
Arnaud Ducrot
Quentin Griette
Zhihua Liu
Pierre Magal

Differential Equations and
Population Dynamics II:
Advanced Approaches

December 7, 2022

Springer Nature





Contents

Part I Dynamical Systems in Population Dynamics

1 Semiflows, 8-limit Sets, "-limit Sets, Attraction, and Dissipation . . . . . . 9
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Discrete time semiflow and difference equation . . . . . . . . . . . 10
1.1.2 Semiflow generated by the 1-dimensional logistic equation . . 11
1.1.3 Semiflow generated by a 2-dimensional Bernoulli-Verhulst

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.4 Explicit formula for the semiflow of the Poincaré normal

form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Stability of an Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 l-Limit and U-Limit Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Heteroclinic and Homoclinic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Attraction of Sets and Hausdorff Distance and Semi-Distance . . . . . . . 22
1.6 Connectivity of l-Limit Sets and U-Limit Sets . . . . . . . . . . . . . . . . . . . 25
1.7 Dissipation and Absorbing Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.8.1 Logistic equations: heteroclinic orbit . . . . . . . . . . . . . . . . . . . . 33
1.8.2 Poincaré normal form: periodic orbit . . . . . . . . . . . . . . . . . . . . 35
1.8.3 Homoclinic orbit for a second order logistic equation . . . . . . 38
1.8.4 Beverton and Holt discrete time model . . . . . . . . . . . . . . . . . . 40
1.8.5 Ricker model: chaotic behavior . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.8.6 Lorentz system: chaos and dissipation properties . . . . . . . . . . 48

1.9 Notes and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.10 MATLAB Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.10.1 Figure 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.10.2 Figure 1.4 and Figure 1.5 and Figure 1.6 . . . . . . . . . . . . . . . . 61
1.10.3 Figure 1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
1.10.4 Figure 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.10.5 Figure 1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.10.6 Figure 1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.10.7 Figure 1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3



4 Contents

1.10.8 Figure 1.12 and Figure 1.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.10.9 Figures 1.17-1.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2 Global Attractors and Uniform Persistence . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.1 Interior Global Attractor for an Elementary Example . . . . . . . . . . . . . . 79
2.2 Positive Orbit for a Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3 Examples of Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.4 Neighborhood and Y-Neighborhood of a Subset . . . . . . . . . . . . . . . . . . 82
2.5 Compact Subsets in (Non Complete) Metric Spaces: Definitions

and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.6 Cantor’s Diagonal Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.7 Spaces of Continuous Functions: Compactness Properties and

Diagonal Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.8 Compactness Properties for Families of Subsets . . . . . . . . . . . . . . . . . . 94
2.9 Measure of Non-Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.10 Omega-Limit Sets of a Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.11 Global Attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.12 Uniform Persistence and Global Attractors . . . . . . . . . . . . . . . . . . . . . . . 111
2.13 Coexistence Steady States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.14 Two Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

2.14.1 Asymptotically smooth semiflows on ("0, 30) . . . . . . . . . . . . 119
2.14.2 ^-contracting maps on ("0, 30) . . . . . . . . . . . . . . . . . . . . . . . . 120

2.15 Notes and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.1 Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.2 Bifurcating Branch of Equilibria: Finite Dimensional Case . . . . . . . . . 143
3.3 Application to the Scalar Generalized Logistic Equation . . . . . . . . . . . 146
3.4 Application to the =−Dimensional Logistic Equation . . . . . . . . . . . . . . 147
3.5 Bifurcating Branch of Equilibria: Infinite Dimensional Case . . . . . . . . 148
3.6 Example of the Poincaré normal form and a first Hopf bifurcation

Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.7 Hopf Bifurcation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3.8 Proof of the Hopf Bifurcation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.9 Remarks and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4 Center Manifold and Center Unstable Manifold Theory . . . . . . . . . . . . . 163
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.2 State Space Decomposition of a Linear Equation . . . . . . . . . . . . . . . . . 164
4.3 Center Manifold Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.3.1 Weighted spaces of exponential bounded continuous
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.3.2 Reduced equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.3.3 Existence of the center manifold . . . . . . . . . . . . . . . . . . . . . . . . 175
4.3.4 Smoothness of the Center Manifold . . . . . . . . . . . . . . . . . . . . . 185

4.4 Existence and Stability of the Center Unstable Manifold . . . . . . . . . . . 202



Contents 5

4.5 Existence and the Uniqueness of Traveling Waves for Fisher- KPP
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.5.1 Fisher-Kolmogorov-Petrovski-Piskunov’s traveling waves

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.5.2 Existence of travelling waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.5.3 Uniqueness of the travelling waves . . . . . . . . . . . . . . . . . . . . . . 217

4.6 Remarks and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.2 Normal Forms for Differential Equations Near a Equilibrium Solution222

5.2.1 Computation of Normal Form and Normal Form Theorem . . 224
5.2.2 Resonance Conditions and Resonant Monomial . . . . . . . . . . . 226

5.2.3 The Matrix Representation Method . . . . . . . . . . . . . . . . . . . . . 228

5.3 Normal Forms for Reduced Differential Equations on the Center
Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
5.3.1 Normal Form Theory - Nonresonant Type Results . . . . . . . . . 232
5.3.2 Normal Form Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

5.4 Remarks and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Part II Applications to Predator Prey Systems

6 A Holling’s predator-prey model with handling and searching
predators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
6.2 Basic assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.3 Dissipativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.4 Uniform persitence and extinction of predators . . . . . . . . . . . . . . . . . . . 257

6.4.1 Stability of the equilibrium �1 . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.4.2 Stability of the equilibrium �2 . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.4.3 Extinction of the predators and the global stability of �2 . . . . 260
6.4.4 Uniform persistence of the predators . . . . . . . . . . . . . . . . . . . . 262

6.5 Interior region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.5.1 Local stability of �∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.5.2 Three dimensional K-competitive system . . . . . . . . . . . . . . . . 265

6.6 Convergence to the Rosenzweig-MacArthur model . . . . . . . . . . . . . . . . 265
6.7 Application to the Snowshoe Hares and the Lynx . . . . . . . . . . . . . . . . . 269
6.8 Remarks and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
6.9 MATLAB codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

6.9.1 Figure 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
6.9.2 Figure 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
6.9.3 Figure 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275



6 Contents

7 Hopf bifurcation for a Holling’s predator-prey model with handling
and searching predators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
7.2 Linearized System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

7.3 Existence of Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
7.4 Computation of the Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

7.4.1 Projectors on the Eigenspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.4.2 Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
7.4.3 Computation of the Taylor’s Expansion of the Reduced

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
7.4.4 Computation of the Normal Form of the Reduced System . . . 299

7.5 Numerical Simulations and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 302
7.6 Remarks and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
7.7 MATLAB codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

7.7.1 Figure 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
7.7.2 Figure 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

8 Large Speed Traveling Waves for the Rosenzweig-MacArthur
predator-prey Model with Spatial Diffusion . . . . . . . . . . . . . . . . . . . . . . . . 309
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
8.2 Global attractors for the Rosenzweig-MacArthur model . . . . . . . . . . . . 313
8.3 Application of a center manifold theorem to the traveling wave

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
8.3.1 Reduction of the traveling wave problem . . . . . . . . . . . . . . . . . 319
8.3.2 Global attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
8.3.3 Uniqueness of the periodic orbit and interior attractor . . . . . . 327
8.3.4 Existence and uniqueness of a traveling wave joining (W, 0)

and the interior global attractor . . . . . . . . . . . . . . . . . . . . . . . . . 331
8.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
8.6 Remarks and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341



Part I
Dynamical Systems in Population

Dynamics





Chapter 1
Semiflows, 8-limit Sets, "-limit Sets, Attraction,
and Dissipation

1.1 Introduction

Let (", 3) be a complete metric space. Typical examples in population dynamics
will be

" = R=+ = [0,∞)=.

A more general class of subset " are the intervals in R=. That is a subset of the
following form

" = [2,∞) = {G ∈ R= : 28 ≤ G8} ,

" = [2, 3] = {G ∈ R= : 28 ≤ G8 ≤ 38} ,

or
" = (−∞, 3] = {G ∈ R= : G8 ≤ 38} ,

where 2, 3 ∈ R= and 2 ≤ 3.

These subsets will be endowed with usual distance (induced by the norm ‖.‖ of
R=)

3 (G, H) = ‖G − H‖,∀G, H ∈ ".

Then (", 3) be a complete metric space (since the subsets " are closed subsets of
R=).

In order to consider both discrete and continuous time dynamical systems, the
time will vary either in

�+ = [0, +∞) and � = R (continuous time)

or in
�+ = N and � = Z (discrete time).

Definition 1.1 Let {* (C)}C≥0 be a family of continuous maps from " into itself
parameterized by C ∈ �+. We will say that * is a continuous semiflow on " if the
following properties are satisfied

(i) * (0)G = G,∀G ∈ ";

9



10 1 Semiflows, l-limit Sets, U-limit Sets, Attraction, and Dissipation

(ii) * (C)* (B)G = * (C + B)G,∀C, B ≥ 0,∀G ∈ ";
(iii) The map (C, G) → * (C)G is continuous from �+ × " into " .

Moreover we will say that * is a continuous time semiflow if �+ = [0, +∞) and a
discrete time semiflow if �+ = N.

Remark 1.2 Since we assumed that the map G → * (C)G continuous (for each C ≥ 0),
it follows that a discrete time semiflow is always continuous. That is to say that the
property (iii) of Definition 1.1 is always satisfied for discrete time semiflow.

1.1.1 Discrete time semiflow and difference equation

Assume that a discrete semiflow {* (C)}C ∈N is given. Define the map ) : " → "

) (G) = * (1) (G)

and the sequence {D=}=∈N

D= := * (=) (G),∀= ≥ 0.

Then by using the property (ii), we obtain

D= = * (=) (G) = * (1) (* (= − 1) (G)) = ) (D=−1),∀= ∈ N, and D0 = G.

So we obtain a difference equation

D=+1 = ) (D=) ,∀= ∈ N, with D0 = G ∈ ".

We also observe that

D0 = G

D1 = ) (G)
D2 = ) () (G)) = )2 (G)

and we obtain
D= = )

= (G),∀= ∈ N,

where )= is defined by

)=+1 = ) ◦ )=,∀= ∈ N and )0 = � .

Conversely, assume that a map ) : " → " is given. Then the semiflow {* (C)}C ∈N
is defined by

* (=) (G) = )= (G),∀= ∈ N,∀G ∈ ",

where ) : " → " is a continuous map.
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1.1.2 Semiflow generated by the 1-dimensional logistic equation

Let us consider the family of maps {* (C)}C≥0 defined on " = R+ as follows

* (C)G = 4_CG

1 + ^
∫ C

0 4
_fG3f

, ∀C ≥ 0, ∀G ≥ 0, (1.1)

where _ ∈ R and ^ ≥ 0.

Lemma 1.3 The family {* (C)}C≤0 is a semiflow on " = [0,∞).

Remark 1.4 The semiflow * (C) can not be extended (backward in time) to a flow
because the solution of the logistic equation C → * (C)G is blowing up for negative
time (whenever G >

_

^
). But * (C) restricted to [0, _

^
] defines a flow (whenever

_ > 0).

Proof Let us verify that* (C) is a continuous semiflow on R+. Indeed, it is clear that

* (0)G = G,∀G ∈ R+.

Let C, B ≥ 0, we have

* (C)* (B)G =
4_C 4_B G

1+^
∫ B

0 4_A G3A

1 + ^
∫ C

0 4
_f 4_B G

1+^
∫ B

0 4_A G3A
3f

=
4_(C+B)G

1 + ^
∫ B

0 4_AG3A + ^
∫ C

0 4
_(f+B)G3f

and by using a change of variable, we obtain that∫ C

0
4_(f+B)G3f =

∫ C+B

B

4_AG3A,

and it follows that

* (C)* (B)G = 4_(C+B)G

1 + ^
∫ C+B

0 4_AG3A
= * (C + B)G.

Therefore* is a semiflow on R+. �

Remark 1.5 The map C → # (C) := * (C)G satisfies the logistic equation

# ′(C) = _# (C) − ^#2 (C). (1.2)

We refer to Chapter 5 in Volume I for more results.
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1.1.3 Semiflow generated by a 2-dimensional Bernoulli-Verhulst
equation

Let \ > 0. Consider the family of maps + (C) on R2 defined by

+ (C)- =


(
* (C) ( ‖- ‖\2 )
‖- ‖\2

) 1
\

4�C-, if - =
(
G

H

)
≠ 0,

0, if - =
(

0
0

)
,

(1.3)

where* (C) is the semiflow defined by (1.1), and

‖- ‖2 =




( GH )





2
=

√
G2 + H2

is the Euclidean norm, and (see Section 3.9.3 in Volume I) we have

4�C
(
G

H

)
=

(
cos(lC)G − sin(lC)H
sin(lC)G + cos(lC)H

)
,

with
� =

(
0 −l
l 0

)
.

Lemma 1.6 The family {+ (C)}C≤0 is a semiflow on R2.

Proof We first observe that

4�C-

2
2 = (cos(lC)G)2 − 2 cos(lC)G sin(lC)H + (sin(lC)H)2
+ (sin(lC)G)2 + 2 sin(lC)G cos(lC)H + (cos(lC)H)2
= G2 + H2

= ‖- ‖22 ,

and we deduce that 4�C preserves the Euclidean norm of -

4�C-


2 = ‖- ‖2 ,∀C ∈ R.

It follows that
+ (C)

(
R2\ {0}

)
⊂ R2\ {0} ,∀C ≥ 0.

Let - ≠ 0. By applying the Euclidean norm on both sides of (1.2), we deduce that

‖+ (C)- ‖ \2 =
* (C)

(
‖- ‖ \2

)
‖- ‖ \2



4�C-

\
2 = * (C)

(
‖- ‖ \2

)
∀C ≥ 0,

and
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+ (C)+ (B)- =
(
* (C) ( ‖+ (B)- ‖ \2 )
‖+ (B)- ‖\2

) 1
\

4�C+ (B)-

=

[
* (C)

(
* (B)

(
‖- ‖ \2

))] 1
\

4�C
+ (B)-
‖+ (B)- ‖2

=

[
* (C + B)

(
‖- ‖ \2

)] 1
\

4�C 4
�B-
‖- ‖2

= + (C + B)-,

whenever C ≥ 0 and B ≥ 0. It follows that + (C) is a continuous semiflow. �

Remark 1.7 The map C → - (C) = + (C)- satisfies the 2-dimensional Bernoulli-
Verhulst equation

- ′(C) =
[
� + _

\
�

]
- (C) − ^

\
‖- (C)‖ \2 - (C),∀C ≥ 0. (1.4)

We refer to chapter 5 in volume I for more results.

1.1.4 Explicit formula for the semiflow of the Poincaré normal form

In the special case \ = 2, we obtain

+ (C)- =

√
* (C)

(
‖- ‖22

)
4�C

(
-
‖- ‖

)
if - ≠ 0,

0 if - = 0,
(1.5)

and from the above computation we deduce that C → + (C)- =
(
G(C)
H(C)

)
satisfies the

following system of ordinary differential equations{
G ′(C) = _

2 G(C) − lH(C) −
^
2

(
G(C)2 + H(C)2

)
G(C),

H′(C) = lG(C) + _2 H(C) −
^
2

(
G(C)2 + H(C)2

)
H(C). (1.6)

The system (1.6) is nothing but the Poincaré normal form for Hopf bifurcation.
We can say that the Poincaré normal form is a special case of the 2-dimensional
Bernoulli-Verhulst equation.

1.2 Stability of an Equilibrium

Definition 1.8 We will say that G ∈ " is an equilibrium for* if

* (C)G = G,∀C ≥ 0.

Set
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�" (G, Y) := {H ∈ " : 3 (G, H) ≤ Y} .

Definition 1.9 We will say that an equilibrium G ∈ " is stable for * if for each
Y > 0, there exists [ ∈ (0, Y] such that

* (C)�" (G, [) ⊂ �" (G, Y) ,∀C ≥ 0.

We will say that G ∈ " is unstable otherwise. That is to say that, there exist Y > 0,
and a sequence G= → G and C= → +∞ such that

‖* (C=)G= − G‖ > Y.

We will say that G ∈ " is asymptotically stable, if G is stable for * and if there
exists [ > 0 such that for each G ∈ �" (G, [)

lim
C→+∞

* (C)G = G.

We will say that G ∈ " is exponentially asymptotically stable, if G is stable for *
and if in addition we can find three constants [ > 0, U > 0, " ≥ 1 such that

3 (* (C)G, G) ≤ "4−UC3 (G, G),∀C ≥ 0,∀G ∈ �" (G, [) .

Another equivalent definition of stability is the following. We will say that an
equilibrium G ∈ " is stable if for each neighborhood + of G in " (that is to say that
+ contains a ball �" (G, Y)), we can find a neighborhood, ⊂ + of G in " such that

* (C), ⊂ +,∀C ≥ 0.

In this case, by considering
,̂ :=

⋃
C≥0

* (C),,

we have* (0), = , (since* (0) = �), so we deduce that

, ⊂ ,̂ ⊂ +.

So ,̂ is a neighborhood of G in " , (since, is a neighborhood of G in "), and we
have

* (C),̂ = * (C)
⋃
B≥0

* (B), =
⋃
B≥0

* (C)* (B),

=
⋃
B≥0

* (B + C), =
⋃
;≥C
* (;),.

Thus
* (C),̂ ⊂ ,̂,∀C ≥ 0.

Therefore we obtain the following lemma.

Lemma 1.10 The following properties are equivalent
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(i) G ∈ " is stable equilibrium for*;
(ii) For each neighborhood + of G in " , we can find neighborhood , ⊂ + of G in

" , such that
* (C), ⊂ +,∀C ≥ 0.

(iii) For each neighborhood + of G in " , we can find a neighborhood, ⊂ + of G in
" , such that

* (C), ⊂ ,,∀C ≥ 0.

We can observe that an equilibrium G is unstable for * if there exists Y > 0 such
that for each [ > 0 there exists C = C ([) > 0 such that

* (C)�" (G, [) ⊄ �" (G, Y) .

Therefore by considering a sequence [= = 1/(= + 1) → 0, we obtain the following
lemma. For each integer = ≥ 0 we can find C= ≥ 0 such that

* (C=)�" (G, 1/(= + 1)) ⊄ �" (G, Y) .

Therefore we can finds G= ∈ �" (G, 1/(= + 1)) with

3 (* (C=)G=, G) ≥ Y.

Moreover, we must have C= → +∞ because * is a continuous semiflow. Otherwise,
we can find a sub-sequence C=? → Ĉ, and by continuity of*, we deduce that

lim
=→∞

3 (* (C=)G=, G) = 0,

which is impossible since Y > 0.

Lemma 1.11 An equilibrium G ∈ " is unstable for* if and only if there exists Y > 0
and two sequences G= → G and C= → +∞ such that

3 (* (C=)G=, G) ≥ Y,∀= ≥ 0.

Definition 1.12 Let � be a subset of " . We will say that � is positively invariant
by* if

* (C)� ⊂ �,∀C ≥ 0.

The subset � is positively invariant if and only if for each G ∈ �

* (C)G ∈ �,∀C ≥ 0.

We will say that � is negatively invariant by* if

* (C)� ⊃ �,∀C ≥ 0.

The subset � is negatively invariant if and only if for each H ∈ � and each C ≥ 0,
there exists G ∈ � such that

* (C)G = H.
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We will say that � is invariant by* if � is both positively and negatively invariant.
That is

* (C)� = �,∀C ≥ 0.

Example 1.13 Consider the map ) : [0, 1] → [0, 1] defined by

) (G) = 4G(1 − G),∀G ∈ [0, 1] .

Then ) reaches its maximum on [0, 1] at G = 1/2 and

) (1/2) = 1.

Therefore
) ( [0, 1]) = [0, 1] .

Clearly the map ) is not one to one. We deduce that [0, 1] is invariant by the discrete
time semiflow

* (=) = )=,∀= ≥ 0.

But the map G → * (=)G is not invertible.

Definition 1.14 We will say that $+ = {D(C)}C≥0 ⊂ " is a positive orbit of* if

D(C) = * (C)D(0),∀C ≥ 0⇔ D(C + B) = * (B)D(C),∀C, B ≥ 0.

We will say that {D(C)}C≤0 ⊂ " is a negative orbit of* if

D(−C) = * (B)D(−C − B),∀C, B ≥ 0.

Finally we will say that $ = {D(C)}C ∈� ⊂ " is a complete orbit of* if

D(C) = * (B)D(C − B),∀B ≥ 0,∀C ∈ � .

We will say that an orbit (positive, negative or complete) passes through G ∈ " at
time C = 0 if D(0) = G.

Remark 1.15 Let G ∈ " be given. Then there exists at most one positive orbit
passing through G at time C = 0, which is

D(C) := * (C)G,∀C ≥ 0.

But in general there is no negative orbit passing through G at time 0. Since the
map * (C) is not always onto for C > 0. Moreover when there exists a negative orbit
passing through G, the negative orbit is not necessarily unique since the map* (C) is
not always one to one for C > 0. As an example of non-unique negative orbit consider
Example 1.13.

Remark 1.16 If {D(C)}C ∈� ⊂ " is a complete orbit passing through G then the set

$ :=
⋃
C ∈�
{D(C)}
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satisfies
* (C)$ = $,∀C ≥ 0.

This is an example of invariant set.

1.3 8-Limit and "-Limit Sets

Definition 1.17 Let G ∈ " . Let {D(C)}C≥0 ⊂ " be a positive orbit of * passing
through G at time 0. The l-limit set of G is defined as

l(G) :=
⋂
C≥0

⋃
B≥C
{D(B)}.

Let {D(C)}C≤0 be a negative orbit of* passing through G at time 0. Then the U-limit
set of G (with respect to this negative orbit) is

U(G) :=
⋂
C≤0

⋃
B≤C
{D(B)}.

The omega limit set satisfies

l(G) =
{
H ∈ " : ∃ {C=}=∈N ⊂ �+ → +∞ such that lim

=→+∞
D(C=) = H

}
= {H ∈ " : ∀C ≥ 0,∀Y > 0, ∃B > C such that 3 (D(B), H) ≤ Y} .

Similarly the alpha limit set satisfies

U(G) =
{
H ∈ " : ∃ {C=}=∈N ⊂ �+ → +∞ such that lim

=→+∞
D(−C=) = H

}
= {H ∈ " : ∀C ≤ 0,∀Y > 0, ∃B < C such that 3 (D(B), H) ≤ Y} .

Example 1.18 We have for example

D(C) = cos(C) ⇒ ⋂
C≥0

⋃
B≥C
{D(B)} = [0, 1],

D(C) = C cos(C) ⇒ ⋂
C≥0

⋃
B≥C
{D(B)} = R,

D(C) = C ⇒ ⋂
C≥0

⋃
B≥C
{D(B)} = ∅.

So the omega limit sets can be compact, non compact or empty.

Definition 1.19 Let (", 3) be a metric space.

(i) A subset� ⊂ " is compact if and only if any sequence in� has a sub-sequence
which converges in �.

(ii) A subset � ⊂ " is relatively compact if and only if � (the closure of � in
(", 3)) is compact.

In the general case l-limit set is non empty only whenever the positive orbit
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$+ = {D(C)}C≥0

is relatively compact (i.e. its closure is compact).

Theorem 1.20 Let {D(C)}C≥0 ⊂ " be a positive orbit passing through G ∈ " at time
C = 0. Assume that the closure of this positive orbit⋃

C≥0
{D(C)}

is compact.

Then the l-limit set satisfies the following properties:

(i) l(G) is a non empty compact subset of ";
(ii) l(G) is invariant by*;
(iii) lim

C→+∞
3 (D(C), l(G)) = 0 , where

3 (G, �) := inf
H∈�

3 (G, H).

Remark 1.21 If " is a closed subset of R=, and the metric 3 is induced by a norm
on R= (i.e. 3 (G, H) = ‖G − H‖), then ⋃

C≥0
{D(C)} is compact if and only if the positive

orbit
⋃
C≥0
{D(C)} is a bounded set.

Before proving Theorem 1.20 we need the following lemma.

Lemma 1.22 Let � ⊂ " . Then the map G → 3 (G, �) is Lipschitz continuous. More
precisely

|3 (G, �) − 3 (H, �) | ≤ 3 (G, H) ,∀G, H ∈ ".

Proof Let G, H ∈ " and I ∈ �.We have

3 (G, �) ≤ 3 (G, I) ≤ 3 (G, H) + 3 (H, I).

Thus
3 (G, �) ≤ 3 (G, H) + 3 (H, �)

and the result follows. �

Proof (of Theorem 1.20) Define

�C :=
⋃
B≥C
{D(B)} , ∀ C ≥ 0.

By assumption for each C ≥ 0, the subset �C is compact. Moreover the family C → �C
is decreasing, that is to say that

C ≥ B⇒ �C ⊂ �B .
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Proof of (i). Let {C=} → +∞ be an increasing sequence and G= ∈ �C= ,∀= ≥ 0. Then
since �0 is compact, and the family C → �C is decreasing, we have

G= ∈ �0,∀= ≥ 0.

So,we can find a converging sub-sequence {G=}=≥0→ I ∈ �0 (denoted for notational
simplicity by the same index).

Moreover for each C ≥ 0, we can find an integer =0 ≥ 0 such that C= ≥ C, ∀= ≥ =0,
and since the family C → �C is decreasing

G= ∈ �C ,∀= ≥ =0.

But the subset �C is closed by construction, therefore

I ∈ �C ,∀C ≥ 0.

hence l(G) is non-empty (since I ∈ l(G)).
Next, consider a sequence in the l-limit set

G= ∈ l(G),∀= ≥ 0.

Then
G= ∈ �C ,∀= ≥ 0,∀C ≥ 0.

Since �0 is compact, we can find a converging sub-sequence, and since this sub-
sequence belongs to each subset �C (which is closed), we deduce that the limit of
this converging sub-sequence belongs to l(G). Therefore l(G) is compact.

Proof of (ii). Observe that for each C, B ≥ 0

* (B)
(⋃
;≥C
{D(;)}

)
=

⋃
;≥C+B

{D(;)} . (1.7)

This equality implies that

* (B)
(⋃
;≥C
{D(;)}

)
⊂ �C+B

and since the map G → * (B)G is continuous we obtain

* (B) (�C ) ⊂ �C+B . (1.8)

From (1.7), we also have

* (B) (�C ) ⊃
⋃
;≥C+B

{D(;)}

and since by assumption �C is compact and G → * (B)G is continuous, it follows that
* (B) (�C ) is compact and we obtain
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* (B) (�C ) ⊃ �C+B . (1.9)

By combining the inclusions (1.8) and (1.9) we obtain

* (B) (�C ) = �C+B ,∀C, B ≥ 0.

The invariance of the l-limit set follows from the following observation

* (B) (l(G)) = * (B)
(⋂
C≥0

�C

)
=

⋂
C≥0

* (B)�C =
⋂
C≥0

�C+B = l(G).

Proof of (iii). Assume by contradiction that there exist Y > 0 and a sequence
C= → +∞ such that

3 (D(C=), l(G)) ≥ Y,∀= ≥ 0.

By compactness of �0, we can find a converging sub-sequence (denoted with the
same index) such that

lim
=→+∞

D(C=) = I ∈ l(G).

By Lemma 1.22, we deduce that

Y/2 ≤ lim
=→+∞

3 (D(C=), l(G)) = 3 (I, l(G)) = 0,

which is a contradiction. �

The proof for alpha limit sets is similar to the proof of Theorem 1.20.

Theorem 1.23 Let {D(C)}C≤0 ⊂ " be a negative orbit passing through G ∈ " at
time C = 0. Assume that

⋃
C≤0
{D(C)} is compact. Then the U-limit set satisfies the

following properties

(i) U(G) is a non empty compact subset of ";
(ii) U(G) is invariant by*.
(iii) lim

C→−∞
3 (D(C), U(G)) = 0.

1.4 Heteroclinic and Homoclinic Orbits

Proposition 1.24 Let {D(C)}C≥0 ⊂ " be a positive orbit passing through G ∈ " at
time C = 0. Then

l(G) = {G+} ⇔ lim
C→+∞

D(C) = G+.

Moreover in that case, G+ must be an equilibrium of*.

Let {D(C)}C≤0 ⊂ " be a negative orbit passing through G ∈ " at time C = 0. Then
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U(G) = {G−} ⇔ lim
C→−∞

D(C) = G−.

Moreover in that case, G− must be an equilibrium of*.

Proof By using the definition of l(G), we deduce that l(G) = {G+} is equivalent to

lim
C→+∞

D(C) = G+.

Let B ≥ 0. Since C → D(C) is a positive orbit, we have

D(C + B) = * (B)D(C),∀C ≥ 0,

and by taking the limit when C → +∞ on both side, we obtain

G+ = * (B)G+.

By using the definition of U(G), we deduce thatU(G) = {G−} is equivalent to

lim
C→−∞

D(C) = G−.

Let B ≥ 0. Since C → D(C) is a negative orbit, we have

D(C + B) = * (B)D(C),∀C ≤ −B,

and by taking the limit when C → −∞ on both side, we obtain

G− = * (B)G−.

Definition 1.25 A complete orbit {D(C)}C ∈� is called a heteroclinic orbit if there
exist G−∞ ∈ " and G+∞ ∈ " such that

lim
C→−∞

D(C) = G−∞ and lim
C→+∞

D(C) = G+∞.

That is equivalent to say that both the omega limit set and alpha limit set are reduced
to a single point. That is

U(G) = {G−∞} and l(G) = {G+∞} .

A complete orbit {D(C)}C ∈� is called a homoclinic orbit if this orbit is not constant
and there exists G ∈ " such that

lim
C→+∞

D(C) = G and lim
C→+∞

D(C) = G.

That is equivalent to say that this orbit is not constant the omega limit set and alpha
limit set are reduced to the same single point. That is

U(G) = l(G) = {G} .
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1.5 Attraction of Sets and Hausdorff Distance and Semi-Distance

Let (", 3) be a complete metric space. For any subsets �, � ⊂ " , we define
Hausdorff’s semi-distance of � to � as

X(�, �) := sup
G∈�

3 (G, �),

where
3 (G, �) := inf

I∈�
3 (G, I).

For each Y > 0, we define an open Y-neighborhood of � (see also Section 2.4 in
Chapter 2 for more results) as

# (�, Y) := {G ∈ " : 3 (G, �) < Y} ,

and a closed Y-neighborhood of � as

# (�, Y) := {G ∈ " : 3 (G, �) ≤ Y} .

Now by using the fact that G → 3 (G, �) is a continuous map, we deduce that # (�, Y)
is an open neighborhood of � and # (�, Y) is a closed neighborhood of �. From
these observations, it becomes clear that X(�, �) is measuring the distance of � to �
(and not the converse). Therefore X(�, �) is only a semi-distance (since X(�, �) = 0
does not imply � = �).

Remark 1.26 The open ball �" (G, Y) (respectively the closed ball �" (G, Y)) cen-
tered at G with radius Y > 0 satisfies

�" (G, Y) = {H ∈ " : 3 (H, G) < Y} = # ({G} , Y),

and
�" (G, Y) = {H ∈ " : 3 (H, G) ≤ Y} = # ({G} , Y).

Definition 1.27 The distance between two subsets �, � ⊂ " is measured by using
the so called Hausdorff’s distance which is defined by

3� (�, �) = max(X(�, �), X(�, �)).
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AB
ε N(A, ε)

Fig. 1.1: The figure illustrates the notion of Hausdorff’s semi-distance of � to �. In
the figure Y = X(�, �). The black curve corresponds to the boundary of # (�, Y) a
Y-neighborhood of �.

A
B

ε

N(B, ε)

Fig. 1.2: The figure illustrates the notion of Hausdorff’s semi-distance of � to �. In
the figure Y = X(�, �). The black curve corresponds to the boundary of # (�, Y) a
Y-neighborhood of �.

Definition 1.28 We say that a subset � ⊂ " attracts a subset � ⊂ " for a semiflow
* on " if

lim
C→+∞

X(* (C)�, �) = 0.

Remark 1.29 This means that for each Y > 0, we can find C0 = C0 (Y) > 0 (large
enough) such that for each C ≥ C0, the subset * (C)� = {* (C)G : G ∈ �} is included
in # (�, Y).

To illustrate the notion of attraction,we first prove that the positive orbit is attracted
by the omega limit sets (whenever it is exists).

Lemma 1.30 Let {D(C)}C≥0 ⊂ " be a positive orbit passing through G ∈ " at time
C = 0. Assume that

$+ (G) :=
⋃
C≥0
{D(C)}
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is relatively compact. Then l(G) attracts $+ (G) for*.
Proof We first observe that

* (C)$+ (G) =
⋃
B≥C
{D(B)} ,∀C ≥ 0.

Assume by contradiction that l(G) does not attract $+ (G) for *. Then we can find
Y > 0 and a sequence C= → +∞ such that

X(D(C=), l(G)) ≥ Y,

and we obtain a contradiction with Theorem 1.20-(iii). �

Remark 1.31 If we consider the family of subsets �C :=
⋃
B≥C
{D(B)} , then l(G)

attracts $+ (G) for* is equivalent to say that

lim
C→+∞

X (�C , l(G)) = 0.

Let {D(C)}C≤0 ⊂ " be a negative orbit passing through G ∈ " at time C = 0. We can
adapt this last notion of attractivity for the alpha limit sets, by saying that if

$− (G) =
⋃
C≤0
{D(C)}

is relatively compact, then

lim
C→−∞

X (�C , U(G)) = 0.

where
�C =

⋃
B≤C
{D(B)} .

The Hausdorff semi-distance measure the distance of � to �. Therefore if � ⊂ �

then X(�, �) = 0. Moreover, if Y > 0 then

X(�, �) = Y ⇒ � ⊂ # (�, Y).

This means that we can find a sequence G ∈ � such that

3 (G, �) ≤ Y,

and there exists a sequence G= ∈ � such that

lim
=→∞

3 (G=, �) = Y.

The Hausdorff distance can also be defined as follows

3� (�, �) = inf {Y > 0 : � ⊂ # (�, Y) and � ⊂ # (�, Y)} .

Actually the Hausdorff distance is not a real distance, because we only have
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3� (�, �) = 0⇔ � = �.

But the Hausdorff is a real distance if we restrict to the closed subsets.

Proposition 1.32 Let (", 3) be a metric space. Then the set of closed subsets of "
is a metric space endowed with the Hausdorff distance.

Proof It remains to prove the triangle inequality for the Hausdorff distance. Assume
that

3� (�, �) < Y and 3� (�,�) < Y′.

From the proof of Lemma 1.22, we know that for each G ∈ �, I ∈ �,

3 (G, �) ≤ 3 (G, I) + 3 (I, �).

Let G ∈ � be fixed. Since

3� (�,�) < Y′⇒ � ⊂ # (�, Y′),

we can choose I ∈ � such that 3 (I, G) ≤ Y′, and

3� (�, �) < Y ⇒ � ⊂ # (�, Y).

We deduce that
3 (G, �) ≤ Y′ + Y,∀G ∈ �.

By taking the supremum in G, we obtain

X(�, �) ≤ 3� (�, �) + 3� (�,�) ,

and by symmetry of the problem, we obtain

X(�,�) ≤ 3� (�, �) + 3� (�,�) .

We conclude that
3� (�, �) ≤ 3� (�, �) + 3� (�,�) .

The proof is completed. �

1.6 Connectivity of 8-Limit Sets and "-Limit Sets

Internally chain transitive 8-limit sets and "-limit sets

The fundamental property of omega limit sets is the fact that each couple of points in
a omega limit set can be almost connected by an orbit staying in a small neighborhood
of the omega limit set. The following result is making this statement more precise.

Lemma 1.33 Assume that the positive orbit $+ (G) (respectively the negative orbit
$− (G)) is relatively compact. For each 0, 1 ∈ l(G) (respectively 0, 1 ∈ U(G) ) and
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each Y > 0 we can find 0Y , 1Y ∈ " and CY > 0 such that

3 (0, 0Y) ≤ Y, 3 (1, 1Y) ≤ Y,

* (CY)0Y = 1Y ,

and
* (C)0Y ∈ # (l(G), Y),∀C ∈ [0, CY] ,

which is equivalent to

3 (* (C)0Y , l (G)) ≤ Y,∀C ∈ [0, CY] .

Proof We have limC→+∞ X(* (C)G, l(G)) = 0. So we can find C0 > 0 such that

X(* (C)G, l(G)) ≤ Y, ∀C ≥ C0.

Since 0 belongs to l(G) we can find C1 > C0 such that 3 (* (C1)G, 0) ≤ Y. Set
0Y = * (C1)G. Then since 1 belongs to l(G) we can find C2 > C1 > C0 such that
3 (* (C2)G, 1) ≤ Y. Set 1Y = * (C2)G and the result follows. �

Definition 1.34 Let � be a subset of " . We say that 0 ∈ � is chained to 1 ∈ � in
�, if for each C★ > 0, for each Y > 0, and each [ > 0, there exist g ∈ [C★, C★ + [] ∩ �,
and G1, G2, ..., G< ∈ � (with < ≥ 2) such that

G1 = 0, G< = 1, and 3 (* (g)G8 , G8+1) ≤ Y,∀8 = 1, ..., < − 1.

We will say that � is internally chain transitive, if for each 0, 1 ∈ �, 0 is chained
to 1 in �.

Theorem 1.35 Let {* (C)}C ∈� be a continuous semiflow on (", 3). Then the omega
limit set (respectively alpha limit set) of a relatively compact positive orbit (respec-
tively negative orbit) is internally chain transitive.

Lemma 1.36 Let {* (C)}C ∈� be a continuous semiflow on (", 3). Let� be a compact
subset of " . Then for each Y > 0, and each C★ ∈ � (with C★ > 0), there exists X > 0,
such that B ∈ [C★, C★ + X], D, E ∈ " ,

3 (D, �) ≤ X, 3 (E, �) ≤ X, and 3 (D, E) ≤ X⇒ 3 (* (B)D,* (B)E) ≤ Y.

Proof Assume by contradiction that there exists Y > 0 and two sequences D= ∈ " ,
and E= ∈ " , and B= ∈ [C★, C★ + 1/=], such that for each integer = > 0,

3 (D=, �) ≤ 1/=, 3 (E=, �) ≤ 1/=, and 3 (D=, E=) ≤ 1/=,

implies
3 (* (B=)D=,* (B=)E=) ≥ Y. (1.10)

By definition of distance 3 (G, �), we can find two sequences D�= ∈ � and E�= ∈ �
such that

3

(
D=, D

�
=

)
≤ 2/= and 3

(
E=, E

�
=

)
≤ 2/=.
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By using the triangle inequality we obtain

3

(
D�= , E

�
=

)
≤ 3

(
D�= , D=

)
+ 3 (D=, E=) + 3

(
E=, E

�
=

)
≤ 5/=.

Now, by using the fact that� is compact, we can find some converging sub-sequences
(denoted with the same index), such that

D�= → F, and E�= → F, as =→ +∞.

By using the continuity of (C, G) → * (C)G, we deduce from (1.10) that

0 = 3
(
* (C★)F,* (C★)F

)
≥ Y > 0.

A contradiction. The proof is completed. �

Proof (of Theorem 1.35) Let us prove the result for omega limit set (the proof for
alpha limit set is similar). Let G ∈ ", and assume that W+ (G) is compact. Then l(G)
is nonempty, compact, invariant and

lim
C→+∞

3 (* (C)G, l(G)) = 0.

Let C★ ∈ � (with C★ > 0), Y > 0, and [ > 0 be fixed. By continuity of *, and
compactness of l(G), we can find X ∈ (0, Y/3) ∩ (0, [), with the following property:
If B ∈ [C★, C★ + X] , D, E ∈ ",

3 (D, l(G)) ≤ X, 3 (E, l(G)) ≤ X, and 3 (D, E) ≤ X⇒ 3 (* (B)D,* (B)E) ≤ Y/3.

Since
lim
C→+∞

3 (* (C)G, l(G)) = 0,

we can find C1 ∈ �, such that

3 (* (C)G, l(G)) < X,∀C ≥ C1.

Let 0, 1 ∈ l(G). Then we can find C0 ≥ C1, such that

3 (* (C0)G, 0) < X.

Let : ∈ N, : ≥ 2, such that C★/: ≤ X. Then we can find C1 ≥ C0 + :C★, such that

3 (* (C1)G, 1) < X.

However there exists < ≥ : + 1, such that (< − 1) C★ ≤ C1 − C0 < <C★. We set
g =

C1 − C0
< − 1

. Then by construction of C★, we have g ∈ �, and

g ∈
[
C★,

(
1 + 1

< − 1

)
C★

]
⊂

[
C★,

(
1 + 1

:

)
C★

]
⊂

[
C★, C★ + X

]
.
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We set

H1 = 0, H2 = * (g)* (C0)G, . . . , H<−1 = * ((< − 2)g)* (C0)G, H< = 1.

Then
3 (* (g) H1, H2) = 3 (* (g) 0,* (g)* (C0)G)

and since

0 ∈ l(G), 3 (* (C0)G, l(G)) < X, and 3 (* (C0)G, 0) < X,

and g ∈ [C, C + X], we deduce that

3 (* (g) H1, H2) = 3 (* (g) 0,* (g)* (C0)G) ≤ Y/3,

* (g) H 9 = H 9+1,∀ 9 = 2, ..., < − 2,

and
3 (* (g) H<−1, H<) = 3 (* (C1)G, 1) ≤ X ≤ Y/3.

Now for each 9 = 2, ..., < − 1, there exists G 9 ∈ l(G), such that 3
(
G 9 , H 9

)
≤ X. By

setting G1 = 0 and G< = 1, we obtain for 9 = 1, ..., < − 1,

3
(
* (g) G 9 , G 9+1

)
≤ 3

(
* (g) G 9 ,* (g) H 9

)
+ 3

(
* (g) H 9 , H 9+1

)
+ 3

(
H 9+1, G 9+1

)
≤ Y/3 + Y/3 + X ≤ Y.

The proof is completed. �

Invariantly connected 8-limit and "-limit Sets

Definition 1.37 A compact invariant set � is said to be invariantly connected if it
is not the union of two nonempty disjoint compact invariant subsets. That is to say
that if �1 ≠ ∅, and �2 ≠ ∅ are non empty and compact subsets satisfying

� = �1 ∪ �2, with �1 ∩ �2 = ∅.

