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Introduction

Let (M,d) be a complete metric space. Typical examples in population
dynamics will be

M = Rn+ = [0,∞)n.

A more general class of subset M are the intervals in Rn. That is a subset
of the following form

M = [c,∞) = {x ∈ Rn : ci ≤ xi} ,

M = [c, d] = {x ∈ Rn : ci ≤ xi ≤ di} ,

or
M = (−∞, d] = {x ∈ Rn : xi ≤ di} ,

where c, d ∈ Rn and c ≤ d.
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Introduction

These subsets will be endowed with usual distance (induced by the norm
‖.‖ of Rn)

d(x, y) = ‖x− y‖,∀x, y ∈M.

Then (M,d) is a complete metric space (since the subsets M are closed
subsets of Rn).

In order to consider both discrete and continuous time dynamical systems,
the time will vary either in

I+ = [0,+∞) and I = R (continuous time)

or in
I+ = N and I = Z (discrete time).
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Introduction

Definition 1.1

Let {U(t)}t≥0 be a family of continuous maps from M into itself
parameterized by t ∈ I+. We will say that U is a continuous semiflow on
M if the following properties are satisfied

(i) U(0)x = x,∀x ∈M ;
(ii) U(t)U(s)x = U(t+ s)x, ∀t, s ≥ 0,∀x ∈M ;
(iii) The map (t, x)→ U(t)x is continuous from I+ ×M into M .

Moreover we will say that U is a continuous time semiflow if
I+ = [0,+∞) and a discrete time semiflow if I+ = N.
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Introduction

Remark 1.2
Since we assumed that the map x→ U(t)x continuous (for each t ≥ 0), it
follows that a discrete time semiflow is always continuous. That is to say
that the property (iii) of Definition 1.1 is always satisfied for discrete time
semiflow.
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Introduction Discrete time semiflow and difference equation

Discrete time semiflow and difference equation

Assume that a discrete semiflow {U(t)}t∈N is given. Define the map T :
M →M

T (x) = U(1)(x)

and the sequence {un}n∈N

un := U(n)(x),∀n ≥ 0.

Then by using the property (ii), we obtain

un = U(n)(x) = U(1)(U(n− 1)(x)) = T (un−1), ∀n ∈ N, and u0 = x.

So we obtain a difference equation

un+1 = T (un) , ∀n ∈ N, with u0 = x ∈M.
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Introduction Discrete time semiflow and difference equation

We also observe that

u0 = x

u1 = T (x)
u2 = T (T (x)) = T 2(x)

and we obtain
un = Tn(x), ∀n ∈ N,

where Tn is defined by

Tn+1 = T ◦ Tn, ∀n ∈ N and T 0 = I.
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Introduction Discrete time semiflow and difference equation

Conversely, assume that a map T : M → M is given. Then the semiflow
{U(t)}t∈N is defined by

U(n)(x) = Tn(x), ∀n ∈ N, ∀x ∈M,

where T : M →M is a continuous map.
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Introduction Semiflow generated by the 1-dimensional logistic equation

Semiflow generated by the 1-dimensional logistic equation

Let us consider the family of maps {U(t)}t≥0 defined onM = R+ as follows

U(t)x = eλtx

1 + κ
∫ t

0 e
λσxdσ

, ∀t ≥ 0, ∀x ≥ 0, (1)

where λ ∈ R and κ ≥ 0.

Lemma 1.3

The family {U(t)}t≤0 is a semiflow on M = [0,+∞).
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Introduction Semiflow generated by the 1-dimensional logistic equation

Remark 1.4

The semiflow U(t) can not be extended (backward in time) to a flow
because the solution of the logistic equation t→ U(t)x is blowing up for
negative time (whenever x > λ/κ). Because, for x > λ/κ the solutions
blowup for some finite negative time. The map U(t) restricted to [0, λ/κ]
defines a flow (whenever λ > 0). That is, the map x 7→ U(t)x redistricted
to [0, λ/κ] is defined for all t ∈ R.
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Introduction Semiflow generated by the 1-dimensional logistic equation

Proof. Let us verify that U(t) is a continuous semiflow on R+. Indeed, it
is clear that

U(0)x = x,∀x ∈ R+.

Let t, s ≥ 0, we have

U(t)U(s)x =
eλt eλsx

1+κ
∫ s

0 eλrxdr

1 + κ
∫ t

0 e
λσ eλsx

1+κ
∫ s

0 eλrxdr
dσ

= eλ(t+s)x

1 + κ
∫ s

0 e
λrxdr + κ

∫ t
0 e

λ(σ+s)xdσ

and by using a change of variable, we obtain that∫ t

0
eλ(σ+s)xdσ =

∫ t+s

s
eλrxdr,
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Introduction Semiflow generated by the 1-dimensional logistic equation

and it follows that

U(t)U(s)x = eλ(t+s)x

1 + κ
∫ t+s

0 eλrxdr
= U(t+ s)x.

Therefore U is a semiflow on R+. �
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Introduction Semiflow generated by the 1-dimensional logistic equation

Remark 1.5

The map t→ N(t) := U(t)x satisfies the logistic equation

N ′(t) = λN(t)− κN2(t). (2)

We refer to Chapter 5 in Volume I for more results.
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Introduction 2-dimensional Bernoulli-Verhulst equation

Semiflow generated by a 2-dimensional Bernoulli-Verhulst
equation

Let θ > 0. Consider the family of maps V (t) on R2 defined by

V (t)X =



(
U(t)(‖X‖θ2)
‖X‖θ2

) 1
θ

eAtX, if X =
(
x
y

)
6= 0,

0, if X =
(

0
0

)
,

(3)

where U(t) is the semiflow defined by (1), and

‖X‖2 =
∥∥∥∥∥
(
x
y

)∥∥∥∥∥
2

=
√
x2 + y2

is the Euclidean norm,
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Introduction 2-dimensional Bernoulli-Verhulst equation

and (see Section 3.9.3 in Volume I) we have

eAt
(
x
y

)
=
(

cos(ωt)x− sin(ωt)y
sin(ωt)x+ cos(ωt)y

)
,

with
A =

(
0 −ω
ω 0

)
.
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Introduction 2-dimensional Bernoulli-Verhulst equation

Lemma 1.6

The family {V (t)}t≤0 is a semiflow on R2.
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Introduction 2-dimensional Bernoulli-Verhulst equation

Proof. We first observe that∥∥∥eAtX∥∥∥2

2
= (cos(ωt)x)2 − 2 cos(ωt)x sin(ωt)y + (sin(ωt)y)2

+ (sin(ωt)x)2 + 2 sin(ωt)x cos(ωt)y + (cos(ωt)y)2

= x2 + y2

= ‖X‖22 ,

and we deduce that eAt preserves the Euclidean norm of X∥∥∥eAtX∥∥∥
2

= ‖X‖2 ,∀t ∈ R.

It follows that
V (t)

(
R2\ {0}

)
⊂ R2\ {0} , ∀t ≥ 0.
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Introduction 2-dimensional Bernoulli-Verhulst equation

Let X 6= 0. By applying the Euclidean norm on both sides of (3), we deduce
that

‖V (t)X‖θ2 =
U(t)

(
‖X‖θ2

)
‖X‖θ2

∥∥∥eAtX∥∥∥θ
2

= U(t)
(
‖X‖θ2

)
∀t ≥ 0,

and

V (t)V (s)X =
(
U(t)(‖V (s)X‖θ2)
‖V (s)X‖θ2

) 1
θ

eAtV (s)X

=
[
U(t)

(
U(s)

(
‖X‖θ2

))] 1
θ eAt V (s)X

‖V (s)X‖2

=
[
U(t+ s)

(
‖X‖θ2

)] 1
θ eAt e

AsX
‖X‖2

= V (t+ s)X,

whenever t ≥ 0 and s ≥ 0. It follows that V (t) is a continuous semiflow. �
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Introduction 2-dimensional Bernoulli-Verhulst equation

Remark 1.7
The map t→ X(t) = V (t)X satisfies the 2-dimensional Bernoulli-Verhulst
equation

X ′(t) =
[
A+ λ

θ
I

]
X(t)− κ

θ
‖X(t)‖θ2X(t),∀t ≥ 0. (4)

We refer to chapter 5 in volume I for more results.
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Introduction Explicit formula for the semiflow of the Poincaré normal form

Explicit formula for the semiflow of the Poincaré normal
form
In the special case θ = 2, we obtain

V (t)X =


√
U(t)

(
‖X‖22

)
eAt

(
X
‖X‖

)
if X 6= 0,

0 if X = 0,
(5)

and from the above computation we deduce that t → V (t)X =
(
x(t)
y(t)

)
satisfies the following system of ordinary differential equations{

x′(t) = λ
2x(t)− ωy(t)− κ

2
(
x(t)2 + y(t)2)x(t),

y′(t) = ωx(t) + λ
2y(t)− κ

2
(
x(t)2 + y(t)2) y(t). (6)

The system (6) is nothing but the Poincaré normal form for Hopf bifurca-
tion. We can say that the Poincaré normal form is a special case of the
2-dimensional Bernoulli-Verhulst equation.
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Stability of an Equilibrium
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Stability of an Equilibrium

Definition 2.1

We will say that x ∈M is an equilibrium for U if

U(t)x = x,∀t ≥ 0.
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Stability of an Equilibrium

Definition 2.2

We will say that an equilibrium x ∈M is stable for U if for each ε > 0,
there exists η ∈ (0, ε] such that

U(t)BM (x, η) ⊂ BM (x, ε) , ∀t ≥ 0.

where BM (x, ε) := {y ∈M : d(x, y) ≤ ε}.

