A is not primitive since A2n = I, ∀n ∈ N.
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Graphs of primitive matrices

P1

P2

P3

P1

P2

P3

Figure: In this figure we show some examples of graphs G(A) of primitive,
irreducible and non-irreducible matrices.
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Graph of a (non-primitive) irreducible matrix

P1

P2

P3

Figure: In this figure we show some examples of graphs G(A) of primitive,
irreducible and non-irreducible matrices.
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Graph of a non-irreducible matrix

P1

P2

P3

Figure: In this figure we show some examples of graphs G(A) of primitive,
irreducible and non-irreducible matrices.
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In Figures above the first primitive graphs correspond, for example, to the
matrices  1/2 0 1

1/2 0 0
0 1 0

 and

 0 1 1
1 0 0
0 1 0


while the irreducible and non-irreducible graphs correspond to the matrices 0 0 1

1 0 0
0 1 0

 and

 0 1 0
1 0 0
0 1 0

 .
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Our next theorem is concerned with primitive matrices.

Theorem 4.26

Let A ∈Mn (R) be a non-negative and primitive matrix. Then the
conclusions of Theorem 4.13 and Corollary 4.16 hold.
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Exercise 4.27
Prove Theorem 4.26. Reconsider the arguments given in the proof of
Theorem 4.13 for a matrix A which now is only primitive.
Hint: By using the Jordan reduction again we can prove that for each
integer n > 0

σ(An) = {λn : λ ∈ σ(A)} ,

and of course one has |λn| = |λ|n, for all λ ∈ C.
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As already mentioned, the matrix

A =
[

0 1
1 0

]

is irreducible but not primitive. The characteristic equation is

det(λI −A) = λ2 − 1, ∀λ ∈ C.

Therefore the spectrum of A reads as

σ (A) = {−1, 1} .

So the peripheral spectrum of A is not reduced to its spectral radius r(A) =
1.
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More generally the same result holds for the following n× n Leslie matrix

Ln =



0 0 · · · 0 β
π 0 · · · · · · 0

0 π 0
...

... . . . . . . . . . 0
0 · · · 0 π 0


∈Mn(R),

for some parameters β > 0 and π > 0. Note that one has

Lnn = βπn−1I.

So for all eigenvalues λ ∈ σ (L) , we have

λn = βπn−1.

Therefore the spectrum and the peripheral spectrum of L coincide.
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Our next result is concerned with irreducible matrices.
Theorem 4.28

Let A ∈Mn (R) be a non-negative and irreducible matrix. Then the
following properties hold:
(i) r(A) > 0.
(ii) r(A) is an eigenvalue of A.
(iii) There exists vr � 0 (a right eigenvector of A) and vl � 0 (a left

eigenvector of A) such that

Avr = r(A)vr and vTl A = r(A)vTl .

(iv) r(A) is a simple eigenvalue of A.
Moreover, if A is not primitive, then the peripheral spectrum of A contains
some eigenvalues distinct from r(A).
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Exercise 4.29

Prove Theorem 4.28.

Hint 1: Let ε > 0 be given so that the matrix A+ εI is primitive and

λ ∈ σ(A)⇔ λ+ ε ∈ σ(A+ εI).

Hint 2: For the last part of the theorem, assume by contradiction that the
peripheral spectrum of A contains no other eigenvalue than r(A). Then as
above conclude that

lim
k→+∞

1
r(A)kA

k = Π� 0

(where Π = vrv
T
l ), which implies that A is primitive.
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Example. In Figure 6 we plot the spectrum of

L4 =


0 0 0 β
π 0 0 0
0 π 0 0
0 0 π 0

 .
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-4 -3 -2 -1 0 1 2 3 4

IR

-2

-1

0

1

2
i 

IR

Eigenvalues

Figure: In this figure we plot the spectrum of the above Leslie matrix L4 with
π = 1 and β = 1.
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In Figure 7 we plot the spectrum of

L̂4 =


0 0 β β
π 0 0 0
0 π 0 0
0 0 π 0

 .
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-4 -3 -2 -1 0 1 2 3 4

IR

-2

-1

0

1

2
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IR
Eigenvalues

Figure: In this figure we plot the spectrum of the above Leslie matrix L̂4 with
π = 1 and β = 1.