Then either �1 or �2 are not invariant by*. That is,

either*
(
C★

)
�1 ≠ �1, or* (C★)�2 ≠ �2.

for some C★ > 0.

Theorem 1.38 Let {* (C)}C ∈� be a continuous semiflow on (", 3). Then the omega
limit set (respectively alpha limit set) of a relatively compact positive orbit (respec-
tively negative orbit) is invariantly connected.

Theorem 1.38 follows from Theorem 1.35 and the following lemma.
Lemma 1.39 Let � be a compact subset of " which is invariant by *. If � is
internally chain transitive then � is also invariantly connected.
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Proof We can prove the result by contradiction. Assume that � is the union of
two disjoint closed invariant sets � = �1 ∪ �2. We get a contradiction because the
subsets �1 and �2 are invariant. So if we fix g > 0 then when 3 (G, �1) ≤ Y, then
3 (* (g)G, �2) > 2Y whenever Y > 0 is small enough. So a point of �1 can not be
chained to a point of �2. �

Connected 8-limit and "-limit sets

Definition 1.40 Let (", 3) be a metric space. Let � ⊂ " be a subset of " . We will
say that a pair of of non empty subsets � ⊂ � and � ⊂ � is a partition of � if

� ∪ � = � and � ∩ � = ∅.

Definition 1.41 Let (", 3) be a complete metric space. A subset � of " is said
to be connected if there exists no partition of � in two subsets � and � which are
both open subsets for the topology of (�, 3). We will say that � is disconnected
whenever � is not connected.

Remark 1.42 Recall that a subset is closed in (�, 3) if its complementary set in �
is open in (�, 3). Therefore, in the above definition, it is equivalent to say that both
subsets � and � are also closed in (�, 3).

Assume that � is not connected. Then we can there exists a partition of � in two
subsets � and � which are both open subsets for the topology of (�, 3). Recall that
a subset � is open in (�, 3), if and only if for each G ∈ �, there exists YG > 0 such
that

�� (G, YG) = {H ∈ � : 3 (G, H) ≤ YG)} ⊂ �,

where �� (G, YG) is the ball of center G and radius YG (in �).
Remark that

�� (G, YG) = �" (G, YG) ∩ �,

where
�" (G, YG) = {H ∈ " : 3 (G, H) ≤ YG} .

So we must have
�" (G, YG) ∩ � = ∅.

Now we can define
* =

⋃
G∈�

�" (G, YG),

and
+ =

⋃
G∈�

�" (G, YG).

where for each G ∈ �, YG is chosen small enough to guaranty

�" (G, YG) ∩ � = ∅.
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We observe that* and + satisfies

* ∩ � = � and + ∩ � = �

and
* ∩+ = ∅.

Therefore we obtain the following lemma.

Proposition 1.43 Let (", 3) be a complete metric space. A subset� is disconnected
if there exist two open subsets* ⊂ " and + ⊂ " , such that

(� ∩*) ≠ ∅ and (� ∩+) ≠ ∅

and
* ∩+ = ∅.

Definition 1.44 An interval in R is a subset � such that

0 < 2 < 1 and 0, 1 ∈ � ⇒ 2 ∈ � .

Remark 1.45 This is definition can be extended to R= endowed with some partial
order ≤.

Theorem 1.46 A connected set of real numbers is an interval.

Remark 1.47 The converse is also true. An interval of real numbers is a connected
set.

Proof Let � be a connected set in R. Assume by contradiction that � is not an
interval. Then we can find 0, 1 ∈ � and 2 ∉ � with 0 < 2 < 1. The subsets
* = (−∞, 2) and + = (2,∞) are both open in R, and

0 ∈ � ∩* ≠ ∅, and 1 ∈ � ∩+ ≠ ∅.

Therefore � = � ∩ * and � = � ∩ + are both open in �. We deduce that � is
disconnected. �

Theorem 1.48 Let ) : " → "̃ be a continuous map from a metric space (", 3) to
a metric space ("̃, 3̃). Then " is connected implies that ) (") is connected.

Proof Assume by contradiction that ) (") is not connected. Then there exists �̃ and
�̃ two open subset of () ("), 3̃)

�̃ ∪ �̃ = ) (") and �̃ ∩ �̃ = ∅.

By continuity of) , we deduce that � = )−1
(
�̃

)
and � = )−1

(
�̃

)
are open in (", 3)

and
� ∪ � = " and � ∩ � = ∅.

This contradicts the fact that " is connected. The proof is completed. �
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As a consequence of the Proposition 1.43, Theorem 1.46, and Theorem 1.48, we
obtain the following results that will be useful in the applications.

Theorem 1.49 Let " ⊂ - be a subset of Banach space (-, ‖.‖). Then we have the
following properties:

(i) " is convex⇒ " is connected.
(ii) If " is connected and G∗ : - → R is a bounded linear map then

� = {G∗ (G) : G ∈ "} ⊂ R

is an interval in R.

As a consequence of the above theorem we have for example, a connected set in R=
becomes an interval when it is projected onto the axes.

Example of not connected l-limit and U-limit sets: The l-limit set (respectively
the U-limit set) of a relatively compact positive orbit (respectively negative orbit)
generated by a discrete time semiflow is not connected in general. Indeed, assume
that ) : " → " has a 2-periodic orbit

) (0) = 1 and ) (1) = 0,

with
0 ≠ 1.

If we define the complete orbit

D(=) =
{
0, if = = 2:, for some integer : ∈ Z,
1, if = = 2: + 1, for some integer : ∈ Z,

Then the l-limit set of the solution starting from 0 or 1 is

l(0) = l(1) = {0, 1} ,

and
U(0) = U(1) = {0, 1} .

This provides an example of disconnected l-limit and U-limit sets.

The case of continuous time semiflow is different.

Theorem 1.50 Let (", 3) be a complete metric space. The l-limit set of a relatively
compact orbit generated by a continuous time semiflow {* (C)}C ∈R+ is connected.

Proof (of Theorem 1.50) Assume that l(G) is disconnected. Then there would be
disjoint open subsets* and + of " such that* ∩l(G) and + ∩l(G) are nonempty
and l(G) ⊂ * ∪ + . Let 0 ∈ * ∩ l(G) and 1 ∈ * ∩ l(G) . Then we can have
a sequence C1, C2, . . . C: → ∞ and a sequence B1, B2, . . . B: → ∞ (with C: ≤ B: )
such that * (C: )G ∈ * → 0, and * (B: )G ∈ * → 1. But {* (C)G : C ∈ [C: , B: ]} is
a connected curve going from a point in * to a point in + . Therefore, there must
be able to find g: ∈ (C: , B: ) such that * (g: )G ∈ " \ (* ∪+). But the sequence
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: → * (g: )G is relatively compact, so up to a sub-sequence (denoted with the same
index) we can assume that

* (g: )G → 2.

But by construction " \ (* ∪+) is a closed subset, and it follows that

2 ∈ " \ (* ∪+) and 2 ∈ l(G).

We obtain a contradiction since l(G) ⊂ (* ∪+). �

1.7 Dissipation and Absorbing Sets

Definition 1.51 A continuous semiflow {* (C)}C ∈� on a metric space (", 3) is said
to be point dissipative (respectively compact dissipative, bounded dissipative) if
there exists a bounded set �0 ⊂ " attracting the point (respectively the compact
subsets, the bounded subsets).

The notion of dissipative semiflow can be expressed by using one of the two
following equivalent properties:

(i) There exists �0 ⊂ " a bounded subset such that

lim
C→+∞

X(* (C)�, �0) = 0,

whenever � is a point (respectively a compact subset, a bounded subset).

(ii) For each Y > 0, and each subset � ⊂ " that is a point (respectively a compact
subset, a bounded subset), there exists C0 = C0 (Y, �) > 0 such that

* (C)� ⊂ # (�0, Y),∀C ≥ C0,

where # (�0, Y) is a closed Y-neighborhood of �0 defined by

# (�0, Y) := {G ∈ " : 3 (G, �0) ≤ Y} .

Definition 1.52 A subset �0 ⊂ " is called point absorbing, compact absorbing,
bounded absorbing if for each subset � ⊂ " which is respectively a single point,
a compact subset, a bounded subset, there exists C0 = C0 (�) ≥ 0 such that

* (C)� ⊂ �0,∀C ≥ C0.

A bounded absorbing subset is called absorbing subset.
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1.8 Examples

1.8.1 Logistic equations: heteroclinic orbit

Consider the scalar logistic equation

# ′(C) = # (C) − # (C)2,∀C ≥ 0 and # (0) = G. (1.11)

The solution is explicitly given by

# (C) = 4CG

1 +
∫ C

0 4
;G3;

,∀C ≥ 0.

Define the maximal backward time of existence

g− (G) = inf
{
C < 0 : 1 −

∫ 0

B

4;G3; > 0, ∀B ∈ [C, 0]
}
.

Then ∫ 0

−∞
4;3; = 1,

therefore
g− (G) = −∞,∀G ∈ [0, 1]

and the solution
# (C) = 4CG

1 +
∫ C

0 4
fG3f

,∀C ∈ R. (1.12)

It is clear that 0 and 1 are equilibrium solutions. Moreover for each G ∈ (0, 1), the
solution (1.12) is a heteroclinic orbit and

lim
C→−∞

# (C) = 0 and lim
C→+∞

# (C) = 1.

That is equivalent to say that

U(G) = {0} and l(G) = {1}.
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Fig. 1.3: In this figure the blue curve represents the heteroclinic orbit (1.6) whenever
G = 0.5.

Dissipation: Consider the map

+ (#) = (# − 1)2.

We have

+ ′(#) = 2(# − 1)# ′ = 2(# − 1)# (1 − #) = −2# (1 − #)2 ≤ 0.

Theorem 1.53 The semiflow

* (C)G = 4CG

1 +
∫ C

0 4
fG3f

,∀C ∈ R

of scalar logistic equation (1.11) is bounded dissipative on R+. More precisely, each
such that �0 = [0, #1] (with #1 > 2) is bounded absorbing set. That is to say that
for each bounded set � ⊂ [0, +∞), there exists C0 = C0 (�), such that

* (C)� ⊂ �0,∀C ≥ C0.

Proof We first observe that

sup
G∈[0,#1 ]

+ (G) = (#1 − 1)2,∀#1 > 2,

therefore {
G ≥ 0 : + (G) ≤ (#1 − 1)2

}
= [0, #1],∀#1 > 2.

We choose �0 =
{
G ≥ 0 : + (G) ≤ (#1 − 1)2

}
for some #1 > 2. Next, we observe

that �0 is positively invariant by*. Indeed, we have for each G ∈ �0

+ (* (C)G) ≤ + (G) ≤ sup
G∈�0

+ (G) = (#1 − 1)2.
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Therefore
sup
G∈�0

+ (* (C)G) ≤ (#1 − 1)2 ⇒ * (C)�0 ⊂ �0,∀C ≥ 0.

Assume by contradiction, that there exists a bounded � ⊂ [0,∞), such that

sup
G∈�

+ (* (C)G) ≥ (#1 − 1)2,∀C ≥ 0.

Then we can construct a sequence G= ∈ � such that for each integer = ≥ 0,

+ (* (=)G=) ≥ (#1 − 1)2,∀= ∈ N.

Since the sequence G= is bounded, we can find a sub-sequence (denoted with the
same index) since G= → G∞ and by continuity of* we deduce that

+ (* (C)G∞) ≥ (#1 − 1)2,∀C ≥ 0. (1.13)

But since #1 ≥ 2, we must have

* (C)G∞ > #1,∀C ≥ 0. (1.14)

Finally observe that

+ ′(* (C)G∞) = −* (C)G∞ × (1 −* (C)G∞)2 = −* (C)G∞ ×+ (* (C)G∞) ,

so by integrating this formula and by using (1.14), we obtain

+ (* (C)G∞) = 4−
∫ C

0 * (f)G∞3f+ (* (C)G∞) ≤ 4−C#1+ (G) → 0, as C → +∞.

We obtain a contradiction with (1.13). �

Theorem 1.54 Consider the semiflow * (C) of scalar logistic equation (1.11) re-
stricted to (0,∞). Then the subset �0 = [#0, #1] (with 0 < #0 < 1 < #1) is a
compact absorbing set, but �0 is not a bounded absorbing set. Moreover precisely

(i) The subset (0, 1] attracts all the bounded subsets in (0, +∞);
(ii) The subset (0, 1] is invariant by*. That is

* (C) (0, 1] = (0, 1],∀C ≥ 0;

(iii) The subset (0, 1] is not compact in (0, +∞);
(iv) The subset (0, #1] is a bounded absorbing set in (0, +∞).

1.8.2 Poincaré normal form: periodic orbit

Consider the Poincaré normal form{
G ′(C) = _

2 G(C) − lH(C) −
^
2

(
G(C)2 + H(C)2

)
G(C)

H′(C) = lG(C) + _2 H(C) −
^
2

(
G(C)2 + H(C)2

)
H(C) (1.15)
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From Section 1.1, we know that the semiflow generated by (1.15) is defined by

+ (C)
(
G

H

)
=

√√
4_C

(
G2 + H2)

1 + ^
∫ C

0 4
_B

(
G2 + H2) 3B × 1√

G2 + H2

×
(

cos(lC)G − sin(lC)H
sin(lC)G + cos(lC)H

)
,

(1.16)

whenever (G, H) ≠ (0, 0) and

+ (C)
(

0
0

)
=

(
0
0

)
.

Exercise 1.55 Derive the above formula by using the following changes of variables.
Consider

A (C)2 = G2 (C) + H(C)2

and prove that
(A (C)2) ′ = _A (C)2 − ^A (C)4.

Consider
- (C) = G(C)√

G2 (C) + H2 (C)
and

. (C) = H(C)√
G2 (C) + H2 (C)

whenever (G, H) ≠ (0, 0). Prove that

- ′ = −l., and . ′ = l-.

Figures 1.4, 1.5 and 1.6 illustrate the behavior of the solutions of the Poincaré normal
form.
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Fig. 1.4: We plot some solutions of (1.15) in the phase plane (G(C), H(C)) when-
ever _ = 0.02, l = 0.1 and ^ = 1. We choose several initial values where
G = 0.2, 0.3, . . . , 0.8 and H = 0. One may observe that the omega limit set of
these solutions is the central circle, while the alpha limit set is empty since the norm
of the solutions eventually blowup when the time goes to −∞.
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Fig. 1.5: We plot some solutions of (1.15) in the phase plane (G(C), H(C)) whenever
_ = 0.02, l = 0.1 and ^ = 1. We choose several initial values, where G = 0.01, 0.08
and H = 0. The solutions are part of a complete orbits jointing the trivial equilibrium
0 to the circular periodic orbit.
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Fig. 1.6: We plot (C, G(C)) (top) and (C, H(C)) (bottom) for two solutions of (1.15)
whenever _ = 0.02, l = 0.1 and ^ = 1. We choose several initial values where
G = 0.01, 0.4 and H = 0. Both solutions coincide whenever they converge to the
periodic orbit. That is because both solutions turn around 0 with the same rotation
speed. This appears explicitly in the semiflow formula (1.16) (i.e. the rotation is
guided by the linear term 4�C-).

1.8.3 Homoclinic orbit for a second order logistic equation

Consider the equation

G ′′(C) = −G(C) (1 − G(C)),∀C ≥ 0, with G(0) = G0 and G ′(0) = G ′0. (1.17)

This equation can be regarded as the following system{
G ′(C) = −H(C)
H′(C) = G(C) (1 − G(C)) (1.18)

and the equilibria of (1.18) are

(G, H) = (0, 0) and (G, H) = (1, 0).

The system (1.18) is an Hamiltonian which corresponds to a special case of the
Bogdanov-Takens normal form (see [32] and [129]). The terminology Hamiltonian
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means that we have
G(1 − G)G ′ = −HH′.

Therefore we obtain the following conservation property along the trajectories

G(C)2
2
− G(C)

3

3
= − H(C)

2

2
+ ℎ,

where the constant of integration ℎ ∈ R.
In order to study the trajectories passing through the points H0 = 0 and G0 between

0 and 1, we obtain the following condition for ℎ

G2
0

(
1
2
− G0

3

)
= ℎ.

The function G → G2

2 −
G3

3 is increasing between 0 and 1. Therefore ℎ varies between
0 (for G = 0) and 1

6 (for G = 1).
We deduce that the orbit passing through the point (G, 0) (with G ∈ [0, 1]) satisfies

H = ±

√
2
[
ℎ −

(
G2

2
− G

3

3

)]
,

where G takes some appropriate values in order for the quantity below the square
root to be positive.
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Fig. 1.7: We plot the complete orbits (G(C), H(C)) passing respectively through
G = 0.05, 0.2, 0.4, 0.6, 0.8 and H = 0. The last orbit is a homoclinic orbit passing
through (G, H) = (−0.5, 0) and the alpha limit set as well as the omega limit is the
equilibrium (G, H) = (1, 0).
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Fig. 1.8:We plot the homoclinic orbits C → (G(C), H(C)) which is the solution passing
through (G, H) = (−0.5, 0). We observe numerically the convergence to (1, 0) when
the time C goes to ±∞.

1.8.4 Beverton and Holt discrete time model

The model of Beverton and Holt [18] was introduced in the context of fisheries in
1957. This model is the following

# (C + 1) = V# (C)
1 + U# (C) , ∀C ≥ 0, with # (0) = #0 ≥ 0, (1.19)

where # (C) is the number of individuals, V > 0 is the growth rate of the population
and the term 1/(1 + U# (C)) (with U ≥ 0) describes the competition for food,
cannibalism effect (indeed the adult fish eat the larvea when they reproduce) etc...
The competition occurs between individuals of the same species. Therefore this
effect is usually called intra-specific competition.

Semiflow: Recall that the semiflow {* (C)}C ∈N is defined by

* (C) (#0) = ) C (#0) ,∀C ≥ 0,∀#0 ≥ 0,

where ) (#0) = V# (C)
1+U# (C) and )

C is defined by induction as following

) C+1 (#0) = )
(
) C (#0)

)
= ) C () (#0)) ,∀C ≥ 0,

and
)0 (#0) = #0.

Equilibria: It is readily checked that 0 is always an equilibrium of (1.19). The
non-zero equilibrum satisfies

V

1 + U#
= 1⇔ # =

V − 1
U

.
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Dissipation property: We follow the construction of the Liapunov of function by
Fisher and Goh [76]. Define

+ (# (C)) = |# (C) − # |.

Then
+ (# (C + 1)) = |# (C + 1) − # | = | V# (C)

1 + U# (C) −
V − 1
U
|

= |UV# (C) − (V − 1) (1 + U# (C)))
U (1 + U# (C)) |

= |U# (C) − (V − 1)
U (1 + U# (C)) |,

and we obtain
+ (# (C + 1)) = 1

(1 + U# (C))+ (# (C)). (1.20)

We deduce that if we define {* (C)}C ∈N the discrete time semiflow generated by (1.19)
for each C ∈ N, {

+ (* (C)#0) < + (#0), if #0 > 0, and #0 ≠ #,

+ (* (C)#0) = + (#0), if #0 = 0, or #0 = #.
(1.21)

Theorem 1.56 The discrete time semiflow generated by (1.19) is bounded dissipative
on [0,∞). More precisely, for each W0 > # the subset

�W0 = {G ≥ 0 : + (G) ≤ W0}

is a bounded absorbing subset.

Proof We have for each #0 > 0, with + (#0) ≥ # ,

+ (* (C)#0) < + (#0),∀C ≥ 0,

the result follows. �

Remark 1.57 One may observe that this model can be derived from the logistic
equation (1.11) by using the following semi-implicit scheme

# (C + ΔC) − # (C)
ΔC

= # (C) (_ − j# (C + ΔC))

which is equivalent to

# (C + ΔC) = (1 + ΔC_)# (C)
1 + ΔC j# (C) .

The behavior of the system (1.19) is analogous to the behavior of the solution of the
logistic equation (1.11) (see Figure 1.9).
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Fig. 1.9: In this figure we plot three solutions of equation (1.19) with U = 0.05
small and _ = 1 + U (similarly to the above approximation of the logistic equation).
Then we choose three initial value #0 = 0.2 (blue curve), #0 = 1 (green curve)
and #0 = 3 (red curve). The green curve corresponds to the equilbrium # = 1. The
second member of (1.19) being (concave) monotone increasing no other behavior
can be observed whenever _ > 1.

1.8.5 Ricker model: chaotic behavior

The first population dynamicsmodel introduced in the context of fisheries to describe
the reproduce of salmons in Canada was introduced by Ricker [179, 180] in 1954.
The model is the following

# (C + 1) = V# (C) exp(−# (C)), ∀C ≥ 0, with # (0) = #0 ≥ 0, (1.22)

where V > 0 is the growth rate of the population and the term exp(−# (C)) (with
U ≥ 0) describes the intra-specific competition.

Semiflow: Recall that the semiflow {* (C)}C ∈N is defined by

* (C) (#0) = ) C (#0) ,∀C ≥ 0,∀#0 ≥ 0,

where ) (#0) = V#0 exp (−#0) and ) C is defined by induction as following

) C+1 (#0) = )
(
) C (#0)

)
= ) C () (#0)) ,∀C ≥ 0,

and
)0 (#0) = #0.

Equilibria: It is readily checked that 0 is always an equilibrium of (1.22). The
non-zero equilibrum satisfies

V exp(−#) = 1⇔ # = ln(V).
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Dissipation property: We follow the construction of the Liapunov of function by
Fisher and Goh [76]. Define

+ (# (C)) =
(
# (C) − #

)2
.

Then

+ (# (C + 1)) −+ (# (C)) =
(
# (C + 1) − #

)2
−

(
# (C) − #

)2

=

(
V# (C) exp(−# (C)) − #

)2
−

(
# (C) − #

)2

= (V# (C) exp(−# (C)))2 − # (C)2
−2V# (C) exp(−# (C))# + 2# (C)#
= [V exp(−# (C)) − 1] [V exp(−# (C)) + 1] # (C)2
−2# (C)# [V exp(−# (C)) − 1]

and we obtain

+ (# (C + 1)) −+ (# (C)) = ℎ(# (C)) [V exp(−# (C)) − 1] , (1.23)

where
ℎ(# (C)) =

{
[V exp(−# (C)) + 1] # (C) − 2#

}
# (C)

=

{
# (C)V exp(−# (C)) − # + # (C) − #

}
# (C)

=

{
# (C) exp(# − # (C)) +

[
# (C) − 2#

]}
# (C)

(1.24)

Proposition 1.58 Assume that V ∈ (1, 42]. We deduce that if we define {* (C)}C ∈N
the discrete time semiflow generated by (1.22) for each C ∈ N,

+ (* (C)#0) ≤ + (#0),∀C ∈ N, ∀#0 ≥ 0. (1.25)

Proof Let us prove that
ℎ(# (C)) ≤ 0,∀# ≤ #

and
ℎ(# (C)) ≥ 0,∀# ≥ #.

Indeed, we have

ℎ(0) = 0, and ℎ(#) = 0, and ℎ(#) > 0,∀# ≥ 2#.

Consider # ∈ (0, 2#) and # ≠ # . Then ℎ(#) = 0 if
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# (C) exp(# − # (C)) +
[
# (C) − 2#

]
= 0

⇔ exp(# − # (C)) = 2
#

# (C) − 1

⇔ # − # (C) = ln

(
2
#

# (C) − 1

)
which is equivalent to

# =

ln

(
2
#

# (C) − 1

)
1 − # (C)

#

. (1.26)

First case: # ∈ (0, #): Set H = 1/(1 − # (C)/#) > 1. Then (1.26) gives

# = H {ln(1 + 1/H) − ln(1 − 1/H)} = H
{ ∞∑
==1
(−1)=+1 H

−=

=
+
∞∑
==1

H−=

=

}
= 2

∞∑
==0

H−2=

2= + 1
> 2.

Second case: # ∈ (#, 2#): Set H = 1/(# (C)/# − 1) > 1. Then (1.26) gives

# = H {ln(1 + 1/H) − ln(1 − 1/H)} > 2.

Finally V ∈ (1, 42] implies # ∈ (0, 2] we conclude that

ℎ(#) ≠ 0 and # ∈ (0, 2#) ⇒ # = #,

and the proof is completed. �

Theorem 1.59 Assume that V ∈ (1, 42]. The discrete time semiflow generated by
(1.22) is bounded dissipative on [0,∞). More precisely, for each W0 > # the subset

�W0 = {G ≥ 0 : + (G) ≤ W0}

is bounded absorbing subset.

Proof Let* (C) be the discrete time semiflow generated by (1.22). We have

+ (* (C)0) = + (0) = #,

and
+ (* (C)#) = + (#) = 0,

and for each #0 ∈ (0, +∞) \
{
#

}
,

+ (* (C)#0) < + (#0),∀C ∈ N,

the result follows. �
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Remark 1.60 An Hopf bifurcation for maps occurs at V = 42 (i.e. the derivative of
the map G → VG4−G) crosses −1 when V crosses 4−2). It means that periodic orbit
with period 2 with appear. Then see Figure 1.10 and Figure 1.11 periodic orbits of
period 4, 8, etc... appear and chaos appear when periodic orbit of period 3 appears.

Assume that V > 42. we can use the fact that G → VG exp(−G) is bounded to derive
the dissipation property. Indeed,

(VG exp(−G)) ′ = V [1 − G] exp(−G).

Therefore the map G → VG exp(−G) reaches a maximum at G = 1, and this maximum
is V4−1. Define

, (#) = max(#, V4−1).

Let* (C) be the discrete time semiflow generated by (1.22). Then we have

, (* (C)#0) ≤ , (#0),∀C ≥ 0,∀#0 ≥ 0.

Theorem 1.61 Assume that V ≥ 0. The discrete time semiflow generated by (1.22)
is bounded dissipative on [0,∞).

Remark 1.62 Then by using a simple first order approximation exp(# (C)) =
1 + # (C) + ℎ.>.C, we can regard the model of Beverton and Holt as a first order
approximation of the Ricker model. Nevertheless the behavior of this two systems is
very different.
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Fig. 1.10: In Figures (a) (b) and (c) we plot three solutions of equation (1.22). In
Figure (a), we fix V = 41.5, we observe behavior that is similar to the behavior for
the Beverton and Holt model (but oscillations around the positive equilibrium). In
Figure (b) we fix V = 42.2, the solutions converge to some periodic solutions. In
Figure (c) we fix V = 44, the behavior becomes chaotic (unpredictable).

An Hopf bifurcation for maps occurs at V = 42. That is to say that derivative of
the map G → VG4−G crosses −1 when V crosses 4−2, and a branch of (non-trivial)
periodic orbits of period 2 appear at V = 42 (see Figures 1.10 and 1.11 ). Then
periodic orbits of period 4, 8, etc... appear. That is often called a period-doubling
bifurcation.

When the parameter V is large enough a periodic orbit of period 3 appears, and
the system becomes chaotic (see Figures 1.10 and 1.11 ). In other words, period three
implies chaos Li and Yorke [139].
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This is the so called chaos of Sharkovskii [190, 191]. The result of Sharkovskii
was rediscovered by Li and Yorke [139]. Both results of Sharkovskii [190, 191] and
Li and Yorke chaos show that when the system has a periodic solution of period 3
then periodic orbit of all periods exists. Therefore the system has infinitely many
periodic orbit. This could serve as first step to characterize the chaos. But Li and
Yorke explored the dependency with respect to the initial condition in the following
sense.
Theorem 1.63 (Li and Yorke) Let ) : � → � be a continuous map on some interval
� ⊂ R. Assume that there exists #0 ≥ 0 such that

)3 (#0) ≤ #0 < ) (#0) < )2 (#0)

or
)3 (#0) ≥ #0 > ) (#0) > )2 (#0) .

Then
(i) For each integer : = 1, 2, . . . there exists a periodic point in � having the period
: .

(ii) There exists an uncountable set ( ⊂ � (containing no periodic points), which
satisfies the following conditions:

(a) For every ?, @ ∈ ( with ? ≠ @,

lim sup
C→∞

|) C (?) − ) C (@) | > 0,

and
lim inf
C→∞

|) C (?) − ) C (@) | = 0.

(b) For every ? ∈ ( and every periodic point @ ∈ �,

lim sup
C→∞

|) C (?) − ) C (@) | > 0.
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Fig. 1.11: In this figure we plot for each V varying from 0 to 18 the omega limit set
l(1) of the solution of (1.22) starting from the initial value #0 = 1.
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In Figure 1.11, we observe a cascade of bifurcations. The branch of single point
corresponds to a positive equilibrium, which first bifurcate to a 2 periodic orbit. One
may notice that the positive equilibrium exists for each V but becomes unstable after
the bifurcation. Then we observe a period doubling bifurcation, we period orbits of
period 2, 4, 8, etc. Periodic orbit of period 3 appears only when the parameter V
becomes large enough, the chaos in the sense of Li and Yorke [139] appear.

1.8.6 Lorentz system: chaos and dissipation properties

The system of Lorenz [148] was introduced in his paper in 1963 as taken from
Saltzman [186] 1962 as a minimalist model of thermal convection in a box. This
system is the following 

G ′ = f(H − G)
H′ = G(d − I) − H
I′ = GH − VI

(1.27)

where f > 0, d > 0, and V > 0, and with initial value

G(0) = G0, H(0) = H0, and I(0) = I0.

In Figures 1.12-1.13, we plot two solutions of system (1.27) with the parameters
values

f = 10, d = 28, and V = 8/3.

In Figures 1.12-1.13, we observe that starting from two very close initial values gives
some very different trajectories. In Figure 1.13, the solution starting from the green
dot (respectively from the black dot) end up at the yellow dot (respectively at the red
dots) at time C = 19. So we can visualize the fact that changing a little bit the initial
value may have a large impact on the trajectory.
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Fig. 1.12: In this figure, we plot the first component C → G(C) of two solutions
starting from the initial value from [G0, H0, I0] = [10, 10, 10] (light blue curve) and
from [G0, H0, I0] = [10, 10, 10.7] (purple curve).
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Fig. 1.13: In this figure, the light blue curve (respectively the purple curve)
corresponds to the solution C → (G(C), H(C), I(C)) starting from the initial
value [G0, H0, I0] = [10, 10, 10] (green dot) (respectively from the initial value
[G0, H0, I0] = [10, 10, 10.7] (black dot)). The two solutions are plotted on the time
interval [0, 19].

Lorenz looks at his system as a simplified model for weather prediction. He
is assuming that one loop corresponds to the calm weather and the other loop to
tornados. The orbit generated by a slight disturbance of the initial distribution of the
system looks very different. The shape of the omega limit set is very similar for each
solution. The chaotic nature of this system is due to the "fractal" structure of the
attractor in between the loops.

The frequency at which a solution passes from one loop to the next turns to be
similar for each solution. Lorentz already mentioned this phenomenon during his
presentation at the American Association for the Advancement of Science in 1972.
During his presentation is says that:

Over the years minuscule disturbances neither increase nor decrease the frequency
of occurrences of various weather events such as tornados; the most they may do is
to modify the sequences in which they occur.
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Fig. 1.14: In this figure, we use 20 randomly chosen initial distributions.

It turns out that the Lorenz attractor is an attractor in the sense developed in the
Chapter 2. That is to say that, it is a compact invariant subset which attracts one
of its neighborhood at each point of R3. The existence such a global attractor is a
consequence of the dissipation of the system. So we now investigate the dissipation
of the Lorentz system.

For the Lorenz system, the dissipativity can be study by using the results of
Leonov [135]. Let us consider

+ (G, H, I) = 1
f
G2 + H2 + I2. (1.28)

Then

3+ (G(C), H(C), I(C))
3C

= 2G(H − G) + 2HG(d − I) − 2H2 + 2GHI − 2VI2

and after simplification we obtain

3+ (G(C), H(C), I(C))
3C

= −2
[
G2 + H2 + VI2] + 2(d + 1)GH

but 2GH = G2 + H2 − (G − H)2 therefore

3+ (G(C), H(C), I(C))
3C

= −(1 − d)G2 − (1 − d)H2 − 2VI2 − (d + 1) (G − H)2.

Lemma 1.64 Assume that d ∈ (0, 1). Then each solution of system (1.27) converges
to 0R3 . More precisely, we have the following estimation of the

+ (G(C), H(C), I(C)) ≤ 4−XC+ (G0, H0, I0),∀C ≥ 0, (1.29)

where
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X := min {(1 − d)f, (1 − d), 2V} .
Proof By choosing the above constant X > 0, we have

3+ (G(C), H(C), I(C))
3C

≤ −X+ (G(C), H(C), I(C))

and the result follows from the differential form of Gronwall’s lemma (see Chapter
8 in Volume I). �

Theorem 1.65 Assume that d ∈ (0, 1). Then the semiflow * (C) generated by the
system (1.27) is bounded dissipative.

Proof Let W0 > 0 be fixed. Let us define

�W0 =
{
(G, H, I) ∈ R3 : + (G, H, I) ≤ W0

}
.

Then for each bounded subset � ⊂ R3 we have

W := sup
(G,H,I) ∈�

+ (G, H, I) < ∞.

Let C0 = C0 (�) > 0 such that
4−XC0W ≤ W0,

then by using the definition of �W0 , we deduce that

* (C)� ⊂ �W0 ,∀C ≥ C0,

and the proof is completed. �

Next we consider the functional

, (G, H, I) = H2 + (I − d)2. (1.30)

Then

3, (G(C), H(C), I(C))
3C

= 2HG(d − I) − 2H2 + 2(I − d) (GH − VI)
= 2HG(d − I) − 2H2 + 2GH(I − d) − 2VI(I − d)

hence
3, (G(C), H(C), I(C))

3C
= −2H2 − 2VI(I − d).

Lemma 1.66 Let _ ∈ (0, 2 min(1, V)). Then

3, (G(C), H(C), I(C))
3C

≤ −_, (G(C), H(C), I(C)) + j, (1.31)

where

j := [2V − _]
(
Vd

_ − 2V

)2
.
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Proof By using the fact that _ < 2 we deduce that

3, (G(C), H(C), I(C))
3C

+_, (G(C), H(C), I(C))

= −2H2 − 2VI(I − d) + _H2 + _(I − d)2
≤ [_ − 2V] (I − d)2 − 2Vd(I − d)

= [_ − 2V]
{
(I − d) − Vd

_ − 2V

}2
− [_ − 2V]

(
Vd

_ − 2V

)2
.

and since _ < 2V the inequality (1.31) follows. �

Theorem 1.67 Let _ ∈ (0, 2 min(1, V)). Then, for each C ≥ 0,

, (G(C), H(C), I(C)) ≤ 4−_C, (G0, H0, I0) +
∫ C

0
4−_(C−B) j3B,

and
lim sup
C→+∞

, (G(C), H(C), I(C)) ≤ j

_
.

Moreover the semiflow * (C) generated by the Lorenz system (1.27) is bounded
dissipative.

Proof The proof is left as an exercise. (Hint: Start first with the two last components
H and I use the same arguments than in the proof of Theorem 1.65. Then use
the comparison principle for the G-equation to derive the dissipativity of the full
system). �

1.9 Notes and Remarks

Existence and invariance and compactness of 8-limit sets

In this chapter, we presented some notions about continuous semiflow, omega and
alpha limit sets and we refer to the books of Lasalle [130], Hale [91, 93]. A we will
see in the next chapter the existence of l-limit sets can be extended by replacing a
point G ∈ " by subset � ∈ " and replacing the orbit

C → * (C)G.

by
C → * (C)�.

we refer to Hale [93], Sell and You [189], Raugel [177] for more results.
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Connectivity of 8-limit sets

The notion of invariantly connected sets was introduced by Lasalle [130]. The notion
of chain transitive sets was first introduced for discrete time semiflow by Hirsch,
Smith, and Zhao [104] and for continuous time semiflow by Magal [150]. We also
refer to Raugel [177] for more results.

Dissipation in Beverton and Holt model and Ricker model

The Liapunov function for the Beverton and Holt model and Ricker model was
introduced by Fisher and Goh [76]. We refer to their original articles for more
results.

Chaos in one dimensional discrete time model

The understanding of one dimensional maps improved since Sharkovskii [190] and
Li and Yorke [139]. We refer to [12] [66] [86] [141] [169] [227] for more xc xresults
on the subject.

More about one dimensional discrete time model

The discrete time logistic equation was invented by Verhulst [219] in 1838. That is
the following difference equation

# (C + 1) = V# (C) (1 − # (C)), , ∀C ≥ 0, with # (0) = #0 ∈ [0, 1],

where V ∈ [0, 4].
This equation also generates a chaos in the sense of Li and Yorke [139] for V = 4.

Remark 1.68 The discrete logistic equation was introduced by Berkson [17] who
invented the statistical logistic regression in 1944.

The connection of Ricker’s model the Beverton and Holt model is the following
we use a first order (Talyor expansion) approximation (which is only valid whenever
U# (C) is small enough)

V# (C)
exp(U# (C)) ≈

V# (C)
1 + U# (C) .

The significant difference between the Ricker’s model and the Beverton and Holt
model probably arise at the second order. It would be natural to consider the following
extension of the above approximation
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# (C + 1) = V# (C)
1 + U# (C) + (U# (C))2 /2 + . . . + (U# (C))< /<!

,

as well the higher order version of this model.
The discrete time logistic equation also follows from a first order approximation

of the Ricker’s model

V# (C) exp (−U# (C)) ≈ V# (C) (1 − U# (C)) .

A extended version of the model of the Beverton and Holt is the cooperative
model of Hill [102]

# (C + 1) = V# (C)=
1 + U# (C)= .

Monod, Wyman and Changeux [167] also proposed a further extension cooperative
Hill’s model which is called the Allosteric model

# (C + 1) = V# (C) (1 + # (C))=−1

1 + U(1 + # (C))= .

Further application to embryology of such model can be found in the framework of
gradient differential system in the paper of Demongeot, Glade and Forest [51] and
Cinquin and Demongeot [44].

n-dimensional Ricker model

Ricker’s model shows that the salmon are first born into a river then swim to the sea.
The female salmon spend several years in the ocean before returning to the river they
were born to reproduce. Therefore Ricker [179] considers an age-structured model
of the following form
#1 (C + 1) = [V1#1 (C) + . . . + V<#< (C)] × exp (−U [V1#1 (C) + . . . + V<#< (C)])
#2 (C + 1) = c1#1 (C)
...

#< (C + 1) = c<−1#<−1 (C),

where #1 (C), . . . , #< (C) are the number of (female) individuals in each age classes
going respectively from 1 to < ≥ 1, V8 is the birth rate of the age class 8, c8 is the
probability to survive from age class 8 to the age class 8+1. Ricker [179] was actually
interested by the following special case

V1 = . . . = V<−1 = 0,

and
V< > 0.
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The age structured Ricker’s model actually falls down into amore general class of age
structured model so called density dependent model. Such a model was considered
by Guckenheimer, Oster and Ipaktchi [87] and by Liu and Cohen [143] to quote a
few.

Lorenz like attractor

An alternative to the Lorenz system is the model of Shimizu-Morioka [196]
G ′ = H
H′ = G(1 − I) − UH
I′ = G2 − VI

(1.32)

where V > 0, and U > 0, and with initial value

G(0) = G0, H(0) = H0, and I(0) = I0.

Shilnikov [194] found some Lorenz like attractor for the parameters values

U = 0.85, and V = 0.5.

In Figures 1.15-1.16, we illustrate this result with a simulation of system (1.32) for
the above parameters values.
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Fig. 1.15: In this figure, we plot the first component C → G(C) of two solutions
starting from the initial value from [G0, H0, I0] = [1.5, 1.5, 1.5] (light blue curve)
and from [G0, H0, I0] = [1.5, 1.5, 1.605] (purple curve).
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Fig. 1.16: In this figure, the light blue curve (respectively the purple curve)
corresponds to the solution C → (G(C), H(C), I(C)) starting from the initial value
[G0, H0, I0] = [1.5, 1.5, 1.5] (green dot) (respectively from the initial value
[G0, H0, I0] = [1.5, 1.5, 1.605] (black dot)). The two solutions are plotted on the
time interval [0, 200].

Remark 1.69 Shimizu-Morioka system can be regarded as the following a second
order ordinary differential equation{

G ′′ = G(1 − I) − UH
I′ = G2 − VI.

Lorenz like attractor in a multi-strain epidemic model

In this section, we present some multi-strain model simulations motivated by the
application to the epidemiology of dengue fever. This chaotic numerical simulation
was discovered by Aguiar, Kooi, and Stollenwerk [2]. We also refer to Aguiar et al.
[1, 3] for more results going in that direction.

Consider an epidemic with two different strains, 1 and 2. Susceptibles to both
strains (() get infected with strain 1 (�1 or �21) or strain 2 (�2 or �12), with force of
infection (V1 and q1V1 respectively) and (V2 and q2V2) respectively. They recover
from infection with strain 1 (becoming '1) or from strain 2 (becoming '2), with
recovery rate W. In this recovered class, people have full and life-long immunity
against the strain that they were exposed to and infected, and also a period of
temporary cross-immunity against the other strain. After this, with rate U, they enter
again in the susceptible classes ((1 respectively (2), where the index represents the
first infection strain. Now, (1 can be reinfected with strain 2 (becoming �12), meeting
�2 with infection rate V2 or meeting �12 with infection rate q2V2, secondary infected
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contributing differently to the force of infection than primary infected, and (2 can
be reinfected with strain 1 (becoming �21) meeting �1 or �21 with infections rates V1
and q1V1 respectively.

The system introduced by Aguiar, Kooi, and Stollenwerk [2] is the following

(′ = −V1 ( (�1 + q1�21) − V2 ( (�2 + q2�12) + ` (# − () ,

� ′1 = V1 ( (�1 + q1�21) − (W + `) �1,
� ′2 = V2 ( (�2 + q2�12) − (W + `) �2,

'′1 = W �1 − (U + `) '1,

'′2 = W �2 − (U + `) '2,

(′1 = −V2 (1 (�2 + q2�12) + U'1 − `(1,

(′2 = −V1 (2 (�1 + q1�21) + U'2 − `(2,

� ′12 = V2 (1 (�2 + q2�12) − (W + `) �12,

� ′21 = V1 (2 (�1 + q1�21) − (W + `) �21,

'′ = W (�12 + �21) − `',

(1.33)

where V1 > 0, V2 > 0, and U > 0, and with initial value

((0) = (0, �1 (0) = �0
1 , �2 (0) = �

0
2 , '1 (0) = '0

1, '2 (0) = '0
2,

(1 (0) = (0
1, (2 (0) = (0

2, �12 (0) = �0
12, �21 (0) = �0

21, and '(0) = '
0.