We will say that x ∈M is unstable otherwise. That is to say that, there
exist ε > 0, and a sequence xn → x and tn → +∞ such that

‖U(tn)xn − x‖ > ε.
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Stability of an Equilibrium

Definition 2.3
We will say that x ∈M is asymptotically stable, if x is stable for U and
if there exists η > 0 such that for each x ∈ BM (x, η)

lim
t→+∞

U(t)x = x.

We will say that x ∈M is exponentially asymptotically stable, if x is
stable for U and if in addition we can find three constants η > 0, α > 0,
M ≥ 1 such that

d(U(t)x, x) ≤Me−αtd(x, x),∀t ≥ 0, ∀x ∈ BM (x, η) .
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Stability of an Equilibrium

Another equivalent definition of stability is the following. We will say that
an equilibrium x ∈M is stable if for each neighborhood V of x in M (that
is to say that V contains a ball BM (x, ε)), we can find a neighborhood
W ⊂ V of x in M such that

U(t)W ⊂ V,∀t ≥ 0.

In this case, by considering

Ŵ :=
⋃
t≥0

U(t)W,

we have U(0)W = W (since U(0) = I), so we deduce that

W ⊂ Ŵ ⊂ V.
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Stability of an Equilibrium

So Ŵ is a neighborhood of x in M , (since W is a neighborhood of x in
M), and we have

U(t)Ŵ = U(t)
⋃
s≥0

U(s)W =
⋃
s≥0

U(t)U(s)W

=
⋃
s≥0

U(s+ t)W =
⋃
l≥t
U(l)W.

Thus
U(t)Ŵ ⊂ Ŵ ,∀t ≥ 0.
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Stability of an Equilibrium

Therefore we obtain the following lemma.

Lemma 2.4

The following properties are equivalent
(i) x ∈M is stable equilibrium for U ;
(ii) For each neighborhood V of x in M , we can find neighborhood

W ⊂ V of x in M , such that

U(t)W ⊂ V,∀t ≥ 0.

(iii) For each neighborhood V of x in M , we can find a neighborhood
W ⊂ V of x in M , such that

U(t)W ⊂W, ∀t ≥ 0.
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Stability of an Equilibrium

We can observe that an equilibrium x is unstable for U if there exists ε > 0
such that for each η > 0 there exists t = t (η) > 0 such that

U(t)BM (x, η) 6⊂ BM (x, ε) .

Therefore by considering a sequence ηn = 1/(n + 1) → 0, we obtain the
following lemma. For each integer n ≥ 0 we can find tn ≥ 0 such that

U(tn)BM (x, 1/(n+ 1)) 6⊂ BM (x, ε) .

Therefore we can find xn ∈ BM (x, 1/(n+ 1)) with

d(U(tn)xn, x) ≥ ε.

Moreover, we must have tn → +∞ because U is a continuous semiflow.
Otherwise, we can find a sub-sequence tnp → t̂, and by continuity of U , we
deduce that

lim
n→∞

d(U(tn)xn, x) = 0,

which is impossible since ε > 0.
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Stability of an Equilibrium

Lemma 2.5

An equilibrium x ∈M is unstable for U if and only if there exists ε > 0
and two sequences xn → x and tn → +∞ such that

d (U(tn)xn, x) ≥ ε, ∀n ≥ 0.
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Stability of an Equilibrium

Definition 2.6

Let A be a subset of M . We will say that A is positively invariant by U
if

U(t)A ⊂ A,∀t ≥ 0.

The subset A is positively invariant if and only if for each x ∈ A
U(t)x ∈ A, ∀t ≥ 0.

We will say that A is negatively invariant by U if
U(t)A ⊃ A,∀t ≥ 0.

The subset A is negatively invariant if and only if for each y ∈ A and each
t ≥ 0, there exists x ∈ A such that

U(t)x = y.

We will say that A is invariant by U if A is both positively and negatively
invariant. That is

U(t)A = A,∀t ≥ 0.

Pierre Magal Lecture 4 Winter School Valparaíso 31 / 184



Stability of an Equilibrium

Example 2.7

Consider the map T : [0, 1]→ [0, 1] defined by

T (x) = 4x(1− x),∀x ∈ [0, 1] .

Then T reaches its maximum on [0, 1] at x = 1/2 and

T (1/2) = 1.

Therefore
T ([0, 1]) = [0, 1] .

We deduce that [0, 1] is invariant by the discrete time semiflow

U(n) = Tn, ∀n ≥ 0.

But clearly the map T is not one to one, so the map x→ U(n)x is not
invertible.
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Stability of an Equilibrium

Definition 2.8

We will say that O+ = {u(t)}t≥0 ⊂M is a positive orbit of U if
u(t) = U(t)u(0),∀t ≥ 0,

or, equivalently, if
u(t+ s) = U(s)u(t),∀t, s ≥ 0.

We will say that {u(t)}t≤0 ⊂M is a negative orbit of U if
u(−t) = U(s)u(−t− s),∀t, s ≥ 0.

Finally we will say that O = {u(t)}t∈I ⊂M is a complete orbit of U if
u(t) = U(s)u(t− s), ∀s ≥ 0,∀t ∈ I.

We will say that an orbit (positive, negative or complete) passes through
x ∈M at time t = 0 if u(0) = x.
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Stability of an Equilibrium

Remark 2.9

Let x ∈M be given. Then there exists at most one positive orbit passing
through x at time t = 0, which is

u(t) := U(t)x, ∀t ≥ 0.

But in general there is no negative orbit passing through x at time 0.
Since the map U(t) is not always onto for t > 0. Moreover when there
exists a negative orbit passing through x, the negative orbit is not
necessarily unique since the map U(t) is not always one to one for t > 0.
As an example of non-unique negative orbit consider Example 2.7.

Pierre Magal Lecture 4 Winter School Valparaíso 34 / 184



Stability of an Equilibrium

Remark 2.10

If {u(t)}t∈I ⊂M is a complete orbit passing through x then the set

O :=
⋃
t∈I
{u(t)}

satisfies
U(t)O = O,∀t ≥ 0.

This is an example of invariant set.
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ω-Limit and α-Limit Sets

Definition 3.1

Let x ∈M . Let {u(t)}t≥0 ⊂M be a positive orbit of U passing through x
at time 0. The ω-limit set of x is defined as

ω(x) :=
⋂
t≥0

⋃
s≥t
{u(s)}.

Let {u(t)}t≤0 be a negative orbit of U passing through x at time 0. Then
the α-limit set of x (with respect to this negative orbit) is

α(x) :=
⋂
t≤0

⋃
s≤t
{u(s)}.
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ω-Limit and α-Limit Sets

The omega limit set satisfies

ω(x) =
{
y ∈M : ∃ {tn}n∈N ⊂ I+ → +∞ such that lim

n→+∞
u(tn) = y

}
= {y ∈M : ∀t ≥ 0,∀ε > 0,∃s > t such that d(u(s), y) ≤ ε} .

Similarly the alpha limit set satisfies

α(x) =
{
y ∈M : ∃ {tn}n∈N ⊂ I+ → +∞ such that lim

n→+∞
u(−tn) = y

}
= {y ∈M : ∀t ≤ 0,∀ε > 0,∃s < t such that d(u(s), y) ≤ ε} .
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ω-Limit and α-Limit Sets

Example 3.2

We have for example

u(t) = cos(t)⇒
⋂
t≥0

⋃
s≥t
{u(s)} = [0, 1],

u(t) = t cos(t)⇒
⋂
t≥0

⋃
s≥t
{u(s)} = R,

u(t) = t⇒
⋂
t≥0

⋃
s≥t
{u(s)} = ∅.

So the omega limit sets can be compact, non compact or empty.
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ω-Limit and α-Limit Sets

Definition 3.3

Let (M,d) be a metric space.
(i) A subset C ⊂M is compact if and only if any sequence in C has a

sub-sequence which converges in C.
(ii) A subset C ⊂M is relatively compact if and only if C (the closure

of C in (M,d)) is compact.

Pierre Magal Lecture 4 Winter School Valparaíso 40 / 184



ω-Limit and α-Limit Sets

In the general case ω-limit set is non empty only whenever the positive orbit

O+ = {u(t)}t≥0

is relatively compact (i.e. its closure is compact).
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ω-Limit and α-Limit Sets

Theorem 3.4

Let {u(t)}t≥0 ⊂M be a positive orbit passing through x ∈M at time
t = 0. Assume that the closure of this positive orbit⋃

t≥0
{u(t)}

is compact.

Then the ω-limit set satisfies the following properties:
(i) ω(x) is a non empty compact subset of M ;
(ii) ω(x) is invariant by U ;
(iii) lim

t→+∞
d (u(t), ω(x)) = 0 , where

d (x,B) := inf
y∈B

d(x, y).
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ω-Limit and α-Limit Sets

Remark 3.5

If M is a closed subset of Rn, and the metric d is induced by a norm on
Rn (i.e. d(x, y) = ‖x− y‖), then

⋃
t≥0
{u(t)} is compact if and only if the

positive orbit
⋃
t≥0
{u(t)} is a bounded set.
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ω-Limit and α-Limit Sets

Before proving Theorem 3.4 we need the following lemma.

Lemma 3.6

Let B ⊂M . Then the map x→ d(x,B) is Lipschitz continuous. More
precisely

|d(x,B)− d(y,B)| ≤ d (x, y) ,∀x, y ∈M.

Pierre Magal Lecture 4 Winter School Valparaíso 44 / 184



ω-Limit and α-Limit Sets

Proof. Let x, y ∈M and z ∈ B. We have

d(x,B) ≤ d(x, z) ≤ d(x, y) + d(y, z).

Thus
d(x,B) ≤ d(x, y) + d(y,B)

and the result follows.