The major difference between L4 and L̂4 is that L̂4 is primitive while L4 is
only irreducible.
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Application to Leslie’s model
In this section, we reconsider the Leslie matrix introduced in Chapter 1.
Consider the Leslie model

U t+1 = LU t, for all t ≥ 0, with U0 = U0 ∈ Rm+1
+ ,

where the Leslie matrix L is given by

L =



β0 β1 · · · · · · βm
π0 0 · · · · · · 0

0 π1 0
...

... . . . . . . . . . 0
0 · · · 0 πm−1 0


.

Here we assume that
βj ≥ 0, ∀j = 0, . . . ,m

and
πj > 0, ∀j = 0, . . . ,m− 1.
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By computing the powers of the Leslie matrix

L̂ =



0 0 · · · 0 1
1 0 · · · · · · 0

0 1 0
...

... . . . . . . . . . 0
0 · · · 0 1 0


∈Mm+1(R),

one obtains the following lemma.

Lemma 5.1

The matrix L is irreducible if βm > 0.
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Applications of the Perron–Frobenius Theorem Application to Leslie’s model

The following proposition is also a consequence of Theorem 4.23. This
result is due to Demetrius [4].

Proposition 5.2
Assume that βm > 0 and that there exists an integer
j0 ∈ {0, 1, . . . ,m− 1} such that

βj0 > 0 and βj0+1 > 0.

Then L is a primitive matrix.

Proof. It is also instructive to prove the above proposition by considering
the renewal equation for t > m− 1

U0(t+ 1) = β0U0(t) +β1π0U0(t− 1) + · · ·+βmπ0×πm−1U0(t− (m− 1)).

The proof is left to the reader.
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Applications of the Perron–Frobenius Theorem Application to Leslie’s model

From the above results and the Perron–Frobenius theorem, the following
lemma follows.
Theorem 5.3

Assume that βm > 0. Then the spectral radius r(L) > 0 is the unique
positive solution of the λ-equation

1 = 1
λ

[
β0 + β1

π0
λ

+ β2
π0
λ

π1
λ

+ · · ·+ βm
π0
λ

π1
λ
× · · · × πm−1

λ

]
.

Moreover, the right eigenvector of L associated with r(L) is given by

Ur :=



1
π0
r(L)

π0
r(L)

π1
r(L)
...

π0
r(L)

π1
r(L) × · · · ×

πm−1
r(L)


.
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Applications of the Perron–Frobenius Theorem Application to Leslie’s model

Theorem 5.4

Furthermore, setting

R0 := β0 + β1π0 + β2π0π1 + · · ·+ βmπ0π1 × · · · × πm−1,

we have following alternatives:

(i) If R0 > 1 then r(L) > 1.

(ii) If R0 = 1 then r(L) = 1.

(iii) If R0 < 1 then r(L) < 1.

If we assume in addition that L is primitive, then for each initial distribution
U0 > 0 the solution of the difference equation

U(t+ 1) = LU(t),∀t ≥ 0, and U(0) = U0 > 0,

satisfies the following asymptotic behavior

lim
t→+∞

1
U(t)0 + U(t)1 + . . .+ U(t)m

U(t) = 1
Ur0 + Ur1 + . . .+ Urm

Ur.
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Applications of the Perron–Frobenius Theorem Application to Leslie’s model

Figure 8, taken from Chapter 1, illustrates this last convergence result to
the right eigenvector.

Figure: In this figure we plot a solution t→ u(t, a) of the Leslie model a ∈ [0, 20].
The reproduction function β(a) = 0.8 ∗∆a if a > 5 and β(a) = 0 otherwise. The
survival rate is π(a) = exp(−0.1 ∗∆a). The initial distribution is constant equal
to 1. We observe that it takes 40 years for the distribution of population to grow
exponentially.
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Applications of the Perron–Frobenius Theorem Application to Leslie’s model