In all the figures, we use the following values of the parameters

# = 100, ` = 1/65, W = 52, V1 = V2 = 2W,

U = 2, and q1 = q2 = q = 0.6.

In Figures 1.17-1.19 we plot two solutions of the system. The system seams to be
very much initial condition dependent and the key to get some chaos is to use non
symmetric initial percentage for each strain.
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Fig. 1.17: In this figure we use the initial value [(0, �
0
1 , �

0
2 ] = [70, 10, 20] with the

remaining components of the initial distribution equal to 0. In this figure we plot
C → ((C), C → (1 (C), and C → (2 (C) for C ∈ [2000, 2400].

2000 2050 2100 2150 2200 2250 2300 2350 2400

t

0

0.05

0.1

0.15

I 1
+

I 2
+

I 1
2
+

I 2
1

Fig. 1.18: In this figure we use the initial value [(0, �
0
1 , �

0
2 ] = [70, 10, 20] with the

remaining components of the initial distribution equal to 0. In this figure we plot
C → �1 (C) + �2 (C) + �12 (C) + �21 (C) for C ∈ [2000, 2400].

In Figure 1.19, the global attractor is comparable to the Lorenz attractor because
the solution jumps randomly from a region where the first strain is domain to a region
where the second strain is dominant back and forth. The changes from one dominant
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strain to the next are decided uncertainly along the axis ((, 0, 0) where both strains
are close to 0.

Fig. 1.19: In this figure we use the initial value [(0, �
0
1 , �

0
2 ] = [70, 10, 20] (blue

curve) [(0, �
0
1 , �

0
2 ] = [70, 20, 10] (orange curve) with the remaining components of

the initial distribution equal to 0. The top and bottom figures corresponds to the
same simulations but regarded from a different angle.

Homoclinic orbits

Homoclinic trajectories are very important in the bifurcation theory and may induce
chaos as in the system of Lorenz [86] [195] [226]. The existence of homoclinic orbits
has be studied for Lorentz system by Leonov in [136], Leonov and Kuznetsov [137].

In the context of population dynamics, the existence of homoclinic orbits are
usual induced by Bogdanov-Takens bifurcations (see Section 1.8.3 and Figure 1.8).

The existence homoclinic orbit have been obtained by Tang et al. [206] for an
epidemic system of the form

(′ = 1 − X( − ^ �2(

1 + U�2 + a'

� ′ = ^
�2(

1 + U�2 − (X + W) �

'′ = W� − a'.

Amodel without loss of immunity of the recovered (i.e. for a = 0 in the above model)
was considered earlier by Xiao and Ruan [228].
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8-limit for non-autonomous system

Explain the skew product semi-flow and refer to the ODE book of George Sell.

We consider a non autonomous ordinary differential equation of the following

G ′(C) = � (_(C), G(C))

where C → _(C) is a parameter which is time dependent, and which defines a
continuous map from R to R? .

) (C) (_) (G) = _(C + G),∀C ∈ R,∀G ∈ R,

where _ : R→ R= is almost periodic continuous function.

There are several equivalent definition for almost periodic function (Ref???). The
following is one of them.

Definition 1.70 The function C → _(C) ∈ BUC (R,R?) is almost periodic, if and
only if

$ (_) :=
⋃
C≥0
{D(C)}

is relatively compact in BUC (R,R?). That is to say that for every sequence C= we
can find a sub-sequence C=? (denoted with the same index) such that there exists
G → _(G) ∈ BUC(R,R?) such that

lim
?→∞

sup
G∈R
|_(C=? + G) − _(G) | = 0.

Strange attractors

We refer to Lu, Wang, and Young [149] for more references and more results about
strange attractor. In [149] they prove that a periodic perturbation of a system un-
dergoing an Hopf bifurcation create sustained chaotic behavior. Specifically, strange
attractors are shown to exist. The analysis is carried out for infinite dimensional
systems.

Principle of competitive exclusion

McGehee, R., & Armstrong, R. A. (1977). Somemathematical problems concerning
the ecological principle of competitive exclusion. Journal of Differential Equations,
23(1), 30-52.
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1.10 MATLAB Codes

1.10.1 Figure 1.3

1 L=10;
2 t =−L : 0 . 1 : L ;
3 x0 =0 .5
4 x=exp ( t ) ∗x0 . / ( 1 + ( exp ( t ) −1)∗x0 ) ;
5

6 aux=−L : 0 . 1 : L ;
7 aux1=ones ( s i z e ( aux ) ) ;
8 aux2 = −2 : 0 . 1 : 2 ;
9 ho ld on

10 p l o t ( t , x , ’ Co lo r ’ , ’ [ 0 , 0 .4470 , 0 . 7 410 ] ’ , ’
LineWidth ’ , 5 )

11 p l o t ( aux , 0∗ aux , ’ k ’ ,0∗ aux2 , aux2 , ’ k ’ , ’ LineWidth ’ , 3 )
12 x l a b e l ( ’ t ’ ) ;
13 y l a b e l ( ’N( t ) ’ ) ;
14

15

16

17 x l a b e l ( ’ t ’ )
18 y l a b e l ( ’ x ( t ) ’ )
19

20 s e t ( gca , ’YLim ’ , [ −0 . 5 1 . 5 ] )
21 s e t ( gca , ’XLim ’ , [ −L L ] )
22

23 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
24 ax=gca ;
25 ho ld o f f

1.10.2 Figure 1.4 and Figure 1.5 and Figure 1.6

1 c l o s e a l l
2 c l e a r a l l ;
3 f i g u r e ( 1 )
4 d t =0 .5
5 t s p a n = 1 : d t : 5 0 0 ;
6 ho ld on
7 y0 = [ 0 . 4 ; 0 ] ;
8 [T , Y1] = ode45 (@myfun , t span , y0 ) ;
9

10 y0 = [ 0 . 5 ; 0 ] ;
11 [T , Y2] = ode45 (@myfun , t span , y0 ) ;
12
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13

14 y0 = [ 0 . 6 ; 0 ] ;
15 [T , Y3] = ode45 (@myfun , t span , y0 ) ;
16

17

18 y0 = [ 0 . 7 ; 0 ] ;
19 [T , Y4] = ode45 (@myfun , t span , y0 ) ;
20

21

22 y0 = [ 0 . 8 ; 0 ] ;
23 [T , Y5] = ode45 (@myfun , t span , y0 ) ;
24

25 p l o t (Y1 ( : , 1 ) ,Y1 ( : , 2 ) ,Y2 ( : , 1 ) ,Y2 ( : , 2 ) ,Y3 ( : , 1 ) ,Y3 ( : , 2 )
,Y4 ( : , 1 ) ,Y4 ( : , 2 ) ,Y5 ( : , 1 ) ,Y5 ( : , 2 ) , ’ l i n ew i d t h ’ , 3 ) ;

26 s o l = ode45 (@myfun , t span , y0 ) ;
27

28 p l o t ( [ − 0 . 4 , 0 . 8 ] , [ 0 , 0 ] , ’ k ’ , ’ l i n ew i d t h ’ , 3 )
29

30 p l o t ( [ 0 , 0 ] , [ − 0 . 2 , 0 . 3 ] , ’ k ’ , ’ l i n ew i d t h ’ , 3 )
31

32 x l a b e l ( ’ x ’ )
33 y l a b e l ( ’ y ’ )
34

35 s e t ( gca , ’XLim ’ , [ − 0 . 4 , 0 . 8 ] )
36 s e t ( gca , ’YLim ’ , [ − 0 . 2 , 0 . 3 ] )
37 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
38 ax=gca ;
39 ho ld o f f
40

41 f i g u r e ( 2 )
42

43 d t =0 .1
44 t s p a n = 1 : d t : 5 0 0 ;
45 y0 = [ 0 . 0 1 ; 0 ] ;
46 [T , Y1] = ode45 (@myfun , t span , y0 ) ;
47

48 t s p a n = 1 : d t : 3 0 0 ;
49 y0 = [ 0 . 0 8 ; 0 ] ;
50 [T , Y2] = ode45 (@myfun , t span , y0 ) ;
51 ho ld on
52

53 p l o t (Y1 ( : , 1 ) ,Y1 ( : , 2 ) , ’ Co lo r ’ , ’ [ 0 .4660 , 0 .6740
, 0 . 1 880 ] ’ , ’ l i n ew i d t h ’ , 3 ) ;

54

55 p l o t (Y2 ( : , 1 ) ,Y2 ( : , 2 ) , ’ Co lo r ’ , ’ [ 0 .3010 , 0 .7450
, 0 . 9 330 ] ’ , ’ l i n ew i d t h ’ , 3 ) ;
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56 p l o t ( [ − 0 . 2 , 0 . 2 ] , [ 0 , 0 ] , ’ k ’ , ’ l i n ew i d t h ’ , 3 )
57

58 p l o t ( [ 0 , 0 ] , [ − 0 . 2 , 0 . 2 ] , ’ k ’ , ’ l i n ew i d t h ’ , 3 )
59 x l a b e l ( ’ x ’ )
60 y l a b e l ( ’ y ’ )
61

62 s e t ( gca , ’XLim ’ , [ − 0 . 1 6 , 0 . 1 6 ] )
63 s e t ( gca , ’YLim ’ , [ − 0 . 1 6 , 0 . 1 6 ] )
64 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
65 ax=gca ;
66 ho ld o f f
67

68

69 f i g u r e ( 3 )
70

71 d t =0 .1
72 t s p a n = 1 : d t : 4 0 0 ;
73 y0 = [ 0 . 0 1 ; 0 ] ;
74 [T , Y1] = ode45 (@myfun , t span , y0 ) ;
75

76 t s p a n = 1 : d t : 4 0 0 ;
77 y0 = [ 0 . 4 ; 0 ] ;
78

79 [T , Y2] = ode45 (@myfun , t span , y0 ) ;
80 ho ld on
81

82 p l o t (T , Y1 ( : , 1 ) , ’ Co lo r ’ , ’ [ 0 .4660 , 0 .6740 ,
0 . 1 880 ] ’ , ’ l i n ew i d t h ’ , 3 ) ;

83

84 p l o t (T , Y2 ( : , 1 ) , ’ Co lo r ’ , ’ [ 0 , 0 .4470 ,
0 . 7 410 ] ’ , ’ l i n ew i d t h ’ , 3 ) ;

85 p l o t (T , 0∗T , ’ k ’ , ’ l i n ew i d t h ’ , 3 )
86

87 %p l o t ( [ 0 , 0 ] , [ − 0 . 2 , 0 . 2 ] , ’ k ’ , ’ l i n ew i d t h ’ , 3 )
88 x l a b e l ( ’ t ’ )
89 y l a b e l ( ’ x ( t ) ’ )
90

91 %s e t ( gca , ’XLim ’ , [ − 0 . 1 6 , 0 . 1 6 ] )
92 %s e t ( gca , ’YLim ’ , [ − 0 . 1 6 , 0 . 1 6 ] )
93 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
94 ax=gca ;
95 ho ld o f f
96

97 f i g u r e ( 4 )
98

99 d t =0 .1
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100 t s p a n = 1 : d t : 4 0 0 ;
101 y0 = [ 0 . 0 1 ; 0 ] ;
102 [T , Y1] = ode45 (@myfun , t span , y0 ) ;
103

104 t s p a n = 1 : d t : 4 0 0 ;
105 y0 = [ 0 . 4 ; 0 ] ;
106

107 [T , Y2] = ode45 (@myfun , t span , y0 ) ;
108 ho ld on
109

110 p l o t (T , Y1 ( : , 2 ) , ’ Co lo r ’ , ’ [ 0 .4660 , 0 .6740 ,
0 . 1 880 ] ’ , ’ l i n ew i d t h ’ , 3 ) ;

111

112 p l o t (T , Y2 ( : , 2 ) , ’ Co lo r ’ , ’ [ 0 , 0 .4470 ,
0 . 7 410 ] ’ , ’ l i n ew i d t h ’ , 3 ) ;

113 p l o t (T , 0∗T , ’ k ’ , ’ l i n ew i d t h ’ , 3 )
114

115

116 x l a b e l ( ’ t ’ )
117 y l a b e l ( ’ y ( t ) ’ )
118

119

120 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
121 ax=gca ;
122 ho ld o f f
123

124 f u n c t i o n dy = myfun ( t , y )
125 lambda = 0 . 0 2 ;
126 omega = 0 . 1 ;
127 kappa = 1 ;
128 dy = z e r o s ( 2 , 1 ) ;
129 dy ( 1 ) =( lambda / 2 ) ∗y ( 1 ) −omega∗y ( 2 ) −( kappa / 2 ) ∗ ( y ( 1 ) ∗y

( 1 ) +y ( 2 ) ∗y ( 2 ) ) ∗y ( 1 ) ;
130 dy ( 2 ) = omega∗y ( 1 ) +( lambda / 2 ) ∗y ( 2 ) −( kappa / 2 ) ∗ ( y ( 1 ) ∗y

( 1 ) +y ( 2 ) ∗y ( 2 ) ) ∗y ( 2 ) ;
131 dy=dy ( : ) ;
132 end

1.10.3 Figure 1.7

In this program we use the matlab solver roots(p) which compute the roots a poly-
nomial ?(G) = 0=G= + . . . + 00 which is defined in Matlab as [0= 0=−1 . . . 00].

1 c l f ;
2 aux2 =0 .05
3 h=( aux2 ^2 ) /2 − ( aux2 ^3 ) / 3 ;
4 p = [ ( 1 / 3 ) − ( 1 / 2 ) 0 h ]



1.10 MATLAB Codes 65

5 r = r o o t s ( p )
6 aux1= r ( 3 )
7 x1=aux1 : 0 . 0 0 0 1 : aux2 ;
8 y1 =2∗( h− x1 . ^ 2 / 2+ x1 . ^ 3 / 3 ) . ^ 0 . 5 ;
9 z1=−y1 ;

10

11 p l o t ( x1 , y1 , ’ k ’ , x1 , −y1 , ’ k ’ , ’ LineWidth ’ , 3 )
12 ho ld on ;
13

14 aux2 =0 . 2 ;
15 h=( aux2 ^2 ) /2 − ( aux2 ^3 ) / 3 ;
16 p = [ ( 1 / 3 ) − ( 1 / 2 ) 0 h ] ;
17 r = r o o t s ( p ) ;
18 aux1= r ( 3 ) ;
19 x1=aux1 : 0 . 0 0 0 1 : aux2 ;
20 y1 =2∗( h− x1 . ^ 2 / 2+ x1 . ^ 3 / 3 ) . ^ 0 . 5 ;
21 z1=−y1 ;
22

23 p l o t ( x1 , y1 , ’ k ’ , x1 , −y1 , ’ k ’ , ’ LineWidth ’ , 3 )
24 ho ld on ;
25

26

27 aux2 =0 . 4 ;
28 h=( aux2 ^2 ) /2 − ( aux2 ^3 ) / 3 ;
29 p = [ ( 1 / 3 ) − ( 1 / 2 ) 0 h ] ;
30 r = r o o t s ( p ) ;
31 aux1= r ( 3 ) ;
32 x1=aux1 : 0 . 0 0 0 1 : aux2 ;
33 y1 =2∗( h− x1 . ^ 2 / 2+ x1 . ^ 3 / 3 ) . ^ 0 . 5 ;
34 z1=−y1 ;
35

36 p l o t ( x1 , y1 , ’ k ’ , x1 , −y1 , ’ k ’ , ’ LineWidth ’ , 3 ) ;
37

38 aux2 =0 . 6 ;
39 h=( aux2 ^2 ) /2 − ( aux2 ^3 ) / 3 ;
40 p = [ ( 1 / 3 ) − ( 1 / 2 ) 0 h ] ;
41 r = r o o t s ( p ) ;
42 aux1= r ( 3 ) ;
43 x1=aux1 : 0 . 0 0 0 1 : aux2 ;
44 y1 =2∗( h− x1 . ^ 2 / 2+ x1 . ^ 3 / 3 ) . ^ 0 . 5 ;
45 z1=−y1 ;
46

47

48 p l o t ( x1 , y1 , ’ k ’ , x1 , −y1 , ’ k ’ , ’ LineWidth ’ , 3 )
49

50 aux2 =0 . 8 ;
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51 h=( aux2 ^2 ) /2 − ( aux2 ^3 ) / 3 ;
52 p = [ ( 1 / 3 ) − ( 1 / 2 ) 0 h ] ;
53 r = r o o t s ( p ) ;
54 aux1= r ( 3 ) ;
55 x1=aux1 : 0 . 0 0 0 1 : aux2 ;
56 y1 =2∗( h− x1 . ^ 2 / 2+ x1 . ^ 3 / 3 ) . ^ 0 . 5 ;
57 z1=−y1 ;
58

59

60 p l o t ( x1 , y1 , ’ k ’ , x1 , −y1 , ’ k ’ , ’ LineWidth ’ , 3 )
61

62

63 aux2 =1;
64 h=( aux2 ^2 ) /2 − ( aux2 ^3 ) / 3 ;
65 p = [ ( 1 / 3 ) − ( 1 / 2 ) 0 h ] ;
66 r = r o o t s ( p ) ;
67 aux1= r ( 3 ) ;
68 x1=aux1 : 0 . 0 0 0 1 : aux2 ;
69 y1 =2∗( h− x1 . ^ 2 / 2+ x1 . ^ 3 / 3 ) . ^ 0 . 5 ;
70 z1=−y1 ;
71 p l o t ( x1 , y1 , ’ k ’ , x1 , −y1 , ’ k ’ , ’ LineWidth ’ , 3 )
72

73

74 aux = −2 : 0 . 1 : 2 ;
75 p l o t ( aux , 0∗ aux , ’ k ’ ,0∗ aux , − aux , ’ k ’ , ’ LineWidth ’ , 3 )
76 x l a b e l ( ’ x ( t ) ’ ) ;
77 y l a b e l ( ’ y ( t ) ’ ) ;
78 s e t ( gca , ’YLim ’ , [ −1 1 ] )
79 s e t ( gca , ’XLim ’ , [ −0 . 6 1 . 1 ] )
80 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
81 ax=gca ;

1.10.4 Figure 1.8

In this program we need to increase the precision of the MATLAB ODE solver in
order to get the convergence of the solution when C goes to ±∞.

1 c l f ;
2 X0=[ −0.5 0 ] ;
3 t 0 = 0 : 0 . 0 0 2 : 1 0 ;
4

5 o p t i o n s = o d e s e t ( ’ Re lTo l ’ , 10^ ( −10) ) ;
6 [ t1 , x1 ]= ode45 (@Model1 , t0 , X0 , o p t i o n s ) ;
7 ho ld on ;
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8 h= p l o t ( t1 , x1 ( : , 1 ) , ’ Co lo r ’ , ’ [ 0 .3010 , 0 .7450 ,
0 . 9 330 ] ’ , ’ LineWidth ’ , 5 ) ;

9 h= p l o t ( t1 , x1 ( : , 2 ) , ’ Co lo r ’ , ’ [ 0 .4660 , 0 .6740 ,
0 . 1 880 ] ’ , ’ LineWidth ’ , 5 ) ;

10

11 X0=[ −0.5 0 ] ;
12 t 0 = 0 : 0 . 0 0 2 : 1 0 ;
13

14 o p t i o n s = o d e s e t ( ’ Re lTo l ’ , 10^ ( −10) ) ;
15 [ t2 , x2 ]= ode45 (@Model2 , t0 , X0 , o p t i o n s ) ;
16

17

18 h= p l o t (− t2 , x2 ( : , 1 ) , ’ Co lo r ’ , ’ [ 0 .3010 , 0 .7450 ,
0 . 9 330 ] ’ , ’ LineWidth ’ , 5 ) ;

19 h= p l o t (− t2 , x2 ( : , 2 ) , ’ Co lo r ’ , ’ [ 0 .4660 , 0 .6740 ,
0 . 1 880 ] ’ , ’ LineWidth ’ , 5 ) ;

20

21

22 aux = −10 : 0 . 1 : 1 0 ;
23 p l o t ( aux , 0∗ aux , ’ k ’ ,0∗ aux , aux , ’ k ’ , ’ LineWidth ’ , 3 )
24 h= l egend ( ’ x ( t ) ’ , ’ y ( t ) ’ , ’ Loc a t i o n ’ , ’ s o u t h e a s t ’ ) ;
25 x l a b e l ( ’ t ’ ) ;
26 %y l a b e l ( ’ x ( t ) y ( t ) ’ ) ;
27 s e t ( gca , ’YLim ’ , [ −0 . 6 1 . 1 ] )
28 s e t ( gca , ’XLim ’ , [ −10 10 ] )
29 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
30 ax=gca ;
31

32

33 f u n c t i o n dy=Model1 ( t , y )
34 dy= z e r o s ( 2 , 1 ) ;
35 dy ( 1 ) =−y ( 2 ) ;
36 dy ( 2 ) =y ( 1 ) .∗ (1 − y ( 1 ) ) ;
37 end
38

39 f u n c t i o n dy=Model2 ( t , y )
40 dy= z e r o s ( 2 , 1 ) ;
41 dy ( 1 ) =y ( 2 ) ;
42 dy ( 2 ) =−y ( 1 ) .∗ (1 − y ( 1 ) ) ;
43 end

1.10.5 Figure 1.9

1 a l ph a =0 . 0 5 ;
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2 lambda=1+ a l ph a ;
3 n =120; % number o f t ime s t e p s
4 x1= z e r o s ( n +1 ,1 ) ;
5 x2= z e r o s ( n +1 ,1 ) ;
6 x3= z e r o s ( n +1 ,1 ) ;
7 t = z e r o s ( n +1 ,1 ) ;
8 x1 ( 1 ) = 0 . 2 ;
9 x2 ( 1 ) =1;

10 x3 ( 1 ) =3;
11 t ( 1 ) =0 ;
12 f o r i =1 : n
13 x1 ( i +1)=lambda∗x1 ( i ) / ( 1+ a l ph a ∗x1 ( i ) ) ;
14 x2 ( i +1)=lambda∗x2 ( i ) / ( 1+ a l ph a ∗x2 ( i ) ) ;
15 x3 ( i +1)=lambda∗x3 ( i ) / ( 1+ a l ph a ∗x3 ( i ) ) ;
16 t ( i +1)= i ;
17 end
18

19

20 c l f ;
21 p l o t ( t , x1 , t , x2 , t , x3 , ’ LineWidth ’ , 5 )
22 x l a b e l ( ’ t ’ ) ;
23 y l a b e l ( ’N( t ) ’ ) ;
24 s e t ( gca , ’XLim ’ , [ 0 n ] )
25 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
26 ax=gca ;

1.10.6 Figure 1.10

1 c l o s e a l l ;
2 c l e a r a l l ;
3 f i g u r e ( 1 )
4 b e t a =exp ( 1 . 5 ) ;
5 n =20; % number o f t ime s t e p s
6 x1= z e r o s ( n +1 ,1 ) ;
7 x2= z e r o s ( n +1 ,1 ) ;
8 x3= z e r o s ( n +1 ,1 ) ;
9 t = z e r o s ( n +1 ,1 ) ;

10 x1 ( 1 ) = 0 . 5 ;
11 x2 ( 1 ) =1;
12 x3 ( 1 ) =2;
13 t ( 1 ) =0 ;
14 f o r i =1 : n
15 x1 ( i +1)= b e t a ∗x1 ( i ) ∗exp (−x1 ( i ) ) ;
16 x2 ( i +1)= b e t a ∗x2 ( i ) ∗exp (−x2 ( i ) ) ;
17 x3 ( i +1)= b e t a ∗x3 ( i ) ∗exp (−x3 ( i ) ) ;
18 t ( i +1)= i ;
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19 end
20 p l o t ( t , x1 , t , x2 , t , x3 , ’ LineWidth ’ , 5 )
21 x l a b e l ( ’ t ’ ) ;
22 y l a b e l ( ’N( t ) ’ ) ;
23 s e t ( gca , ’XLim ’ , [ 0 n ] )
24 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
25 ax=gca ;
26

27

28 f i g u r e ( 2 )
29 b e t a =exp ( 2 . 2 ) ;
30 n =20; % number o f t ime s t e p s
31 x1= z e r o s ( n +1 ,1 ) ;
32 x2= z e r o s ( n +1 ,1 ) ;
33 x3= z e r o s ( n +1 ,1 ) ;
34 t = z e r o s ( n +1 ,1 ) ;
35 x1 ( 1 ) =2;
36 x2 ( 1 ) =3;
37 x3 ( 1 ) =4;
38 t ( 1 ) =0 ;
39 f o r i =1 : n
40 x1 ( i +1)= b e t a ∗x1 ( i ) ∗exp (−x1 ( i ) ) ;
41 x2 ( i +1)= b e t a ∗x2 ( i ) ∗exp (−x2 ( i ) ) ;
42 x3 ( i +1)= b e t a ∗x3 ( i ) ∗exp (−x3 ( i ) ) ;
43 t ( i +1)= i ;
44 end
45

46

47 c l f ;
48 p l o t ( t , x1 , t , x2 , t , x3 , ’ LineWidth ’ , 5 )
49 x l a b e l ( ’ t ’ ) ;
50 y l a b e l ( ’N( t ) ’ ) ;
51 s e t ( gca , ’XLim ’ , [ 0 n ] )
52 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
53 ax=gca ;
54

55 f i g u r e ( 3 )
56 b e t a =exp ( 4 ) ;
57 n =20; % number o f t ime s t e p s
58 x1= z e r o s ( n +1 ,1 ) ;
59 x2= z e r o s ( n +1 ,1 ) ;
60 x3= z e r o s ( n +1 ,1 ) ;
61 t = z e r o s ( n +1 ,1 ) ;
62 x1 ( 1 ) =3;
63 x2 ( 1 ) = 4 . 1 ;
64 x3 ( 1 ) =5;
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65 t ( 1 ) =0 ;
66 f o r i =1 : n
67 x1 ( i +1)= b e t a ∗x1 ( i ) ∗exp (−x1 ( i ) ) ;
68 x2 ( i +1)= b e t a ∗x2 ( i ) ∗exp (−x2 ( i ) ) ;
69 x3 ( i +1)= b e t a ∗x3 ( i ) ∗exp (−x3 ( i ) ) ;
70 t ( i +1)= i ;
71 end
72

73

74 c l f ;
75 p l o t ( t , x1 , t , x2 , t , x3 , ’ LineWidth ’ , 5 )
76 x l a b e l ( ’ t ’ ) ;
77 y l a b e l ( ’N( t ) ’ ) ;
78 s e t ( gca , ’XLim ’ , [ 0 n ] )
79 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
80 ax=gca ;

1.10.7 Figure 1.11

1 c l e a r a l l ;
2 c l o s e a l l ;
3 n=10000;
4 p =50; % p must be sm a l l e r t h an n
5 j =1 ;
6 f o r b e t a = 1 : 0 . 0 0 5 : exp ( l og ( 1 8 ) )
7 x =1;
8

9

10 f o r i =1 : n
11 x= b e t a ∗x∗exp (−x ) ;
12 i f ( i >=n−p )
13 aux ( 1 , j ) = b e t a ;
14 aux ( 2 , j ) =x ;
15 j = j +1 ;
16 end
17 end
18 end
19

20 c l f ;
21 p l o t ( aux ( 1 , : ) , aux ( 2 , : ) , ’ k . ’ , ’ ma r k e r s i z e ’ , 2 )
22 s e t ( gca , ’ x l im ’ , [0 1 8 ] ) ;
23 x l a b e l ( ’ \ b e t a ’ ) ;
24 y l a b e l ( ’ \ omega ( 1 ) ’ ) ;
25

26 s e t ( gca , ’ f o n tw e i g h t ’ , ’ bo ld ’ , ’ Fon tS i z e ’ , 30 ) ;
27 ax=gca ;
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1.10.8 Figure 1.12 and Figure 1.13

1 c l o s e a l l ;
2 c l e a r a l l ;
3

4 s igma =10;
5 rho =28;
6 b e t a =8/3
7

8 eps = 1e −15;
9

10

11 Tmax=19;
12

13

14 f i g u r e ( 1 )
15

16 T = [0 Tmax ] ;
17

18

19 i n i t V = [10 10 1 0 ] ;
20

21

22 o p t i o n s = o d e s e t ( ’ Re lTo l ’ , eps , ’ AbsTol ’ , [ eps eps eps
/ 1 0 ] ) ;

23 [T ,X] = ode45 (@(T ,X) F (T , X, sigma , rho , b e t a ) , T ,
i n i tV , o p t i o n s ) ;

24

25

26

27 p l o t 3 (X( : , 1 ) ,X( : , 2 ) ,X( : , 3 ) , ’ Co lo r ’ , ’ [ 0 .4940 ,
0 .1840 , 0 . 5 560 ] ’ , ’ LineWidth ’ , 1 ) ;

28

29 view
( [19 .1287420824236 , −356 .3357721553517 ,80 .00898161095051] )

30

31 ho ld on ;
32

33 p l o t 3 (X( 1 , 1 ) ,X( 1 , 2 ) ,X( 1 , 3 ) , ’ ok ’ , ’ Marke rS ize ’ , 20 , ’
MarkerFaceColo r ’ , ’ g ’ ) ;

34

35 p l o t 3 (X( end , 1 ) ,X( end , 2 ) ,X( end , 3 ) , ’ ok ’ , ’ Marke rS ize ’ ,
20 , ’ MarkerFaceColo r ’ , ’ [ 0 .9290 , 0 .6940 ,

0 . 1 250 ] ’ ) ;
36
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37 T = [0 Tmax ] ;
38

39 i n i t V = [10 10 1 0 . 7 ] ;
40

41 [T ,X] = ode45 (@(T ,X) F (T , X, sigma , rho , b e t a ) , T ,
i n i tV , o p t i o n s ) ;

42

43

44 p l o t 3 (X( : , 1 ) ,X( : , 2 ) ,X( : , 3 ) , ’ Co lo r ’ , ’ [ 0 .3010 ,
0 .7450 , 0 .9330 ] ’ , ’ LineWidth ’ , 1 ) ;

45

46

47 p l o t 3 (X( 1 , 1 ) ,X( 1 , 2 ) ,X( 1 , 3 ) , ’ ok ’ , ’ Marke rS ize ’ , 20 , ’
MarkerFaceColo r ’ , ’ k ’ ) ;

48

49 p l o t 3 (X( end , 1 ) ,X( end , 2 ) ,X( end , 3 ) , ’ ok ’ , ’ Marke rS ize ’ ,
20 , ’ MarkerFaceColo r ’ , ’ [ 0 .8500 , 0 .3250 ,

0 . 0 980 ] ’ ) ;
50

51

52 g r i d ;
53 x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ y ’ ) ; z l a b e l ( ’ z ’ ) ;
54 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
55 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
56

57 f i g u r e ( 2 )
58

59 T = [0 Tmax ] ;
60

61 i n i t V = [10 10 1 0 ] ;
62

63 [T ,X] = ode45 (@(T ,X) F (T , X, sigma , rho , b e t a ) , T ,
i n i tV , o p t i o n s ) ;

64

65 p l o t 3 (X( : , 1 ) ,X( : , 2 ) ,X( : , 3 ) , ’ Co lo r ’ , ’ [ 0 .4940 ,
0 .1840 , 0 . 5 560 ] ’ , ’ LineWidth ’ , 1 ) ;

66

67 ho ld on ;
68

69 p l o t 3 (X( 1 , 1 ) ,X( 1 , 2 ) ,X( 1 , 3 ) , ’ ok ’ , ’ Marke rS ize ’ , 20 , ’
MarkerFaceColo r ’ , ’ g ’ ) ;

70

71 p l o t 3 (X( end , 1 ) ,X( end , 2 ) ,X( end , 3 ) , ’ ok ’ , ’ Marke rS ize ’ ,
20 , ’ MarkerFaceColo r ’ , ’ [ 0 .9290 , 0 .6940 ,

0 . 1 250 ] ’ ) ;
72
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73 T = [0 Tmax ] ;
74

75 i n i t V = [10 10 1 0 . 7 ] ;
76

77 [T ,X] = ode45 (@(T ,X) F (T , X, sigma , rho , b e t a ) , T ,
i n i tV , o p t i o n s ) ;

78

79 p l o t 3 (X( : , 1 ) ,X( : , 2 ) ,X( : , 3 ) , ’ Co lo r ’ , ’ [ 0 .3010 ,
0 .7450 , 0 .9330 ] ’ , ’ LineWidth ’ , 1 ) ;

80

81 view
( [183 .3188733682035 ,331 .5379873898024 ,112 .19634248895 ] )

82

83 p l o t 3 (X( 1 , 1 ) ,X( 1 , 2 ) ,X( 1 , 3 ) , ’ ok ’ , ’ Marke rS ize ’ , 20 , ’
MarkerFaceColo r ’ , ’ k ’ ) ;

84

85 p l o t 3 (X( end , 1 ) ,X( end , 2 ) ,X( end , 3 ) , ’ ok ’ , ’ Marke rS ize ’ ,
20 , ’ MarkerFaceColo r ’ , ’ [ 0 .8500 , 0 .3250 ,

0 . 0 980 ] ’ ) ;
86

87 g r i d ;
88 x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ y ’ ) ; z l a b e l ( ’ z ’ ) ;
89 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
90 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
91

92

93 f i g u r e ( 3 )
94 T = [0 Tmax ] ;
95

96 i n i t V = [10 10 1 0 ] ;
97

98

99 o p t i o n s = o d e s e t ( ’ Re lTo l ’ , eps , ’ AbsTol ’ , [ eps eps eps
/ 1 0 ] ) ;

100 [T ,X] = ode45 (@(T ,X) F (T , X, sigma , rho , b e t a ) , T ,
i n i tV , o p t i o n s ) ;

101

102 p l o t (T ,X( : , 1 ) , ’ Co lo r ’ , ’ [ 0 .4940 , 0 .1840 ,
0 . 5 560 ] ’ , ’ LineWidth ’ , 3 ) ;

103

104 ho ld on ;
105 T = [0 Tmax ] ;
106

107 i n i t V = [10 10 1 0 . 7 ] ;
108
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109

110 o p t i o n s = o d e s e t ( ’ Re lTo l ’ , eps , ’ AbsTol ’ , [ eps eps eps
/ 1 0 ] ) ;

111 [T ,X] = ode45 (@(T ,X) F (T , X, sigma , rho , b e t a ) , T ,
i n i tV , o p t i o n s ) ;

112

113 p l o t (T ,X( : , 1 ) , ’ Co lo r ’ , ’ [ 0 .3010 , 0 .7450 ,
0 .9330 ] ’ , ’ LineWidth ’ , 3 ) ;

114

115 x l a b e l ( ’ t ’ ) ; y l a b e l ( ’ x ( t ) ’ ) ;
116 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
117 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
118

119

120

121 f u n c t i o n dx = F (T , X, sigma , rho , b e t a )
122 % Eva l u a t e s t h e r i g h t hand s i d e o f t h e Lorenz sys tem
123 % x ’ = sigma ∗ ( y−x )
124 % y ’ = x∗ rho − x∗z − y
125 % z ’ = x∗y − b e t a ∗z
126

127

128 dx = z e r o s ( 3 , 1 ) ;
129

130 dx ( 1 ) = sigma ∗ (X( 2 ) − X( 1 ) ) ;
131 dx ( 2 ) = rho ∗X( 1 ) − X( 1 ) ∗X( 3 ) − X( 2 ) ;
132 dx ( 3 ) = X( 1 ) ∗X( 2 ) − b e t a ∗X( 3 ) ;
133

134 end

1.10.9 Figures 1.17-1.19

1 c l o s e a l l ;
2 c l e a r a l l ;
3

4 % Aguiar , M. , B a l l e s t e r o s , S . , Kooi , B . W. , &
S to l l e nwe rk , N. ( 2011 ) . The r o l e o f s e a s o n a l i t y
and impo r t i n a m i n im a l i s t i c

5 % mul t i − s t r a i n dengue model c a p t u r i n g d i f f e r e n c e s
between p r ima ry and s e conda ry i n f e c t i o n s : complex
dynamics and i t s i m p l i c a t i o n s

6 % fo r d a t a a n a l y s i s . J o u r n a l o f t h e o r e t i c a l b io logy ,
289 , 181 −196.

7

8

9
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10 Tmax=2800;
11

12

13 T =[0 Tmax ] ;
14 i n i t V = z e r o s ( 1 , 1 0 ) ;
15

16 i n i t V ( 1 , 1 ) =70; % S a t t =0
17 i n i t V ( 1 , 2 ) =10; % I_1 a t t =0
18 i n i t V ( 1 , 3 ) =20; % I_2 a t t =0
19

20

21 eps = 1e −40;
22 o p t i o n s = o d e s e t ( ’ Re lTo l ’ , eps , ’ AbsTol ’ , [ eps eps eps

eps eps eps eps eps eps eps ] ) ;
23

24 [T ,X] = ode45 (@(T ,X) F (T , X) , T , i n i tV , o p t i o n s ) ;
25

26 f i g u r e ( 1 )
27 p l o t (T ,X( : , 1 ) , ’ Co lo r ’ , ’ [ 0 .4660 , 0 .6740 ,

0 . 1 880 ] ’ , ’ LineWidth ’ , 3 ) ;
28 x l a b e l ( ’ t ’ ) ; y l a b e l ( ’S ’ ) ;
29 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
30 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
31 xl im ( [ 2 0 0 0 , 2 4 0 0 ] )
32

33 f i g u r e ( 2 )
34 p l o t (T ,X( : , 6 ) , ’ Co lo r ’ , ’ [ 0 .4660 , 0 .6740 ,

0 . 1 880 ] ’ , ’ LineWidth ’ , 3 ) ;
35 x l a b e l ( ’ t ’ ) ; y l a b e l ( ’ S_1 ’ ) ;
36 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
37 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
38 xl im ( [ 2 0 0 0 , 2 4 0 0 ] )
39

40 f i g u r e ( 3 )
41 p l o t (T ,X( : , 7 ) , ’ Co lo r ’ , ’ [ 0 .4660 , 0 .6740 ,

0 . 1 880 ] ’ , ’ LineWidth ’ , 3 ) ;
42 x l a b e l ( ’ t ’ ) ; y l a b e l ( ’ S_2 ’ ) ;
43 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
44 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
45 xl im ( [ 2 0 0 0 , 2 4 0 0 ] )
46 f i g u r e ( 4 )
47 p l o t (T ,X( : , 2 ) +X( : , 3 ) +X( : , 8 ) +X( : , 9 ) , ’ Co lo r ’ , ’

[ 0 . 6 350 , 0 .0780 , 0 . 1 840 ] ’ , ’ LineWidth ’ ,
3 ) ;

48 x l a b e l ( ’ t ’ ) ; y l a b e l ( ’ I_1+ I_2+ I_ {12}+ I_ {21} ’ ) ;
49 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
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50 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
51 xl im ( [ 2 0 0 0 , 2 4 0 0 ] )
52

53 f i g u r e ( 5 )
54 n= f i n d (T>=2000) ;
55 p l o t 3 (X( n ( 1 ) : end , 3 ) +X( n ( 1 ) : end , 8 ) , X( n ( 1 ) : end , 1 )

,X( n ( 1 ) : end , 2 ) +X( n ( 1 ) : end , 9 ) , ’ Co lo r ’ , ’ [ 0 ,
0 .4470 , 0 . 7 410 ] ’ , ’ LineWidth ’ , 1 ) ;

56

57

58 ho ld on ;
59

60 i n i t V = z e r o s ( 1 , 1 0 ) ;
61 i n i t V ( 1 , 1 ) =70; % S a t t =0
62 i n i t V ( 1 , 2 ) =20; % I_1 a t t =0
63 i n i t V ( 1 , 3 ) =10; % I_2 a t t =0
64

65 [ T1 , X1] = ode45 (@(T ,X) F (T , X) , T , i n i tV ,
o p t i o n s ) ;

66 n= f i n d ( T1>=2000) ;
67 p l o t 3 (X1( n ( 1 ) : end , 3 ) +X1( n ( 1 ) : end , 8 ) , X1( n ( 1 ) : end

, 1 ) ,X1( n ( 1 ) : end , 2 ) +X1( n ( 1 ) : end , 9 ) , ’ Co lo r ’ , ’ [
0 .8500 , 0 .3250 , 0 . 0 980 ] ’ , ’ LineWidth ’ ,

1 ) ;
68 g r i d ;
69 y l a b e l ( ’S ’ ) ; x l a b e l ( ’ I_2+ I_ {12} ’ ) ; z l a b e l ( ’ I_1+

I_ {21} ’ ) ;
70 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
71 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
72

73

74 f i g u r e ( 6 )
75

76 p l o t 3 (X( n ( 1 ) : end , 3 ) +X( n ( 1 ) : end , 8 ) , X( n ( 1 ) : end , 1 )
+X( n ( 1 ) : end , 6 ) +X( n ( 1 ) : end , 7 ) ,X( n ( 1 ) : end , 2 ) +X(
n ( 1 ) : end , 9 ) , ’ Co lo r ’ , ’ [ 0 , 0 .4470 ,
0 . 7 410 ] ’ , ’ LineWidth ’ , 1 ) ;

77

78 ho ld on ;
79

80

81 p l o t 3 (X1( n ( 1 ) : end , 3 ) +X1( n ( 1 ) : end , 8 ) , X1( n ( 1 ) : end
, 1 ) +X1( n ( 1 ) : end , 6 ) +X1( n ( 1 ) : end , 7 ) ,X1( n ( 1 ) : end
, 2 ) +X1( n ( 1 ) : end , 9 ) , ’ Co lo r ’ , ’ [ 0 .8500 ,
0 .3250 , 0 . 0 980 ] ’ , ’ LineWidth ’ , 1 ) ;

82 g r i d ;
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83 y l a b e l ( ’S+S_1+S_2 ’ ) ; x l a b e l ( ’ I_2+ I_ {12} ’ ) ;
z l a b e l ( ’ I_1+ I_ {21} ’ ) ;

84 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
85 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
86 f u n c t i o n dx = F (T , X)
87

88 N=100;
89 mu=1 / 65 ;
90 gamma= 52 ;
91 be t a 1 = 2∗gamma ;
92 be t a 2 = 2∗gamma ;
93 a l ph a = 2 ;
94 ph i = 0 . 6 ;
95 ph i1=ph i ;
96 ph i2=ph i ;
97

98 dx = z e r o s ( 1 0 , 1 ) ;
99

100 dx ( 1 ) =− be t a 1 /N∗X( 1 ) ∗ (X( 2 ) +ph i1 ∗X( 9 ) ) − be t a 2 /N
∗X( 1 ) ∗ (X( 3 ) +ph i2 ∗X( 8 ) ) +mu∗ (N−X( 1 ) ) ; % S−
e q u a t i o n

101

102 dx ( 2 ) = be t a 1 /N∗X( 1 ) ∗ (X( 2 ) +ph i1 ∗X( 9 ) )− ( gamma+mu
) ∗X( 2 ) ; % I_1
e q u a t i o n

103 dx ( 3 ) = be t a 2 /N∗X( 1 ) ∗ (X( 3 ) +ph i2 ∗X( 8 ) ) − ( gamma+
mu) ∗X( 3 ) ; % I_2
e q u a t i o n

104

105 dx ( 4 ) =gamma∗X( 2 ) −( a l p h a +mu) ∗X( 4 ) ;

% R_1 e q u a t i o n
106 dx ( 5 ) =gamma∗X( 3 ) −( a l p h a +mu) ∗X( 5 ) ;

% R_2 e q u a t i o n
107

108 dx ( 6 ) = − be t a 2 /N∗X( 6 ) ∗ (X( 3 ) +ph i2 ∗X( 8 ) ) + a l ph a ∗X
( 4 ) −mu∗X( 6 ) ; % S_1
e q u a t i o n

109 dx ( 7 ) = − be t a 1 /N∗X( 7 ) ∗ (X( 2 ) +ph i1 ∗X( 9 ) ) + a l ph a ∗X
( 5 ) −mu∗X( 7 ) ; % S_2
e q u a t i o n

110

111 dx ( 8 ) = be t a 2 /N∗X( 6 ) ∗ (X( 3 ) +ph i2 ∗X( 8 ) )− ( gamma+mu
) ∗X( 8 ) ; % I_12
e q u a t i o n
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112 dx ( 9 ) = be t a 1 /N∗X( 7 ) ∗ (X( 2 ) +ph i1 ∗X( 9 ) )− ( gamma+mu
) ∗X( 9 ) ; % I_21
e q u a t i o n

113

114 dx ( 1 0 ) =gamma∗ (X( 8 ) +X( 9 ) )−mu∗X(10 ) ;

% R equ a t i o n
115 end



Chapter 2
Global Attractors and Uniform Persistence

2.1 Interior Global Attractor for an Elementary Example

The illustrate the idea of the chapter we consider the difference equation

* (C + 1)G = _* (C)G
1 +* (C)G ,∀C ∈ N, and* (0)G = G ≥ 0,

where _ > 1.
Then we set " = R+ endowed with the distance induced by the absolute value

3 (D, E) = |D − E |.