Pierre Magal Lecture 4 Winter School Valparaíso 45 / 184



ω-Limit and α-Limit Sets

Proof. [of Theorem 3.4] Define

At :=
⋃
s≥t
{u(s)} , ∀ t ≥ 0.

By assumption for each t ≥ 0, the subset At is compact. Moreover the
family t→ At is decreasing, that is to say that

t ≥ s⇒ At ⊂ As.
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ω-Limit and α-Limit Sets

Proof of (i). Let {tn} → +∞ be an increasing sequence and xn ∈
Atn , ∀n ≥ 0. Then since A0 is compact, and the family t → At is de-
creasing, we have

xn ∈ A0,∀n ≥ 0.

So, we can find a converging sub-sequence {xn}n≥0 → z ∈ A0 (denoted
for notational simplicity by the same index).
Moreover for each t ≥ 0, we can find an integer n0 ≥ 0 such that tn ≥ t,
∀n ≥ n0, and since the family t→ At is decreasing

xn ∈ At, ∀n ≥ n0.

But the subset At is closed by construction, therefore

z ∈ At, ∀t ≥ 0.

hence ω(x) is non-empty (since z ∈ ω(x)).
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ω-Limit and α-Limit Sets

Next, consider a sequence in the ω-limit set

xn ∈ ω(x),∀n ≥ 0.

Then
xn ∈ At,∀n ≥ 0,∀t ≥ 0.

Since A0 is compact, we can find a converging sub-sequence, and since this
sub-sequence belongs to each subset At (which is closed), we deduce that
the limit of this converging sub-sequence belongs to ω(x). Therefore ω(x)
is compact.

Pierre Magal Lecture 4 Winter School Valparaíso 48 / 184



ω-Limit and α-Limit Sets

Proof of (ii). Observe that for each t, s ≥ 0

U(s)

⋃
l≥t
{u(l)}

 =
⋃

l≥t+s
{u(l)} . (7)

This equality implies that

U(s)

⋃
l≥t
{u(l)}

 ⊂ At+s
and since the map x→ U(s)x is continuous we obtain

U(s) (At) ⊂ At+s. (8)
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ω-Limit and α-Limit Sets

From (7), we also have

U(s) (At) ⊃
⋃

l≥t+s
{u(l)}

and since by assumption At is compact and x → U(s)x is continuous, it
follows that U(s) (At) is compact and we obtain

U(s) (At) ⊃ At+s. (9)

By combining the inclusions (8) and (9) we obtain

U(s) (At) = At+s,∀t, s ≥ 0.

The invariance of the ω-limit set follows from the following observation

U(s) (ω(x)) = U(s)

⋂
t≥0

At

 =
⋂
t≥0

U(s)At =
⋂
t≥0

At+s = ω(x).

Pierre Magal Lecture 4 Winter School Valparaíso 50 / 184



ω-Limit and α-Limit Sets

Proof of (iii). Assume by contradiction that there exist ε > 0 and a
sequence
tn → +∞ such that

d (u(tn), ω(x)) ≥ ε, ∀n ≥ 0.

By compactness of A0, we can find a converging sub-sequence (denoted
with the same index) such that

lim
n→+∞

u(tn) = z ∈ ω(x).

By Lemma 3.6, we deduce that

ε/2 ≤ lim
n→+∞

d (u(tn), ω(x)) = d (z, ω(x)) = 0,

which is a contradiction. �
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ω-Limit and α-Limit Sets

The proof for alpha limit sets is similar to the proof of Theorem 3.4.

Theorem 3.7

Let {u(t)}t≤0 ⊂M be a negative orbit passing through x ∈M at time
t = 0. Assume that

⋃
t≤0
{u(t)} is compact. Then the α-limit set satisfies

the following properties
(i) α(x) is a non empty compact subset of M ;
(ii) α(x) is invariant by U .
(iii) lim

t→−∞
d (u(t), α(x)) = 0.
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Heteroclinic and Homoclinic Orbits

Outline
1 Introduction

Discrete time semiflow and difference equation
Semiflow generated by the 1-dimensional logistic equation
2-dimensional Bernoulli-Verhulst equation
Explicit formula for the semiflow of the Poincaré normal form

2 Stability of an Equilibrium
3 ω-Limit and α-Limit Sets
4 Heteroclinic and Homoclinic Orbits
5 Attraction of Sets and Hausdorff Distance and Semi-Distance
6 Connectivity of ω-Limit Sets and α-Limit Sets

Invariantly connected ω-limit and α-limit Sets
Connected ω-limit and α-limit sets

7 Dissipation and Absorbing Sets
8 Examples

Logistic equations: heteroclinic orbit
Poincaré normal form: periodic orbit
Homoclinic orbit for a second order logistic equation
Beverton and Holt discrete time model
Ricker model: chaotic behavior
Lorentz system: chaos and dissipation properties

Pierre Magal Lecture 4 Winter School Valparaíso 53 / 184



Heteroclinic and Homoclinic Orbits

Proposition 4.1

Let {u(t)}t≥0 ⊂M be a positive orbit passing through x ∈M at time
t = 0. Then

ω(x) = {x+} ⇔ lim
t→+∞

u(t) = x+.

Moreover in that case, x+ must be an equilibrium of U .

Let {u(t)}t≤0 ⊂M be a negative orbit passing through x ∈M at time
t = 0. Then

α(x) = {x−} ⇔ lim
t→−∞

u(t) = x−.

Moreover in that case, x− must be an equilibrium of U .
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Heteroclinic and Homoclinic Orbits

Proof. By using the definition of ω(x), we deduce that ω(x) = {x+} is
equivalent to

lim
t→+∞

u(t) = x+.

Let s ≥ 0. Since t→ u(t) is a positive orbit, we have

u(t+ s) = U(s)u(t), ∀t ≥ 0,

and by taking the limit when t→ +∞ on both side, we obtain

x+ = U(s)x+.
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Heteroclinic and Homoclinic Orbits

By using the definition of α(x), we deduce that α(x) = {x−} is equivalent
to

lim
t→−∞

u(t) = x−.

Let s ≥ 0. Since t→ u(t) is a negative orbit, we have

u(t+ s) = U(s)u(t), ∀t ≤ −s,

and by taking the limit when t→ −∞ on both side, we obtain

x− = U(s)x−.

�
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Heteroclinic and Homoclinic Orbits

Definition 4.2

A complete orbit {u(t)}t∈I is called a heteroclinic orbit if there exist
x−∞ ∈M and x+∞ ∈M (with x−∞ 6= x+∞) such that

lim
t→−∞

u(t) = x−∞ and lim
t→+∞

u(t) = x+∞.

That is equivalent to say that both the omega limit set and alpha limit set
are reduced to a single point. That is

α(x) = {x−∞} and ω(x) = {x+∞} .
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Heteroclinic and Homoclinic Orbits

Definition 4.3
A complete orbit {u(t)}t∈I is called a homoclinic orbit if this orbit is not
constant and there exists x ∈M such that

lim
t→+∞

u(t) = x and lim
t→+∞

u(t) = x.

That is equivalent to say that this orbit is not constant and the omega
limit set and the alpha limit set are reduced to the same single point. That
is

α(x) = ω(x) = {x} .
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Attraction of Sets and Hausdorff Distance and Semi-Distance

Let (M,d) be a complete metric space. For any subsets A, B ⊂ M , we
define Hausdorff’s semi-distance of B to A as

δ(B,A) := sup
x∈B

d(x,A),

where
d(x,A) := inf

z∈A
d(x, z).

For each ε > 0, we define an open ε-neighborhood of A (see also Section
2 in Chapter 2 for more results) as

N(A, ε) := {x ∈M : d(x,A) < ε} ,

and a closed ε-neighborhood of A as

N(A, ε) := {x ∈M : d(x,A) ≤ ε} .
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Attraction of Sets and Hausdorff Distance and Semi-Distance

Now by using the fact that x→ d(x,A) is a continuous map, we deduce that
N(A, ε) is an open neighborhood of A and N(A, ε) is a closed neighborhood
of A. From these observations, it becomes clear that δ(B,A) is measuring
the distance of B to A (and not the converse). Therefore δ(B,A) is only a
semi-distance (since δ(B,A) = 0 does not imply A = B).
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Attraction of Sets and Hausdorff Distance and Semi-Distance

Remark 5.1

The open ball BM (x, ε) (respectively the closed ball BM (x, ε)) centered
at x with radius ε > 0 satisfies

BM (x, ε) = {y ∈M : d(y, x) < ε} = N({x} , ε),

and
BM (x, ε) = {y ∈M : d(y, x) ≤ ε} = N({x} , ε).
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Attraction of Sets and Hausdorff Distance and Semi-Distance

Definition 5.2

The distance between two subsets A,B ⊂M is measured by using the so
called Hausdorff’s distance which is defined by

dH(A,B) = max(δ(B,A), δ(A,B)).
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Attraction of Sets and Hausdorff Distance and Semi-Distance

AB
ε N(A, ε)

Figure: The figure illustrates the notion of Hausdorff’s semi-distance of B to A.
In the figure ε = δ(B,A). The black curve corresponds to the boundary of
N(A, ε) a ε-neighborhood of A.
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Attraction of Sets and Hausdorff Distance and Semi-Distance

A
B

ε

N(B, ε)

Figure: The figure illustrates the notion of Hausdorff’s semi-distance of A to B.
In the figure ε = δ(A,B). The black curve corresponds to the boundary of
N(B, ε) a ε-neighborhood of B.
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Attraction of Sets and Hausdorff Distance and Semi-Distance

Definition 5.3

We say that a subset A ⊂M attracts a subset B ⊂M for a semiflow U
on M if

lim
t→+∞

δ(U(t)B,A) = 0.
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Attraction of Sets and Hausdorff Distance and Semi-Distance

Remark 5.4

This means that for each ε > 0, we can find t0 = t0(ε) > 0 (large enough)
such that for each t ≥ t0, the subset U(t)B = {U(t)x : x ∈ B} is included
in N(A, ε).
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Attraction of Sets and Hausdorff Distance and Semi-Distance

To illustrate the notion of attraction, we first prove that the positive orbit
is attracted by the omega limit sets (whenever it is exists).