Figure: In this figure we plot a normalized solution t→ u(t, a)/Σi=0,...,20u(t, i) of
the Leslie model a ∈ [0, 20]. The reproduction function is defined by
β(a) = 0.8 ∗∆a if a > 5 and β(a) = 0 otherwise. The survival rate is
π(a) = exp(−0.1 ∗∆a). The initial distribution is constant equal to 1. We
observe the convergence of the normalized distribution when the time becomes
large enough.
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Applications of the Perron–Frobenius Theorem Application to Leslie’s model

Note that since βm > 0, the matrix L is irreducible (see Lemma 5.1).
Hence, due to the Perron–Frobenius theorem (see Theorem 4.23, Theorem
4.28 and its corollary), to prove the above theorem, it is sufficient to check
the first assertion on the spectral radius r(L) > 0. To see this, note that
the equation

U ∈ Rm+1 \ {0} and r(L)U = LU,

which can be rewritten as λ = r(L) > 0, satisfies the equation

1 = 1
λ

[
β0 + β1

π0
λ

+ β2
π0
λ

π1
λ

+ . . .+ βm
π0
λ

π1
λ
× . . .× πm−1

λ

]
=: f(λ).

Next, since βm > 0, we have

lim
λ→0

f(λ) = +∞ and lim
λ→+∞

f(λ) = 0,

and since f is decreasing on (0,∞), the above equation has a unique solution
λ0 > 0, that is, λ0 = r(L).
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Applications of the Perron–Frobenius Theorem Application to Leslie’s model

Remark 5.5
Leslie’s model was used by Song to understand how to control the growth of the
population in China. The number Ni(t) is the number of females in age class i.
Assume that βi is the average number of newborns per female in age class i,
which has been estimate over one year. Assume that πi is the fraction of females
surviving from age class i to age class i+ 1. Then (by using the characteristic
equation) one can derive the growth rate r(L). Song’s work on population
control led to the one-child policy in China [24, 25]. More information can be
found in Greenhalgh [10, 11].

More recently, since the growth rate r(L) has been reduced by the one-child
policy, the expected distribution of the population vr has changed. When we
normalize vr (i.e. divide by vr0 + vr1 + · · ·+ vrm) we obtain the expected
distribution of population of China. That is, one can compute the expected
fraction of young people, middle-aged people, and old people in the population.
Since the expected number of old people is now too large compared to the
expected number of middle-aged people (or working people), the authorities
decided to change the one-child policy, and a second child is now allowed in
China.
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Applications of the Perron–Frobenius Theorem Application to the space-time discrete diffusion process

Application to the space-time discrete diffusion process
In this section we consider the space-time discrete heat equation with Neu-
mann homogeneous boundary conditions. As discussed in Chapter 1, if
∆t > 0 and ∆x > 0 denote respectively the time and space step, the
discrete heat equation reads for t ≥ 0 as

u(t+ ∆t) = u(t) + ε∆t
∆x2Du(t) with u(0) = u0 ∈ RN+ .

Herein the matrix D is given by

D =



−1 1 0 . . . . . . 0

1 −2 1 . . . ...
0 1 −2 . . . . . . ...
... . . . . . . . . . 0
... . . . 1 −2 1
0 . . . 0 1 −1


.
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Applications of the Perron–Frobenius Theorem Application to the space-time discrete diffusion process

To understand the dynamical behavior of the difference equation, we first
investigate some basic properties of the matrix D.

Lemma 5.6
Assume that p := 2 ε∆t∆x2 < 1. Then the matrix I + ε∆t

∆x2D is non-negative
and primitive.
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Applications of the Perron–Frobenius Theorem Application to the space-time discrete diffusion process

Remark 5.7
The condition 2 ε∆t∆x2 < 1 is called the CFL (Courant–Friedrichs–Lax)
condition.
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Applications of the Perron–Frobenius Theorem Application to the space-time discrete diffusion process

It is readily checked that

D1 = 0 and 1TD = 0T .

Hence we get(
I + ε∆t

∆x2D

)
1 = 1 and 1T

(
I + ε∆t

∆x2D

)
= 1

T ,

and applying the Perron–Frobenius theorem we deduce that the following
lemma holds.
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Applications of the Perron–Frobenius Theorem Application to the space-time discrete diffusion process

Lemma 5.8
Assume that p = 2 ε∆t∆x2 < 1. Then the spectral radius of the matrix
I + ε∆t

∆x2D is given by

r

(
I + ε∆t

∆x2D

)
= 1.