Then � = [0, _ − 1] (where G = _ − 1 is the positive equilibrium) is compact and

lim
C→∞

X(* (C)�, �) = 0,

whenever � ⊂ R+.
The subset � is the global attractor for* in R+.

Next, we observe that
"0 = (0, +∞)

is positively invariant by*. But the existence of a global for * restricted ("0, 3) is
more delicate because the metric space ("0, 3) is not complete.

If we consider positive interior equilibrium

* = _ − 1 > 0.

We would like to define
�0 =

{
*

}
as the global attractor for * restricted to "0. This is delicate, because the interior
attractor �0 will attract the compact subset of "0 (in general), and �0 may not the
bounded subsets of "0 (in general).

79
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2.2 Positive Orbit for a Set

Let (", 3) be a complete metric space. Let {* (C)}C≥0 be a semiflow on a metric
space (", 3). In Chapter 1, we described the omega-limit set for a point G ∈ " .
Recall that the omega-limit set is defined as

l(G) =
⋂
C≥0

⋃
B≥C

* (B)G.

The idea of global attractor is to understand the asymptotic properties of C → * (C)�
when C goes to infinity. So we need to extend the notion omega-limit for the trajectory
of a point G to the trajectory of a subset � of " . So we will consider

l(�) =
⋂
C≥0

⋃
B≥C

* (B)�

for a subset � of " .

2.3 Examples of Metric Spaces

In practice the notion of metric spaces is introduced in order to keep a notion of
distance between points for a subset of a Banach space which is not a vector space.
So a metric space will be a subset " of a Banach space (-, ‖.‖) endowed with the
distance induced by the norm of - . That is

3 (G, H) = ‖G − H‖,∀G, H ∈ ".

Definition 2.1 Ametric space (", 3) is complete , if any Cauchy sequence {D=}=≥0
converges in " . Recall that a Cauchy sequence {D=}=≥0 in " is a sequence such
that for each Y > 0, there exists an integer A ∈ N, such that

3 (D<, D?) ≤ Y,∀<, ? ≥ A.

Then (", 3) is complete if for any such a Cauchy sequence {D=}=≥0 in " , there
exists D ∈ " such that

3 (D<, D) → 0, as < →∞.

A metric space (", 3) is not complete otherwise. That is, if there exists a Cauchy
sequence in (", 3) that is not convergent in " .

Example 2.2 (of metric space in R) Consider the metric space "0 = (0, 1] ⊂ R
endowed with the metric 30 (G, H) = |G − H |. Then ("0, 30) is closed (because the
empty set ∅ is open). If we take a sequence

G= =
1
2=
.
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Then
|G= − G=+@ | = G= − G=+@ ≤ G= =

1
2=
,∀@ ∈ N.

Therefore, the sequence {G=}=∈N is a Cauchy sequence. But this sequence converges
to 0, which does not belong to "0. Hence ("0, 30) is not a complete metric space.

Example 2.3 (of metric space in R2) We can consider

"1 = [0, 1] × [0, 1], with 31 (G, H) = ‖G − H‖R2

which is a closed subset. Therefore, ("1, 31) will give a complete metric (i.e. any
Cauchy sequence in ("1, 31) converges to an element of "1).

An example of non complete metric space is given by

"2 = "1 \ {(0, 0)} = {H ∈ "1 : H ≠ 0} ,

which is not closed in R2. Then ("2, 31) is not a complete metric space. Indeed, let
us consider a sequence

(G=, H=) ∈ (0, 1] × (0, 1] → (0, 0) ∉ "2, as =→∞.

Then {(G=, H=)}=≥0 is a Cauchy sequence in ("2, 31), but {(G=, H=)}=≥0 does not
converge in "2.

Exercise 2.4 Prove the following properties.

(i) The map

32 (G, H) = |
1
‖G‖R2

− 1
‖H‖R2

| + ‖G − H‖R2 ,∀G, H ∈ "2,

is a distance on "2.

(ii) "2 endowed with the distance 32 is a complete metric space.
(Hint: The proof should become clear at the end of this chapter.)

Example 2.5 (of metric space in !1 (0, 1)) We can also consider some infinite
dimensional example such as

"3 =
{
D ∈ !1 (0, 1) : 0 ≤ D ≤ 1

}
,

endowed with

33 (D, E) = ‖D − E‖!1 =

∫ 1

0
|D(f) − E(f) |3f.

Then since "3 is closed in !1 (0, 1), and the metric space ("3, 33) is complete.
Next, If we consider

"4 = "3 \ {0!1 } .
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Then ("4, 33) is not a complete metric space. Indeed, let us consider a sequence

D= ∈ !1 (0, 1),

such that

‖D= − 0!1 (0,1) ‖!1 =

∫ 1

0
|D= (f) |3f → 0, as =→∞.

Then
D= → 0!1 (0,1) ∉ "4, as =→∞,

where the limit is understood in !1 (0, 1). Then {D=}=≥0 is a Cauchy sequence in
("4, 33), but {D=}=≥0 is not convergent in "4.

Exercise 2.6 Prove the following properties.

(i) The map

34 (D, E) = |
1
‖D‖!1

− 1
‖E‖!1

| + ‖D − E‖!1 ,∀D, E ∈ "4,

is a distance on "4.

(ii) "4 endowed with the distance 34 is a complete metric space.

(Hint: The proof should become clear at the end of this chapter.)

2.4 Neighborhood and 9-Neighborhood of a Subset

Let (", 3) be a metric space.

Definition 2.7 Let � ⊂ " be a subset. Then a subset # ⊂ " (which is not neces-
sarily open or closed in ") is called a neighborhood of � , if and only if for each
G ∈ �, there exists Y = Y(G) > 0 (depends on G in general) such that

�" (G, Y) := {H ∈ " : 3 (G, H) < Y} ⊂ #.

We will say that # is an open neighborhood of � , whenever # is open, and we
will say that # is an closed neighborhood of �, whenever # is closed.

Recall that the distance between a point G and a subset � ⊂ " is defined by

3 (G, �) := inf
H∈�

3 (G, H).

The quantity 3 (G, �) is measuring the distance of G to �. Therefore if G ∈ � then
3 (G, �) = 0. Moreover, if 3 (G, �) = Y ≥ 0, this means that we can find a sequence
H= ∈ � such that

lim
=→∞

3 (G, H=) = Y.
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In particular 3 (G, �) = 0 does not imply that G ∈ �. But 3 (G, �) = 0 implies that
G ∈ �.

By Lemma 1.22, we know that the map G → 3 (G, �) is Lipschitz continuous. It
follows that for each Y > 0, the subset

# (�, Y) := {G ∈ " : 3 (G, �) < Y} ,

is an open neighborhood of � (since it is the inverse image of (−∞, Y) by a continuous
map), and the subset

# (�, Y) := {G ∈ " : 3 (G, �) ≤ Y} ,

is a closed neighborhood of � (since it is the inverse image of (−∞, Y] by a continuous
map).

Definition 2.8 The subset # (�, Y) and # (�, Y) are called Y-neighborhood of �.
The subset # (�, Y) is called an open Y-neighborhood of �, and the subset # (�, Y)
is called a closed Y-neighborhood of �.

A
ε N(A, ε)

Fig. 2.1: This figure illustrates the notion of Y-neighborhood of subset �.

The neighborhoods # (�, Y) are very specific. Indeed, for each G ∈ �, we have

�" (G, Y) ⊂ # (�, Y),

where Y > 0 is independent of G. One can compare with Definition 2.7 where the
value of Y varies with G.

2.5 Compact Subsets in (Non Complete) Metric Spaces:
Definitions and Main Results

Let (", 3) be a metric space.
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Definition 2.9 A subset of O of " is open, if for each G ∈ O, there exists Y > 0
(depending on G) such that

�" (G, Y) = {H ∈ " : 3 (G, H) < Y} ⊂ O.

A subset F is closed if its complementary in " is open. That is

" \ F = {H ∈ " : H ∉ F }

is an open subset.

Definition 2.10 Let � be a subset of " . We will say that

(i) A family of subsets {FU}U∈� is a covering of � if

� ⊂
⋃
U∈�
FU .

(ii) A family of subsets {FU}U∈� is an open covering of�, if {FU}U∈� is a covering
of �, and for each U ∈ � , the subset FU is an open subset of (", 3).

(iii) A family of subset {FU}U∈� is an finite covering of�, if {FU}U∈� is a covering
of �, and � is finite.

(iv) If {FU}U∈� is a covering of �, and � ′ ⊂ � . Then {FU}U∈�′ is an sub-covering
of � (extracted from {FU}U∈� ), if

� ⊂
⋃
U∈�′

FU .

Definition 2.11 Let � be a subset of " . We will say that

(i) The subset � is compact if any open covering of � admits a finite sub-covering
of �. That is for each family {FU}U∈� such that

� ⊂
⋃
U∈�
FU,

there exists a finite subset � ′ ⊂ � such that

� ⊂
⋃
U∈�′

FU .

(ii) The subset � is sequentially compact if each sequence {D=}=∈N admits a
convergent sub-sequence

{
D=?

}
?∈N converging to an element G ∈ �.

(iii) The subset � is relatively compact, if its closure � is compact.
(iv) The subset � is totally bounded (or precompact), if for each A > 0, � has a

finite covering with balls of radius A .

Theorem 2.12 (Corollary 3.8 p.34 in [132]) Assume that (", 3) is a metric space
(complete or not). Then we have the following

(i) A subset � is compact if and only if it is sequentially compact.
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(ii) A subset � is compact if and only if (�, 3) is a complete metric space, � is
totally bounded.

Example 2.13 (of non compact subset which is totally bounded and closed)
Consider the metric space" = (0, 1] ⊂ R endowed with the metric 3 (G, H) = |G−H |.
If we take a sequence

� :=
⋃
?∈N

{
G?

}
,

where
G= =

1
2=
,∀= ∈ N.

(i) The subset � is not compact.
Indeed, we have

G=+1 =
G=

2
, and G=−1 = 2G=.

Define
A= =

G= − G=+1
2

=
1

2=+2
,

then
�" (G=, A=) ∩ � = {G=} .

It follows that F = {F=}=≥0 the family defined by

F= = �" (G=, A=)

is an open covering for the sequence

� =
⋃
?∈N

{
G?

}
.

But we can find no finite sub-covering of� extracted from F (since each element
of F covers exactly one element of �). Therefore � is not compact.

(ii) � is totally bounded.
Indeed, if we consider any covering G = {G=}=≥0 the family defined by

G= = � (G=, A) ,∀= ∈ N,

with A > 0.

Then for each =0 = =0 (A) > 0, such that G=0 < A, we have

� ⊂
⋃

==1,...,=0

{G=} .

(iii) � is a closed subset in (", 3).
Indeed, the complementary subset " \ � is open (", 3), because we can find
an open ball around each point of " \ � included in " \ �.

Therefore � is closed, totally bounded, and � is not compact.
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The above example together with the following theorem explain why the notion
of totally bounded sets is used only in complete metric spaces. This will be crucial
(later in this chapter) when we will consider the measures of non compactness.

Theorem 2.14 (Corollary 3.9 p.35 in [132]) Assume that (", 3) is a complete
metric space. If � is totally bounded, then the subset � is compact.

2.6 Cantor’s Diagonal Process

In order to explain the diagonal process, we consider an example of sequence with
double indexation

(=, <) ∈ N × N→ D<= ∈ [0, 1] .

This double indexation can be regarded as a sequence < → D<, where each element
D< is itself a sequence =→ D<= with values in [0, 1].

Claim 2.15 There exists a increasing sequence ? → <? ∈ N, and there exists a
sequence =→ D= ∈ [0, 1], such that

lim
?→∞

D
<?
= = D=,∀= ∈ N.

Proof (of the claim) In the principle of this proof is schematically represented in
Figure 2.2.

Step = = 0: Let us first consider the sequence < → D<0 ∈ [0, 1]. Since [0, 1] is
compact in R, we can find a convergent sub-sequence. That is, we can find a strictly
increasing sequence of integer ? → <0

? ∈ N (with <0
? →∞), and D0 ∈ [0, 1], such

that
lim
?→∞

D
<0
?

0 = D0.

Step = = 1: We consider the sub-sequence ? → D
<0
?

1 ∈ [0, 1]. We can extract a
sub-sequence ? → <1

? ∈ N (with <1
? →∞), and D1 ∈ [0, 1], such that

lim
?→∞

D
<1
?

1 = D1.

Here to extract a sub-sequence from ? → <0
? ∈ N means that, for each ? ∈ N,

<1
? ∈

⋃
?̂∈N

<0
?̂
,

and
lim
?→∞

<1
? = ∞.

This process is represented by the diagonal red arrows in Figure 2.2.
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Due to this construction, we keep the convergence from the previous sub-
sequence. That is

lim
?→∞

D
<1
?

0 = D0.

We can keep the diagonal elements from the previous column without changing
the convergence properties,

<1
0 = <

0
0.

This the process represented by the horizontal red arrows in Figure 2.2.

Step = = : + 1: We consider the sub-sequence ? → D
<:?

:+1 ∈ [0, 1]. We can extract a
sub-sequence ? → <:+1? ∈ N (i.e. <:+1? →∞) and D:+1 ∈ [0, 1], such that

lim
?→∞

D
<:+1?

:+1 = D:+1.

Here to extract a sub-sequence from ? → <:+1? ∈ N means that, for each ? ∈ N,

<:+1? ∈
⋃
?̂∈N

<:
?̂
,

and
lim
?→∞

<:+1? = ∞.

This process is represented by the diagonal red arrows in Figure 2.2.
Due to this construction, we keep the convergence from the previous sub-

sequence. That is

lim
?→∞

D
<:+1?

0 = D0, lim
?→∞

D
<:+1?

1 = D1, . . . , lim
?→∞

D
<:+1?

:
= D: .

Wecan keep the above diagonal elements from the previous columnwithout changing
the convergence properties,

<:+1? = <:? ,∀? = 0, 1, . . . , ? − 1.

This process is represented by the horizontal red arrows in Figure 2.2.

Final step: By induction arguments we can construct such a sequence for each
integer : ∈ N, and we obtain

lim
?→∞

D
<:?

:
= D: ,∀: ∈ N.

Nowwe choose the diagonal element in Figure 2.2 (in green). That is we consider
the sequence

<̂? = <
?
? ,∀? ∈ N.

Then by construction the sequence ? → <̂? is a sub-sequence of any ? → <:? . That
is for each ? ∈ N, and : ∈ N,
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<̂? ∈
⋃
?̂∈N

<:
?̂
,

and
lim
?→∞

<̂? = ∞.

Therefore, we obtain
lim
?→∞

D
<̂?

:
= D: ,∀: ∈ N.

The claim is proved. �

m0
0

m0
1

m0
2

...

m0
p0

1

...

m0
p0

2

...

m1
0

m1
1

m1
2

...

m1
p1

1

...

m1
p1

2

...

m2
0

m2
1

m2
2

...

m2
p2

1

...

· · ·

· · ·

· · ·

...

Fig. 2.2: The figure gives a schematic representation of the diagonal process. The
columns represent the index of each sub-sequence. The red arrows indicate where
the values are taken in the previous column (i.e. on the left hand side). One must
realize that all the indexes of a given column appear in the previous one (i.e., on
the left-hand side). That is, each column is extracted from the previous one. The
coefficients above the diagonal are unchanged. The diagonal process consists in
choosing the diagonal elements.

Example 2.16 (of sequence that is not converging uniformly with respect to
= ∈ N) The convergence in the Claim 2.15 is called local convergence in = ∈ N.
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This means that the convergence holds simultaneously only for a finite values of
= ∈ N.

To convince ourselves that this convergence can not be uniform, let us consider
the following example

D
?
= =

= + 1
= + 1 + ? + 1

Then
lim
?→∞

D
?
= = 0,∀= ≥ 0.

But we have

‖D? ‖∞ = sup
=∈N

D
?
= = lim

=→∞
= + 1

= + 1 + ? + 1
= 1,∀? ∈ N.

Therefore
lim
?→∞
‖D? ‖∞ = 1 ≠ 0.

This example show that the convergence in the Claim 2.15 is not (in general) uniform
with respect to = ∈ N.

Corollary 2.17 The space of sequences

" = {{D=}=∈N : D= ∈ [0, 1],∀= ∈ N} ,

endowed with the distance

3 (D, E) = sup
=∈N

|D= − E= |
2=

,

is sequentially compact.

Proof Let < → D< be a sequence of elements of " . That is for each < ∈ N, D< is
a sequence of the form

=→ D<= ∈ [0, 1] .

By using the Claim 2.15, there exists a increasing sequence ? → <? ∈ N, and the
exists a sequence =→ D= ∈ [0, 1], such that

lim
?→∞

D
<?
= = D=,∀= ∈ N.

Let us prove that

lim
?→∞

sup
=∈N

|D<?= − D= |
2=

= 0.

Let Y > 0 be fixed. Since D<= ∈ [0, 1], and D= ∈ [0, 1], we deduce that

|D<?= − D= |
2=

≤ 2
2=

Therefore, for =0 ∈ N large enough, we have
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|D<?= − D= |
2=

≤ 2
2=
≤ Y,∀= ≥ =0.

It follows that

sup
=∈N

|D<?= − D= |
2=

≤ max
(

max
==0,...,=0

|D<?= − D= |
2=

, Y

)
and since

lim
?→∞
|D<?= − D= | = 0,∀= = 0, . . . , =0,

we deduce that there exists an integer ?0 ∈ N such that

sup
=∈N

|D<?= − D= |
2=

≤ Y,∀? ≥ ?0.

The proof of the corollary is completed. �

2.7 Spaces of Continuous Functions: Compactness Properties
and Diagonal Process

Theorem 2.18 (Arzelà–Ascoli theorem) Let - be a compact subset of a metric
space (", 3). Let (�, ‖.‖� ) be a Banach space. Let Φ be a part of � (-, �) the
space of continuous maps from - into �. Then Φ is relatively compact in � (-, �)
(endowed with the distance 3 (D, E) = supG∈- ‖D(G) − E(G)‖� ) if and only if

(i) Φ is equi-continuous. That is, for each Y > 0, there exists [ > 0, such that

3 (G, H) ≤ [⇒ ‖D(G) − D(H)‖� ≤ Y,∀D ∈ Φ.

(ii) For each G ∈ - , the set {D(G) : D ∈ Φ} is relatively compact in �.

To illustrates the above result, we will prove the following typical consequence of
Arzelà–Ascoli theorem.

Lemma 2.19 Let � ⊂ R, �0 ⊂ R, and �1 ⊂ R be three closed and bounded intervals.
Then the set

� := {D ∈ �1 (�, �0) : D(G) ∈ �0, and D′(G) ∈ �1, for all G ∈ �}

is relatively compact in � (�, �0) endowed with the supremum topology (i.e.,
3 (D, E) = supG∈� |D(G) − E(G) |). That is, for each sequence {D<}<∈N ⊂ �, there
exists a sub-sequence ? → <? ∈ N (i.e., strictly increasing sequence of integers)
and a continuous D̄ ∈ � (�, �0), such that

lim
?→∞

sup
G∈�
|D<? (G) − D̄(G) | = 0.
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Proof (Proof of Lemma 2.19) ToproveLemma2.19we show that theArzelà-Ascoli
Theorem 2.18 can be applied to the set �. First we remark that the set {D(G) : D ∈
-} = �0 is a bounded interval in R, therefore condition (ii) in Theorem 2.18 is
satisfied.

Next we show that the condition (i) holds. We let

� := sup{|H | : H ∈ �1},

so that
|D′(G) | ≤ � for all D ∈ � and G ∈ � .

Then by the mean value theorem, we have

|D(G) − D(H) | ≤ |G − H | sup
I∈�
|D′(I) | ≤ � |G − H | for all D ∈ � and G, H ∈ � .

In particular for each Y > 0 we can find

[ :=
Y

�
,

such that

|G − H | ≤ [⇒ |D(G) − D(H) | ≤ � |G − H | ≤ � Y

�
= Y for all D ∈ �.

Thus, by the Arzelà-Ascoli Theorem 2.18, � is relatively compact in � (�, �0). In
other words for each sequence {D<}<∈N ⊂ �, there exists a function D̄ ∈ � (�,R)
and a subsequence ? → <? ∈ N such that

lim
?→+∞

3 (D<? , D̄) = lim
?→+∞

sup
G∈�
|D<? (G) − D̄(G) | = 0.

Lemma 2.19 is proved. �

Theorem 2.20 Let �0 ⊂ R, and �1 ⊂ R be two closed and bounded intervals.
Consider the subset of � (R,R)

" := {D ∈ � (R,R) : D(G) ∈ �0, for all G ∈ R},

endowed with the distance associated to the local uniform topology. That is

3 (D, E) =
+∞∑
==1

1
2=

sup
G∈[−=,=]

|D(G) − E(G) |.

Then (", 3) is a complete metric space. Moreover, the space

� := {D ∈ �1 (R,R) : D(G) ∈ �0 and D′(G) ∈ �1 for all G ∈ R},

is relatively compact in (", 3). That is, for each sequence {D<}<∈N ⊂ �, there
exists a sub-sequence ? → <? ∈ N (i.e., strictly increasing sequence of integers)
and a continuous D̄ ∈ � (R, �0), such that
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lim
?→+∞

+∞∑
==1

1
2=

sup
G∈[−=,=]

|D<? (G) − D̄(G) | = 0.

Proof Let {D<}<≥0 be a sequence in �. We use a diagonal process.
Step 1: Compactness on [−1, 1].
Consider the restriction of {D<}<∈N. By Lemma 2.19, there exists a sub-sequence
{D<1

? }?∈N and a continuous function D̄1 : [−1, 1] → R such that

lim
?→+∞

sup
G∈[−1,1]

|D<1
? (G) − D̄1 (G) | = 0.

Step 2: Compactness in [−2, 2].
By applying Lemma 2.19 to the sequence {D<1

? }?∈N restricted to the interval [−2, 2],
we get that there exists a subsequence ? → <2

? extracted from ? → <1
? and a

continuous function D̄2 ∈ � ( [−2, 2],R) such that

lim
?→+∞

sup
G∈[−2,2]

|D<2
? (G) − D̄2 (G) | = 0.

Since <2
? is extracted from <1

? , the restriction of D<
2
? to [−1, 1] converges to D̄1.

Therefore
D̄2 (G) = D̄1 (G) for all G ∈ [−1, 1] .

Step 3: Construction of {D<=? }?∈N.
By induction, assume that we have constructed sequences {<:?}?∈N for : = 1, . . . , =,
such that each {<:?}?∈N is extracted from {<:−1

? }?∈N, and there exists D̄: ∈
� ( [−:, :],R) such that

sup
G∈[−:,: ]

|D<
:
?

? (G) − D̄: (G) | −−−−−→
?→+∞

0 for all : = 1, . . . , =.

By applying the Arzelà-Ascoli theorem to the sequence {D<=? }?∈N restricted to
[−(= + 1), (= + 1)], we find a subsequence {<=+1? }?∈N extracted from {<=?}?∈N and
a function D̄=+1 ∈ � ( [−(= + 1), = + 1],R) such that

lim
?→+∞

sup
G∈[−(=+1) ,=+1]

|D<=+1? (G) − D̄=+1 (G) | = 0.

Since <=+1? is extracted from <=? , the restriction of D<
=
? to [−=, =] converges to D̄=.

Therefore
D̄=+1 (G) = D̄= (G) for all G ∈ [−=, =] .

The sequence {D<=? }?∈N is thus constructed for all = ∈ N.
Step 4: Diagonal process.
Now we choose <̂= := <== for all = ∈ N and D̄(G) := D̄= (G) for all G ∈ [−=, =]
and = ≥ 1. Observe that, by construction, the sequence {<̂?}?≥= is extracted from
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{<=?}?∈N for all = ∈ N. Therefore

lim
?→+∞

sup
G∈[−=,=]

|D<̂? (G) − D̄(G) | = 0, for all = ∈ N.

Define � := supG∈�0
|G |. Then, since D<̂? ∈ � (R, �0) and D̄ ∈ � (R, �0), we have

sup
G∈[−=,=]

|D<̂? (G) − D̄(G) | ≤ 2�.

Thus

3 (D<̂? , D̄) =
+∞∑
==1

1
2=

sup
G∈[−=,=]

|D<̂? (G) − D̄(G) |

≤
=0∑
==1

1
2=

sup
G∈[−=,=]

|D<̂? (G) − D̄(G) | +
+∞∑

===0+1

1
2=
× 2�

=

=0∑
==1

1
2=

sup
G∈[−=,=]

|D<̂? (G) − D̄(G) | + 2�
2=0+1

1
1 − 1

2
.

Let Y > 0. Then for =0 ≥ 0 sufficiently large we have

2�
2=0+1

1
1 − 1

2
=

2�
2=0
≤ Y

2
,

and we obtain for all = ≥ =0,

3 (D<̂? , D̄) ≤
=0∑
==1

1
2=

sup
G∈[−=,=]

|D<̂? (G) − D̄(G) | + Y
2
.

Now we can find =1 ≥ =0 such that ? ≥ =1 with =1 sufficiently large we have

sup
G∈[−=0 ,=0 ]

|D<̂? (G) − D̄(G) | ≤ Y

2=0
.

Therefore for all ? ≥ =1 we have

3 (D<̂? , D̄) ≤ =0
Y

2=0
+ Y

2
= Y,

and since Y > 0 is arbitrary, we have proved that D<̂? converges to D̄ as ? → +∞ for
the topology induced by 3. Theorem 2.20 is proved. �

Remark 2.21 Instead of the local uniform topology, we could have used any other
distance of the form

3★(D, E) = sup
G∈R

d(G) |D(G) − E(G) |,

where d : R→ (0,∞) is any continuous function, satisfying
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lim
|G |→∞

d(G) = 0.

The conclusion of Theorem 2.20 holds, That is, for each sequence {D<}<∈N ⊂ �,
there exists a sub-sequence ? → <? ∈ N (i.e., strictly increasing sequence of
integers) and a continuous D ∈ � (R, �0), such that

lim
?→∞

3★(D<? , D) = 0.

2.8 Compactness Properties for Families of Subsets

In this section, we prepare some key ingredients for the global attractor theory. We
first recall that in any metric space (", 3) (complete or not) a subset � of " is
compact if and only if any sequence in � has a sub-sequence which converges in �.
So for each sequence {G=}=≥0 ⊂ �, we can find a sub-sequence

{
G=?

}
?≥0 (that is

we can find a strictly increasing sequence of integer ? → =? ∈ N) and there exists
G ∈ �, such that

lim
?→∞

G=? = G.

Definition 2.22 Let � ⊂ [0, +∞) be unbounded, let {�C }C ∈� be a family of non-
empty subsets of " . We say that {�C }C ∈� is point-wise sequentially compact if and
only if for each sequence {C=}=≥0 ⊂ � → +∞, and each sequence {G=}=≥0 satisfying

G= ∈ �C= ,∀= ≥ 0,

has a convergent sub-sequence.

Remark 2.23 Every family {�C }C ∈� ⊂ R= such that �C ⊂ �R= (0, A),∀C ∈ � (for
some A > 0) is point-wise sequentially compact. So this provide an example of
such a class of point-wise sequentially compact family. The same property is true in
locally compact metric spaces.

Definition 2.24 Let � ⊂ [0, +∞) be unbounded, let {�C }C ∈� be a family of non-empty
subsets of " . We will say that {�C }C ∈� is decreasing if and only if

C ≥ B⇒ �C ⊂ �B .

Recall that in any metric space (", 3) (complete or not) a subset � of " is
compact if and only if every sequence has a convergent sub-sequence whose limit is
in �.

Theorem 2.25 Let � ⊂ [0, +∞) be unbounded, let {�C }C ∈� be a family of non-empty
subsets of " . Assume that {�C }C ∈� is point-wise sequentially compact. Then

�∞ :=
⋂
C≥0

⋃
B≥C

�B
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is compact and non-empty and

X(�C , �∞) → 0, as C → +∞.

Moreover, if we assume in addition that �C is a decreasing family of closed of subsets
of " . Then

�∞ =
⋂
C≥0

�C .

Proof We set �C =
⋃
B≥C �B ,∀C ≥ 0. Let {C=}=≥0 ⊂ � → ∞, and each sequence

{G=}=≥0 ⊂ " , such that
G= ∈ �C= ,∀= ≥ 0.

We claim that {G=}=≥0 has a convergent sub-sequence. Indeed, there exists for each
= ≥ 0, H= ∈

⋃
B≥C= �B , such that

3 (H=, G=) ≤
1

= + 1
,

For each = ≥ 0, there exists B= ≥ C= such that H= ∈ �B= , and by assumption {H=}=≥0
has a convergent sub-sequence. Let

{
H=?

}
?≥0 → G ∈ ", then

3 (G, G=? ) ≤ 3 (G, H=? ) + 3 (H=? , G=? ) → 0, as ? → +∞.

Moreover, since �C ⊂ �C , we deduce that

X(�C , �∞) ≤ X(�C , �∞),∀C ≥ 0,

We can replace �C by �C , and we can always assume that �C is a non-increasing
family of closed and non-empty subsets of " . We set �∞ =

⋂
C≥0

�C . Then it is clear

that �∞ is closed since it is an intersection of closed subsets.

Let us prove that �∞ is not empty. Indeed, by taking C= → ∞ and G= ∈ �C= , and
by taking a sub-sequence we can assume that G= → G. Let C ∈ �. We have for all
= ∈ N, with C= ≥ C, we have

G= ∈ �C= ⊂ �C
and since �C is closed, we deduce that

G= → G ∈ �C ,∀C ≥ 0.

Hence
G ∈ �∞.

Moreover, if we take {H=}=≥0 ⊂ �∞, then by induction we can find a sequence
{C=}=≥0 ⊂ �, and a sequence {G=}=≥0 ⊂ " , such that G= ∈ �C= ,∀= ≥ 0, C= → +∞,
and 3 (H=, G=) → 0, as = → +∞. By assumption we can find a sub-sequence{
G=?

}
?≥0 → H as = → +∞. Now since �∞ is closed, and by construction H ∈ �∞,

and H=? → H as ? → +∞, we deduce that H ∈ �∞. It follows that �∞ is compact.
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Assume by contradiction that there exist Y > 0, and {C=}=≥0 → +∞, such that
X(�C= , �∞) ≥ Y,∀= ≥ 0. Then for each = ≥ 0, we can find G= ∈ �C= , such that
3 (G=, �∞) ≥ Y/2. By assumption we can find a sub-sequence

{
G=?

}
?≥0 → G. But

by construction G ∈ �∞,
0 = 3 (G, �∞) ≥ Y/2,

and we obtain a contradiction. �

Definition 2.26 We say that a subset � ⊂ " attracts a family {�C }C ∈� , if

lim
C→∞

X(�C , �) = 0.

That is equivalent to say that for each Y > 0, we can find C0 = C0 (Y) ≥ 0, such that

�C ⊂ # (�, Y),∀C ≥ C0.

We deduce the following result from Theorem 2.25.

Theorem 2.27 The two following assertions are equivalent:

(i) The family {�C }C ∈� is point-wise sequentially compact.
(ii) The family {�C }C ∈� is attracted by some compact subset � ⊂ " .

Moreover, if (i) or (ii) is satisfied, then

�∞ =
⋂
C≥0

⋃
B≥C

�B

is the smallest compact subset � ⊂ " , attracting the family {�C }C ∈� .

Definition 2.28 Let � ⊂ [0, +∞) be unbounded, let {�C }C ∈� be a family of non-
empty subsets of " . We say that {�C }C ∈� isHausdorff sequentially compact if and
only if for each sequence {C=}=≥0 ⊂ � → +∞, there exist a sub-sequence

{
C=?

}
?≥0

and a subset �̂∞ ⊂ " satisfying

3�

(
�C=? , �̂∞

)
→ 0, as ? → +∞.

The convergence of the family �̂C to �∞ for the Hausdorff distance means that, for
each Y > 0, we have both

�C ⊂ # ( �̂∞, Y) (2.1)

and
�̂∞ ⊂ # (�C , Y) (2.2)

whenever C > 0 is large enough.
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At
Â∞

ε

N(Â∞, ε)

Fig. 2.3: This figure illustrates the inclusion (2.1). When Y goes to 0, the set �C
approaches to �̂∞.

AtÂ∞
ε N(At, ε)

Fig. 2.4: This figure illustrates the inclusion (2.2). When Y goes to 0, the set �̂∞
approaches to �C .

In this previous of convergence results, the property (2.2) was missing. This prop-
erty can be interpreted by saying that every point of the limit set �∞ is approached
by some point of �C . The following lemma says that the convergence is also true in
the sense of the Hausdorff distance, but only for a sub-sequence �C= and a smaller
subset �̂∞ ⊂ �∞.

Theorem 2.29 Let � ⊂ [0, +∞) be unbounded, let {�C }C ∈� be a family of non-empty
closed subsets of " . If the family {�C }C ∈� is point-wise sequentially compact, then
{�C }C ∈� is Hausdorff sequentially compact. More precisely, for each {C=}=≥0 ⊂ � →
+∞, there exists a sub-sequence

{
C=?

}
?≥0 such that

3�

(
�C=? , �̂∞

)
→ 0, as ? → +∞,

where
�̂∞ =

⋂
?≥0

⋃
@≥?

�C=@ .
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Proof Set
�∞ =

⋂
C≥0

⋃
B≥C

�B .

then by Theorem 2.25 we know that �∞ is compact, and

X(�C , �∞) → 0, as C → +∞.

Since �∞ is compact, for each integer < ≥ 0, there exists
{
G<1 , ..., G

<
:<

}
⊂ �∞, such

that

�∞ ⊂
:<⋃
8=1

�

(
G<8 ,

1
2<+1

)
.

Let {C=}=≥0 ⊂ � → +∞. By using a diagonal process, we can find a sequence of
integers {;<}<≥0 , such that

{
H<1 , ..., H

<
;<

}
⊂

{
G<1 , ..., G

<
:<

}
such that for integer ?

and < with ? ≥ <

�C=? ⊂
;<⋃
8=1

�

(
H<8 ,

1
2<

)
, (2.3)

and
�C=? ∩ �

(
H<8 ,

1
2<

)
≠ ∅,∀8 = 1, ..., ;<. (2.4)

Set
�̂∞ =

⋂
?≥0

⋃
@≥?

�C=@ ,

by Theorem 2.25, we know that �̂∞ is a non-empty compact set, and

X(�C=? , �̂∞) → 0, as ? → +∞.

Moreover, by using (2.3) and (2.4), we deduce that for each integer < ≥ 0,

�̂∞ ⊂
;<⋃
8=1

�

(
H<8 ,

1
2<

)
,

and
�̂∞ ∩ �

(
H<8 ,

1
2<

)
≠ ∅,∀8 = 1, ..., ;<.

Let G ∈ �̂∞, for each < ≥ 0, there exists 80 ∈ {1, ..., ;<} , such that

G ∈ �
(
H<80 ,

1
2<

)
and �C=? ∩ �

(
H<80 ,

1
2<

)
≠ ∅,∀? ≥ <.

So
3

(
G, �C=?

)
≤ 1

2<−1 ,∀? ≥ <.

We conclude that
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X

(
�̂∞, �C=?

)
≤ 1

2<−1 ,∀? ≥ <,

and the proof is completed. �

Example 2.30 (Discrete time example) Consider the following example {�=}=∈N

�2= = {0} ,∀= ∈ N,

and
�2=+1 = {1} ,∀= ∈ N.

Then
�∞ = {0, 1} ,

and
X(�=, �∞) = 0,∀= ≥ 0,

implies
lim
=→∞

X(�=, �∞) = 0.

Moreover we have

X(�∞, �=) = sup
G∈{0,1}

3 (G, �=) = 1,∀= ∈ N.

Therefore, the Hausdorff distance satisfies

3� (�=, �∞) = 1,∀= ≥ 0.

Moreover if we consider constant sub-sequence =→ �2= then

�̂∞ = {0} ,

and if we consider constant sub-sequence =→ �2=+1 then

�̂∞ = {1} .

Example 2.31 (Continuous time example)Consider the following example {�C }C ∈R+

�C = {cos(C)} ,∀C ∈ R+.

Then
�∞ = [−1, 1] ,

and

X(�∞, �C ) = sup
G∈[−1,1]

3 (G, �C ) = max (|1 − cos(C) |, |1 + cos(C) |) ≥ 1,∀C ∈ R+.

Therefore, the Hausdorff distance satisfies

3� (�C , �∞) ≥ 1,∀C ≥ 0.
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Moreover if we consider constant sub-sequence =→ �C+2=c then

�C+2=c = {cos(C)} ,∀= ≥ 0,

and we obtain for this sequence �̂∞ = {cos(C)}.

2.9 Measure of Non-Compactness

Definition 2.32 The Kuratowski measure of non-compactness , ^, is defined by

^(�) = inf{A > 0 : � has a finite cover with ball of radius A},

for any bounded set � of " . We set ^(�) = +∞, whenever � is unbounded.

Remark 2.33 From Example 2.13, we can see that the measure of non-compactness
is not measuring the compactness in non complete metric spaces.

From this definition, we deduce that

^(�) = ^(�),

for any subset � of " .

The following lemma can be reformulated by saying that (", 3) is a complete
metric space if and only if each totally bounded subset of " is relatively compact.

Theorem 2.34 The following properties are equivalent

(i) (", 3) is complete metric space.
(ii) For each subset � of ", ^(�) = 0 implies that � is compact.

Proof Proof of (ii)⇒(i). Let be a Cauchy sequence {G=}=≥0 then for each Y > 0,
there exists =0 ≥ 0, such that

3 (G=0 , G=0+;) ≤ Y,∀; ≥ 0.

So
^(

⋃
=≥0
{G=}) = ^(

⋃
=≥=0

{G=}) ≤ Y.

hence
^(

⋃
=≥0
{G=}) = 0,

and by using (ii), we deduce that ⋃
=≥0
{G=}
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is compact. By compactness, we deduce that {G=}=≥0 has a sub-sequence converging
in " . But, by using again the fact that {G=}=≥0 is a Cauchy sequence, we conclude
that the sequence {G=}=≥0 converges in " .

Proof of (i)⇒(ii). Let � be closed subset of ", and assume that ^(�) = 0. Let
{G=}=≥0 be a sequence in �. For each integer < ≥ 0, let be

{
I<1 , ..., I

<
:<

}
⊂ " , such

that

� ⊂
:<⋃
8=1

�

(
I<8 ,

1
2<

)
,

and by using a diagonal process, we can find a sub-sequence
{
G=<

}
<≥0 and a

sequence of integer {8<}<≥0 such that

G=? ∈ �
(
I<8< ,

1
2<

)
,∀? ≥ <.

So

3

(
I<8< , I

<+1
8<+1

)
≤ 3

(
I<8< , G=<+1

)
+ 3

(
G=<+1 , I

<+1
8<+1

)
≤ 1

2<
+ 1

2<+1
≤ 1

2<−1 .

So we deduce that for all < ≥ 0, and ; ≥ 0,

3

(
I<8< , I

<+;
8<+;

)
≤ 3

(
I<8< , I

<+1
8<+1

)
+ . . . + 3

(
I<+;−1
8<+;−1

, I<+;8<+;

)
≤ 1

2<−1 +
1

2<
+ .... + 1

2<+;−1

≤ 1
2<−1

[
1 + 1

2
+ .... + 1

2;

]
≤ 1

2<−2 .