Lemma 5.5

Let {u(t)}t≥0 ⊂M be a positive orbit passing through x ∈M at time
t = 0. Assume that

O+(x) :=
⋃
t≥0
{u(t)}

is relatively compact. Then ω(x) attracts O+(x) for U .
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Attraction of Sets and Hausdorff Distance and Semi-Distance

Proof. We first observe that

U(t)O+(x) =
⋃
s≥t
{u(s)} , ∀t ≥ 0.

Assume by contradiction that ω(x) does not attract O+(x) for U . Then we
can find ε > 0 and a sequence tn → +∞ such that

δ(u(tn), ω(x)) ≥ ε,

and we obtain a contradiction with Theorem 3.4-(iii).
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Attraction of Sets and Hausdorff Distance and Semi-Distance

Remark 5.6

If we consider the family of subsets At :=
⋃

s≥t

{u(s)} , then ω(x) attracts O+(x)

for U if, and only if,
lim

t→+∞
δ (At, ω(x)) = 0.

Let {u(t)}t≤0 ⊂M be a negative orbit passing through x ∈M at time t = 0. We
can adapt this last notion of attractivity for the alpha limit sets, by saying that if

O−(x) =
⋃
t≤0
{u(t)}

is relatively compact, then

lim
t→−∞

δ (Bt, α(x)) = 0,

where
Bt =

⋃
s≤t

{u(s)} .
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Attraction of Sets and Hausdorff Distance and Semi-Distance

The Hausdorff semi-distance measure the distance of B to A. Therefore if
B ⊂ A then δ(B,A) = 0. Moreover, if ε > 0 then

δ(B,A) = ε⇒ B ⊂ N(A, ε).

This means that we can find a sequence x ∈ B such that

d(x,A) ≤ ε,

and there exists a sequence xn ∈ B such that

lim
n→∞

d(xn, A) = ε.

Pierre Magal Lecture 4 Winter School Valparaíso 71 / 184



Attraction of Sets and Hausdorff Distance and Semi-Distance

The Hausdorff distance can also be defined as follows

dH (A,B) = inf {ε > 0 : A ⊂ N(B, ε) and B ⊂ N(A, ε)} .

Actually the Hausdorff distance is not a real distance, because we only have

dH (A,B) = 0⇔ A = B.
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Attraction of Sets and Hausdorff Distance and Semi-Distance

But the Hausdorff is a real distance if we restrict to the closed subsets.
Proposition 5.7

Let (M,d) be a metric space. Then the set of closed subsets of M is a
metric space endowed with the Hausdorff distance.
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Attraction of Sets and Hausdorff Distance and Semi-Distance

Proof. It remains to prove the triangle inequality for the Hausdorff distance.
Assume that

dH (A,B) < ε and dH (B,C) < ε′.

From the proof of Lemma 3.6, we know that for each x ∈ C, z ∈ B,

d(x,A) ≤ d(x, z) + d(z,A).

Let x ∈ C be fixed. Since

dH (B,C) < ε′ ⇒ C ⊂ N(B, ε′),

we can choose z ∈ B such that d(z, x) ≤ ε′, and

dH (A,B) < ε⇒ B ⊂ N(A, ε).

We deduce that
d(x,A) ≤ ε′ + ε, ∀x ∈ C.
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Attraction of Sets and Hausdorff Distance and Semi-Distance

By taking the supremum in x, we obtain

δ(C,A) ≤ dH (A,B) + dH (B,C) ,

and by symmetry of the problem, we obtain

δ(A,C) ≤ dH (A,B) + dH (B,C) .

We conclude that

dH(C,A) ≤ dH (A,B) + dH (B,C) .

�
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Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

Internally chain transitive ω-limit sets and α-limit sets

The fundamental property of omega limit sets is the fact that each couple
of points in a omega limit set can be almost connected by an orbit staying
in a small neighborhood of the omega limit set.
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Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

The following result is making this statement more precise.

Lemma 6.1

Assume that the positive orbit O+(x) (respectively the negative orbit
O−(x)) is relatively compact. For each a, b ∈ ω(x) (respectively
a, b ∈ α(x) ) and each ε > 0 we can find aε, bε ∈M and tε > 0 such that

d(a, aε) ≤ ε, d(b, bε) ≤ ε,

U(tε)aε = bε,

and
U(t)aε ∈ N(ω(x), ε),∀t ∈ [0, tε] ,

which is equivalent to

d (U(t)aε, ω (x)) ≤ ε,∀t ∈ [0, tε] .
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Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

Proof. We have limt→+∞ δ(U(t)x, ω(x)) = 0. So we can find t0 > 0 such
that

δ(U(t)x, ω(x)) ≤ ε, ∀t ≥ t0.

Since a belongs to ω(x) we can find t1 > t0 such that d(U(t1)x, a) ≤ ε.
Set aε = U(t1)x. Then since b belongs to ω(x) we can find t2 > t1 > t0
such that d(U(t2)x, b) ≤ ε. Set bε = U(t2)x and the result follows.
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Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

Definition 6.2

Let A be a subset of M . We say that a ∈ A is chained to b ∈ A in A, if
for each t? > 0, for each ε > 0, and each η > 0, there exist
τ ∈ [t?, t? + η] ∩ I, and x1, x2, ..., xm ∈ A (with m ≥ 2) such that

x1 = a, xm = b, and d (U(τ)xi, xi+1) ≤ ε,∀i = 1, ...,m− 1.

We will say that A is internally chain transitive, if for each a, b ∈ A, a is
chained to b in A.

Pierre Magal Lecture 4 Winter School Valparaíso 80 / 184



Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

Theorem 6.3

Let {U(t)}t∈I be a continuous semiflow on (M,d). Then the omega limit
set (respectively alpha limit set) of a relatively compact positive orbit
(respectively negative orbit) is internally chain transitive.
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Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

Lemma 6.4

Let {U(t)}t∈I be a continuous semiflow on (M,d). Let C be a compact
subset of M . Then for each ε > 0, and each t? ∈ I, there exists δ > 0,
such that s ∈ [t?, t? + δ], u, v ∈M ,

d (u,C) ≤ δ, d (v, C) ≤ δ, and d (u, v) ≤ δ ⇒ d (U(s)u, U(s)v) ≤ ε.

Pierre Magal Lecture 4 Winter School Valparaíso 82 / 184



Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

Proof. Assume by contradiction that there exists ε > 0, and two sequences
un ∈ M , and vn ∈ M , and sn ∈ [t?, t? + 1/n], such that for each integer
n > 0,

d (un, C) ≤ 1/n, d (vn, C) ≤ 1/n, and d (un, vn) ≤ 1/n,

and
d (U(sn)un, U(sn)vn) ≥ ε. (10)

By definition of distance d (x,C), we can find two sequences uCn ∈ C and
vCn ∈ C such that

d
(
un, u

C
n

)
≤ 2/n and d

(
vn, v

C
n

)
≤ 2/n.
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Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

By using the triangle inequality we obtain

d
(
uCn , v

C
n

)
≤ d

(
uCn , un

)
+ d(un, vn) + d

(
vn, v

C
n

)
≤ 5/n.

Now, by using the fact that C is compact, we can find some converging
sub-sequences (denoted with the same index), such that

uCn → w, and vCn → w, as n→ +∞.

By using the continuity of (t, x)→ U(t)x, we deduce from (10) that

0 = d (U(t?)w,U(t?)w) ≥ ε > 0.

A contradiction. The proof is completed. �
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Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

Proof. [of Theorem 6.3] Let us prove the result for omega limit set (the
proof for alpha limit set is similar). Let x ∈ M, and assume that γ+(x) is
compact. Then ω(x) is nonempty, compact, invariant and

lim
t→+∞

d (U(t)x, ω(x)) = 0.

Let t? ∈ I (with t? > 0), ε > 0, and η > 0 be fixed. By continuity of U, and
compactness of ω(x), we can find δ ∈ (0, ε/3) ∩ (0, η), with the following
property: If s ∈ [t?, t? + δ] , u, v ∈M,

d (u, ω(x)) ≤ δ, d (v, ω(x)) ≤ δ, and d (u, v) ≤ δ ⇒ d (U(s)u, U(s)v) ≤ ε/3.

Since
lim

t→+∞
d (U(t)x, ω(x)) = 0,

we can find t1 ∈ I, such that

d (U(t)x, ω(x)) < δ,∀t ≥ t1.
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Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

Let a, b ∈ ω(x). Then we can find ta ≥ t1, such that

d (U(ta)x, a) < δ.

Let k ∈ N, k ≥ 2, such that t?/k ≤ δ. Then we can find tb ≥ ta +kt?, such
that

d (U(tb)x, b) < δ.

However there exists m ≥ k+ 1, such that (m− 1) t? ≤ tb− ta < mt?. We
set τ = tb − ta

m− 1 . Then by construction of t?, we have τ ∈ I, and

τ ∈
[
t?,

(
1 + 1

m− 1

)
t?
]
⊂
[
t?,

(
1 + 1

k

)
t?
]
⊂ [t?, t? + δ] .
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Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

We set

y1 = a, y2 = U (τ)U(ta)x, . . . , ym−1 = U ((m− 2)τ)U(ta)x, ym = b.