Moreover, for each u0 ≥ 0 one has

N∑
i=1

u(t)i =
N∑
i=1

u0i, ∀t ≥ 0,

which means that the total number of individuals is constant, and

lim
n→+∞

u(t) =
(

N∑
i=1

u0i

)
1/N
1/N
...

1/N

 ,

which means that the individuals are equally redistributed between the
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Applications of the Perron–Frobenius Theorem Application to the space-time discrete diffusion process

Proof. Since by assumption p < 1 we deduce by applying Theorem 4.23
that the matrix M = (I + ε∆t

∆x2D) is primitive. Therefore, by using the
Perron–Frobenius theorem, we know that there exists a vl � 0 such that

vTl M = r(M)vTl .

But
vTl 1 = vTl M1 = r(M)vTl 1.

Therefore r(M) = 1. The result follows by using the fact that the dimension
of the right and left eigenspace of M associated with 1 is one. Therefore
the right eigenspace of M associated to 1 is R1 and the left eigenspace of
M associated to 1 is R1T .
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Applications of the Perron–Frobenius Theorem Application to the space-time discrete diffusion process

The Figure below illustrates this convergence result.

Figure: In this figure we plot a heat equation with x ∈ [0, 10]. The diffusion
coefficient is equal to ε = 2. The initial distribution is constant equal to
u0(x) = 1 + sin(x). We observe the quite rapid convergence to the constant
distribution.
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Exercise 5.9
Assume that 2 ε∆t∆x2 < 1. Consider the implicit numerical scheme given by

u(t+ ∆t) = u(t) + ε∆t
∆x2Du(t+ ∆t),

yielding the following linear difference equation(
I − ε∆t

∆x2D

)
u(t+ ∆t) = u(t), ∀t ≥ 0 and u(0) = u0.

Prove that if 2 ε∆t∆x2 < 1, then the matrix (I − ε∆t
∆x2D) is invertible and the

matrix (I − ε∆t
∆x2D)−1 is strictly positive.
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The case of linear ordinary differential equations
In this part, we come back to the positivity property of the solutions of
linear differential equations and we describe some further properties as a
consequence of the Perron–Frobenius theorem. Our result reads as follows.
Theorem 5.10

Let A ∈Mn(R) be a given matrix such that for all δ > 0 large enough
δI +A is a non-negative and primitive matrix. Then the following
properties hold:
(i) For each t > 0 one has

eAt � 0.

(ii) The spectral bound of A, s(A) := max{Re (λ) : λ ∈ σ(A)}, is a
simple eigenvalue of the matrix A.

(iii) For each λ ∈ σ(A)\{s(A)} one has

Re (λ) < s(A).
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Applications of the Perron–Frobenius Theorem The case of linear ordinary differential equations

Theorem 5.11
(iv) There exist two vectors vr � 0 and vl � 0 such that

vTl A = s(A)vTl and Avr = s(A)vr.

(v) If Π is the projector given by Π(x) := 〈vl,x〉
〈vl,vr〉vr for x ∈ Rn, then we

have
ΠeAt = eAtΠ = es(A)tΠ, ∀t ≥ 0,

and there exist two constants χ > 0 and M ≥ 1 such that

‖e−s(A)teAt(I −Π)‖ ≤Me−χt‖(I −Π)‖, ∀t ≥ 0.
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Remark 5.12
In the above theorem, the diagonal elements of A can have any sign, while
all the off-diagonal elements of A are non-negative.

Proof. Proof of (i). Let δ > 0 be such that δI + A is non-negative and
primitive. Then we have

eAt = e−δte(A+δI)t = e−δt
+∞∑
k=0

((A+ δI)t)k

k! � 0, ∀t > 0.

Sketch of the proof for (ii)–(iv). To prove (ii) implies (iv), it is sufficient to
apply the Perron–Frobenius theorem to the primitive matrix (A + δI) and
to observe that one has

λ ∈ σ(A)⇔ λ+ δ ∈ σ(A+ δI).