So
{
I<
8<

}
<≥0

is a Cauchy sequence. So by using (i), we deduce that I<
8<
→ G ∈ �, as

< → +∞, and since
3

(
G=? , I

<
8<

)
≤ 1

2<
,∀? ≥ <,

the result follows. �

Proposition 2.35 The following statements are valid

(i) Let (", 3) be complete metric space, let � ⊂ [0, +∞) be unbounded, and let
{�C }C ∈� be a decreasing family of non-empty closed subsets of " . Assume that

^(�C ) → 0, as C → +∞.

Then
�∞ =

⋂
C≥0

�C

is non-empty and compact, and

X(�C , �∞) → 0, as C → +∞.
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(ii) For each � ⊂ ", and � ⊂ ", we have

^(�) ≤ ^(�) + X(�, �).

Proof Proof of (i). Assume first that ^(�C ) → 0, as C → +∞. Let two sequences
{C=}=≥0 ⊂ � →∞ and {G=}=≥0 ⊂ ", such that G= ∈ �C= ,∀= ≥ 0. Then

^

(⋃
=≥0
{G=}

)
= ^

(⋃
=≥?
{G=}

)
≤ ^(�C? ),∀? ≥ 0,

hence

^

(⋃
=≥0
{G=}

)
= 0.

By Theorem 2.34, we know that
⋃
=≥0
{G=} is compact. We deduce that the family

{�C }C ∈� is point-wise sequentially compact, and the result follows from Theorem
2.25.

Proof of (ii). Let Y > 0. Then there exists {G1, ..., G# } ⊂ ", such that

� ⊂
⋃

==1,...,#
� (G=, ^(�) + Y/2) (2.5)

Let G ∈ �. Then 3 (G, �) ≤ X(�, �), so there exists H ∈ �, such that

3 (G, H) ≤ X(�, �) + Y/2.

But by (2.5), there exists = ∈ {1, ..., #} , such that

3 (G=, H) ≤ ^(�) + Y/2,

so
3 (G, G=) ≤ 3 (G, H) + 3 (H, G=) ≤ ^(�) + X(�, �) + Y.

So
� ⊂

⋃
==1,...,#

� (G=, ^(�) + X(�, �) + Y) .

and
^(�) ≤ ^(�) + X(�, �) + Y,∀Y > 0,

and the result follows when Y → 0. �

2.10 Omega-Limit Sets of a Subset

Definition 2.36 For each subset � ⊂ ", we denote by
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W+ (�) =
⋃
C≥0

* (C) (�)

the positive orbit of � for*, and by

l(�) =
⋂
C≥0

⋃
B≥C

* (B) (�)

the omega-limit set of � for*.

Definition 2.37 We say that a subset � ⊂ " attracts a subset � ⊂ " for*, if

lim
C→∞

X(* (C)�, �) = 0.

Lemma 2.38 Let* be a continuous semiflow. If � ⊂ " is positively invariant for*
so is �.

Proof Assume that � ⊂ " is positively invariant for*, that is to say that

* (C)� ⊂ �,∀C ≥ 0.

Let be a convergent sequence G= ∈ � → G ∈ �. Then since * is a continuous
semiflow

* (C)G= ∈ �→ * (C)G ∈ �,

and we deduce that � is positively invariant for*. �

The theory of attractors is based on the following fundamental result, which is related
to Hale [93, Lemmas 2.1.1 and 2.1.2].

Proposition 2.39 (Omega-limit sets) Let {* (C)}C ∈� be a continuous semiflow on
(", 3). Let � be a subset of " , which is attracted by compact subset � ⊂ " for*.
Then

(i) l(�) is non-empty, compact, and attracts � for*.
(ii) l(�) invariant for*. That is

* (C)l(�) = l(�),∀C ≥ 0.

(iii) l(�) attracts � for*. That is

lim
C→+∞

3 (* (C)�, l(�)) = 0.

Proof Proof of (i). Set
�C =

⋃
B≥C

* (B)�,∀C ≥ 0.

It is clear that the family {�C }C ∈� is decreasing and is attracted by �. By Theorem
2.27, we deduce that l(�) = ⋂

C≥0 �C is non-empty, compact, and attracts {�C }C ∈� .
Therefore l(�) attracts � for*.

Proof of (ii). Let g ≥ 0. We have
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* (g)
(⋃
B≥C

* (B)�
)
=

⋃
B≥C+g

* (B)�,∀C ≥ 0. (2.6)

Therefore, we obtain ⋃
B≥C+g

* (B)� ⊂ * (g)�C ,∀C ≥ 0,

hence
�C+g ⊂ * (g)�C ,∀C ≥ 0. (2.7)

By using again (2.6), we have

* (g)
(⋃
B≥C

* (B)�
)
⊂ �C+g ,∀C ≥ 0,

since* (g) is continuous,

* (g)�C ⊂ �C+g ,∀C ≥ 0. (2.8)

We deduce from (2.8) that

* (g)l(�) ⊂ * (g)�C ⊂ �C+g ,∀C ≥ 0,

hence
* (g)l(�) ⊂ l(�),∀C ≥ 0. (2.9)

To prove the converse inclusion, let H ∈ l(�). Since the family �C is decreasing, we
can find a sequence C= → ∞ and H= ∈ �C=+g such that H= → H as =→ ∞. By using
(2.7) we deduce that we can find a sequence G= ∈ �C= such that

3 (H=,* (g)G=) ≤
1
2=
.

But we can also find a convergent sub-sequence

G=? → G ∈ l(�).

Now by using the continuity of* (g), it follows that* (g)G = H. It follows that

l(�) ⊂ * (g)l(�), (2.10)

and the results follows from (2.9) and (2.10).

Proof of (iii). Assume by contradiction that there exist Y > 0 and a sequence
C= → +∞ such that

sup
G∈�

3 (* (C=)G, l(�)) = X (* (C=)�, l(�)) ≥ Y,∀= ≥ 0.

Then we can find a sequence G= ∈ � such that
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3 (* (C=)G=, l(�)) ≥ Y/2,∀= ≥ 0.

By compactness of �, we can find a convergent sub-sequence (denoted with the
same index) such that

lim
=→+∞

* (C=)G= = I ∈ l(�).

By Lemma 1.22, we deduce that

0 < Y/2 ≤ lim
=→+∞

3 (* (C=)G=, l(�)) = 3 (I, l(�)) = 0,

which gives a contradiction. �

2.11 Global Attractors

Let (", 3) be a complete metric space. Let * : � × " → " be a continuous
semiflow on " with � = lN or R.

Definition 2.40 The semiflow* is said to be point (compact, bounded) dissipative
if there is a bounded set �0 in " such that �0 attracts each point (compact set,
bounded set) in ";

Definition 2.41 The semiflow * is said to be asymptotically smooth if for any
nonempty closed bounded set � ⊂ " which is positively invariant for * (i.e.
* (C)� ⊂ �,∀C ≥ 0), there is a compact set � ⊂ " such that � attracts � for * (i.e.
X(* (C)�,�) → 0, as C →∞).

Lemma 2.42 The semiflow* is asymptotically smooth if and only if

lim
C→∞

^ (* (C)�) = 0,

for any nonempty closed bounded subset � ⊂ " which is positively invariant for*.

Proof (⇐): Let nonempty bounded subset � ⊂ " positively invariant for*. Assume
that

lim
C→∞

^ (* (C)�) = 0

Then
lim
C→∞

^

(
* (C)�

)
= 0

by Proposition 2.35-(i) (applied to the family �C = * (C)�), we deduce that �∞ =⋂
C≥0

* (C)� is non-empty and compact, and

X(* (C)�, �∞) ≤ X(�C , �∞) → 0, as C → +∞.

(⇒): Conversely assume that there exists a compact subset � ⊂ " such that

X(* (C)�,�) → 0, as C →∞.
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Then by Proposition 2.35-(ii), we have

^(* (C)�) ≤ ^(�) + X(* (C)�,�) = X(* (C)�,�) → 0, as C →∞,

the proof is completed. �

Definition 2.43 A positively invariant subset � ⊂ " for* is said to be stable if for
any neighborhood + of �, there exists a neighborhood, ⊂ + of � such that

* (C), ⊂ +,∀C ≥ 0.

We say that � is globally asymptotically stable for * if, in addition, � attracts
points of " for*. That is

lim
C→∞

3 (* (C)G, �) = 0,∀G ∈ ".

Lemma 2.44 A subset � is stable for* if and only if for each neighborhood + of �,
there exists, ⊂ + neighborhood of � satisfying

* (C), ⊂ ,,∀C ≥ 0.

Proof (⇒): Assume that � ⊂ " is stable for *. Let + be neighborhood �. Then
there exists a neighborhood, ⊂ + of � such that

* (C), ⊂ +,∀C ≥ 0.

Set
,̂ =

⋃
B≥0

* (B),.

Then ,̂ is a neighborhood of � (since it contains,) and

* (C),̂ =
⋃
B≥0

* (B + C), ⊂
⋃
B≥0

* (B), = ,̂ .

(⇐): This implication is trivial. �

Lemma 2.45 Assume that � is a compact subset of " and + is a neighborhood of
�. Then there exists Y > 0 such that

# (�, Y) ⊂ +.

Proof Assume by contradiction that

#

(
�,

1
= + 1

)
⊄ +,∀= ∈ N.

This implies that there exists G= ∈ � such that

�"

(
G=,

1
= + 1

)
⊄ +,∀= ∈ N.
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But since � is compact, we can find a converging subsequence G=? → G ∈ �.

Moreover for each ? ∈ N we can find H=? ∈ �"
(
G=? ,

1
=? + 1

)
, and

H=? ∉ +.

We deduce that
3

(
G, H=?

)
≤ 3

(
G, G=?

)
+ 3

(
G=? , H=?

)
,

so we deduce that
lim
?→∞

3

(
G, H=?

)
= 0.

Since G ∈ � and H=? ∉ + , we obtain a contradiction with the fact that + is neighbor-
hood of �. �

The following result can be found in the book of Hale [93, Theorem 2.2.5], we have
the following result.

Proposition 2.46 (Stability) Let � ⊂ " be a compact subset which is positively
invariant for *. If � attracts the compact subsets of one of its neighborhoods, then
� is stable.

Proof Let , be a neighborhood of � and assume that � attracts every compact
subset of , for *. Assume by contradiction that � is not stable. So assume that
there exists a neighborhood + of �, such that for each neighborhood + ′ of �, with
+ ′ ⊂ + , there exists C = C (+ ′) > 0, such that

* (C)+ ′ ⊄ +.

Since � is compact and + ∩, is a neighborhood of �, we can find Y > 0, such that

# (�, Y) ⊂ + ∩,.

Moreover by construction for each integer < ≥ 0, we can find C< ≥ 0, such that

* (C<)
(
#

(
�,

Y

< + 1

))
⊄ +.

So for each < ≥ 0, we can find G< ∈ #
(
�, Y

<+1
)
, such that

* (C<)G< ∉ +.

Since � is compact, by taking a sub-sequence, we can always assume that

G< → G ∈ �, as < → +∞.

Moreover since
� = {G< : < ≥ 0} ∪ {G} ,

is compact and is a subset of, , there exists C0 > 0, such that
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* (C)� ⊂ # (�, Y) ⊂ +,∀C ≥ C0.

So
C< ∈ � ∩ [0, C0] ,∀< ≥ 0,

and we have by construction

3 (* (C<)G<, �) ≥ Y,∀< ≥ 0. (2.11)

Since � is positively invariant for*, we deduce that for all < ≥ 0,

3 (* (C<)G<, �) ≤ 3 (* (C<)G<,* (C<)G) ≤ sup
C ∈�∩[0,C0 ]

3 (* (C)G<,* (C)G) .

Since* is continuous, we deduce that* is uniformly on the compact subset [0, C0] ×
�. Therefore,

G< → G ∈ �,

for all < ≥ 0 large enough, we have

3 (* (C<)G<, �) ≤ Y/2,

a contradiction with (2.11). �

As a direct consequence of Proposition 2.46, we deduce the following result.

Proposition 2.47 Let � ⊂ " be a compact subset which is positively invariant for
*. The following properties are equivalent

(i) � attracts the compact subsets of ";
(ii) � is stable and attracts the point of ";

Definition 2.48 A nonempty, compact and invariant subset � ⊂ " is said to be

(i) an attractor for* if � attracts one of its neighborhoods;
(ii) a global attractors for* if � is an attractor that attracts every point in ";
(iii) a strong global attractor for* if � attracts every bounded subset of " .

We remark that the notion of attractor and global attractor was used in [104, 160,
189, 238]. The strong global attractor was defined as global attractor in [93, 207].
As we will see in the following the notion of strong global attractor is not applicable
(in general) in the context of the uniform persistence.

A discrete time version of the following theorem was proof by Magal and Zhao
[160]. The proof of the following Theorem is inspired by [93, Theorem 2.4.2,
Lemmas 2.4.4 and 2.4.5]. This result is also similar to the result about existence of
global attractors in [189, Theorem 23.12] for continuous-time semiflows.

Theorem 2.49 (Global attractor in ") Let * be a continuous semiflow on a com-
plete metric space (", 3). Assume that

(i) * is point dissipative;
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(ii) * is asymptotically smooth;
(ii) The positive orbits for* of compact subsets of " are bounded.

Then* has a global attractor � ⊂ " . Moreover, � attracts any subset � ⊂ " with
an eventually bounded positive orbit, that is to say that � attract any subset � ⊂ "
satisfying

W+ (* (C0) (�)) =
⋃
C≥C0

* (C)�,

is bounded for some C0 ≥ 0 (large enough).

Remark 2.50 As a direct consequence of Proposition 2.46, the subset � is a stable
compact invariant for* in (", 3).

Proof Assume that (i) is satisfied. Since* is point dissipative, we can find a closed
and bounded subset �0 in " such that for each G ∈ ", there exists C0 = C0 (G) ∈ �,

* (C)G ∈ �0,∀C ≥ C0.

Define
� (�0) = {H ∈ �0 : * (C)H ∈ �0,∀C ≥ 0} .

Then,
* (C)� (�0) ⊂ � (�0),∀C ≥ 0,

and for every G ∈ " , there exists C0 = C0 (G) ≥ 0,

* (C0)G ∈ � (�0).

Since � (�0) is non-empty closed and bounded, and * is asymptotically smooth,
Proposition 2.39 implies that l(� (�0)) is compact invariant, and attracts the points
of " .

Assume, in addition, that (ii) is satisfied. We claim that there exists an Y > 0 such
that

W+ (# (l(� (�0)), Y))

is bounded. Assume, by contradiction, that

W+
(
#

(
l(� (�0)),

1
= + 1

))
is unbounded for each = > 0.

Let I ∈ " be fixed. Then we can find a sequence G= ∈ #
(
l(� (�0)), 1

=+1

)
, and a

sequence C= ≥ 0 such that
3 (I,* (C=)G=) ≥ =.

Since l(� (�0)) is compact, we can find a convergent sub-sequence G=? → G ∈
l(� (�)) (up to a sub-sequence), as ? → +∞. Since

� :=
{
G=? : ? ≥ 0

}
∪ {G}
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is compact, the assumption (ii) implies that W+ (�) is bounded, and we obtain a
contradiction.

Therefore � = W+ (# (l(� (�0)), Y)) is bounded for Y > 0 small enough. Then �
is closed, bounded, and positively invariant for*. Since l(� (�0)) attracts points of
" for*, and

l(� (�0)) ⊂ # (l(� (�0)), Y) ⊂ �̊.

Sol(� (�0)) attracts the point of" , we deduce that # (l(� (�0)), Y) is an absorbing
set of " , it follows that for each G ∈ ", there exists C0 = C0 (G) ≥ 0 such that

* (C)G ∈ # (l(� (�0)), Y) ⊂ �̊,∀C ≥ C0.

Claim 2.51 Since* is a continuous semiflow, it follows that for each compact subset
� of " , there exists an integer C0 ≥ 0 such that

* (C0)� ⊂ �.

Proof (Proof of the claim:) Assume by contradiction that

* (C)� ⊄ �,∀C ≥ 0.

Then there exists a C= →∞ such that

* (C=)G= ∉ �,∀= ≥ 0.

Moverover, the subset � is positively invariant by*, so we deduce that

* (C)G= ∉ �,∀C ∈ [0, C=],∀= ∈ N. (2.12)

But since � is compact, we can assume that G= → G ∈ �. By construction there
exists C0 > 0 such that

* (C)G ∈ �̊,∀C ≥ C0.

But the inverse image* (C0)−1�̊ is open (since* is continuous) and contains G. Now
since G= → G, we deduce that there exists an integer =0 ≥ 0 such that

G= ∈ * (C0)−1�̊,∀= ≥ =0.

Therefore
* (C0)G1 ∈ �̊,∀= ≥ =0,

and we obtain a contradiction with (2.12). The proof of the claim is completed. �

By using the Claim 2.51, we deduce that

� = l(�)

attracts every compact subset of " .
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Fix a bounded neighborhood + of �. Since* is continuous, we can apply Propo-
sition 2.46, it follows that � is stable, and hence, there is a neighborhood , of �
such that* (C) (,) ⊂ +, ∀C ≥ 0. Clearly, the set

, ′ := ∪C≥0* (C),

is a bounded neighborhood of �, and

* (C), ′ ⊂ , ′,∀C ≥ 0.

Since* is asymptotically smooth, there is a compact set � ⊂ , ′ such that � attracts
, ′. By Proposition 2.39, l(, ′) is non-empty, compact, invariant for*, and attracts
, ′. Since � attracts l(, ′), we deduce that

l(, ′) ⊂ �.

We conclude that � is a global attractor for*.
To prove the last part of the theorem, without loss of generality we assume that �

is a bounded subset of " and W+ (�) is bounded. We set

 = W+ (�).

Then
* (C) ⊂  ,∀C ≥ 0.

Since  is closed and bounded and * is asymptotically smooth, so we deduce that
there exists a compact � which attracts  for*. Note that

* (C)� ⊂ * (C)W+ (�) ⊂ * (C) , ∀C ≥ 0.

Thus, � attracts � for *. By Proposition 2.39, we deduce that l(�) is non-empty,
compact, invariant for* and attracts �. Since � is attracts the compact subset of "
for*, we deduce that

l(�) ⊂ �,

and � attracts � for*. �

2.12 Uniform Persistence and Global Attractors

Let (", 3) be a complete metric space, and d : " → [0, +∞) a continuous function.
We decompose " into the open subset

"0 := {G ∈ " : d(G) > 0} ,

and the closed subset
m"0 := {G ∈ " : d(G) = 0} .

Then by using the definition of "0 and m"0, we deduce that
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" = "0 ∪ m"0,

and
"0 ∩ m"0 = ∅.

Throughout this section, we assume that {* (C)}C ∈� is a continuous semiflow, and

* (C)"0 ⊂ "0,∀C ≥ 0.

Definition 2.52 The region "0 is called the interior region, and m"0 is called the
boundary region.

Remark 2.53 The boundary region m"0 does not correspond (in general) to the
topological notion of boundary of "0 in the sense of the (", 3) (i.e. we may have
m"0 ⊄ "0 in general).

Remark 2.54 In most of the examples, the boundary region m"0 is also positively
invariant by *. But this assumption is not needed to prove the existence of a global
attractors in "0.

Example 2.55 (of function d(G)) The function d(G) measure the distance of G to
the boundary region m"0. A typical example of function d is the following

d(G) = 3 (G, m"0) = inf
H∈m"0

3 (G, H).

The idea in the following definition is to consider m"0 as part infinite.

Definition 2.56 A subset � ⊂ "0 is said to be d-strongly bounded if � is bounded
in (", 3), and

inf
G∈�

d(G) > 0.

Example 2.57 (of function d(G)) If

" = !1
+ (0, 1),

and
m"0 = {0!1 } , and "0 = !

1
+ (0, 1)\ = {0!1 } .

There are many ways to measure the distance of a non-negative function D to the
null function 0!1 .

We can take

d(D) =
∫ 1

0
j(f)D(f)3f

where j ∈ �+ ( [0, 1],R) and

j(G) > 0,∀G ∈ (0, 1).
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So in particular we allow j(0) and j(1) to be 0R.
Then the distance

3 (D, {0!1 }) = ‖D‖!1 =

∫ 1

0
D(f)3f,

which corresponds only to the case j ≡ 1. We will discuss this more in the section
devoted to the examples at the end of this chapter.

Remark 2.58 If we change the function d, we will change the d-bounded sets.

Definition 2.59 (i) The semiflow {* (C)}C ∈� is said to be d-uniformly persistent
if there exists Y > 0 such that

lim inf
C→+∞

d (* (C)G) ≥ Y, ∀G ∈ "0.

(ii) The semiflow {* (C)}C ∈� is said to be weakly d-uniformly persistent if there
exists Y > 0 such that

lim
C→+∞

sup d (* (C)G) ≥ Y, ∀G ∈ "0.

(iii) The set m"0 is said to be d-ejective for * if there exists Y > 0 such that for
every G ∈ " with 0 < d (G) < Y, there is C0 = C0 (G) ≥ 0 such that

d (* (C0)G) ≥ Y.

For a given open subset"0 ⊂ " , let m"0 := "\"0. Then if m"0 ≠ ∅,we can use
the continuous function d : " → [0,∞) defined by d(G) = 3 (G, m"0) , ∀G ∈ " ,
to obtain the traditional definition of persistence.

Proposition 2.60 Assume that there is a compact subset� of " which attracts every
point in " for*. Then the following statements are equivalent:

(i) * is weakly d-uniformly persistent;
(ii) * is d-uniformly persistent;
(iii) m"0 is d-ejective for*.

Proof The observations (i)⇔(iii) and (ii)⇒(i) are obvious. Let us prove that (i)⇒(ii).
Let Y > 0 be fixed such that

lim
C→+∞

sup d (* (C)G) ≥ Y,∀G ∈ "0. (2.13)

Then for each G ∈ "0, and each C ≥ 0, there exists A ≥ 0 such that d (* (C + A)G) ≥
Y/2. Assume that * is not d-uniformly persistent. Then we can find a sequence
{G<}<≥0 ⊂ "0 such that

lim
C→+∞

inf d (* (C)G<) ≤
1

< + 1
,∀< ≥ 0. (2.14)

By using the fact that � every point of " and (2.13), we deduce that there exists
C★< ≥ 0 such that
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3 (* (C)G<, �) ≤
1

< + 1
,∀C ≥ C★<, and d

(
* (C★<)G<

)
≥ Y/2.

By using (2.14) we deduce that there exists ;< > 0 such that

d
(
* (C★< + ;<)G<

)
≤ 2
< + 1

.

Assuming that Y/2 > 2
< + 1

(which is true for all < large enough), we deduce that
there exists C< ≥ C★< such that

d (* (C<)G<) ≥ Y/2, and d (* (C< + ;)G<) ≤ Y/2, ∀; ∈ (0, ;<] .

We conclude that there exist ;< > 0 and C< ≥ 0 such that

3 (* (C<)G<, �) ≤
1

< + 1
,

d (* (C<)G<) ≥ Y/2,

d (* (C< + ;)G<) ≤ Y/2, ∀; ∈ (0, ;<] ,

and
d (* (C< + ;<)G<) ≤

2
< + 1

. (2.15)

Since � is compact, by taking a subsequence that we denote with the same index,
we can always assume that H< = * (C<)G< → H ∈ �. Since d is continuous and *
is a continuous semiflow, we deduce that

d (H) ≥ Y/2, and d (* (;)H) ≤ Y/2, ∀; ∈
[
0, ;★

)
,

where ;★ = lim<→+∞ inf ;<. Since� = {H< : < ≥ 0}∪{H} is compact, and (C, G) →
* (C)G is a continuous map, we deduce that for each g > 0,

⋃
C ∈[0,g ]∩�

* (C)� is a

compact subset which is included in "0. Hence for each g > 0,
⋃

C ∈[0,g ]∩�
* (C)� is

d-bounded. By using (2.15), we deduce that

;★ = +∞.

Otherwise, assume by contradiction that we can find a sub-sequence ;<? → ;̂ as
? →∞. By continuity of*, and by (2.15), we deduce that

d(* (;<? )H<? ) → d(* ( ;̂ )H) = 0,

and since d (H) ≥ Y/2, we obtain a contradiction with the fact that "0 is positively
invariant by*.

We conclude that
lim
C→+∞

sup d (* (C)H) ≤ Y/2 < Y,

which contradicts (2.13). �
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We note that the concept of general d-persistence was used in [200, 210, 238].
It was also shown in [210] that the d-uniform persistence implies the weak d-
uniform persistence for non-autonomous semiflows under appropriate conditions.
The following result shows that the notion of d-uniform persistence is independent
of the choice of continuous function d.

Proposition 2.61 Let b : " → [0, +∞) be a continuous function such that m"0 =
{G ∈ " : b (G) = 0}. Assume that there is a compact subset � of " which attracts
every point in" for*. Then* is d-uniformly persistent if and only if* is b-uniformly
persistent.

Proof It suffices to prove that d-uniform persistence implies b-uniform persistence
since the problem is symmetric. Let us first remark that * is d-uniformly persistent
if and only if there exists Y > 0 such that

inf
G∈"0

inf
H∈l (G)

d(H) ≥ Y,

where l(G) is the omega-limit set of the positive orbit of G. Define

�l = ∪G∈"0l(G), and + = {H ∈ " : d(H) ≥ Y} .

Then
inf
G∈"0

inf
H∈l (G)

d(H) = inf
G∈�l

d(G) ≥ Y.

Clearly, �l ⊂ �, so �l is compact. Since �l is include in+ ⊂ "0 which is closed,
we deduce that �l ⊂ + ∩� ⊂ "0. So �l ⊂ "0 is compact, and hence, there exists
[ > 0 such that inf

G∈�l b (G) ≥ [, which implies that* is b-uniformly persistent.�

Definition 2.62 Let � be a nonempty subset of " . � is said to be ejective for
* if there exists a neighborhood + of � such that for every G ∈ + \ �, there is
C0 = C0 (G) ≥ 0 such that

* (C0)G ∈ " \+.

Proposition 2.63 Assume that m"0 ≠ ∅ and that there is a compact subset � of "
which attracts every point in " for*. Then the following statements are equivalent

(i) * is d-uniformly persistent;
(ii) m"0 is ejective for*.

Proof Proof of (i) ⇒ (ii). Assume that (i) is true. Let Y > 0 be fixed such that

lim
C→+∞

sup d (* (C)G) ≥ Y,∀G ∈ "0.

Then it is clear that m"0 is ejective for*, with + = {G ∈ " : d (G) ≤ Y/2}.
Proof of (ii) ⇒ (i). Conversely, assume that m"0 is ejective for *. Let + be a
neighborhood of m"0 such that for every G ∈ "0 ∩ +, there is =0 = =0 (G) ≥ 0
such that * (C0)G ∈ " \ + . By Proposition 2.61, it is sufficient to prove that * is
d-uniformly persistent when d (G) = 3 (G, m"0). Assume, by contradiction, that *
is not d-uniformly persistent. Then for each = ≥ 1, there exists G= ∈ "0, such that
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lim
C→+∞

sup d (* (C)G=) ≤
1
=
.

By the attractivity of �, it follows that for each = ≥ 1, there exists C= ≥ 0 such that
each H= := * (C=)G= ∈ "0 satisfies

3 (* (B)H=, �) ≤
2
=
, and 3 (* (B)H=, m"0) ≤

2
=
,∀B ≥ 0.

Since � is compact and + is a neighborhood of m"0, there exists X > 0 such that

{G ∈ " : 3 (G, �) ≤ X, and 3 (G, m"0) ≤ X} ⊂ +.

Let =0 ≥ 2/X be fixed. Then we have H=0 ∈ "0, and

3
(
* (B)H=0 , �

)
≤ X, and 3 (* (B)H=, m"0) ≤ X,∀B ≥ 0.

Thus, we obtain
H=0 ∈ "0 ∩+, and* (B)H=0 ∈ +,∀B ≥ 0,

a contradiction with the property (ii). �

Observe that "0 is an open subset in (", 3). In order to make "0 become a
complete metric space, we define a new metric function 30 on "0 by

30 (G, H) =
���� 1
d (G) −

1
d (H)

���� + 3 (G, H), ∀G, H ∈ "0. (2.16)

Lemma 2.64 ("0, 30) is a complete metric space.

Proof It is easy to see that 30 is a distance. Let {G=}=≥0 be a Cauchy sequence in
("0, 30). Since 3 (G, H) ≤ 30 (G, H), ∀G, H ∈ "0, we deduce that {G=}=≥0 is a Cauchy
sequence in (", 3), and there exists G ∈ ", such that 3 (G=, G) → 0 as = → +∞.
To prove that 30 (G=, G) → 0 as =→ +∞, it is sufficient to show that G ∈ "0. Given
Y > 0, since {G=}=≥0 is a Cauchy sequence in ("0, 30), there exists =0 ≥ 0 such that
30 (G=, G?) ≤ Y, ∀=, ? ≥ =0. In particular, we have 30 (G=, G=0 ) ≤ Y,∀= ≥ =0. Then���� 1

d (G=)
− 1
d

(
G=0

) ���� ≤ Y,∀= ≥ =0,

So there exists A > 0 such that inf=≥0 d (G=) ≥ A . Since d is continuous and
3 (G=, G) → 0 as = → +∞, we deduce that d (G) ≥ A, and hence G ∈ "0. Thus,
("0, 30) is complete. �

We denote for each couple of subsets �, � ⊂ ",

X (�, �) = sup
G∈�

inf
H∈�

3 (G, H),

and if �, � ⊂ "0, we denote
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X0 (�, �) = sup
G∈�

inf
H∈�

30 (G, H).

Lemma 2.65 The following two statements are valid:

(i) Let {�C }C ∈� be a family of subsets of "0, where � is a unbounded subset of
[0, +∞). If � ⊂ "0 is compact in (", 3) and limC→∞ X (�C , �) = 0, then
limC→∞ X0 (�C , �) = 0.

(ii) If * is asymptotically smooth in (", 3), then * is asymptotically smooth in
("0, 30).

Proof Proof of (i). Let
^ :=

1
2

inf
G∈�

d(G) > 0.

Assume, by contradiction that

lim sup
C→+∞

X0 (�C , �) > Y > 0.

Then we can find a sequence
{
C?

}
?≥0 ⊂ � such that C? → +∞, ? → +∞, and a

sequence
{
GC?

}
?≥0 ∈ �C? ⊂ "0 such that

30

(
GC? , �

)
≥ Y/2,∀? ≥ 0.

Since � attracts �C in (", 3), we deduce that

3

(
GC? , �

)
→ 0, as ? → +∞.

So without loss of generality, we can assume that there exists G ∈ � such that
3 (GC? , G) → 0, as ? → +∞. Since d is continuous and d(G) > ^, there exists ?0 ≥ 0
such that d(GC? ) ≥ ^,∀? ≥ ?0. Thus, we have

0 < Y/2 ≤ 30

(
GC? , �

)
≤ 30

(
GC? , G

)
≤ ^−2 ��d(GC? ) − d(G)��+3 (GC? , G) → 0 as ? → +∞,

a contradiction.

Proof of (ii). Let � be a bounded subset in ("0, 30) such that

* (C)� ⊂ �,∀C ≥ 0.

Since * is asymptotically smooth in (", 3), there exists a compact subset � ⊂ "
which attracts � for* in (", 3). That is

lim
C→∞

X (* (C)�,�) = 0.

The subset �0 = � ∩ � ⊂ "0 is compact in (", 3), and attracts � for * in (", 3).
It easily follows that �0 is also compact in ("0, 30). Since �0 attracts � for * in
(", 3), the property (i) implies that �0 attracts � for* in ("0, 30). �
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The main result of this section is the following theorem.

Theorem 2.66 (Global attractor in "0) Assume that * is asymptotically smooth,
d-uniformly persistent, and * has a global attractor � in " . Then * has a global
attractor �0 in ("0, 3). Moreover, for each subset � of "0, if there exists C ≥ 0 such
that W+ (* (C) (�)) is d-strongly bounded, then �0 attracts � for*.

Proof Since* is point dissipative and d -uniformly persistent,* is point dissipative
in ("0, 30). Moreover, Lemma 2.87 implies that * is asymptotically smooth in
("0, 30). It is clear that * is continuous in ("0, 30). Let � be a compact subset
in ("0, 30), and {G=}=≥0 a bounded sequence in W+ (�) in ("0, 30). Then G= =
* (C=)I=, I= ∈ �, ∀= ≥ 1, and the sequence {G=}=≥0 is d-strongly bounded in
(", 3). If {C=}=≥0 is bounded by ) > 0, since

⋃
C ∈[0,) ]∩�

* (C)� is compact a compact

subset of "0, we deduce that {G?} has a convergent subsequence in ("0, 30). If
{C=}=≥0 is an bounded, by taking a subsequence, we can assume that C= → +∞, as
=→ +∞.

Since � is also compact in (", 3), we have limC→∞ X(* (C) (�), �) = 0. Thus,
{G=}=≥0 has a convergent subsequence G=: → G in (", 3) as : → ∞. By the
continuity of d and the d-strong boundedness of {G=}=≥0, it follows that d(G) > 0,
i.e., G ∈ "0, and hence, G?: → G in ("0, 30) as : → ∞. Thus, Lemma 2.83 (with
C0 = 0) implies that positive orbits of compact sets are bounded for * in ("0, 30).
Then the conclusion for* in ("0, 3) follows from Theorem 2.49, as applied to* in
("0, 30). �

As a consequence of Proposition 2.46, we deduce that �0 is a stable set for * with
respect to the original distance 3.

Corollary 2.67 (Stability of the global attractor in "0) Assume that �0 is a global
attractor for* in ("0, 3). Then �0 is stable invariant subset for* in (", 3).

Proof Since �0 is compact, we must have

[ := inf
G∈�0

d(G) > 0.

The result follows from that fact that �0 attracts the compact subsets of

{G ∈ " : d(G) ≥ [/2}

which is a neighborhood of �0. �

2.13 Coexistence Steady States

In this section, we establish the existence of coexistence steady state (i.e., the fixed
point in "0) for uniformly persistent dynamical systems.

Definition 2.68 A map ) : " → " is said to be ^-condensing if ) takes bounded
sets to bounded sets and
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^() (�)) < ^(�).

for any nonempty bounded set � ⊂ " with 0 < ^(�) < +∞.

We assume that " is a closed and convex subset of a Banach space (-, ‖·‖), that
d : " → [0, +∞) is a continuous function such that "0 = {G ∈ " : d(G) > 0} is
nonempty and convex, and that ) : " → " is a continuous map with ) ("0) ⊂ "0.
For convenience, we set m"0 := " \ "0.

Assume that ) : "0 → "0 has a global attractor �0. It follows that for every
compact set  ⊂ "0, there exists an open neighborhood of  which is attracted by
�0. This property of �0 is enough for the arguments in the proof of [233, Theorem
2.3] (see also [238, Theorem 1.3.6]) instead of the property that �0 attracts d-
strongly bounded sets in "0. Thus, the proof of [233, Theorem 2.3] actually implies
the following fixed point theorem.

Theorem 2.69 Assume that ) is ^-condensing. If ) : "0 → "0 has a global
attractor �0. Then ) has a fixed point G0 ∈ �0.

2.14 Two Examples

In this section, we first provide four examples of discrete and continuous-time semi-
flows which admit global attractors, but no strong global attractors in the complete
metric spaces ("0, 30) introduced in section 3. The examples show that our notion
of global attractors is needed.

2.14.1 Asymptotically smooth semiflows on (S0, d0)

Let � ( [0, 1] ,R) be endowed with the usual norm ‖i‖∞ = sup0∈[0,1] |i(0) |. Let
" := �+ ( [0, 1],R) be endowed with the metric 3 (G, H) = ‖G − H‖, and ) : " → "

be defined by

) (i) = X
FV (i)

1 + FV (i)
1[0,1] ,

where 1[0,1] (0) = 1,∀0 ∈ [0, 1], and FV (i) =
∫ 1

0 V(0)i(0)30,∀i ∈ - . We assume
that

(A1) X > 1, V ∈ � ( [0, 1] ,R),
∫ 1

0 V(0)30 = 1, V(0) > 0,∀0 ∈ [0, 1), and V(1) = 0.

Consider the following discrete time system on ":

D=+1 = ) (D=) ,∀= ≥ 0, and D0 ∈ ".

It is easy to see that the map ) is continuous, and maps bounded sets into compact
sets of " . Note that ) (") ⊂ [0, X] 1[0,1] =

{
U1[0,1] : U ∈ [0, X]

}
is bounded. So )

compact and point dissipative, and has a strong global attractor in " . Set
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m"0 = {0} , and "0 = " \ {0} , and d(G) = ‖G‖∞ .

Clearly, ) ("0) ⊂ "0, ) (m"0) ⊂ m"0, and the fixed points of ) are 0 and D =
(X − 1) 1[0,1] . Then it is easy to see that for each i ∈ "0, )

< (i) → D, as < → +∞.
So ) is d-uniformly persistent. Let U = (X − 1) and � := {G ∈ " : ‖G‖∞ = U} .
Since V(1) = 0, we have FV (�) = (0, U]. Moreover, ) (�) =

{
U1[0,1] : U ∈ (0, U]

}
,

and )= (�) = ) (�), ∀= ≥ 1. Thus, there exists no compact subset in "0 that attracts
� for) . In particular, there is no strong global attractor for) : ("0, 30) → ("0, 30),
where 30 is defined as in (2.16).

2.14.2 +-contracting maps on (S0, d0)

In this subsection, we construct ^-contractingmaps on ("0, 30) such that they admits
a global attractor, but no strong global attractor.

We set

- = !1 ((0, +∞) ,R) × R, -+ = !1
+ ((0, +∞) ,R) × R+,

and endow - with the product norm ‖(i, H)‖ = ‖i‖!1 + |H |. Define 1[0,1] ∈ - by
1[0,1] (;) = 1, ∀; ∈ (0, 1), and 1[0,1] (;) = 0, ∀; ∈ [1,∞). Let 0, 1 and 2 be three real
numbers. Define ) : -+ → -+ by ) (i, H) = ()1 (i, H) , )2 (i, H)) with

)1 (i, H) = 0i(· + 1) +
[
0
∫ 1

0 i(;)3; + 2
∫ 1

0 i (;)3;
1+‖ (i,H) ‖

]
1[0,1] ,

)2 (i, H) = 0H + 1 ‖ (i,H) ‖
1+‖ (i,H) ‖ .

We assume that

(A3) 0 ∈ (0, 1), 1 > 0, 2 > 0,
√
0 < 0 + 1 < 1, and 0 + 2 > 1.

Consider the discrete time system

G=+1 = ) (G=) ,∀= ≥ 0, and G0 ∈ -+.

It is easy to see that)= (0, H) → 0, as =→ +∞. Clearly,) is not uniformly persistent
for -+ \ {0}. We will find a closed subset " of -+ such that it contains 0 and is
positively invariant for ) , and show that ) is uniformly persistent for " \ {0}.

Lemma 2.70 There exists a non-decreasing and rigth-continuous function 5 :
R+ → R+ such that 5 (0) = 0, 5 (G) > 0,∀G > 0, limG→0 5 (G) = 0, and the set
" := {(i, H) ∈ -+ : H ≤ 5 (‖i‖)} is positively invariant for ) .

Proof We define � : R2
+ → R2

+ by

� (G1, G2) =
(
0G1, 0G2 + 1

G1 + G2
1 + G1 + G2

)
, ∀G = (G1, G2) ∈ R2

+.

Then � is non-decreasing on R2
+. Set
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j(C) = (C0 + (1 − C), 1) , ∀C ∈ [0, 1] .

By induction, we define j : R+ → R2
+ by

j(C) = � (j(C − 1)), ∀C ∈ (=, = + 1], ∀= ≥ 1.

Note that j(1)1 = � (j(0))1 and 0 < 1. Then the function C → j(C)1 is strictly
decreasing and continuous. Since � (1, 1) ≤ (0, 1), the function C → j(C)2 is non-
increasing and left continuous.Moreover, since 0+1 < 1,we have limC→+∞ j(C) = 0.
We further set

j(C) = (1 − C, 1) , ∀C ∈ (−∞, 0] .

Since j(C)1 is strictly decreasing in C ∈ R, we can define

5 (G) =
{
j(j(G)−1

1 )2, if G > 0,
0, if G = 0.

It is easy to see that 5 has the desired properties.
Let � :=

{
(G1, G2) ∈ R2

+ : G2 ≤ 5 (G1)
}
. Since 5 is non-decreasing and right-

continuous, it easily follows that � is closed. Now we show that � (�) ⊂ �. Let
G = (G1, G2) ∈ �, then G2 ≤ 5 (G1) . If G1 = 0, there is nothing to prove because
� (0) = 0. Assume that G1 > 0, then there exists C ∈ R such that j(C)1 = G1, and
hence, G2 ≤ 5 (G1) = j(C)2. Clearly, G = (G1, G2) ≤ j(C), and � (G) ≤ � (j(C)). In
the case where C ≥ 0, we have

j(C + 1)1 = � (j(C))1 = � (G)1 ,

and hence,
5 (� (G)1) = j(C + 1)2 = � (j(C))2 ≥ � (G)2 ,

which implies that � (G) ∈ �. In the case where C ≤ 0, we have

G1 ≥ � (G)1 = � (j(C))1 = 0j(C)1 = 0 (1 − C) ≥ 0 = j(1)1,

and hence, there exists B ∈ [C, 1] such that j(B)1 = � (G)1. It then follows that

5 (� (G)1) = j(B)2 = 1 ≥ � (j(C))2 ≥ � (G)2,

which implies that � (G) ∈ �. This proves that � (�) ⊂ �.
Finally, we prove that) (") ⊂ " . For any (i, H) ∈ " , we have (‖i‖, H) ∈ �, and

hence, the positive invariance of � for � implies that � (‖i‖, H)2 ≤ 5 (� (‖i‖, H)1).
Note that ‖)1 (i, H)‖ ≥ 0‖i‖ = � (‖i‖, H)1 and )2 (i, H) = � (‖i‖, H)2. By the
monotonicity of 5 , it then follows that

)2 (i, H) = � (‖i‖, H)2 ≤ 5 (� (‖i‖, H)1) ≤ 5 (‖)1 (i, H)‖),

which implies that ) (i, H) ∈ " . Thus, " is positively invariant for ) . �

Now we consider ) : " → " , where " is endowed with the usual distance
3 (G, Ĝ) = ‖G − Ĝ‖. We set
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m"0 = {0} , "0 = " \ {0} , and d(G) = ‖G‖ .