Then
d (U (τ) y1, y2) = d (U (τ) a, U (τ)U(ta)x)

and since

a ∈ ω(x), d (U(ta)x, ω(x)) < δ, and d (U(ta)x, a) < δ,

and τ ∈ [t, t+ δ], we deduce that

d (U (τ) y1, y2) = d (U (τ) a, U (τ)U(ta)x) ≤ ε/3,

U (τ) yj = yj+1, ∀j = 2, ...,m− 2,

and
d (U (τ) ym−1, ym) = d (U(tb)x, b) ≤ δ ≤ ε/3.
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Connectivity of ω-Limit Sets and α-Limit Sets Internally chain transitive ω-limit sets and α-limit sets

Now for each j = 2, ...,m−1, there exists xj ∈ ω(x), such that d (xj , yj) ≤
δ. By setting x1 = a and xm = b, we obtain for j = 1, ...,m− 1,

d (U (τ)xj , xj+1) ≤ d (U (τ)xj , U (τ) yj)
+d (U (τ) yj , yj+1)
+d (yj+1, xj+1)

≤ ε/3 + ε/3 + δ ≤ ε.

The proof is completed. �
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Connectivity of ω-Limit Sets and α-Limit Sets Invariantly connected ω-limit and α-limit Sets

Invariantly connected ω-limit and α-limit Sets

Definition 6.5

A compact invariant set A is said to be invariantly connected if it is not
the union of two nonempty disjoint compact invariant subsets. That is to
say that if A1 6= ∅, and A2 6= ∅ are non empty and compact subsets
satisfying

A = A1 ∪A2, with A1 ∩A2 = ∅.

Then either A1 or A2 are not invariant by U . That is,

either U (t?)A1 6= A1, or U(t?)A2 6= A2.

for some t? > 0.
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Connectivity of ω-Limit Sets and α-Limit Sets Invariantly connected ω-limit and α-limit Sets

Theorem 6.6

Let {U(t)}t∈I be a continuous semiflow on (M,d). Then the omega limit
set (respectively alpha limit set) of a relatively compact positive orbit
(respectively negative orbit) is invariantly connected.
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Connectivity of ω-Limit Sets and α-Limit Sets Invariantly connected ω-limit and α-limit Sets

Theorem 6.6 follows from Theorem 6.3 and the following lemma.

Lemma 6.7

Let A be a compact subset of M which is invariant by U . If A is internally
chain transitive then A is also invariantly connected.
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Connectivity of ω-Limit Sets and α-Limit Sets Invariantly connected ω-limit and α-limit Sets

Proof. We can prove the result by contradiction. Assume that A is the
union of two disjoint closed invariant sets A = A1 ∪ A2. We get a contra-
diction because the subsets A1 and A2 are invariant. So if we fix τ > 0
then when d(x,A1) ≤ ε, then d(U(τ)x,A2) > 2ε whenever ε > 0 is small
enough. So a point of A1 can not be chained to a point of A2.
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Connectivity of ω-Limit Sets and α-Limit Sets Connected ω-limit and α-limit sets

Connected ω-limit and α-limit sets

Definition 6.8

Let (M,d) be a metric space. Let C ⊂M be a subset of M . We will say
that a pair of of non empty subsets A ⊂ C and B ⊂ C is a partition of C
if

A ∪B = C and A ∩B = ∅.

Pierre Magal Lecture 4 Winter School Valparaíso 93 / 184



Connectivity of ω-Limit Sets and α-Limit Sets Connected ω-limit and α-limit sets

Definition 6.9

Let (M,d) be a complete metric space. A subset C of M is said to be
connected if there exists no partition of C in two subsets A and B which
are both open subsets for the topology of (C, d). We will say that C is
disconnected whenever C is not connected.
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Remark 6.10

Recall that a subset is closed in (C, d) if its complementary set in C is
open in (C, d). Therefore, in the above definition, it is equivalent to say
that both subsets A and B are also closed in (C, d).
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Assume that C is not connected. Then we can there exists a partition of
C in two subsets A and B which are both open subsets for the topology
of (C, d). Recall that a subset A is open in (C, d), if and only if for each
x ∈ A, there exists εx > 0 such that

BC(x, εx) = {y ∈ C : d(x, y) ≤ εx)} ⊂ A,

where BC(x, εx) is the ball of center x and radius εx (in C).
Remark that

BC(x, εx) = BM (x, εx) ∩ C,

where
BM (x, εx) = {y ∈M : d(x, y) ≤ εx} .

So we must have
BM (x, εx) ∩B = ∅.
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Now we can define
U =

⋃
x∈A

BM (x, εx),

and
V =

⋃
x∈B

BM (x, εx).

where for each x ∈ B, εx is chosen small enough to guaranty

BM (x, εx) ∩A = ∅.

We observe that U and V satisfy

U ∩ C = A and V ∩ C = B

and
U ∩ V = ∅.
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Therefore we obtain the following proposition.

Proposition 6.11

Let (M,d) be a complete metric space. A subset C is disconnected if
there exist two open subsets U ⊂M and V ⊂M , such that
(i) C ⊂ U ∪ V ;
(ii) C ∩ U 6= ∅
(iii) C ∩ V 6= ∅
(iv) U ∩ V = ∅.
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Definition 6.12
An interval in R is a subset I such that

a < c < b and a, b ∈ I ⇒ c ∈ I.
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Remark 6.13
This is definition can be extended to Rn endowed with some partial order
≤.
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Theorem 6.14

A connected set of real numbers is an interval.

Pierre Magal Lecture 4 Winter School Valparaíso 101 / 184



Connectivity of ω-Limit Sets and α-Limit Sets Connected ω-limit and α-limit sets

Remark 6.15

The converse is also true. An interval of real numbers is a connected set.
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Proof. Let C be a connected set in R. Assume by contradiction that C is
not an interval. Then we can find a, b ∈ C and c /∈ C with a < c < b. The
subsets U = (−∞, c) and V = (c,∞) are both open in R, C ⊂ U ∩ V and

a ∈ C ∩ U 6= ∅, and b ∈ C ∩ V 6= ∅.

Therefore A = C ∩U and B = C ∩V are both open in C. We deduce that
C is disconnected.
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Theorem 6.16

Let T : M → M̃ be a continuous map from a metric space (M,d) to a
metric space (M̃, d̃). Then M is connected implies that T (M) is
connected.

Pierre Magal Lecture 4 Winter School Valparaíso 104 / 184



Connectivity of ω-Limit Sets and α-Limit Sets Connected ω-limit and α-limit sets

Proof. Assume by contradiction that T (M) is not connected. Then there
exists Ã and B̃ two open subset of (T (M), d̃)

Ã ∪ B̃ = T (M) and Ã ∩ B̃ = ∅.

By continuity of T , we deduce that A = T−1
(
Ã
)
and B = T−1

(
B̃
)
are

open in (M,d) and

A ∪B = M and A ∩B = ∅.

This contradicts the fact thatM is connected. The proof is completed.
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As a consequence of the Proposition 6.11, Theorem 6.14, and Theorem
6.16, we obtain the following results that will be useful in the applications.

Theorem 6.17

Let M ⊂ X be a subset of Banach space (X, ‖.‖). Then we have the
following properties:
(i) M is convex ⇒M is connected.
(ii) If M is connected and x∗ : X → R is a bounded linear map then

I = {x∗(x) : x ∈M} ⊂ R

is an interval in R.
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As a consequence of the above theorem we have for example, a connected
set in Rn becomes an interval when it is projected onto the axes.
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Example of not connected ω-limit and α-limit sets: The ω-limit set
(respectively the α-limit set) of a relatively compact positive orbit (respec-
tively negative orbit) generated by a discrete time semiflow is not connected
in general. Indeed, assume that T : M →M has a 2-periodic orbit

T (a) = b and T (b) = a,

with
a 6= b.

If we define the complete orbit

u(n) =
{
a, if n = 2k, for some integer k ∈ Z,
b, if n = 2k + 1, for some integer k ∈ Z,
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Then the ω-limit set of the solution starting from a or b is

ω(a) = ω(b) = {a, b} ,

and
α(a) = α(b) = {a, b} .

This provides an example of disconnected ω-limit and α-limit sets.
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The case of continuous time semiflow is different.
Theorem 6.18

Let (M,d) be a complete metric space. The ω-limit set of a relatively
compact orbit generated by a continuous time semiflow {U(t)}t∈R+

is
connected.
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Proof. [of Theorem 6.18] Assume that ω(x) is disconnected. Then there
would be disjoint open subsets U and V of M such that U ∩ ω(x) and
V ∩ ω(x) are nonempty and ω(x) ⊂ U ∪ V . Let a ∈ U ∩ ω(x) and
b ∈ V ∩ ω(x). Then we can have a sequence t1, t2, . . . tk → ∞ and a
sequence s1, s2, . . . sk → ∞ (with tk ≤ sk) such that U(tk)x ∈ U → a,
and U(sk)x ∈ V → b. But {U(t)x : t ∈ [tk, sk]} is a connected curve
going from a point in U to a point in V . Therefore, there must be able
to find τk ∈ (tk, sk) such that U(τk)x ∈ M \ (U ∪ V ). But the sequence
k → U(τk)x is relatively compact, so up to a sub-sequence (denoted with
the same index) we can assume that

U(τk)x→ c.

But by construction M \ (U ∪ V ) is a closed subset, and it follows that

c ∈M \ (U ∪ V ) and c ∈ ω(x).