Now assertion (v) is a direct consequence of (ii)–(iv).
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Example. We reconsider the heat equation, but now we assume the time
is continuous while the space is discrete. In other words, we assume that
the individuals are located at some discrete positions. Then we can consider
the ordinary differential equation

u′(t) = γ

2Du(t),∀t ≥ 0, and u(0) = u0 ≥ 0,

where D has been defined in the previous section and u(t)i is the number
of individuals in position i. Then for i = 2, . . . , N − 1

ui(t)′ =
γ

2 (ui+1 + ui−1)− γui

with
u1(t)′ = γ

2 (u2 − u1)

and
uN (t)′ = γ

2 (uN−1 − uN ) .

Here the parameter γ > 0 is the leaving rate of individuals at position i. In
other words, the time spent in position i follows the exponential law with
average

T = 1
γ
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By applying Theorem 5.10 we obtain the following lemma.

Lemma 5.13
For each u0 ≥ 0 we have

lim
t→+∞

u(t) = (u01 + u02 + · · ·+ u0N )


1/N
1/N
...

1/N

 .

End example.
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Stability criteria for linear ordinary differential equations

The stability criteria stated in this part are commonly used in population
dynamics. In the context of epidemic models, such criteria have been exten-
sively used in the literature. We refer to Diekmann, Heesterbeek and Metz
[5] and to Van den Driessche and Watmough [6]. One can also find some
infinite-dimensional versions of this result, for which we refer to Thieme
[27].
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Example. In order to illustrate this stability result, let us consider the
following continuous-time Leslie model

d
dt

(
U0(t)
U1(t)

)
= L

(
U0(t)
U1(t)

)
(4)

wherein the matrix L takes the form

L :=
(
β0 − µ0 β1
η0 −µ1

)

for some given parameters β0 ≥ 0, β1 > 0, η0 > 0, µ0 > 0, µ1 > 0.
Set

A =
(
−µ0 0

0 −µ1

)
and B =

(
β0 β1
η0 0

)
.
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Then we have

B(−A)−1 =
(
β0 β1
η0 0

)
×
(
µ−1

0 0
0 µ−1

1

)

=
(
β0µ

−1
0 β1µ

−1
1

η0µ
−1
0 0

)
.

The matrix B(−A)−1 is irreducible, and by using Lemma 5.4 we deduce
that r(B(−A)−1) < 1 if

R0 := β0µ
−1
0 + β1µ

−1
1 η0µ

−1
0 < 1.

It follows from Theorem 5.14 that (4) is stable (i.e. s(L) < 0) if R0 < 1.
End example.
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Theorem 5.14 (Stability)

Let A,B ∈Mn (R) be two given matrices with δI +A ≥ 0 for some δ ≥ 0
and B ≥ 0. Assume that s(A) < 0 or equivalently the equilibrium 0 is
exponentially asymptotically stable for the system

X ′(t) = AX(t).

Assume in addition that the matrix B (−A)−1 is non-negative and
irreducible and satisfies

r
(
B (−A)−1

)
< 1.

Then one has s(A+B) < 0 or equivalently the equilibrium 0 is
exponentially asymptotically stable for the system

X ′(t) = (A+B)X(t).
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Proof. Let us prove that s(A+B) < 0. With that aim, let λ ∈ C be given
with Re (λ) ≥ 0. Observe first that since for all (x, y) ∈ Rn × Rn one has

(λI − (A+B))x = y ⇔ [I −B(λI −A)−1](λI −A)x = y,

it follows that the matrix (λI − (A + B)) is invertible if and only if the
matrix [I − B(λI − A)−1] is invertible. Let us now prove that we can find
a new norm ‖ · ‖1 on Rn such that

sup
‖x‖1≤1

‖B(λI −A)−1x‖1 < 1, ∀λ ∈ {ν ∈ C : Re (ν) ≥ 0}.
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Since B ≥ 0 and eAt ≥ 0 for all t ≥ 0, it follows from the resolvent formula
and the definition of the modulus that for all x ∈ Rn one has

|B(λI −A)−1x| =
∣∣∣∣B ∫ +∞

0
e−λteAtxdt

∣∣∣∣ ≤ B ∫ +∞

0
e−Re (λ)teAt|x|dt.

Now since Re (λ) ≥ 0 we obtain

|B(λI −A)x| ≤ B
∫ +∞

0
eAt|x|dt = B(−A)−1|x|, ∀x ∈ Rn.