Since ) is the sum of a compact operator and a linear operator with norm being 0,
we have ^ () (�)) ≤ 0^ (�) for any bounded set � ⊂ " . Thus, ) is ^-contraction.
Moreover, for each G ∈ ", we have ‖) (G)‖ ≤ 0 ‖G‖ + 1 + 2, and hence

‖)= (G)‖ ≤ 0= ‖G‖ +
(
=−1∑
8=0

08

)
(1 + 2), ∀= ≥ 1.

It then follows that � =
{
G ∈ " : ‖G‖ ≤ 1+2

1−0
}
is positively invariant for ) , and

attracts every bounded subset of " for ) . So ) : (", 3) → (", 3) has a strong
global attractor.

Let Y > 0 be fixed such that 0 + 2
1+Y > 1. We claim that

lim sup
=→∞

‖)=G‖ ≥ Y, ∀G = (i, H) ∈ "0.

Assume, by contradiction, that lim sup=→∞ ‖)=G‖ < Y for some G = (i, H) ∈ "0.We
set (i=, H=) = )=G, ∀= ≥ 0. By the definition of " , we have i ∈ !1

+ ((0, +∞) ,R) \
{0}. It then follows that there exists =0 ≥ 0 such that

∫ 1
0 i=0 (;)3; > 0 and∫ 1

0
i=+1 (;)3; ≥

(
0 + 2

1 + Y

) ∫ 1

0
i= (;)3;,∀= ≥ =0.

Thus, we obtain ∫ 1

0
i= (;)3; → +∞, as =→ +∞,

a contradiction. By Proposition 2.60, we conclude that ) is d-uniform persistence.
Since ) : (", 3) → (", 3) has a global attractors, it follows from Theorem 3.12
that ) : ("0, 30) → ("0, 30) has a global attractor.

To avoid possible confusion, we denote by ^0 the Kuratowski measure of non-
compactness on the complete metric ("0, 30). We now consider ) : ("0, 30) →
("0, 30). Let Y > 0 be fixed such that

√
0 < 3 := 0 + 1

1 + Y < 1.

Then for each G ∈ " , we have

‖) (G)‖ ≥ 0 ‖G‖ + 1 ‖G‖
1 + ‖G‖ ≥ 3min(Y, ‖G‖).

Let � ⊂ "0 be a d-bounded set. We set d0 = inf
G∈�

d(G). Then for each G ∈ �, we
obtain

‖) (G)‖ ≥ 0 ‖G‖ + 1 ‖G‖
1 + ‖G‖ ≥ 3min(Y, ‖G‖).

By induction, it follows that
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d ()= (G)) ≥ 3= min (Y, d0) , ∀= ≥ 1, ∀G ∈ �.

Thus, for each G, H ∈ �, we have

30 ()= (G), )= (H)) =
���� 1
d ()= (G)) −

1
d ()= (H))

���� + ‖)= (G) − )= (H)‖
≤

[
1

d ()= (G)) d ()= (H)) + 1
]
‖)= (G) − )= (H)‖

≤
[

1
32= min (Y, d0)2

+ 1
]
3 ()= (G) , )= (H)),

and hence,

^0 ()= (�)) ≤
[

1
32= min (Y, d0)2

+ 1
]
^ ()= (�))

≤ 0=
[

1
32= min (Y, d0)2

+ 1
]
^ (�) .

Since 3 >
√
0, we obtain ^0 ()= (�)) → 0 as =→ +∞. So ) : ("0, 30) → ("0, 30)

is ^0-contracting.
It remains to show that ) : ("0, 30) → ("0, 30) has no strong global attractor.

Let X > 0 be fixed, and consider the d-strongly bounded set

�X = {G ∈ " : d (G) = X} .

For each < ≥ 0, we set G< := (i<, 0) with i< = X1[<,<+1] , and

G<= :=
(
i<= , H

<
=

)
= )= (G<) , ∀= ≥ 0.

Then for each < ≥ 1 and each = ∈ {0, ..., < − 1}, we have
∫ 1

0 i<= (;)3; = 0, and
hence, {

i<
=+1 (·) = 0i

<
= (· + 1) + 0

∫ 1
0 i<= (;)3;1[0,1] (·)

H<
=+1 = 0H

<
= + 1

‖G<= ‖
1+‖G<= ‖ .

Thus, for each < ≥ 1 and each = ∈ {0, ..., < − 1}, we obtain

G<=+1

 ≤ (0 + 1) 

G<= 

 ≤ (0 + 1)= X.
It follows that infG∈�X d ()= (G)) → 0, as = → +∞. So the ^0-contracting map
) : ("0, 30) → ("0, 30) has a global attractor, but no strong global attractor.
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2.15 Notes and Remarks

• Add some comment about the exclusion principle
• Continuity of attractors with respect to a parameter

The section devoted to the uniform persistence is inspried by Thieme [211], Smith
and Zhao [200], and Magal and Zhao [160]. More result on uniform persistence can
be founded in the books of Smith and Thieme [203] and Zhao [237].

More results about uniform persistence

Some book on global attractors

For more reading on global attractors theory we refer to the books of Temam
[207], Hale [93], Sell and You [189], Raugel [177], Chueshov [43], Robinson [182],
Cholewa, Dlotko, and Chafee [29], Carvalho Langa and Robinson [24], Zhao [238],

Please up date with more book on global attractors

So far, the only book similar to this chapter is the book of Zhao [238], where only
the discrete-time case is considered. The novelty in this chapter is that we provide a
global attractors theory in the context of uniform persistence for both discrete and
continuous time dynamical systems.

The following text is taken from the book of Zhao

Theorem 1.1.1 is due to LaSalle [130]. Theorem 1.1.3 (a) with =0 = 1 is due to
Billotti and LaSalle [36]. Theorem 1.1.4 is due to Nussbaum [257] and Hale and
Lopes [95]. Theorems 1.1.2 and 1.1.3, Lemma 1.1.5, and their proofs are adapted
from Magal and Zhao [160].

Section 1.2 is adapted from Hirsch, Smith and Zhao [104]. Lemma 1.2.4 and
Example 1.2.2 are taken from Smith and Zhao [200].

The notion of chain recurrencewas introduced byConley [45]. Bowen [20] proved
that omega limit sets of precompact orbits of continuous invertible maps are inter-
nally chain transitive. Robinson [181] proved that omega limit sets of precompact
orbits of continuous maps are internally chain recurrent. Thieme [208] [209] [209]
studied the long-term behavior in asymptotically autonomous differential equations,
andMischaikow, Smith, and Thieme [166] discussed chain recurrence and Liapunov
functions in asymptotically autonomous semiflows. Asymptotic pseudo-orbits were
introduced by Benaïm and Hirsch [16] for continuous-time semiflows. The embed-
ding approach in the proof of Lemma 1.2.2 was used earlier by Zhao [234] [235] to
prove that the omega limit set of a precompact orbit of an asymptotically autonomous
process is nonempty, compact, invariant, and internally chain recurrent for the lim-
iting map (see [234, Theorem 2.1] and [235, Theorem 1.2] ). Freedman and So [79,
Theorem 3.1] proved the Butler–McGehee lemma of limit sets for continuous maps.
By an embedding approach and [79, Theorem 3.1], Hirsch, Smith and Zhao [105,
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Lemma 3.3] proved Lemma 1.2.7. Theorem 1.2.1 was proved earlier by Smith and
Zhao [200, Lemma 4.1].

Uniform persistence (permanence) has received extensive investigation for both
continuous- and discrete-time dynamical systems.We refer toWaltman [221],Hutson
and Schmitt [122], and Hofbauer and Sigmund [106] for surveys and reviews, and
to Thieme [210], Zhao [236], Smith and Thieme [202], and references therein for
further developments.

Subsections 1.3.1 and 1.3.2 are adapted from Hirsch, Smith and Zhao [164] and
Smith and Zhao [340]. Theorem 1.3.3 was generalized to non-autonomous semiflows
by Thieme [368, 369]. The concept of a generalized distance function was motivated
by ideas in Thieme [369], where uniform d-persistence was developed for nonau-
tonomous semiflows. General theorems on uniform per- sistence were established
earlier by Hale and Waltman [146], Thieme [365] for autonomous semiflows, and
Freedman and So [122], Hofbauer and So [168] for continuous maps.

Various concepts of practical persistence were utilized by Hutson and Schmitt
[186], Cantrell, Cosner and Hutson [54], Hutson and Zhao [443], Cosner [67],
Cantrell and Cosner [52], Hutson and Mischaikow [184], Smith and Zhao [336,
337], and Ruan and Zhao [298]. The p-function in Exam- ple 1.3.1 was employed
by Thieme [369] for a scalar functional differential equation. Two p-functions in Ex-
ample 1.3.2 were used by Smith and Zhao [340] and Zhao [439], respectively, for an
autonomous microbial population growth model and almost periodic predator–prey
reaction–diffusion systems.

Subsection 1.3.3 is taken from Magal and Zhao [241], and Subsection 1.3.4 is
adapted from Zhao [430] and Magal and Zhao [241]. For a class of continuous
Kolmogorov-type maps on R<+ , Hutson and Moran [185] proved that the existence
of a compact attracting set in 8=C (R<+ ) implies that of a (com- ponentwise) positive
fixed point. By applying Theorem 1.3.8 to the Poincaré map associated with a
periodic semiflow, one can obtain the existence of a periodic orbit in -0, and hence
that of periodic coexistence solutions for periodic systems of differential equations.
Freedman and Yang [419, Theorem 4.11] proved the existence of interior periodic
solutions for periodic, dissipative, and uniformly persistent systems of ODEs. For
periodic and uniformly persistent Kolmogorov systems of ODEs, Zanolin [424,
Lemma 1] also proved the existence of positive periodic solutions. For autonomous
Kolmogorov systems of ODEs and a class of autonomous differential equations with
finite delay, Hutson [183] proved the existence of positive equilibria. Hofbauer [166]
generalized an index theorem for dissipative ordinary differential systems, which
implies the existence of a positive equilibrium (see also [167]). For autonomous 2-
species Kolmogorov reaction–diffusion systems, Cantrell, Cosner and Hutson [54,
Theorem 6.2] also proved a result on the existence of stationary coexis- tence states
under appropriate assumptions.

Subsection 1.4.1 is taken from Smith and Waltman [335]. Subsection 1.4.2 is
adapted from Hirsch, Smith and Zhao [164] and Smith and Zhao [340]. Subsection
1.4.3 is taken fromHirsch, Smith andZhao [164]. Smith andZhao [336, Theorem4.3]
proved a similar result on uniform persistence uniform in parameter. Earlier, Hutson
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[182] discussed robustness of permanence for autonomous ordinary differential
systems defined on Rn+ by using Liapunov function techniques. Schreiber [302]
established criteria for �A–robust permanence, A ≥ 1, of autonomous Kolmogorov
ordinary differential systems.

Book of Smith and Thieme [204]
Book of X-Q Zhao
P 5 Definition 1.1.3.
P 28 Remark 1.3.3. A result similar to Theorem 1.3.7 was already presented for

discrete- and continuous-time dynamical systems in [430] and [146], respectively.
The only difference, compared with the earlier results, is that we add a strong
boundedness assumption for case (a). In general, this assumption is necessary for the
existence of a strong global attractor in X0 for f, which can be seen from the counter
example below.

P 40 Remark and notes
Juste make a remark of example and counter example and refer to our paper

Chains and uniform persistence

We now recall some results taken fromHale andWaltman [96], and Hofbauer and So
[107]. Let (", 3) be a complete metric space, and d : " → [0, +∞) a continuous
function. We decompose " into the open subset

"0 := {G ∈ " : d(G) > 0} ,

and the closed subset
m"0 := {G ∈ " : d(G) = 0} .

Assumption 2.71 Let {* (C)}C ∈� be a continuous semiflow. We assume that

(i) * (C)"0 ⊂ "0, and* (C)m"0 ⊂ m"0,∀C ≥ 0.
(ii) * has a global attractor � in " .

Lemma 2.72 Let Assumption 2.71 be satisfied. Then

�m = � ∩ m"0.

is a global attractor for* in m" .

Definition 2.73 Let � be a subset of " . We recall that the stable set (or attracting
set) of a compact invariant set � is denoted by, B (�) and is defined as

, B (�) = {G ∈ " : l(G) ≠ ∅ and l(G) ⊂ �} ,

or equivalently

, B (�) =
{
G ∈ " : lim

C→+∞
3 (* (C)G, �) = 0

}
.
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The unstable set (or repelling set),,D is defined by

,D (�) = {G ∈ " : there exists a backward orbit W− (G) such that
UW (G) ≠ ∅ and UW (G) ⊂ �

}
.

where UW (G) is the alpha limit set corresponding to the specific negative orbit W− (G).
That is also equivalent to say that

,D (�) = {G ∈ " : there exists a complete orbit C → D(C) passing through G
such that limC→+∞ 3 (* (C)G, �) = 0} .

Theorem 2.74 Let Assumption 2.71 be satisfied. Assume in addition that * has a
global attractor �0 in "0. Then

� = �0 ∪,D (�m)

Proof To be done (See Theorem 3.2 p. 391 in [96]) �

Definition 2.75 A nonempty invariant subset � of " is called an isolated invariant
set if it is the maximal invariant set of a neighborhood of itself. The neighborhood
is called an isolating neighborhood.

Definition 2.76 Let �1, �2 be isolated invariant sets (not necessarily distinct). The
subset �1 is said to be chained to �2, written �1 → �2, if there exists an element
G ∈ " such that

G ∉ �1 ∪ �2 and G ∈ ,D (�1) ∩, B (�2).

If we assume in addition that �1 and �2 are two compact subsets. This is also
equivalent to say that there exists a complete orbit C → D(C) such that

D(0) = G ∉ �1 ∪ �2,

with
lim
C→−∞

3 (D(C), �1) = 0, and lim
C→+∞

3 (D(C), �2) = 0.

A finite sequence �1, �2, . . . , �: of isolated invariant sets will be called a chain if
�1 → �2 → . . .→ �: (with �1 → �1, if : = 1). The chain will be called a cycle if
�: = �1.

The particular invariant sets of interest are

�̂m =
⋃
G∈�m

l(G).

Definition 2.77 �̂m is isolated if there exists a covering � = {�8}8=1,...,: of �̂m by
pairwise disjoint, compact, isolated invariant sets�1, . . . , �= for*m (i.e.* restricted
to m"0) such that each �8 is also an isolated invariant set for * (i.e. * on "). � is
called an isolated covering. �̂m will be called acyclic if there exists some isolated
covering � of �̂m such that no subset of the �8 forms a cycle. An isolated covering
� satisfying this condition will be called Morse decomposition or acyclic.
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Theorem 2.78 Let Assumption 2.71 be satisfied. Assume in addition that �̂m is
isolated has an acyclic covering. Then * is d-uniform persistent (with respect to
d(G) = 3 (G, m"0)) if an only if

, B (�8) ∩ "0 = ∅,∀8 = 1, . . . , : .

Proof To be done (See Theorem 4.2 p. 393 in [96]) �

More properties on the measure of non-compactness

Recall that for each bounded set � ⊂ - ,

^ (�) = inf {Y > 0 : � can be covered by a finite number of balls of radius ≤ Y}

is the Kuratovsky measure of non-compactness.
We now list various properties of the Kuratowski’s measure of non-compactness

in a Banach space - . We refer to Deimling [49], Martin [161], and Sell and You
[189, Lemma 22.2].

Theorem 2.79 Let (-, ‖.‖) be a Banach space and ^ (.) the measure of non-
compactness defined as above. Then for any bounded subsets � and �̂ of -, we
have the following properties:

(i) ^ (�) = 0 if and only if � is compact;
(ii) ^ (�) = ^

(
�

)
;

(iii) ^ (co (�)) = ^ (�);
(iv) ^ (co (�)) = ^ (�);
(iv) If � ⊂ �̂ then ^ (�) ≤ ^

(
�̂

)
;

(v)
^ (_�) ≤ |_ |^ (�) ,

where
_� = {_G : G ∈ �}

and
^

(
� + �̂

)
≤ ^ (�) + ^

(
�̂

)
,

where
� + �̂ =

{
G + H : G ∈ �, H ∈ �̂

}
.

Let ! ∈ L (-) . Then the essential semi-norm ‖!‖ess of ) is defined by

‖!‖ess = ^ (! (�- (0, 1))) ,

where �- (0, 1) = {G ∈ - : ‖G‖- ≤ 1} ,
Proposition 2.80 For each pair of bounded linear operators !, !̂ ∈ L (-) , we have
the following properties:
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(i) ‖!‖ess = 0 if and only if ! is compact (i.e. ! maps bounded subsets into
relatively compact subsets);

(ii) ‖_!‖ess ≤ |_ | ‖!‖ess ,∀_ ∈ C;
(iii)




! + !̂



ess
≤ ‖!‖ess +




!̂



ess

;

(iv)



!!̂




ess
≤ ‖!‖ess




!̂



ess

;
(v) ‖!‖ess ≤ ‖!‖L(- ) ;

Asymptotic smoothness

Assumption 2.81 Let � : - → - is a map on a Banach space - which is Lipschitz
on bounded sets. Let

{
4�C

}
C≥0 ⊂ L(-) be a strongly continuous family of bounded

linear operator on a Banach space - . We assume � is completely continuous, that
is to say that the closure � (�) is compact for each bounded subset � of - . In other
words,

^(� (�)) = 0

for any bounded set � ⊂ - .

Let* (C) be the semiflow obtained as fixed point of

* (C)G = 4�CG +
∫ C

0
4�(C−B)� (* (B)G)3B.

Let � be a bounded set such that

* (C)� ⊂ �,∀C ≥ 0.

Assume that � maps bounded sets into relatively compact subsets of - . Then by
Mazur’s theorem∫ C

0
4�(C−B)� (* (B)G)3B ∈ C × co(

{
4�(C−B)� (* (B)G) : B ∈ [0, C]

}
).

^(
∫ C

0
4�(C−B)� (* (B)�)3B) ≤ C × co(

{
4�(C−B)� (G) : G ∈ �, B ∈ [0, C]

}
). = 0,

Since the measure of compactness is additive (i.e. ^(�1 + �2) ≤ ^(�1) + ^(�2))

^(* (C)�) = ^(4�C�).

Now since ^(! (�)) ≤ ‖!‖L(- ) ^(�) we deduce the following proposition.
The following extend some idea originally proved in Webb [223].

Proposition 2.82 Assume that � : - → - is a map on a Banach space that is
Lipschitz on bounded sets and � is completely continuous, that is to say that the
closure � (�) is compact for each bounded subset � of - .
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Then the semiflow C → * (C) is asymptotically smooth if we impose in addition
that

‖4�C ‖L(- ) → 0 as C →∞.
We refer to Magal and Thieme [159] for more result going in that direction.

Gurtin-MacCamy population dynamics model

Z. Ma and P. Magal, Global asymptotic stability for Gurtin-MacCamy’s population
dynamics model, Proceedings of the AMS (to appear)

Bernoulli-Kermack-McKendrick epidemic model with age of infection

P. Magal, C. C. McCluskey, and G. F. Webb (2010), Liapunov functional and global
asymptotic stability for an infection-age model, Applicable Analysis 89, 1109 -1140.

P. Magal and C.C. McCluskey (2013), Two group infection age model: an appli-
cation to nosocomial infection, SIAM J. Appl. Math., 73(2), 1058-1095.

Existence of strong global attractors

The following lemma provides sufficient conditions for the positive orbit of a compact
set to be bounded.

Lemma 2.83 Assume that* is continuous and point dissipative. Let� be a compact
subset of " . Assume that for every bounded sequence {G=}=≥0 in W+ (�), there
exists C0 ≥ 0, and the exists a subsequence

{
G=?

}
?≥0 , such that the two following

properties are satisfied:

(i)
{
*

(
C0)G=?

)}
?≥0

converges;

(ii) The subset
⋃
?≥0

⋃
0≤C≤C0

{
* (C)G=?

}
is bounded.

Then W+ (�) is bounded in " .

Proof Since * is point dissipative, we can choose a bounded and open subset + of
" such that for each G ∈ " there exists g(G) ≥ 0 such that

* (C)G ∈ +, ∀C ≥ g(G).

For each G ∈ � we can find

ĝ(G) = inf{C > 0 : * (C)G ∈ +}.

We claim that
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sup
G∈�

ĝ(G) < ∞. (2.17)

Assume by contradiction that, there exists a sequence G= ∈ � such that

ĝ(G=) → ∞.

Since � is compact we can assume (by taking a sub-sequence) that G= → G∞ ∈ �,
and since

ĝ(G∞) < ∞,

and G → * (g(G∞))G is continuous and + is open, we deduce that for all = large
enough

* (g(G∞))G= ∈ +,

and we obtain a contradiction with ĝ(G=) → ∞. So we deduce (2.17) holds.
Let A > supG∈� ĝ(G). Let G ∈ �, by using the definition of ĝ(G), we deduce that

there exists B = B(G) ∈ � ∩ [0, A] , such that

* (B)G ∈ +.

Let I ∈ " be fixed. Assume, by contradiction, that W+ (�) is unbounded. Then there
exists a sequence

{
G?

}
in W+ (�) such that

G? = *
(
g?

)
I? , with I? ∈ �, and lim

?→∞
3 (I, G?) = ∞.

Since* is continuous and + is bounded, we can assume that

lim
?→∞

g? = ∞, and g? > A, G? ∉ +, ∀? ≥ 1.

For each I? ∈ �, there exists B? ≤ A such that

* (B?)I? ∈ +.

Since G? = * (g?) (I?) ∉ + , there exists X? ∈ [B? , g?) (that is the last time before g?
such that the orbit starting from G? belongs to +) such that

H? = * (X?)I? ∈ +, and* (;)H? ∉ +, ∀; ∈ � ∩
(
0, ;?

]
, with ;? = g? − X? .

Clearly,
G? = * (;?)H? , ∀? ≥ 1,

and {H?}?∈N is a bounded sequence in W+ (�).
By using assumptions (i) and (ii), we deduce that there exists C0 ∈ �, and taking a

sub-sequence, we have {
* (C0) H?

}
?≥0 → Ĝ ∈ ".

and ⋃
?≥0,C ∈[0,C0 ]∩�

{
* (C)H?

}
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is bounded.
Since lim?→∞ 3 (I, G?) = ∞, we deduce that for all ? ≥ 0 large enough

;? > C0.

By construction the subset

� =
{
* (C0) H? : ? ≥ 0

}
∪ {Ĝ}

is compact, and since* is a continuous semiflow, the subset⋃
B∈�∩[0,C ]

* (B)�

is bounded for each C ∈ �, and we deduce that ;? → +∞, as ? → +∞.
Now since* is continuous, and + is open, we deduce that

* (C)Ĝ ∉ +,∀C > 0,

which contradicts the definition of + (the fact that any orbit starting from a single
point G ultimately belongs to +). �

Definition 2.84

(i) A map ) : " → " is compact if ) maps any bounded set � ⊂ ", ) (�) is
compact.

(ii) A semiflow * is said to be eventually compact there exists C0 > 0, such that
* (C0) is compact.

We complete this section with a variant of [93, Theorems 2.4.6 and 2.4.7] on the
existence of strong global attractors.

Theorem 2.85 (Strong global attractor)Let* be a continuous semiflowon ametric
space (", 3). Assume that * is point dissipative on " , and assume that one of the
two following conditions holds:

(i) * is eventually compact;
(ii) * is asymptotically smooth, and for each bounded set � ⊂ " , there exists

C0 = C0 (�) ≥ 0 such that W+ (* (C0) (�)) is bounded.

Then* has a strong global attractor � ⊂ " .

Proof The conclusion in case (ii) is an immediate consequence of Theorem 2.49. In
the case of (i), since * (C0) is compact for some C0 ∈ � \ {0}, it is sufficient to show
that for each compact subset � ⊂ " ,⋃

C≥0
* (C) (�)

is bounded.
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By applying Lemma 2.83 to the discrete time semiflow {+ (C)}C ∈N , defined by

+ (=) = * (C0)=,∀= ≥ 0,

we deduce that for each compact subset � ⊂ " ,⋃
=≥0

+ (=) (�)

is bounded.

So Theorem 2.49 implies that + has a global attractor �̃ ⊂ " . We set

�̃ =
⋃

0≤C≤C0
* (C)

(
�̃

)
.

Since * is a continuous, the subset �̃ is compact, and �̃ and attracts every compact
subset of " for*, and hence, the result follows from Theorem 2.49. �

Connected global attractors

We are interested in connexity property of the global attractor. The goal is to give a
generalized version of the connectness results in Gobbino and Sardella [83].

Definition 2.86 A subset � of " is said to be connected if there exists no partition
of � in two subsets � and � that are both open and closed. That is to say that if for
each �, � ⊂ �, such that

� ≠ ∅, � ≠ ∅, � = � ∪ �, and � ∩ � = ∅,

we have (
� ∩ �

)
∪

(
� ∩ �

)
≠ ∅.

If � is closed and not connected, there exist � and � two non empty subset of �,
such that

� = � ∪ �, � ∩ � = ∅, and
(
� ∩ �

)
∪

(
� ∩ �

)
= ∅.

Assume for example that � ≠ �. Then � ⊂ �, and
(
� ∩ �

)
= ∅. So � = � ∪

� ∪
(
� \ �

)
, and � ≠ � ∪ �. So � = �. We conclude that if � is closed and not

connected, there exist � and � two nonempty closed subset of �, such that

� = � ∪ �, and � ∩ � = ∅.

Lemma 2.87 Let {* (C)}C ∈� be a continuous semiflot, let � be a nonempty compact
subset of " invariant for*, and if there exists � a connected subset of ", such that
� ⊂ �, and � attracts � for*, then � is connected.
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Proof Assume that � is not connected then we can find �1 and �2 two disjoint
nonempty compact subsets of � such that � = �1 ∪ �2. Since �1 and �2 are
compact, we can find Y > 0, such that # (�1, Y) ∩ # (�2, Y) = ∅. Since � attracts �
for* there exists C > 0, such that* (C)� ⊂ # (�1, Y) ∪ # (�2, Y) , and since � ⊂ �,
and � is invariant for*, we deduce that* (C)� ∩ # (�8 , Y) ≠ ∅,∀8 = 1, 2. But since
G → * (C)G is continuous, we deduce that �̂ = * (C)� is connected. But �̂ = �1 ∪�2
with �8 = * (C)� ∩ # (�8 , Y) ,∀8 = 1, 2. By construction we have(

�1 ∩ �2

)
∪

(
�1 ∩ �2

)
⊂ # (�1, Y) ∩ # (�2, Y) = ∅,

we obtain a contradiction with the fact that �̂ is connected. �

Theorem 2.88 Let {* (C)}C ∈� be a continuous semiflot on " a closed and convex
subset of a Banach space (-, ‖·‖). Assume that * has a global attractor � ⊂ " .
Then � is connected.

Proof Since � is compact, co(�) (the closed convex hull of �) is also compact.
Moreover � ⊂ co(�), and since � attracts the compact subset of " by � the result
follows from Lemma 2.87. �

The following result has been proved first by Zhao [233, Lemma 2.1].

Lemma 2.89 (Zhao) Let " be a closed subset of a Banach space (-, ‖·‖). Assume
that d : " → [0, +∞) is a continuous map, and assume that

"0 = {G ∈ " : d(G) > 0}

is nonempty and convex. Let � ⊂ "0 be a compact subset, then

co(�) ⊂ -0.

Theorem 2.90 Let {* (C)}C ∈� be a continuous semiflot on " a closed subset of a
Banach space (-, ‖·‖). Assume that d : " → [0, +∞) is a continuous map, and
assume that

"0 = {G ∈ " : d(G) > 0}

is nonempty and convex. Assume that * has a global attractor � ⊂ "0. Then � is
connected.

Upper semi-continuity of global attractors

We now consider investigate the depence to a parameter. Let (Λ, 3Λ) be a metric
space, let _0 ∈ Λ be fixed, let {*_ (C)}C ∈� be a familly of semiflow on " parametred
by _ ∈ Λ. Let {�_}_∈Λ be a familly of compact subset of ". We will say that
{�_}_∈Λ is upper semi-continuous at _0 ∈ Λ, if and only if

X
(
�_, �_0

)
→ 0 as _→ _0.
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For each _ ∈ Λ, and each [ ≥ 0, we set

�Λ (_, [) = {U ∈ Λ : 3Λ (_, U) ≤ [} .

We first have the following result, which will be used in section 3.

Proposition 2.91 We assume that for each (C, G0) ∈ � ×", the map (_, G) → *_ (C)G
is continuous at (_0, G0) , for each _ ∈ Λ, �_ is invariant for*_, and �_0 is a global
attractors for*_0 . Then the following statement are equivalents:

(i) {�_}_∈Λ is upper semi-continuous at _0 ∈ Λ.
(ii) There exists a compact subset � ⊂ ", such that X (�_, �) → 0 as _→ _0.

Proof (i)⇒(ii) is obvious with � = �_0 .

(ii)⇒(i). Conversely, assume that there exists a compact subset � of " such that
X (�_, �) → 0 as _→ _0. Assume that there exist Y > 0, and a sequence _= → _0,
as =→ +∞, such that

X
(
�_= , �_0

)
≥ Y,∀= ≥ 0.

Then by using Theorem 2.29, we find a sub-sequence _=? → _0, and a compact
subset �̂∞ such that 3� (�_=? , �̂∞) → 0, as ? → +∞. By construction we have

X

(
�̂∞, �_0

)
≥ Y. Since for each ? ≥ 0, �_=? is invariant for *_=? , and since for

each C ∈ �, and each G0 ∈ ", the map (_, G) → *_ (C)G is continuous at (_0, G0), we
deduce that �̂∞ is invariant for *_0 . Finally since �_0 is a global attractor for *_0 ,
we deduce that �̂∞ ⊂ �_0 , so X

(
�̂∞, �_0

)
= 0, a contradiction. �

Proposition 2.92 We assume that for each _ ∈ Λ, �_ is invariant for*_, and there
exists a subset � of " such that:
a) �_0 attracts � for*_0 .

b) �_ ⊂ �,∀_ ∈ Λ.
c) For each C ≥ 0, *_ (C) G → *_0 (C) G as _→ _0 uniformly in G ∈ �.
Then {�_}_∈Λ is upper semi-continuous at _0 ∈ Λ.

Proof We have for each C ≥ 0, and each _ ∈ Λ

X
(
�_, �_0

)
= X

(
*_ (C) �_, �_0

)
= sup
G∈�_

inf
H∈�_0

3 (*_ (C) G, H)

≤ sup
G∈�

inf
H∈�_0

3 (*_ (C) G, H)

≤ sup
G∈�

inf
H∈�_0

3
(
*_ (C) G,*_0 (C) G

)
+ 3

(
*_0 (C) G, H

)
,

so
X
(
�_, �_0

)
≤ sup
G∈�

3
(
*_ (C) G,*_0 (C) G

)
+ X

(
*_0 (C) �, �_0

)
.

and the result follows. �
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The idea of the following result is impired by Theorem 23.14 p.41 in Sell and
You [189]. It seams necessary to make some additionnal continuity assumptions (see
assumption c)).

Proposition 2.93 Let (Λ, 3Λ) be a metric space, let _0 ∈ Λ be fixed, and let
{*_ (C)}C ∈� be a familly of continuous semiflow on " parametred by _ ∈ Λ. We
assume that for each _ ∈ Λ, *_ is asymptically smooth, and there exists �_0 is a
global attractor for*_0 .We assume in addition that there exists �0 a bounded subset
of ", such that:
a) �_0 attracts �0 for*_0 .

b) For each _ ∈ Λ, and each G ∈ ", there exists C0 = C0 (_, G) ≥ 0, such that

*_ (C)G ∈ �0,∀C ≥ C0.

c) For each bounded set � ⊂ ", and each C∗ ∈ �, *_ (C) G → *_0 (C) G as _ → _0
uniformly in (C, G) ∈ ([0, C∗] ∩ �) × �.
Then there exists [ > 0, such that for all_ ∈ �Λ (_0, [) ,*_ (C) has a global attractors
�_ ⊂ ", and the familly {�_}_∈�Λ (_0 ,[) is upper semi-continuous at _0 ∈ Λ.

Proof For each _ ∈ Λ, we set

�_ (�0) := {H ∈ �0 : *_ (C) (H) ∈ �0,∀C ∈ �} .

Then �_ (�0) ⊂ �0 is is bounded, and positively invariant for *_, and for each
G ∈ ", there exists C ≥ 0, such that *_ (C) (G) ∈ �_ (�0). Since *_ is asymptotically
smooth, we deduce that l_ (�_ (�0)) =

⋂
B≥0

⋃
C≥B

*_ (C) (�_ (�0)) is compact, invariant

for *_, and attracts the point of " for *_. By applying Proposition 2.92 (with
�_ = l_ (�_ (�0)) ,∀_ ∈ Λ \ {_0} , � = �0), we deduce that

lim
_→_0

X
(
l_ (�_ (�0)) , �_0

)
= 0. (2.1)

Let Y > 0 be fixed. Since �_0 is a global attractors for *_0 , it is follows that �_0

is stable for *_0 , and �_0 attracts one of its neigborhood for *_0 . So there exists
Ŷ ∈ (0, Y) , such that �_0 attracts #

(
�_0 , Ŷ

)
for*_0 , and

*_0 (C)#
(
�_0 , Ŷ

)
⊂ #

(
�_0 , Y/4

)
,∀C ≥ 0.

and
*_0 (C∗)#

(
�_0 , Ŷ

)
⊂ #

(
�_0 , Ŷ/4

)
.

By using assumption c), we deduce that there exists [1 > 0, such that for each _ ∈ Λ,
with 3Λ (_0, _) ≤ [1,

*_ (C)#
(
�_0 , Ŷ

)
⊂ #

(
�_0 , Y/2

)
,∀C ∈ [0, C∗] ∩ �,

and
*_ (C∗)#

(
�_0 , Ŷ

)
⊂ #

(
�_0 , Ŷ/2

)
.

We set for each _ ∈ Λ, with 3Λ (_0, _) ≤ [1,
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�_ =
⋃

C ∈[0,C∗ ]
*_ (C)#

(
�_0 , Ŷ

)
,

then �_ is positively invariant for *_, and #
(
�_0 , Ŷ

)
⊂ �_ ⊂ #

(
�_0 , Y/2

)
. More-

over by using (2.1) there exists [ ∈ (0, [1) , such that l_ (�_ (�0)) ⊂ #
(
�_0 , Ŷ/2

)
,

for each _ ∈ Λ, with 3Λ (_0, _) ≤ [. Then for each _ ∈ Λ, with 3Λ (_0, _) ≤ [, �_
attracts the compact subset of ", and �_ = l_ (�_) is a global attractors for*_ (C).
Finally since �_ ⊂ #

(
�_0 , Y/2

)
, we deduce that

�_ ⊂ #
(
�_0 , Y/2

)
,

and the result follows. �

Magal, P. (2009), Perturbation of a Globally Stable Steady State and Uniform
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Magal, P.: A uniqueness result for nontrivial steady stateof a density-dependent
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Magal, P.: A global attractivity result for a discrete time system, with application
to a density dependent population dynamics models. Nonlinear Stud. 7, 1–22 (2000)

Magal, P.: A global stabilization result for a discrete time dynamical system
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Chapter 3
Bifurcations

This chapter is concerned with bifurcation theory, that roughly consists in the study
of the topological changes of the solutions of some equations as some parameters
are varying. Along this chapter we shall mainly focus on bifurcation arising when
a simple eigenvalue crosses zero, typically yielding the appearance (or the disap-
pearance) of branches of solutions. The results presented below are mostly based
on the implicit function theorem, recalled in Section 3.1. This theorem is used to
study local branches of the solutions and is applies to state and prove the so-called
Hopf-bifurcation theorem for systems ordinary differential equations.

3.1 Implicit Function Theorem

Let (-, ‖ · ‖) be a Banach space. Throughout this chapter the closed ball centered at
G ∈ - with radius X ≥ 0, denoted by �- (G, X), is defined by

�- (G, X) := {H ∈ - : ‖G − H‖ ≤ X}

while the open ball centered at G ∈ - with radius X > 0 is denoted by �- (G, X) and
defined by

�- (G, X) := {H ∈ - : ‖G − H‖ < X}.

We start this chapter by recalling the following result that will be used to prove
the implicit function theorem below.

Theorem 3.1 Let (-, ‖ · ‖) be a Banach space. Let 0 ≤ ^ < 1 and X > 0. Then the
following properties hold

(i) (Global inverse) If ) : - → - is a ^− Lipschitz continuous map, then the map
� − ) is a invertible and (� − ))−1 is (1 − ^)−1−Lipschitz continuous.

(ii) (Local inverse) If ) : �- (0, X) → - is a ^−Lipschitz continuous map and
‖) (0)‖ < X(1 − ^), then

�- (0, r) ⊂ (� − ))
(
�- (0, X)

)
,

139
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when
r := (1 − ^)X − ‖) (0)‖.

Moreover there exists a unique map ( : �- (0, r) → �- (0, X) which is (1 −
^)−1−Lipschitz continuous and that satisfies

(� − ))(H = H, ∀H ∈ �- (0, r). (3.1)

Proof Proof of (i): Let H ∈ - . Then we consider the fixed point problem

G = )G + H. (3.2)

Note that the Banach fixed point theorem applied to the map ^−contraction map
Φ : - → - defined by Φ(G) = )G + H (namely by using the iteration procedure
G=+1 = )G= + H). Hence we deduce that (3.2) has a unique solution (H satisfying

(H = )(H + H ⇔ (� − )) (H = H.

We conclude, (� − )) is onto (i.e. (� − )) (-) = -), for each H ∈ - , there exists a
unique G = ((H) satisfying (� − ))(H = H.

Next we observe that, for each G ∈ - , we can fix H = G − )G, by uniqueness of the
fixed point problem (3.2), we deduce

(H = G.

So the map ( : - → - is onto (i.e. ((-) = -).

Moreover, by applying ( on both sides of (� − ))(H = H, and by setting I = (H, we
deduce that

((� − ))I = I,∀I ∈ -.

We conclude that � −) : - → - is invertible, and its inverse is (. Next by (3.2), we
observe that we have, for any H, Ĥ ∈ - ,

(H − (Ĥ = )(H + H − ()(Ĥ + Ĥ)

thus

‖(H − (Ĥ‖ ≤ ^‖(H − (Ĥ‖ + ‖H − Ĥ‖ ⇔ ‖(H − (Ĥ‖ ≤ (1 − ^)−1‖H − Ĥ‖,

that completes the proof of (i).

Proof of (ii): Let us fix H ∈ �- (0, r), and consider the map Φ : �- (0, X) → -

given by
Φ(G) = )G + H, ∀G ∈ �- (0, X).

Then for each G ∈ �- (0, X), one has
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‖Φ(G)‖ ≤ ‖)G‖ + ‖H‖
≤ ‖)G − ) (0)‖ + ‖) (0)‖ + r
≤ ^‖G‖ + ‖) (0)‖ + r

hence

‖Φ(G)‖ ≤ ^X + ‖) (0)‖ + r = ^X + ‖) (0)‖ + (1 − ^)X − ‖) (0)‖ = X.

Therefore we deduce that

Φ

(
�- (0, X)

)
⊂ �- (0, X).

Moreover, since Φ is ^−Lipschitz continuous, there exists a unique G ∈ �- (0, X)
such that

Φ(G) = G ⇔ G − ) (G) = H.

Denoting by ( : �- (0, r) → �- (0, X) themap defined by the resolution of the above
equation (i.e. (H = G), one may observe that it satisfies (3.1). Moreover, by using the
same argument as for the proof for (i), ( is also (1 − ^)−1−Lipschitz continuous. �

We now turn to the statement of the implicit function theorem, that will be
extensively used along this chapter.

Theorem 3.2 (Implicit function theorem) Let - , . and / be three given Banach
spaces. Let * ⊂ - and + ⊂ . be two open sets. We assume that � : * × + → /

is continuous function, which is differentiable with respect to the second variable
H and the map (G, H) → mH� (G, H) ∈ L(., /) is continuous. We assume that there
exists (G0, H0) ∈ * ×+ such that

� (G0, H0) = 0/ .

We further assume that mH� (G0, H0) ∈ L(., /) is one to one and onto and its inverse
is a bounded linear operator, that is

mH� (G0, H0)−1 ∈ L(/,. ).

Then there exist A > 0, X > 0 with �- (G0, A) ⊂ * and �. (H0, X) ⊂ + and there
exists a unique continuous map ( : �- (G0, A) → �. (H0, X) with (G0 = H0 such that

� (G, (G) = 0/ , ∀G ∈ �- (G0, A).

Proof Without loss of generality we can assume that G0 = 0- and H0 = 0. . We set
! = mH� (0, 0) ∈ L(., /). We observe that

� (G, H) = 0/ ⇔ !H−� (G, H) = !H ⇔ H−!−1� (G, H) = H ⇔ H−(H−!−1� (G, H)) = 0. ,

and we set
Λ(G, H) := H − !−1� (G, H).

So we will apply the local invertibility result Theorem 3.1-(ii) to find the zeros of
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H − Λ(G, H) = 0. .

So, let us prove that Λ satisfies the assumptions of (ii) in Theorem 3.1. We observe
that

mHΛ(G, H) = � − !−1mH� (G, H).

One deduces that

mHΛ(0- , 0. ) = � − !−1mH� (0- , 0. ) = 0L(. ) .

Let ^ ∈ (0, 1) be fixed. Since the map (G, H) → mH� (G, H) is continuous, we can find
X > 0 and A0 > 0 such that

‖mHΛ(G, H)‖L(. ) ≤ ^, ∀H ∈ �. (0. , X), ∀G ∈ �- (0- , A0).

By using the formula (obtained by taking the derivative of the function B→ Λ(G, H+
B( Ĥ − H)))

Λ(G, Ĥ) − Λ(G, H) =
∫ 1

0
mHΛ(G, H + B( Ĥ − H)) ( Ĥ − H)dB,

we deduce that

‖Λ(G, Ĥ) − Λ(G, H)‖ ≤ ^‖ Ĥ − H‖, ∀H ∈ �. (0. , X), ∀G ∈ �- (0- , A0).

Moreover one has

Λ(0- , 0. ) = 0. − !−1� (0- , 0. ) = 0. ,

so that due to the continuity of �, one can find A ∈ (0, A0) such that

‖Λ(G, 0. )‖ ≤ (1 − ^)X, ∀G ∈ �- (0- , A).