We obtain a contradiction since ω(x) ⊂ (U ∪ V ).
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Dissipation and Absorbing Sets

Definition 7.1

A continuous semiflow {U(t)}t∈I on a metric space (M,d) is said to be
point dissipative (respectively compact dissipative, bounded
dissipative) if there exists a bounded set B0 ⊂M attracting the points
(respectively the compact subsets, the bounded subsets).
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Dissipation and Absorbing Sets

Definition 7.2
The notion of dissipative semiflow can be expressed by using one of the
two following equivalent properties:
(i) There exists B0 ⊂M a bounded subset such that

lim
t→+∞

δ(U(t)B,B0) = 0,

whenever B is a point (respectively a compact subset, a bounded
subset).

(ii) For each ε > 0, and each subset B ⊂M that is a point (respectively
a compact subset, a bounded subset), there exists t0 = t0(ε,B) > 0
such that

U(t)B ⊂ N(B0, ε), ∀t ≥ t0,

where N(B0, ε) is a closed ε-neighborhood of B0 defined by

N(B0, ε) := {x ∈M : d(x,B0) ≤ ε} .
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Dissipation and Absorbing Sets

Definition 7.3

A subset B0 ⊂M is called point absorbing, compact absorbing,
bounded absorbing if for each subset B ⊂M which is respectively a
single point, a compact subset, a bounded subset, there exists
t0 = t0(B) ≥ 0 such that

U(t)B ⊂ B0,∀t ≥ t0.

A bounded absorbing subset is called absorbing subset.
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Examples Logistic equations: heteroclinic orbit

Logistic equations: heteroclinic orbit

Consider the scalar logistic equation

N ′(t) = N(t)−N(t)2, ∀t ≥ 0 and N(0) = x. (11)

The solution is explicitly given by

N(t) = etx

1 +
∫ t

0 e
lxdl

, ∀t ≥ 0.

Define the maximal backward time of existence

τ−(x) = inf
{
t < 0 : 1−

∫ 0

s
elxdl > 0, ∀s ∈ [t, 0]

}
.
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Examples Logistic equations: heteroclinic orbit

Then ∫ 0

−∞
eldl = 1,

therefore
τ−(x) = −∞, ∀x ∈ [0, 1]

and the solution is global:

N(t) = etx

1 +
∫ t

0 e
σxdσ

, ∀t ∈ R. (12)

It is clear that 0 and 1 are equilibrium solutions. Moreover for each x ∈
(0, 1), the solution (12) is a heteroclinic orbit and

lim
t→−∞

N(t) = 0 and lim
t→+∞

N(t) = 1.

That is equivalent to say that

α(x) = {0} and ω(x) = {1}.
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Examples Logistic equations: heteroclinic orbit
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Figure: In this figure the blue curve represents the heteroclinic orbit (6) whenever
x = 0.5.
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Examples Logistic equations: heteroclinic orbit

Dissipation: Consider the map

V (N) = (N − 1)2.

We have

V ′(N) = 2(N − 1)N ′ = 2(N − 1)N(1−N) = −2N(1−N)2 ≤ 0.
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Theorem 8.1

The semiflow
U(t)x = etx

1 +
∫ t

0 e
σxdσ

, ∀t ∈ R

of scalar logistic equation (11) is bounded dissipative on R+. More
precisely, each such that B0 = [0, N1] (with N1 > 2) is bounded absorbing
set. That is to say that for each bounded set B ⊂ [0,+∞), there exists
t0 = t0(B), such that

U(t)B ⊂ B0,∀t ≥ t0.
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Proof. We first observe that

sup
x∈[0,N1]

V (x) = (N1 − 1)2,∀N1 > 2,

therefore {
x ≥ 0 : V (x) ≤ (N1 − 1)2

}
= [0, N1],∀N1 > 2.

We choose B0 =
{
x ≥ 0 : V (x) ≤ (N1 − 1)2} for some N1 > 2. Next,

we observe that B0 is positively invariant by U . Indeed, we have for each
x ∈ B0

V (U(t)x) ≤ V (x) ≤ sup
x∈B0

V (x) = (N1 − 1)2.

Therefore

sup
x∈B0

V (U(t)x) ≤ (N1 − 1)2 ⇒ U(t)B0 ⊂ B0,∀t ≥ 0.
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Examples Logistic equations: heteroclinic orbit

Assume by contradiction, that there exists a bounded set B ⊂ [0,∞), such
that

sup
x∈B

V (U(t)x) ≥ (N1 − 1)2, ∀t ≥ 0.

Then we can construct a sequence xn ∈ B such that for each integer n ≥ 0,

V (U(n)xn) ≥ (N1 − 1)2, ∀n ∈ N.

Since the sequence xn is bounded, we can find a sub-sequence (denoted
with the same index) xn → x∞ and by continuity of U we deduce that

V (U(t)x∞) ≥ (N1 − 1)2, ∀t ≥ 0. (13)

But since N1 ≥ 2, we must have

U(t)x∞ > N1, ∀t ≥ 0. (14)
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Finally observe that

V ′(U(t)x∞) = −U(t)x∞ × (1− U(t)x∞)2 = −U(t)x∞ × V (U(t)x∞) ,

so by integrating this formula and by using (14), we obtain

V (U(t)x∞) = e−
∫ t

0 U(σ)x∞dσV (U(t)x∞) ≤ e−tN1V (x)→ 0, as t→ +∞.

We obtain a contradiction with (13). �

Pierre Magal Lecture 4 Winter School Valparaíso 124 / 184



Examples Logistic equations: heteroclinic orbit

Theorem 8.2

Consider the semiflow U(t) of scalar logistic equation (11) restricted to
(0,∞). Then the subset B0 = [N0, N1] (with 0 < N0 < 1 < N1) is a
compact absorbing set, but B0 is not a bounded absorbing set. Moreover
precisely
(i) The subset (0, 1] attracts all the bounded subsets in (0,+∞);
(ii) The subset (0, 1] is invariant by U . That is

U(t)(0, 1] = (0, 1], ∀t ≥ 0;

(iii) The subset (0, 1] is not compact in (0,+∞);
(iv) The subset (0, N1] is a bounded absorbing set in (0,+∞).
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Poincaré normal form: periodic orbit
Consider the Poincaré normal form{

x′(t) = λ
2x(t)− ωy(t)− κ

2
(
x(t)2 + y(t)2)x(t)

y′(t) = ωx(t) + λ
2y(t)− κ

2
(
x(t)2 + y(t)2) y(t) (15)

From Section 1, we know that the semiflow generated by (15) is defined by

V (t)
(
x
y

)
=
√

eλt
(
x2 + y2)

1 + κ
∫ t

0 e
λs (x2 + y2) ds

× 1√
x2 + y2

×
(

cos(ωt)x− sin(ωt)y
sin(ωt)x+ cos(ωt)y

)
,

(16)

whenever (x, y) 6= (0, 0) and

V (t)
(

0
0

)
=
(

0
0

)
.
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Exercise 8.3
Derive the above formula by using the following changes of variables.
Consider

r(t)2 = x2(t) + y(t)2

and prove that
(r(t)2)′ = λr(t)2 − κr(t)4.

Consider
X(t) = x(t)√

x2(t) + y2(t)
and

Y (t) = y(t)√
x2(t) + y2(t)

whenever (x, y) 6= (0, 0). Prove that

X ′ = −ωY, and Y ′ = ωX.
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Figures 4, 5 and 6 illustrate the behavior of the solutions of the Poincaré
normal form.

-0.4 -0.2 0 0.2 0.4 0.6 0.8

x

-0.2

-0.1

0

0.1

0.2

0.3

y

Figure: We plot some solutions of (15) in the phase plane (x(t), y(t)) whenever
λ = 0.02, ω = 0.1 and κ = 1. We choose several initial values where
x = 0.2, 0.3, . . . , 0.8 and y = 0. One may observe that the omega limit set of
these solutions is the central circle, while the alpha limit set is empty since the
norm of the solutions eventually blowup when the time goes to −∞.
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Figure: We plot some solutions of (15) in the phase plane (x(t), y(t)) whenever
λ = 0.02, ω = 0.1 and κ = 1. We choose several initial values, where
x = 0.01, 0.08 and y = 0. The solutions are part of a complete orbits jointing the
trivial equilibrium 0 to the circular periodic orbit.
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Figure: We plot (t, x(t)) (top) and (t, y(t)) (bottom) for two solutions of (15)
whenever λ = 0.02, ω = 0.1 and κ = 1. We choose several initial values where
x = 0.01, 0.4 and y = 0. Both solutions coincide whenever they converge to the
periodic orbit. That is because both solutions turn around 0 with the same
rotation speed. This appears explicitly in the semiflow formula (16) (i.e. the
rotation is guided by the linear term eAtX).
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Homoclinic orbit for a second order logistic equation

Consider the equation

x′′(t) = −x(t)(1− x(t)), ∀t ≥ 0, with x(0) = x0 and x′(0) = x′0. (17)

This equation can be regarded as the following system{
x′(t) = −y(t)
y′(t) = x(t)(1− x(t)) (18)

and the equilibria of (18) are

(x, y) = (0, 0) and (x, y) = (1, 0).
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The system (18) is a Hamiltonian system which corresponds to a special case
of the Bogdanov-Takens normal form (see [2] and [4]). The terminology
Hamiltonian means that we have

x(1− x)x′ = −yy′.

Therefore we obtain the following conservation property along the trajecto-
ries

x(t)2

2 − x(t)3

3 = −y(t)2

2 + h,

with a constant of integration h ∈ R.
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To study the trajectories passing through the points y0 = 0 and x0 between
0 and 1, we obtain the following condition for h

x2
0

(1
2 −

x0
3

)
= h.