Since the matrix B(−A)−1 is irreducible, the Perron–Frobenius theorem
applies and ensures that we can find vg � 0 such that

vTg B(−A)−1 = r
(
B(−A)−1

)
vTg .
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Define
‖x‖1 := 〈vg, |x|〉 = vTg |x|, ∀x ∈ Rn.

Then ‖ · ‖1 is a norm on Rn and one has

‖B(λI −A)x‖1 = vTg |B(λI −A)x| ≤ vTg B(−A)−1|x|

= r
(
B(−A)−1) ‖x‖1, ∀x ∈ Rn.

Finally, since by assumption one has r
(
B(−A)−1) < 1, the result follows.

�
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Example 5.15
In order to illustrate this stability result, let us consider the following
continuous-time Leslie model

d
dt


U0(t)
U1(t)
...

Um(t)

 = L


U0(t)
U1(t)
...

Um(t)

 (5)

wherein the matrix L takes the form

L =



β0 − µ0 β1 · · · · · · βm
η0 −µ1 0 · · · 0

0 η1 −µ2
. . . ...

... . . . . . . . . . 0
0 · · · 0 ηm−1 −µm


.

for some given parameters βi ≥ 0, i = 0, . . . ,m, βm > 0, ηi > 0, µi > 0,
i = 0, . . . ,m.
Set

A =


−µ0 0 . . . 0

0 −µ1
. . . ...

... . . . . . . 0
0 . . . 0 −µm

 and B =



β0 β1 · · · · · · βm
η0 0 0 · · · 0

0 η1 0 . . . ...
... . . . . . . . . . 0
0 · · · 0 ηm−1 0


.

Then we have

B(−A)−1 =



β0 β1 · · · · · · βm
η0 0 0 · · · 0

0 η1 0 . . . ...
... . . . . . . . . . 0
0 · · · 0 ηm−1 0


×


µ−1

0 0 . . . 0

0 µ−1
1

. . . ...
... . . . . . . 0
0 . . . 0 µ−1

m



=



β0µ
−1
0 β1µ

−1
1 · · · · · · βmµ

−1
m

η0µ
−1
0 0 0 · · · 0

0 η1µ
−1
1 0 . . . ...

... . . . . . . . . . 0
0 · · · 0 ηm−1µ

−1
m−1 0


.

Since βm > 0, the matrix B(−A)−1 is irreducible, and by using the
Lemma 5.4 we deduce r(B(−A)−1) < 1 if

R0 := β̂0 + β̂1π0 + β̂2π0π1 + · · ·+ β̂mπ0π1 × · · · × πm−1 < 1,

where
β̂j = βjµ

−1
j

and
πj = ηjµ

−1
j .

It follows from Theorem 5.14 that (5) is stable (i.e. s(L) < 0) if R0 < 1.
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Remarks and Notes Positivity of linear EDO systems in Banach spaces

Positivity of linear EDO systems in Banach spaces

Definition 6.1

A closed and convex subset X+ of a Banach space X is called a positive
cone of X if the following properties are satisfied:
(i) λX+ ⊂ X+, ∀λ ≥ 0;
(ii) X+ ∩ (−X+) = {0}.
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Remarks and Notes Positivity of linear EDO systems in Banach spaces

Similarly as for Rn, by using the positive cone X+ one can define a partial
order on X as follows

x ≥ y ⇔ x− y ∈ X+,

x > y ⇔ x− y ∈ X+ \ {0},
x� y ⇔ x− y ∈ X̊+,

wherein X̊+ is the interior of X+.
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Remarks and Notes Positivity of linear EDO systems in Banach spaces

Remark 6.2
In a Banach space the interior of the positive cone is not necessarily
non-empty. Indeed,
(i) The interior of the positive cone C+([0, 1],R) is not empty in

C([0, 1],R)) (Hint: The function u(x) = 1, ∀x ∈ [0, 1] belongs to the
interior of the cone);

(ii) The interior of the positive cone L1
+((0, 1),R) is empty in

L1((0, 1),R) (Hint: The function
u(x) = 1, for almost every x ∈ [0, 1], does not belong to the interior
of the cone).
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Remarks and Notes Positivity of linear EDO systems in Banach spaces