Now let G ∈ �- (0- , A) be given. By applying Theorem 3.1-(ii) to the map ) :
�. (0. , X) → . , given by )H = Λ(G, H), it follows that for each G ∈ �- (0- , A), there
exists a unique H ∈ �. (0. , X), such that

H − Λ(G, H) = 0. .

Set
(G = H.

By using the uniqueness result in Theorem 3.1-(ii), we deduce that (G0 = H0. It
remains to prove the continuity of (. To that aim we fix G ∈ �- (0- , A) and we vary
Ĝ ∈ �- (0- , A), and we observe that

((Ĝ) − ((G) = Λ(Ĝ, ((Ĝ)) − Λ(Ĝ, ((G)) + Λ(Ĝ, ((G)) − Λ(G, ((G))

hence
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‖((Ĝ) − ((G)‖ ≤ ^‖((Ĝ) − ((G)‖ + ‖Λ(Ĝ, ((G)) − Λ(G, ((G))‖

therefore
‖((Ĝ) − ((G)‖ ≤ (1 − ^)−1‖Λ(Ĝ, ((G)) − Λ(G, ((G))‖,

and by using the continuity of the map Ĝ → Λ(Ĝ, ((G)), we deduce that ((Ĝ) → ((G)
as Ĝ → G. �

3.2 Bifurcating Branch of Equilibria: Finite Dimensional Case

In this section, we discuss some result to describe local branches of solutions for
some finite dimensional equations. We start by discussing two simple examples.

Example 3.3 (Logistic equation) The equilibria of the logistic equation satisfy a
quadratic equation of the form

D(_ ^ − D) = 0

for some given and fixed parameter ^ ≠ 0 while _ ∈ R is a varying parameter. Then
the solutions of the above equation are given by the two branches of solutions

D = 0 and D = _ ^.

The two branches of solutions cross each other at _ = 0. This special point is called
a bifurcation point for the branch of trivial solution D = 0 in the plane (_, D).
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Fig. 3.1: The figure on the top and the figure on the bottom correspond respectively
to ^ = 0.5 and ^ = −0.5.
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Example 3.4 (Bernoulli-Verhulst equation) We consider now the equation of the
form

* (_ ^ −*2) = 0

with ^ ≠ 0. Then the solution are given by

* = 0 and _ ^ = *2.
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trivial zeros

Fig. 3.2: The figure on the top and the figure on the bottom correspond respectively
to ^ = 1 and ^ = −1.

Theorem 3.5 (Bifurcating Branch of Equilibria) Let 4 ∈ R= with 4 ≠ 0R= . Let �
be an open interval in R and let �R= (0, A) be the open ball of R= centered 0R= with
radius A > 0. Let _0 ∈ � and � : � × �R= (0R= , A) → R= a two times continuously
differentiable map satisfying

(i) � (_, 0R= ) = 0R= , ∀_ ∈ �;

(ii) N(mG� (_0, 0R= )) = R4, where R4 := {_4 : _ ∈ R};

(iii) m_mG� (_0, 0R= )4 ∉ R(mG� (_0, 0R= )).

Then there exist a constant X > 0 and a continuous function (_∗, G∗) : (−X, X) ⊂
R→ � × R= satisfying

_∗ (0R) = _0, G
∗ (0R) = 0R= and G∗ (B) ≠ 0R= , ∀B ≠ 0R,

and
� (_∗ (B), G∗ (B)) = 0R= , ∀B ∈ (−X, X).

Moreover the curve B→ G∗ (B) is tangent to R4 at B = 0, that is to say that
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lim
B→0

G∗ (B)
B

= 4.

Furthermore, there is a neighborhood of (_0, 0) such that any zero of � either
belongs to this curve or has the form (_, 0).

Proof Let / denotes a complement space of R4 in R=, namely

R4 ⊕ / = R=.

Fix X > 0 and r > 0 such that X(‖4‖ + r) ≤ A and let� : �R (0, X) × � ×�/ (0, r) →
R= be the map defined by

� (B, _, I) =

� (_, B(4 + I))

B
, if B ≠ 0,

mG� (_, 0) (4 + I), if B = 0,

whenever (B, _, I) ∈ �R (0, X) × � × �/ (0, r).
Since � is of class �2, it readily follows that � is of class �1. Next note that one

has � (0, _0, 0) = 0 and

m(_,I)� (0, _0, 0) (_, I) = m_� (0, _0, 0)_ + mI� (0, _0, 0)I,

hence
m(_,I)� (0, _0, 0) (_, I) = _ m_mG� (_0, 0)4 + mG� (_0, 0)I.

Now let us prove that the operator ! : (_, I) → m(_,I)� (0, _0, 0) (_, I) is invertible
from R × / into R=. Note that since dim(/) = = − 1, it is sufficient to prove that
N(!) = 0. To that aim we argue by contradiction by assuming that N(!) ≠ 0. Let
(_, I) ∈ N(!) \ {0} be given. Then one has

_ m_mG� (_0, 0)4 = −mG� (_0, 0)I ∈ R(mG� (_0, 0)).

Due to (iii) this implies that (_, I) = (0, 0), a contradiction that ensures the invert-
ibility of !.

Now since
� (0, _0, 0) = mG� (_0, 0)4 = 0,

the implicit function theorem applies to the function � (with G = B and H = (_, I))
and we deduce that there exist X0 > 0 sufficiently small and a continuous map
(_∗, I∗) : (−X0, X0) → � × / with _∗ (0) = _0 and I∗ (0) = 0 and satisfying

� (_∗ (B), B(4 + I∗ (B))) = 0, ∀B ∈ (−X0, X0).

The result follows by setting G∗ (B) = B(4 + I∗ (B)). �
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3.3 Application to the Scalar Generalized Logistic Equation

Consider a one dimensional logistic equation

* ′(C) = _ ^* (C) −* (C)<, for C ≥ 0, * (0) = *0 ≥ 0,

where ^ ∈ R \ {0} is a fixed positive parameter, while _ ∈ R is a varying parameter
and < ≥ 2 is an integer. Then the equilibria correspond to the zeros of the function

� (_,*) = _ ^* −*<.

First we have
� (_, 0) = 0, ∀_ ∈ R,

while
m*� (_,*) = _ ^ − <*<−1,

hence
m*� (_, 0) = _ ^.

Set _0 = 0 so that we get
m*� (0, 0) = 0.

If we regard the partial derivative as a linear map m*� (0, 0) : * → m*� (0, 0)*
from R into itself, one has

dim(N(m*� (0, 0))) = dim(R) = 1 and R (m*� (0, 0)) = {0R}.

Furthermore one also has
m_m*� (0, 0) = ^,

and the linear map 4 → m_m*� (0, 0)4 ∈ L(R,R) satisfies for each 4 ≠ 0,

m_m*� (0, 0)4 ∉ R(m*� (0, 0)).

So we can apply Theorem 3.5 and we find a branch of equilibrium. Actually, this
branch of equilibrium is obtained as

_(B) = B=−1/^−1 and* (B) = B.

Remark 3.6 From this example, the condition (iii) of Theorem 3.5 corresponds
which to ^ ≠ 0. We can see that this assumption is needed.

Remark 3.7 The cases < = 2 and < = 3 provide different type of bifurcating
branches. We may observe that Theorem 3.5 is not informing us about the shape of
the bifurcating branches.
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3.4 Application to the n−Dimensional Logistic Equation

Consider the =−dimensional logistic equation{
* ′
8
(C) = ∑=

9=1 �8 9 (_)* 9 (C) −
∑=
9=1 ^8 9* 9 (C)*8 (C), C ≥ 0,

*8 (0) = *08 ≥ 0.
(3.3)

We assume that
^8 9 > 0, for all 8, 9 = 1, . . . , =,

and
_ ∈ (_0 − X0, _0 + X0), for some X0 > 0 and _0 ∈ R.

Assumption 3.8 We assume that the function _ → �(_) =
(
�8 9 (_)

)
8, 9=1,...,= is

twice continuously derivable and satisfies the following properties

(i) There exists a vector 4 ∈ R= such that 4 � 0 and N(�(_0)) = R4;
(ii) m_�(_0)4 ∉ R(�(_0)).

Now the equilibria of the =−dimensional logistic equation above correspond to the
zeros of the map � : � × R= → R=, with � = (_0 − X0, _0 + X0), given by

�8 (_,*)8 =
=∑
9=1

�8 9 (_)* 9 −
=∑
9=1

^8 9* 9*8 , 8 = 1, . . . , =. (3.4)

Next the following result holds.

Theorem 3.9 Let Assumption 3.8 be satisfied. Then there exist some constant X > 0
and a continuous function (_∗,*∗) : (−X, X) → � × R= satisfying

_∗ (0) = _0 and*∗ (0) = 0,
*∗ (B) ≠ 0,∀B ∈ (−X, X) \ {0},

and
� (_∗ (B),*∗ (B))) = 0,∀B ∈ (−X, X).

Moreover for |B | small enough{
*∗ (B) � 0, if B > 0,
*∗ (B) � 0, if B < 0. (3.5)

Furthermore, there is a neighbourhood of (_0, 0) such that any zero of � either
belongs to this curve or belongs to the curve (_, 0).

Proof In order to apply the Theorem 3.5 it is sufficient to observe that

mG� (_, 0) = �(_0).

Moreover since the curve B → *∗ (B) is tangent to R4 at B = 0 and since 4 � 0 we
deduce (3.5). �
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Example 3.10 If we consider for example the matrix

�(_) =
(
−c + 31_ V

c −V + 32_

)
where c > 0, 31 > 0, 32 > 0 and V > 0. Then for _ = 0, we have N(�(0)) = R4

with
4 =

(
V

c

)
.

Moreover
�(_)4 = _

(
31V
32c

)
= _�4,

where � := Diag(31, 32) and

m_�(_)4 = �4.

Moreover

�(0)
(
U1
U2

)
= U1c

(
−1
1

)
− U2V

(
−1
1

)
= (U1c − U2V)

(
−1
1

)
.

Since 31V > 0 and 32c > 0, we deduce that

�4 ≠ W

(
−1
1

)
,∀W ∈ R,

which implies that
m_�(_)4 ∉ R(�(_0)).

For this two dimensional matrix example, the zeros of the corresponding two dimen-
sional logistic system reads as the following algebraic system of equations{

0 = (−c + 31_)*1 + V*2 − (^11*1 + ^12*2)*1

0 = c*1 + (−V + 32_)*2 − (^21*1 + ^22*2)*2

for which we can no longer compute the equilibria explicitly. Therefore Theorem 3.9
is particularly useful when no simplification arises.

3.5 Bifurcating Branch of Equilibria: Infinite Dimensional Case

In order to prove an infinite dimensional version of Theorem 3.5 we will need the
following result (see Brezis [22, Corollary 2.7 p. 35]).

Theorem 3.11 Let - and . be two Banach spaces and let ! be a continuous linear
operator from - into . that is bĳective, namely one-to-one and onto. Then !−1 is
also continuous from . into - .
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The infinite dimensional version of Theorem 3.5 reads as follows.

Theorem 3.12 [Bifurcating Branch of Equilibria] Let � be an open interval inR and
let - and . be two Banach spaces. Let _0 ∈ �, A > 0 and � : � × �- (0, A) → . a
twice continuously differentiable map satisfying

(i) � (_, 0- ) = 0. , ∀_ ∈ �;

(ii) dim(N(mG� (_0, 0- ))) = 1;

(iii) m_mG� (_0, 0- )4 ∉ R(mG� (_0, 0- )) for some 4 ∈ N(mG� (_0, 0- )) \ {0}.

(iv) codimR(mG� (_0, 0- )) = 1 which is equivalent to say that there exists E ∈ .
such that

. = RE ⊕ R(mG� (_0, 0- ))

whenever E ∉ R(mG� (_0, 0- )) (which implies that E ≠ 0).

Then the conclusions of Theorem 3.5 hold.

Proof Let / be a closed complement space of R4 in - (such a subspace exists due
to the Analytic form of the Hahn-Banach theorem exists see [22, Example p. 38] )).
That is to say that

- = R4 ⊕ /.

Consider the map � : R × / → . given by

�(_, I) = _4̂ + !0I,

wherein we have set 4̂ := m_mG� (_0, 0)4 and !0 = mG� (_0, 0). Then in order to
prove the theorem, it is sufficient to prove that � is a bĳection from -̂ := R× / onto
. . To do so we first observe that since codim R(!0) = 1 and 4̂ ∉ R(!0) we have

. = R4̂ ⊕ R(!0).

Now since - = R4 ⊕ / one deduces that R(!0) = !0 (/) and � is surjective. Next
by using again the fact that 4̂ ∉ R(!0) and I ∈ / we deduce that

�(_, I) = 0 ⇔ _4̂ + !0I = 0 ⇔ _ = 0R and I = 0- .

Finally the invertiblity is � follows from Theorem 3.11. Finally the result follows by
using the same arguments as in the proof of Theorem 3.5.

3.6 Example of the Poincaré normal form and a first Hopf
bifurcation Theorem

In order to understand the idea of Hopf bifurcation theorem (see Hopf [111]), we
first consider the so called Poincaré normal form. This normal form was introduced
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by Poincaré in its memoir celestial mechanics [176] in 1893. This system is the
following (

G ′(C)
H′(C)

)
=

(
U −l
l U

) (
G(C)
H(C)

)
+ ^

(
G(C)2 + H(C)2

) (
G(C)
H(C)

)
, (3.6)

where the bifurcation parameter U varies from negative values to positive values,
while the parameters

l ≠ 0 and ^ ≠ 0

are fixed.

Complex number reformulation: Set

I(C) = G(C) + 8 H(C).

Then

I′(C) = G ′(C)+8 H′(C) = U (G+8 H)−lH+l 8 G+^ |I |2I = U (G+8 H)+8l (G+8 H)+^ |I |2I

and we obtain the Poincaré’s normal form

I′(C) = _ I + ^ |I |2I, and I(0) = I0 ∈ C, (3.7)

where
_ = U + 8l.

The equation (3.7) is nothing but a complex value Bernoulli-Verhulst’s equation. In
order to derive an explicite formula for the solution we first set

Î(C) = 4−8 lC I(C).

We obtain
Î′(C) = −8 lÎ + 4−8 lC I′(C),

it follows that
Î′(C) = UÎ + ^ | Î |2 Î, and I(0) = I0 ∈ C. (3.8)

We are now in position to use the explicit formula for the Bernoulli-Verhulst’s
equation, and we deduce that the solution of equation (3.7) is given by the explicit
formula

I(C) = 4_C I0(
1 + 2^

∫ C
0 4

2 Re(_) f |I0 |23f
) 1

2
. (3.9)

Moreover if we set d(C) = |I |2, then we obtain

d(C) ′ = (II) ′ = I′I + II′ = 2 Re(_) |I |2 + 2 ^ |I |4

which is a logistic equation

d′ = 2 Re(_) d + 2 ^ d2. (3.10)
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The equilibrium for equation (3.10)

d = −Re(_)
^

.

So the equilibrium d is strictly positive if and only if Re(_) ^ < 0. Moreover in order
to understand the stability of the equilibrium d, we can make the change of variable
G = d − d and we obtain

G ′ = 2^(G + d)G.

Now the equilibrium 0 of the above equation is stable if and only if ^ < 0 and
unstable if ^ > 0. We summarize this in the following theorem.

Theorem 3.13 The system (3.6) has a periodic orbit if and only if

Re(_) ^ < 0. (3.11)

Moreover the periodic orbit (when it exists) is unique. Furthermore, the periodic
orbit (when it exists) is locally asymptotically stable only if ^ < 0 and unstable if
^ > 0.

Fig. 3.3: When ^ < 0 we use ` := U = Re(_) as a bifurcation parameter, and when
` passes through 0 a stable periodic orbit is appearing. The case ^ > 0 can be
understood from the case ^ < 0 by going backward in time; that is, by considering
Ĝ(C) := G(−C) and Ĥ(C) := H(−C). When ^ > 0 we use ` := −U = −Re(_) as
a bifurcation parameter, when ` passes through 0 an unstable periodic orbit is
appearing.

3.7 Hopf Bifurcation Theorem

Let � be an open interval inR containing 0 and A > 0 be fixed. Let � : �×�R= (0, A) →
R= be a continuously differential map. Consider the ordinary differential equation
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* ′(C)G = � (`,* (C)G), ∀C ≥ 0, * (0)G = G ∈ R=. (3.12)

Before stating the main result of this section, we first describe the assumptions
the will be needed.

Assumption 3.14 We assume that (`, G) → � (`, G) is twice continuously differen-
tiable on � × �R= (0, A) into R= and satisfies the following properties

(i) � (`, 0R= ) = 0R= , ∀` ∈ �;

(ii) (Transversality condition) For each ` ∈ �, there exists a pair of conjugated
simple eigenvalues of mG� (`, 0) denoted by _(`) and _(`) written as

_(`) = U(`) + 8l(`), with U(`), l(`) ∈ R

such that the map `→ _(`) is continuously derivable,

l(0) > 0, U(0) = 0 and
dU(0)

d`
≠ 0.

(iii) The only eigenvalues of mG� (0, 0) which are equal to 8l(0): or −8l(0): for
some integer : ∈ N are _(0), _(0). In other words, one has

f(mG� (0, 0)) ∩ 8l(0)Z =
{
_(0), _(0)

}
. (3.13)

Remark 3.15 The condition (3.13) implies 0 ∉ f(mG� (0, 0)).

Theorem 3.16 (Hopf bifurcation) Let Assumption 3.14 be satisfied. Then there exist
Y∗ > 0 and continuous maps, Y → `(Y) from [0, Y∗) to R, Y → G(Y) from [0, Y∗) to
R=, Y → W(Y) from [0, Y∗) to R, such that for each Y ∈ [0, Y∗) there exists a W(Y)-
periodic function DY of class �1 which is a solution of (3.12) with the parameter
` = `(Y) and with initial condition DY (0) = G(Y). Moreover the branch of periodic
orbit is bifurcating from 0 at ` = 0, that is to say that

`(0) = 0, G(0) = 0 and G(Y) ≠ 0, ∀Y ∈ (0, Y∗).

Furthermore one also has
W(0) = 2cl(0).

3.8 Proof of the Hopf Bifurcation Theorem

Throughout this section we assume that Assumption 3.14 is satisfied and we aim at
proving Theorem 3.16. Up to time rescaling we assume without loose of generality
that l(0) = 1. Now to prove the Hopf bifurcation theorem above, we first rewrite
the system under a more convenient form. Using a change of basis we can rewrite
(3.12) under the following form
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¤G1 (C) = �(`)G1 (C) + �1 (`, G1 (C), G2 (C)) ∈ R2,

¤G2 (C) = � (`)G2 (C) + �2 (`, G1 (C), G2 (C)) ∈ R=−2,
(3.14)

with some initial data
(G1 (0), G2 (0)) ∈ R2 × R=−2.

Moreover the following properties are satisfied:

(i) The functions `→ �(`), `→ � (`) are of class �1;

(ii) The matrix �(`) takes the following form �(`) =
(
U(`) l(`)
−l(`) U(`)

)
, with U(0) =

0, l(0) = 1 as well as the transversality condition U′(0) ≠ 0;

(iii) The matrix � − 42c� (0) is invertible from R=−2 into itself;

(iv) The functions �8 for 8 = 1, 2 are of class �2;

(v) �8 (`, 0, 0) = 0, for 8 = 1, 2 and for all ` in a small neighboorhood of 0;

(vi) mG8�8 (`, 0, 0) = 0, for 8 = 1, 2 and for ` in a small neighboorhood of 0.

Remark 3.17 The property (iii) is a consequence of the assumption (3.13). Indeed,
let % an invertible matrix such that

� = %−1� (0)% =

©­­­­­«
�_1 0 . . . 0

0 �_2

. . .
...

...
. . .

. . . 0
0 . . . 0 �_<

ª®®®®®¬
is a Jordan decomposition of � (0). We have

42c� =

©­­­­­«
42c�_1 0 . . . 0

0 42c�_2
. . .

...
...

. . .
. . . 0

0 . . . 0 42c�_<

ª®®®®®¬
,

and
G − 42c� (0)G = 0⇔ G = 42c� (0)G ⇔ %−1G = 42c�%−1G.

Therefore

#

(
� − 42c� (0)

)
= {0} ⇔ #

(
� − 42c�_8

)
= {0} ,∀8 = 1, . . . , < ⇔ 42c_8 ≠ 1,∀8 = 1, . . . , <.

The system (3.14) is equivalent to

3G(C)
3C

= �(`)G + � (`, G), C > 0, G ∈ R=,
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with some initial value G(0) ∈ R= and

�(`) =
(
�(`) 0

0 � (`)

)
, � (`, G) =

(
�1 (`, G1, G2) 0

0 �2 (`, G1, G2)

)
.

In order to look for nontrivial 2cW−periodic solutions, we consider the rescaled
function

Ĝ(C) := G(WC),

so that, omitting the hat for the sake of simplicity, the system becomes

G ′(C) = W�(`)G + W� (`, G), (3.15)

and we look for 2c−periodic solution of the above system. A solution C → G(C) is
on some time interval [0, 2c] satisfies

G(C) = 4W�(`)CG(0) + W
∫ C

0
4W�(`) (C−B)� (`, G(B))dB, ∀C ∈ [0, 2c] .

In order to investigate the existence of 2c−periodic solution of the above integral in-
tegral equation, Let us define the map � : R2×�2c ( [0, 2c];R=) → �0 ( [0, 2c];R=)
by

� (W, `, G) (C) = G(C) − 4W�(`)CG(0) − W
∫ C

0
4W�(`) (C−B)� (`, G(B))dB,

whenever (W, `, G) ∈ R2 × �2c ( [0, 2c];R=).
We define �2c ( [0, 2c];R=) the space continuous functions ℎ satisfying ℎ(0) =

ℎ(2c), and we define �0 ( [0, 2c];R=) the space of continuous functions ℎ satisfying
ℎ(0) = 0. Both spaces �2c ( [0, 2c];R=) and �0 ( [0, 2c];R=) are understood as
Banach spaces endowed with the supremum norm on [0, 2c].

We now aim at investigating the zeros of the equation

� (W, `, G) = 0,

for (W, `, G) close to (1, 0, 0R= ), using the implicit function theorem.
Due to the finite dimensional setting, one can calculate the following derivatives

directly
�G (1, 0, 0) (G) (C) = G(C) − 4�(0)CG(0),
�`,G (1, 0, 0) (G) (C) = −�′(0)4�(0)CG(0),
�W,G (1, 0, 0) (G) (C) = −�(0)4�(0)CG(0).

(3.16)

Now using (iii), it is readily checked that N(�G (1, 0, 0)) = span{D0, D1}, wherein
the functions D0 and D1 are given by



3.8 Proof of the Hopf Bifurcation Theorem 155

D0 (C) =

©­­­­­­«

sin(C)
cos(C)

0
...

0

ª®®®®®®¬
, D1 (C) =

©­­­­­­«

cos(C)
− sin(C)

0
...

0

ª®®®®®®¬
. (3.17)

Define -1 := span{D0, D1} and fix -2 the complement space of -1 as given by

-2 = {I ∈ �2c ( [0, 2c];R=) :
∫ 2c

0
I(C)D8 (C)dC = 0R= for 8 = 0, 1},

where the multiplication under the above integral is understood componentwized.

By using the fact that !2 ((0, 2c);R=) is an Hilbert (see Brezis [22, Remark 5 p.
137] ) we know that

!2 ((0, 2c);R=) = -1 ⊕ -⊥1 ,

where

-⊥1 = {I ∈ !2 ((0, 2c);R=) :
∫ 2c

0
I(C)D8 (C)dC = 0R= for 8 = 0, 1}.

It follows that �2c ( [0, 2c];R=) inherits the properties of !2 ((0, 2c);R=). Indeed,
E ∈ �2c ( [0, 2c];R=) implies E ∈ !2 ((0, 2c);R=) and therefore

E = E1 + F1

where E1 ∈ -1 and F1 ∈ -⊥1 .

Moreover -1 ⊂ �2c ( [0, 2c];R=) so we deduce that

F1 = E − E1 ∈ �2c ( [0, 2c];R=).

We conclude that
�2c ( [0, 2c];R=) = -1 ⊕ -2.

Let us now define the map ℎ : R3 × -2 → �0 ( [0, 2c],R=) by

ℎ(B, W, `, I) =


� (W, `, B(D0 + I))

B
, if B ≠ 0,

�G (W, `, 0) (D0 + I), if B = 0.

Then one can prove that ℎ is of class �1. One has ℎ(0, 1, 0, 0) = 0 while the partial
derivative with respect to (W, `, I) is given by

m(W,`,I)ℎ(0, 1, 0, 0) (Ŵ, ˆ̀, Î) = �G (1, 0, 0) Î + Ŵ�W,G (1, 0, 0)D0 + ˆ̀�`,G (1, 0, 0)D0,

that more explicitly rewrites using (3.16) as
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m(W,`,I)ℎ(0, 1, 0, 0) (Ŵ, ˆ̀, Î) (C) = Î(C)−4�(0)C Î(0)−ŴC �(0)4�(0)CD0 (0)− ˆ̀C�′(0)4�(0)CD0 (0).
(3.18)

We now claim that

Claim 3.18 The bounded linear operator

m(W,`,E)ℎ(0, 1, 0, 0) ∈ L
(
R2 × -2, �0 ( [0, 2c];R=)

)
is invertible.

Proof (Proof of Claim 3.18) To prove this claim, let H ∈ �0 ( [0, 2c];R=) be given.
Set

" := m(W,`,E)ℎ(0, 1, 0, 0)

and let us investigate the equation

" (Ŵ, ˆ̀, Î) = H. (3.19)

To do so, for any H = (H1, H2)) ∈ R= = R2 × R=−2 we define the projection maps
c1 : R= → R2 and c2 : R= → R=−2 by c1H = H1 and c2H = H2.

Setting Î8 := c8 Î and H8 = c8H for 8 = 1, 2.
From (3.17) it follows that c2D(0) = 0. Therefore by applying c1 and c2 on both

side of (3.19), the system becomes for all C ∈ [0, 2c],

{
Î1 (C) − 4� (0)C Î1 (0) − ŴC�(0)4� (0)Cc1D0 (0) − ˆ̀C�′(0)4� (0)Cc1D0 (0) = H1 (C),
Î2 (C) − 4� (0)C Î2 (0) = H2 (C).

(3.20)
Since Î2 is 2c−periodic and � − 42c� (0) is invertible, one obtains

Î2 (C) = 4C� (0)
(
� − 42c� (0)

)−1
H2 (2c) + H2 (C),

so that Î2 ∈ �2c
(
[0, 2c],R=−2) .

We now turn to the resolution of the first equation is (3.20). To do so, note that
one has

C�(0)4C� (0)c1D0 (0) = C (cos C,− sin C)) ,

while

C�′(0)4C� (0)c1D0 (0) = CU′(0) (sin C, cos C)) + CV′(0) (cos C,− sin C)) .

As a consequence, the first equation in (3.20) rewrites as finding Î1 ∈ c1-2, (Ŵ, ˆ̀) ∈
R2 such that

Î1 (C) − 4� (0)C Î1 (0) + 21C

(
sin C
cos C

)
+ 22C

(
cos C
− sin C

)
= H1 (C). (3.21)

with
21 = −U′(0) ˆ̀, 22 = −Ŵ − V′(0) ˆ̀.
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Since Ĩ1 is 2c−periodic, taking C = 2c in the above equation yields, since 4� (0)2c = �,

Ĩ1 (2c) − 4� (0)2c Ĩ1 (0) = Ĩ1 (0) − 4� (0)2c Ĩ1 (0) = 0.

and (3.21) becomes

212c
(
0
1

)
+ 2c22

(
1
0

)
= H1 (2c) =:

(
H1

1 (2c)
H2

1 (2c)

)
.

Therefore we obtain 21 = H2
1 (2c)/2c and 22 = H1

1 (2c)/2c. Since U
′(0) ≠ 0, this

allows to recover ˆ̀ and Ŵ that are given by the following expressions:

ˆ̀ = −
H2

1 (2c)
2cU′(0) and Ŵ = −

H1
1 (2c)
2c

+
V′(0)H2

1 (2c)
2cU′(0) .

Next we focus on Î1. To do so we set

.1 (C) = H1 (C) − 21C

(
sin C
cos C

)
− 22C

(
cos C
− sin C

)
,

so that Î1 ∈ c1-2 satisfies

Î1 (C) − 4� (0)C Î1 (0) = .1 (C), ∀C ∈ [0, 2c] .

Here note that .1 ∈ �0 ( [0, 2c],R2) ∩ �2c ( [0, 2c],R2). Consider now the linear
operator & : �2c ( [0, 2c];R2) → �2c ( [0, 2c];R2) defined by

&(I) (C) = 4� (0)C I(0), ∀C ∈ [0, 2c],

so that the above equation rewrites as

Î1 ∈ c1-2 and (� −&) Î1 = .1 ∈ �0 ( [0, 2c],R2) ∩ �2c ( [0, 2c],R2).

Now note that & is a projector (i.e. &2 = &) and since C → 4� (0)C is 2c−periodic,
one has

R(� −&) = �0 ( [0, 2c],R2) ∩ �2c ( [0, 2c],R2),

while
# (� −&) = R(&) = span{c1D0, c1D1}.

Since �2c ( [0, 2c],R2) = c1-2 ⊕ span{c1D0, c1D1}, we obtain that the linear
bounded operator (� − &) |c1-2 is bĳective from c1-2 onto �0 ( [0, 2c],R2) ∩
�2c ( [0, 2c],R2) and this invertible on these spaces (see Theorem 3.11). Hence
we end-up with

Î1 = (� −&)−1
|c1-2

.1.

To sum-up the above analysis, we have obtained for each H ∈ �0 ( [0, 2c],R=) the
exists a unique (Ŵ, ˆ̀, Î) ∈ R2×�2c ( [0, 2c],R=) satisfying (3.19) and this completes
the proof of Claim 3.18. �
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To conclude the proof of the Hopf bifurcation theorem, we apply the implicit
function theorem to the function ℎ : R3 × -2 → �0 ( [0, 2c],R=) and we deduce that
there exists a �1−mapping (W, `, I) : (−X, X) → R2 × -2, for some X > 0 small
enough, such that

ℎ(B, W(B), `(B), I(B)) = 0, ∀B ∈ (−X, X).

By the definition of ℎ, this is equivalent to say that

� (W(B), `(B), B(D0 + I(B))) = 0,

when B ≠ 0 with (W(0), `(0), I(0)) = (1, 0, 0).

3.9 Remarks and Notes
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Theorem 15.8 p. 162 in Deimling [49].

Global Implicit function Theorem
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berg [187].
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in Bifurcation Theory: Volume II (Vol. 69). Springer Science & Business Media.
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A. Ducrot, H. Kang, and P. Magal (2022), Hopf bifurcation theorem for second
order semi-linear Gurtin-MacCamy equation, J. Evol. Equ. 22, 72, 1-40.

More about Hopf bifurcation

We need extend Theorem 3.13 in order to determine the direction of the Hopf bifur-
cation and the stability of the bifurcating periodic solutions described in Theorem
3.16. The following result is taken from the book by Chow et al. [32].

Consider a �∞ system defined in a neighborhood of the origin in R2

G ′(C) = 5 (G, H, `)
H′(C) = 6(G, H, `) (3.22)

where G, H, ` ∈ R1.We first describe the following assumption that will be needed.

Assumption 3.19 We suppose that the origin is an equilibrium of (3.22), and, for
` near 0, there exists a pair of conjugated eigenvalues of the linear part of (3.22)
around the origin denoted by _(`) and _(`) written as

_(`) = U(`) + 8l(`), with U(`), l(`) ∈ R

such that the map `→ _(`) is continuously derivable,

l(0) = l0 > 0, U(0) = 0 and
dU(0)

d`
≠ 0.

Before state the main result about the property of the Hopf bifurcation, we derive
a normal form for (3.22) for ` = 0. By making a suitable linear change of coordinates
and I = G + 8H, equation (3.22) for ` = 0 becomes

I′(C) = 8l0I + � (I, I)
I′(C) = −8l0I + � (I, I).

(3.23)

Since the eigenvalues of the linear part of (3.22) for ` = 0 are _1,2 = ±8l0,by a
polynomial change of variables

I = F +
∑

2≤:+;≤<
1:;F

:F; ,

System (3.23) takes the form

F′ = 8l0F + �1F
2F + · · · +$ (|F |2:+3).

Theorem 3.20 Let Assumption 3.14 be satisfied and Re(�1) ≠ 0. Then there are
f > 0 and a neighborhood* of (G, H) = (0, 0) such that
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(i) if |` | < f and `Re(�1)
dU(0)

d`
< 0, the system (3.22) has exactly one limit cycle

inside*;
(ii) if |` | < f and `Re(�1)

dU(0)
d`

≥ 0, the system (3.22) has no periodic orbit

inside*.

Moreover, the limit cycle is stable (unstable) if Re(�1) < 0 (Re(�1) > 0), and it
tends to the equilibrium (0, 0) as `→ 0.

Example of application to the partner formation to predator prey
system

A nice class of problem Murray [169] [170] and [171]
H.-B. Shi and S. Ruan (2015), Spatial, temporal, and spatiotemporal patterns of

diffusive predator-prey models with mutual interference, IMA Journal of Applied
Mathematics 80(5), 1534-1568.

Put some result and Fig. 9. of the above paper



Chapter 4
Center Manifold and Center Unstable Manifold
Theory

4.1 Introduction

In this section we will consider differential equations of the form

D′(C) = �D(C) + � (D(C)),∀C ∈ R, and D(0) = D0 ∈ R=, (4.1)

where � ∈ "= (R) is a = by = matrix and � : R= → R= is a of class �: (R=) with
: ≥ 1.

We assume that the system (4.1) has an equilibrium D.

Assumption 4.1 We assume that there exists an equilibrium D ∈ R= such that

�D + � (D) = 0.

Replacing replacing D by E = D − D in (4.1),

E′(C) = �E(C) + � (E(C) + D) + �D,∀C ∈ R, and E(0) = D0 − D ∈ R=.

So, we can assume (without loss of generality) that

D = 0.

Define

�̂ := � + �� (D) ∈ "= (R) and �̂ (G) := � (G + D) + �D − �� (D)G. (4.2)

So without loss of generality, under Assumption 4.1, we can assume that

Assumption 4.2 We assume that

� (0) = 0R= and �� (0) = 0"= (R) . (4.3)

163
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4.2 State Space Decomposition of a Linear Equation

Consider first the linear system

D′(C) = �D(C),∀C ∈ R, and D(0) = D0 ∈ R=. (4.4)

We denote by f(�) ∈ C the set of eigenvalues of �. This spectrum is the disjoint
union of the stable spectrum fB (�), the central spectrum f2 (�) and the unstable
spectrum fD (�), where

fB (�) = {_ ∈ f(�) : Re (_) < 0} ,
f2 (�) = {_ ∈ f(�) : Re (_) = 0} ,
fD (�) = {_ ∈ f(�) : Re (_) > 0} .

(4.5)

Assumption 4.3 We assume that f2 (�) = f (�) ∩ 8R ≠ ∅.

The span of the generalized eigenspace of � corresponding to the above spectrum
decomposition is

-CB =
⊕

_∈fB (�)
# ((_� − �)=),

-C2 =
⊕

_∈f2 (�)
# ((_� − �)=),

-CD =
⊕

_∈fD (�)
# ((_� − �)=),

(4.6)

where � is regarded a linear operator on C=.

We have a complex state space decomposition

C= = -CB ⊕ -C2 ⊕ -CD . (4.7)

Let : = B, 2, D. We observe that since � is a real valued matrix, we have

(_� − �)= G =
(
_� − �

)=
G,∀_ ∈ C.

We deduce that
_ ∈ f: (�) ⇔ _ ∈ f: (�),

and
G ∈ -C: ⇔ G ∈ -C: .

We deduce that

G ∈ -C: ⇒ Re(G) = G + G
2
∈ -C: and Im(G) = G − G

28
∈ -C: .

Moreover since
G ∈ -C: ⇔ ±8G ∈ -

C
: ,

it follows that
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-C: = -: ⊕ 8 -: ,

where
-: = Re

(
-C:

)
=

{
Re(G) : G ∈ -C:

}
⊂ R=. (4.8)

Hence the space -: (: = B, 2, D) is the real part of the subspace of -C: spanned by
the generalized eigenvectors of � corresponding to eigenvalues f: (�).

Now, we obtain a state space decomposition

R= = -B ⊕ -2 ⊕ -D , (4.9)

such that
� (-B) ⊂ -B , � (-2) ⊂ -2 and � (-D) ⊂ -D . (4.10)

For : = B, 2, D, we define �: : -: → -: the bounded linear operator as

�:G = �G,∀G ∈ -: .

Then �: is a bounded linear operator on -: , which we write for short �: ∈ L(-: ).
The linear operator �: is also the part of � in -: which is defined as � : � (�: ) ⊂
-: → -: such that

� (�: ) = {G ∈ -: : �G ∈ -: } .

By construction, we have the following lemma.

Lemma 4.4 The spectrum of �B , �2 and �D satisfy the following

f(�B) = fB (�), f(�2) = f2 (�) and f(�D) = fD (�). (4.11)

Define ΠB ,Π2 ,ΠD ∈ L(R=) the projectors such that

ΠB (R=) = -B and (� − ΠB) (R=) = -2 ⊕ -D ,

Π2 (R=) = -2 and (� − Π2) (R=) = -B ⊕ -D ,

ΠD (R=) = -D and (� − ΠD) (R=) = -B ⊕ -2 ,

and since ΠB ,Π2 and ΠD are projectors (i.e. c2 = c) this is also equivalent to

R(ΠB) = -B and N(ΠB) = -2 ⊕ -D ,

R(Π2) = -2 and N(Π2) = -B ⊕ -D ,

R(ΠD) = -D and N(ΠD) = -B ⊕ -2 .

Finally we define
Πℎ := ΠB + ΠD

the projector on the hyperbolic space -ℎ = -B ⊕ -D , and

Π2B := Π2 + ΠB

the projector on the center stable space -2B = -2 ⊕ -B , and
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Π2D := Π2 + ΠD

the projector on the center unstable space -2D = -2 ⊕ -D .

Each of these projections commutes with �, and therefore the corresponding
subspaces are invariant under the flow of (4.4). That is to say that

Π: � = �Π: ,∀: = B, 2, D, ℎ, 2B, 2D, (4.12)

and by using the series formula of

4�C = � + (�C) + (�C)
2

2!
+ (�C)

3

3!
+ . . .

we deduce that
Π:4

�C = 4�CΠ: ,∀: = B, 2, D, ℎ, 2B, 2D. (4.13)

Define

V+ = min {Re (_) : _ ∈ fD (�)} > 0, V− = min {−Re (_) : _ ∈ fB (�)} > 0,

and
V = min (V−, V+) /2. (4.14)

R

iR

−β− −β β+β

σc(A) σu(A)σs(A)

Fig. 4.1: In this Figure, we illustrate the different parts of the spectrum fB (�), f2 (�)
and fD (�) as well as V− and V+. The region between the blue vertical lines only
contains the purely imaginary spectrum of �.
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Lemma 4.5 There exists a non increasing map Y → "2 (Y) from (0, +∞) to itself
such that

‖4�CΠ2 ‖L(R=) ≤ "2 (Y)4Y |C | ,∀C ∈ R,∀Y > 0. (4.15)

There exist two constant number "B > 0 and "D > 0 such that

‖4�CΠD ‖L(R=) ≤ "D4 (V−Y)C ,∀C ≤ 0,∀Y ≥ 0,
‖4�CΠB ‖L(R=) ≤ "B4 (−V+Y)C ,∀C ≥ 0,∀Y ≥ 0. (4.16)

Remark 4.6 In general we may have "2 (Y) → +∞ as Y → 0.

Proof The result is based on the stability theorem for linear system (see Theorem
3.17 in Chapter 3 of the first volume of this book [55]). For example we have for
C ≥ 0

4−Y |C |4�CΠ2 = 4
(�2−Y� )CΠ2

an the spectrum f(�2 − Y�) contains only complex number with strictly negative
real part. So by using the stability theorem for linear systems we deduce that for each
Y > 0

"+2 (Y) := sup
C≥0

4−Y |C | ‖4�CΠ2 ‖L(R=) < +∞,

"−2 (Y) := sup
C≤0

4−Y |C | ‖4�CΠ2 ‖L(R=) < +∞,

therefore we can define "2 (Y) = max
(
"+2 (Y), "−2 (Y)

)
and we obtain (4.15).

To prove the last part of the lemma we observe that from (4.14) we obtain

V < V− and V < V+,

and by using again the stability theorem we deduce that for each Y ≥ 0

"̂D (Y) := sup
C≤0

4−(V−Y) C ‖4�CΠD ‖L(R=) = sup
C≥0

4−Y C ‖4 (V �−�)CΠD ‖L(R=) < +∞,

"̂B (Y) := sup
C≥0

4−(−V+Y) C ‖4�CΠB ‖L(R=) = sup
C≥0

4−Y C ‖4 (V �+�) CΠB ‖L(R=) < +∞,

and by choosing "B = "̂B (0) and "D = "̂D (0) the proof is completed. �

Example 4.7 The above lemma is sharp. Indeed, by consider the example of Jordan
block

� :=
(
0 1
0 0

)
∈ "2 (R).

Then 0 is the only point of the spectrum of �. That is

f(�) = {0} ,

and we know that
4�C :=

(
1 C
0 1

)
∈ "2 (R).
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see Chapter 3 of the first volume of this book [55] for more details.
Now, by using the norm

‖(G, H)‖1 = |G | + |H |.

We deduce that

1+C = ‖4�C42‖1 ≤ ‖4�C ‖L(R=) = sup
‖G ‖1≤1

‖4�CG‖1 ≤ sup
?∈[0,1]

‖4�C (?41 + (1 − ?)42) ‖1 ≤ 2+C.

So, for this example we obtain

"2 (Y) ≤ sup
C ∈R

4−Y |C | (2 + C) < +∞

and
"2 (Y) ≥ sup

C ∈R
4−Y |C | (1 + C) → +∞, as Y → 0+.

The following lemma gives some characterizations of -2 in (4.18) that will be
used as a definition for the center manifold.