The function x→ x2

2 −
x3

3 is increasing between 0 and 1. Therefore h varies
between 0 (for x = 0) and 1

6 (for x = 1).
We deduce that the orbit passing through the point (x, 0) (with x ∈ [0, 1])
satisfies

y = ±
√

2
[
h−

(
x2

2 −
x3

3

)]
,

where x takes some appropriate values in order for the quantity below the
square root to be positive.
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Figure: We plot the complete orbits (x(t), y(t)) passing respectively through
x = 0.05, 0.2, 0.4, 0.6, 0.8 and y = 0. The last orbit is a homoclinic orbit passing
through (x, y) = (−0.5, 0) and the alpha limit set as well as the omega limit set
is the equilibrium (x, y) = (1, 0).
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Examples Homoclinic orbit for a second order logistic equation
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Figure: We plot the homoclinic orbits t→ (x(t), y(t)) which is the solution
passing through (x, y) = (−0.5, 0). We observe numerically the convergence to
(1, 0) when the time t goes to ±∞.
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Beverton and Holt discrete time model

The model of Beverton and Holt [1] was introduced in the context of fisheries
in 1957. This model is the following

N(t+ 1) = βN(t)
1 + αN(t) , ∀t ≥ 0, with N(0) = N0 ≥ 0, (19)

where N(t) is the number of individuals, β > 0 is the growth rate of
the population and the term 1/(1 + αN(t)) (with α ≥ 0) describes the
competition for food, cannibalism effect (indeed the adult fish eat the larvea
when they reproduce) etc... The competition occurs between individuals
of the same species. Therefore this effect is usually called intra-specific
competition.
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Semiflow: Recall that the semiflow {U(t)}t∈N is defined by

U(t) (N0) = T t (N0) ,∀t ≥ 0,∀N0 ≥ 0,

where T (N0) = βN(t)
1+αN(t) and T t is defined by induction as follows

T t+1 (N0) = T
(
T t (N0)

)
= T t (T (N0)) , ∀t ≥ 0,

and
T 0 (N0) = N0.
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Equilibria: It is readily checked that 0 is always an equilibrium of (19). The
non-zero equilibrum satisfies

β

1 + αN
= 1⇔ N = β − 1

α
.
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Dissipation property: We follow the construction of the Liapunov function
by Fisher and Goh [3]. Define

V (N(t)) = |N(t)−N |.

Then

V (N(t+ 1)) =
∣∣∣N(t+ 1)−N

∣∣∣ =
∣∣∣∣ βN(t)
1 + αN(t) −

β − 1
α

∣∣∣∣
=
∣∣∣∣αβN(t)− (β − 1) (1 + αN(t)))

α (1 + αN(t))

∣∣∣∣
=
∣∣∣∣αN(t)− (β − 1)
α (1 + αN(t))

∣∣∣∣ ,
and we obtain

V (N(t+ 1)) = 1
(1 + αN(t))V (N(t)). (20)
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We deduce that if we define {U(t)}t∈N the discrete time semiflow generated
by (19) for each t ∈ N,{

V (U(t)N0) < V (N0), if N0 > 0, and N0 6= N,

V (U(t)N0) = V (N0), if N0 = 0, or N0 = N.
(21)
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Theorem 8.4

The discrete time semiflow generated by (19) is bounded dissipative on
[0,∞). More precisely, for each γ0 > N the subset

Bγ0 = {x ≥ 0 : V (x) ≤ γ0}

is a bounded absorbing subset.
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Proof. We have for each N0 > 0, with V (N0) ≥ N ,

V (U(t)N0) < V (N0), ∀t ≥ 0,

the result follows.
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Remark 8.5
One may observe that this model can be derived from the logistic equation
(11) by using the following semi-implicit scheme

N(t+ ∆t)−N(t)
∆t = N(t)(λ− χN(t+ ∆t))

which is equivalent to

N(t+ ∆t) = (1 + ∆tλ)N(t)
1 + ∆tχN(t) .

The behavior of the system (19) is analogous to the behavior of the
solution of the logistic equation (11) (see Figure 9).
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Figure: In this figure we plot three solutions of equation (19) with α = 0.05 small
and λ = 1 + α (similarly to the above approximation of the logistic equation).
Then we choose three initial value N0 = 0.2 (blue curve), N0 = 1 (green curve)
and N0 = 3 (red curve). The green curve corresponds to the equilbrium N = 1.
The second member of (19) being (concave) monotone increasing no other
behavior can be observed whenever λ > 1.
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Ricker model: chaotic behavior

The first population dynamics model introduced in the context of fisheries
to describe the reproduce of salmons in Canada was written by Ricker [8, 9]
in 1954. The model is the following

N(t+ 1) = βN(t) exp(−N(t)), ∀t ≥ 0, with N(0) = N0 ≥ 0, (22)

where β > 0 is the growth rate of the population and the term exp(−N(t))
(with α ≥ 0) describes the intra-specific competition.
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Semiflow: Recall that the semiflow {U(t)}t∈N is defined by

U(t) (N0) = T t (N0) ,∀t ≥ 0,∀N0 ≥ 0,

where T (N0) = βN0 exp (−N0) and T t is defined by induction as follows

T t+1 (N0) = T
(
T t (N0)

)
= T t (T (N0)) ,∀t ≥ 0,

and
T 0 (N0) = N0.
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Equilibria: It is readily checked that 0 is always an equilibrium of (22). The
non-zero equilibrum satisfies

β exp(−N) = 1⇔ N = ln(β).
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Dissipation property: We follow the construction of the Liapunov function
by Fisher and Goh [3]. Define

V (N(t)) =
(
N(t)−N

)2
.

Then

V (N(t+ 1))− V (N(t)) =
(
N(t+ 1)−N

)2
−
(
N(t)−N

)2

=
(
βN(t) exp(−N(t))−N

)2
−
(
N(t)−N

)2

= (βN(t) exp(−N(t)))2 −N(t)2

−2βN(t) exp(−N(t))N + 2N(t)N
= [β exp(−N(t))− 1] [β exp(−N(t)) + 1]N(t)2

−2N(t)N [β exp(−N(t))− 1]

Pierre Magal Lecture 4 Winter School Valparaíso 148 / 184



Examples Ricker model: chaotic behavior

and we obtain

V (N(t+ 1))− V (N(t)) = h(N(t)) [β exp(−N(t))− 1] , (23)

where

h(N(t)) =
{

[β exp(−N(t)) + 1]N(t)− 2N
}
N(t)

=
{
N(t)β exp(−N(t))−N +N(t)−N

}
N(t)

=
{
N(t) exp(N −N(t)) +

[
N(t)− 2N

]}
N(t)

(24)
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Proposition 8.6

Assume that β ∈ (1, e2]. We deduce that if we define {U(t)}t∈N the
discrete time semiflow generated by (22) for each t ∈ N,

V (U(t)N0) ≤ V (N0),∀t ∈ N, ∀N0 ≥ 0. (25)
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Proof. Let us prove that

h(N(t)) ≤ 0, ∀N ≤ N

and
h(N(t)) ≥ 0, ∀N ≥ N.

Indeed, we have

h(0) = 0, and h(N) = 0, and h(N) > 0,∀N ≥ 2N.

Consider N ∈ (0, 2N) and N 6= N . Then h(N) = 0 if

N(t) exp(N −N(t)) +
[
N(t)− 2N

]
= 0

⇔ exp(N −N(t)) = 2 N

N(t) − 1

⇔ N −N(t) = ln
(

2 N

N(t) − 1
)
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which is equivalent to

N =
ln
(

2 N

N(t) − 1
)

1− N(t)
N

. (26)

First case: N ∈ (0, N): Set y = 1/(1−N(t)/N) > 1. Then (26) gives

N = y {ln(1 + 1/y)− ln(1− 1/y)} = y

{
∞∑
n=1

(−1)n+1 y
−n

n
+
∞∑
n=1

y−n

n

}
= 2

∞∑
n=0

y−2n

2n+ 1 > 2.
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Second case: N ∈ (N, 2N): Set y = 1/(N(t)/N − 1) > 1. Then (26)
gives

N = y {ln(1 + 1/y)− ln(1− 1/y)} > 2.

Finally β ∈ (1, e2] implies N ∈ (0, 2] we conclude that

h(N) 6= 0 and N ∈ (0, 2N)⇒ N = N,

and the proof is completed. �
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Theorem 8.7

Assume that β ∈ (1, e2]. The discrete time semiflow generated by (22) is
bounded dissipative on [0,∞). More precisely, for each γ0 > N the subset

Bγ0 = {x ≥ 0 : V (x) ≤ γ0}

is bounded absorbing subset.
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Proof. Let U(t) be the discrete time semiflow generated by (22). We have

V (U(t)0) = V (0) = N,

and
V (U(t)N) = V (N) = 0,

and for each N0 ∈ (0,+∞) \
{
N
}
,

V (U(t)N0) < V (N0), ∀t ∈ N,

the result follows.
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Remark 8.8
An Hopf bifurcation for maps occurs at β = e2 (i.e. the derivative of the
map x→ βxe−x) crosses −1 when β crosses e−2). It means that periodic
orbit with period 2 with appear. Then see Figure 10 and Figure 11
periodic orbits of period 4, 8, etc... appear. That is often called a
period-doubling bifurcation. Chaos appears when β becomes even larger
and gives rise to a periodic orbit of period 3.
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Assume that β > e2. We can use the fact that x→ βx exp(−x) is bounded
to derive the dissipation property. Indeed,

(βx exp(−x))′ = β [1− x] exp(−x).

Therefore the map x→ βx exp(−x) reaches a maximum at x = 1, and this
maximum is βe−1. Define

W (N) = max(N, βe−1).

Let U(t) be the discrete time semiflow generated by (22). Then we have

W (U(t)N0) ≤W (N0), ∀t ≥ 0,∀N0 ≥ 0.