Definition 6.3

A Banach space X endowed with such a partial order ≥ is said to be
partially ordered. We will say that a bounded linear operator A ∈ L(X) is
positive (or for short A ≥ 0) if

Ax ≥ 0, ∀x ≥ 0, that is, AX+ ⊂ X+.
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Theorem 6.4

Let A ∈ L(X) be a bounded linear operator on a partially ordered Banach
space X. Then

eAt ≥ 0, ∀t ≥ 0,

if and only if there exists a λ0 > 0 large enough such that [λ0,∞) ⊂ ρ(A)
and

(λI −A)−1 ≥ 0, ∀λ ≥ λ0.
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The proof of this theorem is similar to that of Theorem 3.3. This proof uses
the fact that the positive cone is closed and we leave it as an exercise.
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Further reading about the Perron–Frobenius theorem

The Perron–Frobenius theorem presented in this chapter was proved by
Perron [20] and Frobenius [7, 8]. This is one of the most classical results
about the spectrum of matrices. We refer to the books of Gantmacher
[9], Seneta [22], Minc [18], and Horn and Johnson [12] for more results on
non-negative matrices.
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The Krein–Rutman theorem

The Perron–Frobenius theorem has several infinite-dimensional extensions.
Below we present the Krein–Rutman theorem, which is an infinite-dimensional
version of this theorem in some ordered Banach spaces endowed with a solid
positive cone, that is, a positive cone with non-empty interior.
To present this result, let us first recall the definition of a compact operator.

Definition 6.5
Let (X, ‖ · ‖X) be a Banach space. Let A ∈ L(X) be a bounded linear
operator on the Banach space X. Then A is said to be a compact
operator if the closure of A(B) is a compact subset of X for every
bounded subset B of X.
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As mentioned above, there are several extensions of the Perron–Frobenius
theorem in Banach spaces. The main assumption of the Krein–Rutman
theorem is that the interior of the positive cone X+ is non-empty. We refer
to [1, 3, 14, 26, 21, 23] for various proofs and more results on this subject.
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Theorem 6.6 (Krein–Rutman)
Let (X, ‖ · ‖X) be a Banach space partially ordered with a positive cone
X+ with non-empty interior. Let A ∈ L(X) be a compact bounded linear
operator on X such that

Ax� 0, ∀x > 0 or equivalently A(X+ \ {0}) ⊂ X̊+.

Then the following properties are satisfied
(i) The spectral radius of A, which is defined by

r(A) = limn→∞ ‖An‖1/nL(X), is strictly positive and is a simple
eigenvalue of A (i.e. dim(N (r(A)I −A))) = 1 and
N ((r(A)I −A)) = N

(
(r(A)I −A)2

)
).

(ii) There exists a u ∈ Int (X+) such that Au = r(A)u.
(iii) If λ ∈ C is an eigenvalue of A with |λ| = r(A), then λ = r(A).
(iv) If λ ∈ C is an eigenvalue of A such that there exists a u ∈ X+ \ {0}

with Au = λu, then λ = r(A).
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Note that the compactness of the linear operator A can be weakened
by working with the essential spectral radius and the measure of non-
compactness. More general versions of the above result can also be stated
for Banach spaces partially ordered by a cone with an empty interior. We
refer the interested readers to the monographs of Schaefer [21], and to those
of Meyer-Nieberg [17]. See also [16, 19].
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Random linear systems

To quote a few results involving random linear difference equations, we refer
to the paper of Cohen and Newman [2] for a nice discussion of examples
and counterexamples related to the growth of solutions of a non-autonomous
difference equation of the form

N(n+ 1) = A(n)N(n),∀n ∈ N, and N(0) = x ∈ Rn,

where A(n) is an n by n random matrix (i.e. all elements are random vari-
ables).
The authors investigate the growth of the solution, that is, the function of
x:

λ(x) = lim
n→+∞

ln(‖N(n)‖)
n

.

For the most advanced readers, we also refer to the work of Lian and Lu
[15] on Lyapunov exponents and invariant manifolds for random dynamical
systems in a Banach space.
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Thank you for listening
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