Pierre Magal Lecture 4 Winter School Valparaíso 157 / 184



Examples Ricker model: chaotic behavior

Theorem 8.9

Assume that β ≥ 0. The discrete time semiflow generated by (22) is
bounded dissipative on [0,∞).
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Remark 8.10
Then by using a simple first order approximation
exp(N(t)) = 1 +N(t) + h.o.t, we can regard the model of Beverton and
Holt as a first order approximation of the Ricker model. Nevertheless the
behavior of this two systems is very different.
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Figure: In Figures (a) (b) and (c) we plot three solutions of equation (22). In
Figure (a), we fix β = e1.5, we observe behavior that is similar to the behavior for
the Beverton and Holt model (but oscillations around the positive equilibrium). In
Figure (b) we fix β = e2.2, the solutions converge to some periodic solutions. In
Figure (c) we fix β = e4, the behavior becomes chaotic (unpredictable).
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When the parameter β is large enough and a periodic orbit of period 3
appears, the system becomes chaotic (see Figures 10 and 11). In other
words, period three implies chaos (Li and Yorke [6]).

This is the so called chaos of Sharkovskii [11, 12]. The result of Sharkovskii
was rediscovered by Li and Yorke [6]. Both results of Sharkovskii [11, 12]
and Li and Yorke show that when the system has a periodic solution of
period 3 then periodic orbits of all periods exists. Therefore the system has
infinitely many periodic orbits. This could serve as first step to characterize
the chaos. But Li and Yorke explored the dependency with respect to the
initial condition in the following sense.
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Theorem 8.11 (Li and Yorke [6])

Let T : I → I be a continuous map on some interval I ⊂ R. Assume that
there exists N0 ≥ 0 such that

T 3 (N0) ≤ N0 < T (N0) < T 2 (N0)

or
T 3 (N0) ≥ N0 > T (N0) > T 2 (N0) .

Then
(i) For each integer k = 1, 2, . . . there exists a periodic point in I having

the period k.
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Theorem 8.12 (Li and Yorke [6])

(ii) There exists an uncountable set S ⊂ I (containing no periodic
points), which satisfies the following conditions:
(a) For every p, q ∈ S with p 6= q,

lim sup
t→∞

|T t(p)− T t(q)| > 0,

and
lim inf

t→∞
|T t(p)− T t(q)| = 0.

(b) For every p ∈ S and every periodic point q ∈ I,

lim sup
t→∞

|T t(p)− T t(q)| > 0.
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Figure: In this figure we plot for each β varying from 0 to 18 the omega limit set
ω(1) of the solution of (22) starting from the initial value N0 = 1.
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In Figure 11, we observe a cascade of bifurcations. The branch of single
point corresponds to a positive equilibrium, which first bifurcate to a 2
periodic orbit. One may notice that the positive equilibrium exists for each
β but becomes unstable after the bifurcation. Then we observe a period
doubling bifurcation, we period orbits of period 2, 4, 8, etc. Periodic orbit
of period 3 appears only when the parameter β becomes large enough, the
chaos in the sense of Li and Yorke [6] appear.

Pierre Magal Lecture 4 Winter School Valparaíso 165 / 184



Examples Lorentz system: chaos and dissipation properties

Lorentz system: chaos and dissipation properties

The system of Lorenz [7] was introduced in his paper in 1963 as taken from
Saltzman (1962, [10]) as a minimalist model of thermal convection in a box.
This system is the following

x′ = σ(y − x),
y′ = x(ρ− z)− y,
z′ = xy − βz,

(27)

where σ > 0, ρ > 0, and β > 0, and with initial value

x(0) = x0, y(0) = y0, and z(0) = z0.

In Figures 12-13, we plot two solutions of system (27) with the parameters
values

σ = 10, ρ = 28, and β = 8/3.
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In Figures 12-13, we observe that starting from two very close initial values
gives some very different trajectories. In Figure 13, the solution starting
from the green dot (respectively from the black dot) end up at the yellow
dot (respectively at the red dots) at time t = 19. So we can visualize the
fact that changing a little bit the initial value may have a large impact on
the trajectory.
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Figure: In this figure, we plot the first component t→ x(t) of two solutions
starting from the initial value from [x0, y0, z0] = [10, 10, 10] (light blue curve) and
from [x0, y0, z0] = [10, 10, 10.7] (purple curve).
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Figure: In this figure, the light blue curve (respectively the purple curve)
corresponds to the solution t→ (x(t), y(t), z(t)) starting from the initial value
[x0, y0, z0] = [10, 10, 10] (green dot) (respectively from the initial value
[x0, y0, z0] = [10, 10, 10.7] (black dot)). The two solutions are plotted on the
time interval [0, 19].
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Lorenz looks at his system as a simplified model for weather prediction. He
is assuming that one loop corresponds to the calm weather and the other
loop to tornados. The orbit generated by a slight disturbance of the initial
distribution of the system looks very different. The shape of the omega
limit set is very similar for each solution. The chaotic nature of this system
is due to the "fractal" structure of the attractor in between the loops.
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The frequency at which a solution passes from one loop to the next turns
to be similar for each solution. Lorentz already mentioned this phenomenon
during his presentation at the American Association for the Advancement
of Science in 1972. During his presentation he says that:

Over the years minuscule disturbances neither increase nor decrease the
frequency of occurrences of various weather events such as tornados; the
most they may do is to modify the sequences in which they occur.
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Figure: In this figure, we use 20 randomly chosen initial distributions.
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It turns out that the Lorenz attractor is an attractor in the sense developed
in the Chapter 2. That is to say that, it is a compact invariant subset which
attracts one of its neighborhood at each point of R3. The existence such
a global attractor is a consequence of the dissipation of the system. So we
now investigate the dissipation of the Lorentz system.
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For the Lorenz system, the dissipativity can be studied by using the results
of Leonov [5]. Let us consider

V (x, y, z) = 1
σ
x2 + y2 + z2. (28)

Then

dV (x(t), y(t), z(t))
dt

= 2x(y − x) + 2yx(ρ− z)− 2y2 + 2xyz − 2βz2

and after simplification we obtain

dV (x(t), y(t), z(t))
dt

= −2
[
x2 + y2 + βz2

]
+ 2(ρ+ 1)xy

but 2xy = x2 + y2 − (x− y)2 therefore

dV (x(t), y(t), z(t))
dt

= −(1− ρ)x2 − (1− ρ)y2 − 2βz2 − (ρ+ 1)(x− y)2.
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Lemma 8.13

Assume that ρ ∈ (0, 1). Then each solution of system (27) converges to
0R3 . More precisely, we have the following estimation of the solution:

V (x(t), y(t), z(t)) ≤ e−δtV (x0, y0, z0),∀t ≥ 0, (29)

where
δ := min {(1− ρ)σ, (1− ρ), 2β} .
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Proof. By choosing the above constant δ > 0, we have

dV (x(t), y(t), z(t))
dt

≤ −δV (x(t), y(t), z(t))

and the result follows from the differential form of Gronwall’s lemma (see
Chapter 8 in Volume I).
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Theorem 8.14

Assume that ρ ∈ (0, 1). Then the semiflow U(t) generated by the system
(27) is bounded dissipative.
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Proof. Let γ0 > 0 be fixed. Let us define

Bγ0 =
{

(x, y, z) ∈ R3 : V (x, y, z) ≤ γ0
}
.

Then for each bounded subset B ⊂ R3 we have

γ := sup
(x,y,z)∈B

V (x, y, z) <∞.

Let t0 = t0(B) > 0 such that

e−δt0γ ≤ γ0,

then by using the definition of Bγ0 , we deduce that

U(t)B ⊂ Bγ0 , ∀t ≥ t0,

and the proof is completed.
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Next we consider the functional

W (x, y, z) = y2 + (z − ρ)2. (30)

Then

dW (x(t), y(t), z(t))
dt

= 2yx(ρ− z)− 2y2 + 2(z − ρ) (xy − βz)
= 2yx(ρ− z)− 2y2 + 2xy(z − ρ)− 2βz(z − ρ)

hence
dW (x(t), y(t), z(t))

dt
= −2y2 − 2βz(z − ρ).
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Lemma 8.15

Let λ ∈ (0, 2 min(1, β)). Then

dW (x(t), y(t), z(t))
dt

≤ −λW (x(t), y(t), z(t)) + χ, (31)

where
χ := [2β − λ]

(
βρ

λ− 2β

)2
.
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Proof. By using the fact that λ < 2 we deduce that

dW (x(t), y(t), z(t))
dt

+λW (x(t), y(t), z(t))

= −2y2 − 2βz(z − ρ) + λy2 + λ(z − ρ)2

≤ [λ− 2β] (z − ρ)2 − 2βρ(z − ρ)

= [λ− 2β]
{

(z − ρ)− βρ

λ− 2β

}2

− [λ− 2β]
(

βρ

λ− 2β

)2
.

and since λ < 2β the inequality (31) follows.
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Theorem 8.16

Let λ ∈ (0, 2 min(1, β)). Then, for each t ≥ 0,

W (x(t), y(t), z(t)) ≤ e−λtW (x0, y0, z0) +
∫ t

0
e−λ(t−s)χds,

and
lim sup
t→+∞

W (x(t), y(t), z(t)) ≤ χ

λ
.

Moreover the semiflow U(t) generated by the Lorenz system (27) is
bounded dissipative.
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Proof. The proof is left as an exercise. (Hint: Start first with the two last
components y and z use the same arguments than in the proof of Theorem
8.14. Then use the comparison principle for the x-equation to derive the
dissipativity of the full system).
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Thank you for listening
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