Lemma 4.8 (Characterization of center space) We have the following

-2 =

{
G ∈ R= : sup

C ∈R
‖Πℎ4�CG‖ < +∞

}
, (4.17)

and for each [ ∈ (0, V),

-2 =

{
G ∈ R= : sup

C ∈R
4−[ |C | ‖4�CG‖ < +∞

}
. (4.18)

Proof If G ∈ -2 then ΠℎG = 0. We deduce that the map C → Πℎ4
�CG = 4�CΠℎG = 0

is bounded function. Next assume that there exists a constant � ∈ (0, +∞) such that

sup
C ∈R
‖Πℎ4�CG‖ ≤ �.

Then by Lemma 4.5, we have

‖4�CG‖ = ‖4�C (Π2 + Πℎ)G‖ ≤ ‖4�CΠ2G‖ + ‖Πℎ4�CG‖ ≤ " ([)4[ |C | + �

and we deduce that
sup
C ∈R

4−[ |C | ‖4�CG‖ ≤ " ([) + �.

Finally assume that ‖4�CG‖ ≤ 4[ |C |�,∀C ∈ R for some � > 0 and some [ ∈ (0, V).
Then by using (4.16), we deduce that for all C ≤ 0 and Y > 0

‖ΠDG‖ = ‖4�CΠD4−�CG‖ ≤ "4 (V−Y)C4−[C�,

and by choosing Y < V − [ ≤ V+ − [, we deduce when C goes to −∞ that ΠDG = 0.
Similar arguments gives ΠBG = 0. The proof is completed. �
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The following lemma gives some characterizations of -2D in (4.20) that will be
used as a definition for the center-unstable manifold.

Lemma 4.9 (Characterization of center unstable space) We have the following

-2D =

{
G ∈ R= : sup

C≤0
‖ΠB4�CG‖ < +∞

}
, (4.19)

and for each [ ∈ (0, V),

-2D =

{
G ∈ R= : sup

C≤0
4−[ |C | ‖4�CG‖ < +∞

}
. (4.20)

Proof Assume that supC≤0 ‖ΠB4�CG‖ ≤ � (for some � > 0). Then by Lemma 4.5,
we have

‖ΠBG‖ = ‖4−�CΠB4�CG‖ ≤ "4 (−V+Y) (−C)�,∀C ≤ 0,

and when C → −∞ we obtain ΠBG = 0 which implies that G ∈ -2D . Conversely if
G ∈ -2D then ΠB4�CG = 4�CΠBG = 0,∀C ≤ 0.

Next assume that supC≤0 4
−[ |C | ‖4�CG‖ ≤ � (for some � > 0). Then by Lemma

4.5, we have

‖ΠBG‖ = ‖4� |C |ΠB4�CG‖ ≤ "4 (−V−+Y) |C |4[ |C |�,∀C ≤ 0,

by choosing again Y < V − [ ≤ V− − [ and let C → −∞ we deduce that ΠBG = 0.
Conversely assume that ΠBG = 0, by Lemma 4.5, we have for all C ≤ 0,

4−[ |C | ‖4�CG‖ ≤ 4−[ |C |
[
‖4�CΠ2G‖ + ‖4�CΠDG‖

]
≤ 4−[ |C |

[
"4Y |C | + "4−(V+−Y) |C |

]
so by choosing 0 < Y < [ and 0 < Y < V+ we deduce

4−[ |C | ‖4�CG‖ ≤ 2",∀C ≤ 0.

The proof is completed. �

To conclude this section the norm

|G | = ‖ΠBG‖ + ‖Π2G‖ + ‖ΠDG‖.

Since � = ΠB + Π2 + ΠD , and by using the triangle inequality

‖G‖ = ‖ΠBG + Π2G + ΠDG‖ ≤ |G |

and by using the fact that ΠB ΠB and ΠD are continuous linear map

|G | ≤
(
‖ΠB ‖L(R=) + ‖Π2 ‖L(R=) + ‖ΠD ‖L(R=)

)
‖G‖

therefore the two norms |.| and ‖.‖ (are equivalent even in infinite dimensional
space).

We observe that
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|Π:G | = ‖Π2
:G‖ = ‖Π:G‖ ≤ |G |,∀: = B, D, 2.

So without loss of generality we can make the following assumption.

Assumption 4.10 We assume that

‖Π: ‖L(R=) ≤ 1,∀: = B, D, 2,

where
‖Π: ‖L(R=) := sup

‖G ‖≤1
‖Π:G‖.

4.3 Center Manifold Theory

Let � : R= → R= be a Lipschitz continuous map. In this section, we investigate the
existence and smoothness of the center manifold for a nonlinear semiflow {* (C)}C≥0
on R= generated by solutions of the Cauchy problem

3D(C)
3C

= �D(C) + � (D(C)), for C ≥ 0, with D(0) = G ∈ R=. (4.21)

A solution of (4.21) is a continuous map C ∈ [0, +∞) → * (C)G satisfying the fixed
point problem

* (C)G = G + �
∫ C

0
* (B)G3B +

∫ C

0
� (* (B)G)3B,∀C ≥ 0.

We know (see Proposition 2.21 of the first volume of this book [55]) that the above
fixed point problem is also equivalent to the variation of constant formula

* (C)G = 4�CG +
∫ C

0
4�(C−B)� (* (B)G)dB,∀C ≥ 0. (4.22)

In variation of constant formula not only is useful to problem the local stability of
equilibrium (see Chapter 6 of the first volume of this book [55]). But it is also a
crucial tool to understand the center manifold theory.

The variation of constant formula (4.22) can be rewritten into the following more
condensed form

* (C)G = 4�CG +
(
4�. ∗ � (* (.)G)

)
(C),∀C ≥ 0,

where the convolution is defined as(
4�. ∗ 5 (.)

)
(C) :=

∫ C

0
4�(C−B) 5 (B) dB,∀C ≥ 0. (4.23)

Since � is Lipschitz continuous, we know (see Theorem 8.11 in the first volume of
this book [55]) that for each G ∈ R=, (4.22) has a unique solution C → * (C)G from
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[0, +∞) into R=. Moreover, the family {* (C)}C≥0 defines a continuous semiflow.
That is

(i) * (0) = � and* (C)* (B) = * (C + B),∀C, B ≥ 0;
(ii) The map (C, G) → * (C)G is continuous from [0, +∞) × R= into R=.

Furthermore,

‖* (C)G −* (C)H‖ ≤ 4 ‖� ‖LipC ‖G − H‖ for all C ≥ 0,

where
‖�‖Lip := sup

G,H∈R=:G≠H

‖� (G) − � (H)‖
‖G − H‖ .

4.3.1 Weighted spaces of exponential bounded continuous functions

Let (., ‖.‖. ) be a Banach space. Let [ ∈ R be a constant and � ⊂ R be an interval.
Define

��[ (�,. ) =
{
5 ∈ � (�,. ) : sup

C ∈�
4−[ |C | ‖ 5 (C)‖. < +∞

}
.

It is well known (see Chapter 2 of the first volume of this book [55]) that ��[ (�,. )
is a Banach space when it is endowed with the norm

‖ 5 ‖��[ (� ,. ) = sup
C ∈�

4−[ |C | ‖ 5 (C)‖. .

We observe that

‖ 5 ‖��[ (� ,. ) ≤ " ⇔ ‖ 5 (C)‖. ≤ "4[ |C | ,∀C ∈ � .

Therefore such spaces characterize the exponential growth speed of the function at
plus or minus infinity.

In this chapter, the examples of set � used are the following

� = [0, +∞) , � = (−∞, 0] , and � = (−∞, +∞) ,

The weighted spaces ��[ (�,. ) are invariant by a shift.

Lemma 4.11 (Shift-invariance) Let [ > 0. Then for each 5 ∈ ��[ (R, . ) the map
C → 5 (C + C★) belongs to ��[ (R, . ), and we have the following estimation

4−[ |C
★ | ‖ 5 ‖��[ (R,. ) ≤



 5 (. + C★)


��[ (R,. ) ≤ 4

[ |C★ | ‖ 5 ‖��[ (R,. ) .

Proof By using the triangle inequality, we have

|C + C★ | ≤ |C | + |C★ | ⇔ |C + C★ | − |C | ≤ |C★ | ⇔ −
[
|C | − |C + C★ |

]
≤ |C★ |,
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and
|C | = |C + C★ − C★ | ≤ |C + C★ | + | − C★ | ⇔ |C | − |C + C★ | ≤ |C★ |,

hence we obtain
−|C★ | ≤ −

[
|C | − |C + C★ |

]
≤ |C★ |.

We deduce that
4−[ |C

★ | ≤ 4−[[ |C |− |C+C★ |] ≤ 4[ |C★ | ,

and by using

sup
C ∈R

4−[ |C | ‖ 5 (C + C★)‖ = sup
C ∈R

4−[[ |C |− |C+C★ |]4−[ |C+C★ | ‖ 5 (C + C★)‖

we obtain by setting f = C + C★,

4−[ |C
★ | sup
f∈R

4−[ |f | ‖ 5 (f)‖ ≤ sup
C ∈R

4−[ |C | ‖ 5 (C + C★)‖ ≤ 4[ |C★ | sup
f∈R

4−[ |f | ‖ 5 (f)‖

and the proof is completed. �

The family
{(
��[ (�,. ), ‖.‖��[ (� ,. )

)}
[>0

forms a scale of Banach spaces, that

is, if 0 < Z < [ then ��Z (�,. ) ⊂ ��[ (�,. ) and the embedding is continuous;
more precisely, we have

‖ 5 ‖��[ (� ,. ) ≤ ‖ 5 ‖��Z (� ,. ) , ∀ 5 ∈ ��Z (�,. ).

Let (/, ‖.‖/ ) be aBanach spaces. Fromnowon,we denote byLip(., /) (respectively
Lip� (., /)) the space of Lipschitz (respectively Lipschitz and bounded) maps from
. into / . Define the semi norm

‖�‖Lip(. ,/ ) := sup
G,H∈. :G≠H

‖� (G) − � (H)‖/
‖G − H‖.

.

The above Lipschitz norm is an extended notion of the supremum norm of the first
derivative. So ‖.‖Lip(. ,/ ) is only a semi-norm not a norm, because

‖�‖Lip(. ,/ ) = 0

whenever � is a constant function.

Definition 4.12 (Center manifold) Let [ ∈ (0, V). We define the center manifold
+[ is the set of point G in R= satisfying the two following properties

(i) There exists C ∈ R → D(C) a complete orbit of the semiflow * passing through
G at C = 0. That is

* (C − B)D(B) = D(C),∀C ≥ B, and D(0) = G.

(ii) The exponential growth of D is bounded by [ when C goes to ±∞. That is

D ∈ ��[ (R,R=) ⇔ ‖D(C)‖ ≤ "4[ |C | ,∀C ∈ R (for some constant " > 0).
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For short the center manifold can be rewritten as

+[ =
{
G ∈ R= : ∃D ∈ ��[ (R,R=) a complete orbit of {* (C)}C≥0 , with D(0) = G

}
.

Lemma 4.13 (Invariance of the center manifold by the semiflow) Let [ ∈ (0, V).
Then +[ is invariant by the semiflow*. That is* (C)+[ = +[ ,∀C ≥ 0.

Proof Let C★ > 0. Let us prove that * (C★)+[ ⊂ +[ . Let G ∈ +[ and let D ∈
��[ (R,R=) a complete orbit of * and D(0) = G. Then by construction we have
H = D(C★) = * (C★)G, so

H ∈ * (C★)+[ .

Moreover C → DC★ (C) = D (C + C★) is also a complete orbit, and by Lemma 4.11 we
know that the shifted orbit satisfies

C → DC★ (C) = D
(
C + C★

)
∈ ��[ (R,R=) .

So H ∈ +[ .
Conversely, let us prove that +[ ⊂ * (C★)+[ . Let H ∈ +[ then there exists D ∈

��[ (R,R=) a complete orbit of* with D(0) = H. Let G = D(−C★) and C → D−C★ (C) =
D(C− C★). Then* (C★)G = H because C → D(C) is a complete orbit of*, and G belongs
to +[ because C → D−C★ (C) is a complete orbit of*, and by Lemma 4.16 we deduce
that

D−C★ ∈ ��[ (R,R=) .

The proof is completed. �

4.3.2 Reduced equation

In this chapter, we will see that, if ‖�‖Lip(R= ,R=) is small enough, then we can find a
map Ψ : -2 → -ℎ such that

+[ = {G2 +Ψ(G2) : G2 ∈ -2} .

We can also reformulate the definition of the center manifold by saying that

Π2+[ = -2 ,

and
G ∈ +[ ⇔ ΠℎG = Φ (Π2G) .

As consequence Lemma 4.19, the set +[ is invariant by* (C), so we deduce that

* (C)G ∈ +[ ,∀C ≥ 0,∀G ∈ +[ .

Therefore the invariance

Πℎ* (C)G = Ψ(Π2* (C)G),∀C ≥ 0,∀G ∈ +[ .
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We deduce that on the manifold +[ , we can reduce the dimension of the system
(4.21), by projecting (4.21) on -2 and we obtain

D′2 (C) = �2 D2 (C) + Π2� (D2 (C) +Ψ (D2 (C))) . (Reduced Equation)

The advantage of the center manifold is that the dimension of reduced system has
the same dimension than -2 which is much smaller than = in general. The center
manifold contains all the bounded orbited (for example periodic orbits, homoclinic
orbit of an equilibrium, and heteroclinic orbits) of the original system (4.21).

The disadvantage of the center manifold is that Ψ is fully implicit. Therefore we
have no explicit formula for Ψ in general. In this chapter, we will see that if all the
derivative

Πℎ�
:� (0) = 0,∀: = 1, . . . , <, (4.24)

then all the derive of the center manifold

�:Ψ(0) = 0,∀: = 1, . . . , <.

In that case, by using a Taylor expansion at 0 of the center manifold, we can obtain
some =Cℎ order approximation locally around 0 for the reduce system. Furthermore,
in the next Chapter 5, we will prove that it is always possible to make some changes
of variable in order to satisfy the condition (4.24) at any order.

Xs

Xu

Xc

Center Manifold

Fig. 4.2: Schematic representation of the center manifold.
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4.3.3 Existence of the center manifold

In this subsection, we investigate the existence of the center manifold.

Definition 4.14 Let us recall that a function D : R → R is a complete orbit for the
semiflow {* (C)}C≥0 if and only if the function C → D(C) on R satisfies

D(C) = * (C − B)D(B),∀C, B ∈ R with C ≥ B,

where {* (C)}C≥0 is a continuous semiflow generated by (4.22).

That is equivalent to say that for each B ∈ R (fixed) the function C → D(C) from
[B,∞), satisfies

D(C) = D(B) + �
∫ C−B

0
D(B + A)3A +

∫ C−B

0
� (D(B + A)) 3A,∀C ≥ B,

or equivalently by using the variation of constant formula

D(C) = 4�(C−B)D(B) +
∫ C

B

4�(C−f)� (D(f))3f,∀C ≥ B,

or (for short) by using the convolutions

D(C) = 4�(C−B)D(B) +
(
4�. ∗ � (D(B + .))

)
(C − B),∀C ≥ B. (4.25)

In the above intergal equation B and D(B) are fixed, and the map C ∈ [B, +∞) → D(C)
is a fixed solution of the above integral equation.

Definition 4.15 Let [ ∈ (0, V). The [-center manifold of (4.21) is the set

+[ =
{
G ∈ R= : ∃D ∈ ��[ (R,R=) , a complete orbit of {* (C)}C≥0 , such that D(0) = G

}
.

(4.26)
That is the set of the points G ∈ R=, such that there exists D ∈ ��[ (R,R=) , a
complete orbit of {* (C)}C≥0 , passing through G at C = 0.

Let D ∈ ��[ (R,R=). By Lemma 4.11 we have for each g ∈ R,

4−[ |g | ‖D‖��[ (R,R=) ≤ ‖D(. + g)‖��[ (R,R=) ≤ 4[ |g | ‖D‖��[ (R,R=) .

So for each [ > 0, +[ is invariant under the semiflow {* (C)}C≥0 , that is,

* (C)+[ = +[ , ∀C ≥ 0.

Moreover, we say that {* (C)}C≥0 is reduced on +[ if there exists amapΨ : -2 → -ℎ
such that

+[ = Graph (Ψ) = {G2 +Ψ (G2) : G2 ∈ -2} .

Before proving the main results of this section, first we need some preliminary
lemmas.
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Lemma 4.16 Let Assumption 4.3 be satisfied. Let g > 0 be fixed. Then for each
5 ∈ � ( [0, g] ,R=) and each C ∈ [0, g] and : = B, 2, D, we have

Π:

(
4�. ∗ 5 (.)

)
(C) =

(
4�. ∗ Π: 5 (.)

)
(C) =

(
4�: . ∗ Π: 5 (.)

)
(C),∀C ≥ 0. (4.27)

Furthermore, for each W > −V, there exists �̂B,W :=
2"B
V + W > 0 such that for each

5 ∈ � ( [0, g] ,R=) and each C ∈ [0, g], we have

4−WC ‖ΠB
(
4�. ∗ 5

)
(C)‖ ≤ �̂B,W sup

B∈[0,C ]
4−WB ‖ΠB 5 (B)‖ dB. (4.28)

Proof From Lemma 4.5 we have for each Y > 0

‖4�CΠB ‖L(R=) ≤ "B4 (−V+Y)C ,∀C ≥ 0.

Therefore

4−WC


ΠB (

4�. ∗ 5
)
(C)



 ≤ 4−WC ∫ C0 ‖4�(C−B)ΠB 5 (B)‖ dB

≤ "B
∫ C

0 4
(−V+Y−W) (C−B)dB supB∈[0,C ] 4−WB ‖ΠB 5 (B)‖,

and ∫ C

0
4 (−V+Y−W) (C−B)dB =

∫ C

0
4−(V+W−Y)BdB ≤ 1

V + W − Y ,

and the result follows by choosing Y = (V + W)/2. �

Convolution’s formula: By using the convolution formula (4.23) we deduce that(
4�. ∗ 5

)
(C) = 4�(C−B)

(
4�. ∗ 5

)
(B) +

(
4�. ∗ 5 (B + .)

)
(C − B), (4.29)

whenever C, B ∈ [0, g] with B ≤ C, and 5 ∈ � ( [0, g] ,R=) (for some g > 0).

By using the above formula (4.29) and the property of 4�B C we obtain the following
lemma.

Lemma 4.17 Let Assumption 4.3 be satisfied. Then we have the following:

(i) For each [ ∈ [0, V) , each 5 ∈ ��[ (R,R=) , and each C ∈ R,

 B ( 5 ) (C) := lim
f→−∞

ΠB

(
4�. ∗ 5 (f + .)

)
(C − f) exists.

(ii) For each [ ∈ [0, V),  B is a bounded linear operator from ��[ (R,R=) into
itself. More precisely, for each a ∈ (−V, 0) , we have

‖ B ‖L(��[ (R,R=) ,��[ (R,-B)) ≤ �̂B,a ‖ΠB ‖L(R=) ,∀[ ∈ [0,−a] ,

where �̂B,a =
2"B
V + a > 0 is the constant introduced in (4.28).



4.3 Center Manifold Theory 177

(iii) For each [ ∈ [0, V) , each 5 ∈ ��[ (R,R=) , and each C, B ∈ R with C ≥ B,

 B ( 5 ) (C) − 4�B (C−B) B ( 5 ) (B) = ΠB
(
4�. ∗ 5 (B + .)

)
(C − B).

Remark 4.18 The definition of  B by using a limit as above can be extended to
infinite dimensional systems (see Magal and Ruan [155]). Nevertheless for ordinary
differential equation we have the following

 B ( 5 ) (C) = limf→−∞
∫ C−f

0 4�B (C−f−;)ΠB 5 (f + ;)3;
= limf→−∞

∫ C
f
4�B (C−B)ΠB 5 (B)3B

= limf→−∞
∫ C−f

0 4�B \ΠB 5 (C − \)3\

hence we obtain the explicit formula

 B ( 5 ) (C) =
∫ +∞

0
4�B \ΠB 5 (C − \)3\.

Proof Let start by proving (i) and (iii). Let [ ∈ (0, V) be fixed. By using (4.29), we
have for each C, B, A ∈ R with A ≤ B ≤ C, and each 5 ∈ ��[ (R,R=) that(
4�. ∗ 5 (A + .)

)
(C − A) = 4�(C−B)

(
4�. ∗ 5 (A + .)

)
(B − A) +

(
4�. ∗ 5 (B + .)

)
(C − B).

By projecting this equation on -B , we obtain for all C, B, A ∈ R with A ≤ B ≤ C that

ΠB
(
4�. ∗ 5 (A + .)

)
(C − A) = 4�B (C−B)ΠB

(
4�. ∗ 5 (A + .)

)
(B − A) + ΠB

(
4�. ∗ 5 (B + .)

)
(C − B).

(4.30)
Let a ∈ (−V,−[) be fixed. Then by using (4.28) and (4.30), we have for all C, B, A ∈ R
with A ≤ B ≤ C that


ΠB (

4�. ∗ 5 (A + .)
)
(C − A) − ΠB

(
4�. ∗ 5 (B + .)

)
(C − B)





=




4�B (C−B)ΠB (
4�. ∗ 5 (A + .)

)
(B − A)





≤ "B4−V (C−B)�̂B,a4a (B−A ) sup

;∈[0,B−A ]
4−a; ‖ΠB 5 (A + ;)‖

= "B�̂B,a4
−V (C−B)4a (B−A ) sup

f∈[A ,B]
4−a (f−A ) ‖ΠB 5 (f)‖

= "B�̂B,a4
−V (C−B)4aB sup

;∈[A ,B]
4−af4[ |f |4−[ |f | ‖ΠB 5 (f)‖

≤ ‖ΠB 5 ‖��[ (R,R=) "B�̂B,a4−V (C−B)4aB sup
f∈[A ,B]

4−af4[ |f | .

Hence, for all B, A ∈ R− with B ≥ A, we obtain


ΠB (
4�. ∗ 5 (A + .)

)
(C − A) − ΠB

(
4�. ∗ 5 (B + .)

)
(C − B)





≤ ‖ΠB 5 ‖��[ (R,R=) "B�̂B,a4−V (C−B)4aB sup

f∈[A ,B]
4−(a+[)f .
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Because − (a + [) > 0, we have


ΠB (
4�. ∗ 5 (A + .)

)
(C − A) − ΠB

(
4�. ∗ 5 (B + .)

)
(C − B)





≤ ‖ΠB 5 ‖��[ (R,R=) "B�̂B,a4−V (C−B)4aB4−(a+[)B

= ‖ΠB 5 ‖��[ (R,R=) "B�̂B,a4−VC4 (V−[)B .

Since V − [ > 0, by using Cauchy sequences, we deduce that

 B ( 5 ) (C) = lim
B→−∞

ΠB

(
4�. ∗ 5 (B + .)

)
(C − B) exists.

Taking the limit as A goes to −∞ in (4.30), we obtain (iii).
Let us prove the property (ii). Let a ∈ (−V, 0) and [ ∈ [0,−a] be fixed. For each

5 ∈ ��[ (R,R=) and each C ∈ R, we have

‖ B ( 5 ) (C)‖ = lim
A→−∞




ΠB (
4�. ∗ 5 (A + .)

)
(C − A)





≤ �̂B,a lim sup

A→−∞
4a (C−A ) sup

;∈[0,C−A ]
4−a; ‖ΠB 5 (A + ;)‖

= �̂B,a lim sup
A→−∞

4a (C−A ) sup
f∈[A ,C ]

4−a (f−A ) ‖ΠB 5 (f)‖

= �̂B,a lim sup
A→−∞

4aC sup
f∈[A ,C ]

4−af4[ |f |4−[ |f | ‖ΠB 5 (f)‖

= �̂B,a4
aC ‖ΠB 5 ‖[ sup

f∈(−∞,C ]
4−af4[ |f | .

Since (a + [) ≤ 0, we deduce that if C ≤ 0,

4−[ |C | ‖ B ( 5 ) (C)‖ ≤ �̂B,a4 (a+[)C ‖ΠB 5 ‖[ sup
f∈(−∞,C ]

4−(a+[)f = �̂B,a4
(a+[)C ‖ΠB 5 ‖[ 4−(a+[)C

= �̂B,a ‖ΠB 5 ‖[

and since ([ − a) > 0, it follows that if C ≥ 0,

4−[ |C | ‖ B ( 5 ) (C)‖ ≤ �̂B,a4 (a−[)C ‖ΠB 5 ‖[ sup
f∈(−∞,C ]

4−af4[ |f |

≤ �̂B,a ‖ΠB 5 ‖[ 4 (a−[)C max( sup
f∈(−∞,0]

4−(a+[)f , sup
f∈[0,C ]

4 ([−a)f)

= �̂B,a ‖ΠB 5 ‖[ 4 (a−[)C4 ([−a)C = �̂B,a ‖ΠB 5 ‖[ .

This completes the proof. �

Lemma 4.19 Let Assumption 4.3 be satisfied. Let [ ∈ [0, V) be fixed. Then we have
the following:

(i) For each 5 ∈ ��[ (R,R=) and each C ∈ R,

 D ( 5 ) (C) := −
∫ +∞

C

4−�D (;−C)ΠD 5 (;)3; := − lim
A→+∞

∫ A

C

4−�D (;−C)ΠD 5 (;)3;
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exists.
(ii)  D is a bounded linear operator from ��[ (R,R=) into ��[ (R, -D) and

‖ D ‖L(��[ (R,R=)) ≤
"D ‖ΠD ‖L(R=)
(V − [) .

(iii) For each 5 ∈ ��[ (R,R=) and each C, B ∈ R with C ≥ B,

 D ( 5 ) (C) − 4�D (C−B) D ( 5 ) (B) = ΠD
(
4�. ∗ 5 (B + .)

)
(C − B).

Proof By Lemma 4.5, we have

4−�D C

L(-D) ≤ "D4−VC ,∀C ≥ 0. (4.31)

By using (4.31) and the same argument as in the proof of Lemma 4.17, we obtain (i)
and (ii). Moreover, for each B, C, A ∈ R with B ≤ C ≤ A, we have∫ A

B

4�D (B−;)ΠD 5 (;)3; =
∫ C

B

4�D (B−;)ΠD 5 (;)3; +
∫ A

C

4�D (B−;)ΠD 5 (;)3;

=

∫ C

B

4�D (B−;)ΠD 5 (;)3; + 4�D (B−C)
∫ A

C

4�D (C−;)ΠD 5 (;)3;.

It follows that

4�D (C−B)
∫ A

B

4�D (B−;)ΠD 5 (;)3; =
∫ C

B

4�D (C−;)ΠD 5 (;)3; +
∫ A

C

4�D (C−;)ΠD 5 (;)3;.

When A → +∞, we obtain for all B, C ∈ R with B ≤ C that

−4�D (C−B) D,[ ( 5 ) (B) =
∫ C−B

0
4�D (C−B−A )ΠD 5 (B + A)3A −  D,[ ( 5 ) (C)

= ΠD

(
4�. ∗ 5 (B + .)

)
(C − B) −  D,[ ( 5 ) (C).

This gives (iii). �

Lemma 4.20 Let Assumption 4.3 be satisfied. Let [ ∈ (0, V) be fixed. For each
G2 ∈ -2 , each 5 ∈ ��[ (R,R=) , and each C ∈ R, denote

 1 (G2) (C) := 4�2 CG2 ,  2 ( 5 ) (C) :=
∫ C

0
4�2 (C−B)Π2 5 (B)3B.

Then  1 (respectively  2) is a bounded linear operator from -2 into ��[ (R, -2)
(respectively from ��[ (R,R=) into ��[ (R, -2) , and

‖ 1‖L(-2 ,��[ (R,R=)) ≤ max
(
sup
C≥0




4 (�2−[� )C


 , sup
C≥0




4−(�2+[� )C


) ,
‖ 2 ‖L(��[ (R,R=)) ≤ ‖Π2 ‖L(R=) max

(∫ +∞

0




4 (�2−[� );


 3;,∫ +∞

0




4−(�2+[� );


 3;) .
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Proof The proof is straightforward. �

Lemma 4.21 Let Assumption 4.3 be satisfied. Let [ ∈ (0, V) be fixed. Then

D ∈ ��[ (R,R=) ,

is a complete orbit for the semiflow {* (C)}C≥0 if and only if

D(C) =  1 (Π2D(0)) (C) +  2 (� (D(.))) (C) +  D (� (D(.))) (C) +  B (� (D(.))) (C),∀C ∈ R.
(4.32)

Proof Let D ∈ ��[ (R,R=) . Assume first that D is a complete orbit of {* (C)}C≥0.
Then for : ∈ {2, D} we have for all ;, A ∈ R with A ≤ ; that

Π:D(;) = 4�: (;−A )Π:D(A) +
∫ ;

A

4�: (;−B)Π:� (D(B))3B.

Thus,
3Π:D(C)
3C

= �:Π:D(C) + Π:� (D(C)), ∀C ∈ R.

From this ordinary differential equation, we first deduce that

Π2D(C) = 4�2 CΠ2D(0) +
∫ C

0
4�2 (C−B)Π2� (D(B))3B,∀C ∈ R. (4.33)

Hence, for each C, ; ∈ R,

ΠDD(C) = 4�D (C−;)ΠDD(;) +
∫ C

;

4�D (C−B)ΠD� (D(B))3B,∀C, ; ∈ R.

It follows that for each ; ≥ 0,


4−�D (;−C)ΠDD(;)


 ≤ "D ‖ΠD ‖L(R=) 4−V (;−C)4[; ‖D‖��[ (R,R=) .
So when ; goes to +∞, we obtain

ΠDD(C) = −
∫ +∞

C

4�D (C−B)ΠD� (D(B))3B, ∀C ∈ R. (4.34)

Furthermore, we have for all C, ; ∈ R with C ≥ ; that

ΠBD(C) = 4�B (C−;)ΠBD(;) + ΠB
(
4�. ∗ � (D(; + .))

)
(C − ;),

and for each ; ≤ 0 that


4�B (C−;)ΠBD(;)


 ≤ 4−VC"B ‖ΠBD‖[ 4 (V−[); .
Taking ; → −∞, we obtain

ΠBD(C) =  B (� (D(.))) (C), ∀C ∈ R. (4.35)
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Finally, by summing up (4.33), (4.34), and (4.35), we obtain (4.32).
Conversely, assume that D is a solution of (4.32). Then

Π2D(C) = 4�2 CΠ2D(0) +
∫ C

0
4�2 (C−B)Π2� (D(B))3B, ∀C ∈ R.

It follows that
3Π2D(C)
3C

= �2Π2D(C) + Π2� (D(C)), ∀C ∈ R.

Thus, for ;, A ∈ R− with A ≤ ;,

Π2D(;) = 4�(C−B)Π2D(A) + Π2
(
4�. ∗ � (D(B + .))

)
(C − B).

Moreover, by using Lemma 4.17 (iii) and Lemma 4.19 (iii), we deduce that for all
C, B ∈ R with C ≥ B

ΠBD(C) − 4�(C−B)ΠBD(B) = ΠB
(
4�. ∗ � (D(B + .))

)
(C − B),

ΠDD(C) − 4�(C−B)ΠDD(B) = ΠD
(
4�. ∗ � (D(B + .))

)
(C − B).

Therefore, D satisfies (4.25) and is a complete orbit of {* (C)}C≥0. �

Let [ ∈ (0, V) be fixed. We rewrite equation (4.32) as the following fixed point
problem: To find D ∈ ��[ (R,R=) such that

D =  1 (Π2D(0)) +  2Φ� (D), (4.36)

where Φ� is a Nemytskii operator which is defined by

Φ� (D) (C) = � (D(C)), ∀C ∈ R,

and since we assumed that � ∈ Lip (R=,R=), we deduce that

Φ� ∈ Lip (��[ (R,R=) , ��[ (R,R=)) ,

and
 2 ∈ L (��[ (R,R=) , ��[ (R,R=)) ,

is the linear operator defined by

 2 =  2 +  B +  D .

Moreover, we have the following estimates

‖ 1‖L(-2 ,��[ (R,R=)) ≤ max(sup
C≥0




4 (�2−[� 3)C


 , sup
C≥0




4−(�2+[� 3)C


),
‖Φ� ‖Lip ≤ ‖�‖Lip ,

and for each a ∈ (−V, 0) , we have
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‖ 2‖L(��[ (R,R=)) ≤ W (a, [) ,∀[ ∈ (0,−a] ,

where

W (a, [) :=
2"B
V + a ‖ΠB ‖L(R=) +

"D ‖ΠD ‖L(R=)
(V − [)

+ ‖Π2 ‖L(R=) max
(∫ +∞

0



4 (�2−[� );

 3;, ∫ +∞0



4−(�2+[� );

 3;) . (4.37)

Moreover, by Lemma 4.21, the [-center manifold is given by

+[ = {G ∈ R= : ∃D ∈ ��[ (R,R=) a solution of (4.36) and D(0) = G} . (4.38)

We are now in position to prove the existence of a center manifold for the semilin-
ear equations with non-dense domain, which is a generalization of Vanderbauwhede
and Iooss [217, Theorem 1, p.129].

Theorem 4.22 Let Assumption 4.3 be satisfied. Let [ ∈ (0, V) be fixed. Assume that
� ∈ Lip(R=,R=) with

‖�‖Lip(R= ,R=) ‖ 2‖L(��[ (R,R=)) < 1.

Then there exists a Lipschitz continuous map Ψ : -2 → -ℎ such that

+[ = {G2 +Ψ(G2) ∈ R= : G2 ∈ -2} ,

or equivalently

+[ = {G ∈ R= : Π2G = G2 ,ΠℎG = Ψ(G2), and G2 ∈ -2} .

Moreover, we have the following properties:

(i)
sup
G2 ∈-2

‖Ψ(G2)‖ ≤ ‖ B +  D ‖L(��[ (R,R=)) sup
G∈R=
‖Πℎ� (G)‖ .

(ii)

‖Ψ‖Lip(-2 ,-ℎ) ≤
‖ B +  D ‖L(��[ (R,R=)) ‖�‖Lip(R= ,R=) ‖ 1‖L(-2 ,��[ (R,R=))

1 − ‖ 2‖L(��[ (R,R=)) ‖�‖Lip(R= ,R=)
.

(4.39)
(iii) For each D ∈ � (R,R=) , the following statement are equivalent

(a) D ∈ ��[ (R,R=) is a complete orbit of {* (C)}C≥0 .

(b) The map D2 : R→ -2 is a solution of the reduced equation

3D2 (C)
3C

= �2D2 (C) + Π2� [D2 (C) +Ψ (D2 (C))] , (4.40)

and
D(C) = D2 (C) +Ψ(D2 (C)),∀C ∈ R.
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Proof (i) Since ‖�‖Lip ‖ 2‖L(��[ (R,R=)) < 1we can use the global inverse theorem
(seeTheorem3.1 inChapter 3), andwe deduce that themap (�3− 2Φ� ) is invertible,
the inverse (�3 −  2Φ� )−1 is Lipschitz continuous, and

(�3 −  2Φ� )−1



Lip(��[ (R,R=)) ≤
1

1 − ‖ 2‖L(��[ (R,R=)) ‖�‖Lip(R= ,R=)
. (4.41)

Let G ∈ R= be fixed. By Lemma 4.21, we know that G ∈ +[ if and only if there exists
DΠ2 G ∈ ��[ (R,R=) , such that DΠ2 G (0) = G and

DΠ2 G (C) =  1 (Π2G) (C) +  2Φ�
(
DΠ2 G

)
(C),∀C ∈ R.

So
+[ =

{
(�3 −  2Φ� )−1 1 (G2) (0) : G2 ∈ -2

}
.

We define Ψ : -2 → -ℎ by

Ψ(G2) = Πℎ (�3 −  2Φ� )−1 1 (G2) (0),∀G2 ∈ -2 .

Then
+[ = {G2 +Ψ(G2) : G2 ∈ -2} .

For each G2 ∈ -2 , set
DG2 = (�3 −  2Φ� )−1 1 (G2),

which is equivalent to
DG2 =  1 (G2) +  2Φ�

(
DG2

)
.

By projecting this last equation on -ℎ , we obtain

ΠℎDG2 = [ B +  D]ΦΠℎ�
(
DG2

)
,

and we obtain
Ψ(G2) = [ B +  D]ΦΠℎ�

(
DG2

)
(0) (4.42)

and assertion (i) follows.

Assertion (ii) follows from (4.41) and (4.42).

It remains to prove assertion (iii). Assume first that D ∈ ��[ (R,R=) is a complete
orbit of {* (C)}C≥0. By using the invariance property of the center manifold (see
Lemma 4.13), we deduce that

D(C) ∈ +[ ,∀C ∈ R,

and we deduce that
ΠℎD(C) = Ψ(Π2D(C)), ∀C ∈ R.

Moreover, by projecting (4.25) on -2 , we have for each C, B ∈ R with C ≥ B that

Π2D (C) = 4�2 (C−B)Π2D(B) +
∫ C−B

0
4�2 (C−B−;)Π2� (D (B + ;)) 3;.
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Thus, C → Π2D (C) is a solution of the reduced equation (4.40).

Conversely, assume that D ∈ � (R,R=) satisfies (iii)-(b). Then

ΠℎD(C) = Ψ(Π2D(C)), ∀C ∈ R,

and Π2D(.) : R → -2 is a solution of (4.40). Set G = D(0). We know that G ∈ +[
(since ΠℎG = Ψ (Π2G)), therefore by using the definition of the center manifold +[ ,
we deduce that there exists a function E ∈ ��[ (R,R=), which is a complete orbit
of {* (C)}C≥0, and E(0) = G. But since+[ is invariant under the semiflow, we deduce
that

ΠℎE(C) = Ψ(Π2E(C)), ∀C ∈ R,

and Π2E(.) : R → -2 is a solution of (4.40). Finally, since Π2E(0) = Π2D(0),
and since � and Ψ are Lipschitz continuous, we deduce that (4.40) has at most one
solution. It follows that

Π2E(C) = Π2D(C),∀C ∈ R,

and by construction

ΠℎE(C) = Ψ(Π2E(C)) = Ψ(Π2D(C)) = ΠℎD(C), ∀C ∈ R.

Thus,
D(C) = E(C), ∀C ∈ R.

Therefore, D ∈ ��[ (R,R=) is a complete orbit of {* (C)}C≥0. �

WedefinedLip� (R=,R=), as the space ofmaps � : R= → R= which are Lipschitz
continuous and bounded. That is

‖�‖Lip = sup
G,H∈R=:G≠H

‖� (G) − � (H)‖
‖G − H‖ < +∞.

and
‖�‖∞ = sup

G∈R=
‖� (G)‖ < +∞.

Lemma 4.23 Let Assumption 4.3 be satisfied. Assume that � ∈ Lip� (R=,R=). Then

+[ = +b , ∀[, b ∈ (0, V) .

Proof Let [, b ∈ (0, V) be such that b < [. Let G ∈ +b . By the definition of+b there
exists D ∈ �� b (R,R=) , a complete orbit of {* (C)}C≥0 , such that D(0) = G. But
�� b (R,R=) ⊂ ��[ (R,R=) , so D ∈ ��[ (R,R=) , and we deduce that G ∈ +[ .

Conversely, let G ∈ +[ be fixed. By the definition of +[ there exists D ∈
��[ (R,R=) , a complete orbit of {* (C)}C≥0 , such that D(0) = G. By Lemma
4.21 we deduce that D is a solution of

D =  1 (Π2D(0)) +  2Φ� (D).
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But  1 (Π2D(0)) ∈ �� b (R,R=) and � is bounded, so we have Φ� (D) ∈
��0 (R,R=) ⊂ �� b (R,R=) and

 2Φ� (D) ∈ �� b (R,R=) .

Hence, D ∈ �� b (R,R=) and

D =  1 (Π2D(0)) +  2Φ� (D).

Using again Lemma 4.21 once more, we obtain that G ∈ +b . �

4.3.4 Smoothness of the Center Manifold

In the sequel, we will use the following notations. Let : ≥ 1 be an inte-
ger, let .1, .2, .., .: , . and / be Banach spaces. Denote L (:) (.1, .2, .., .: , /)
(resp. L (:) (., /)) the space of bounded :-linear maps (or multilinear map) from
.1 × . . .×.: into / (resp. from . : into /). We recall that if ! :-linear maps . : into
/ its norm is defined as

‖!‖L (:) (. ,/ ) = sup
‖D1 ‖≤1,..., ‖D: ‖≤1

‖! (D1, . . . , D: )‖.

Let + be an open subset of . , and let , ∈ �: (+, /) be fixed. We choose the
convention that if ; = 1, . . . , : − 1 and D, D̂ ∈ + with D ≠ D̂, the quantity

sup
D1 ,...,D; ∈�. (0,1)



[�;, (D) − �;, (D̂)] (D1, . . . , D;) − �;+1, (D̂) (D − D̂, D1, . . . , D;)




‖D − D̂‖

goes to 0 as ‖D − D̂‖ → 0.

Set

�:1 (+, /) :=
{
, ∈ �: (+, /) : |, | 9 ,+ := sup

D∈+



� 9, (D)



L ( 9) (. ,/ ) < +∞, 0 ≤ 9 ≤ :

}
.

For each [ ∈ [0, V) , consider  ℎ : ��[ (R,R=) → ��[ (R, -ℎ) , the bounded
linear operator defined by

 ℎ =  B +  D ,

where  B and  D are the bounded linear operators defined, respectively, in Lemma
4.17 and Lemma 4.19.

For each r > 0 we define some open and closed neighborhood of -2 as

(Open neighborhood of -2) +r := {G ∈ R= : ‖ΠℎG‖ < r} ,

and
(Closed neighborhood of -2) + r := {G ∈ R= : ‖ΠℎG‖ ≤ r} .
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Moreover for each [ ≥ 0, we define

+
[

r :=
{
D ∈ ��[ (R,R=) : D(C) ∈ + r ,∀C ∈ R

}
.

Note that since+ r is a closed and convex subset of R=, the subset+
[

r is also a closed
convex subset of ��[ (R,R=) for each [ ≥ 0.

We make the following assumption.

Assumption 4.24 Let : ≥ 1 be an integer and let [, [̂ ∈ (0, V) such that

:[ < [̂ < V.

Let r > 0. Assume

(i)
� ∈ Lip (R=,R=) ∩ �:1

(
+r ,R

=
)
.

(ii)
r0 := ‖ ℎ ‖L(��0 (R,R=)) ‖Πℎ�‖∞ < r,

where
‖�‖∞ = sup

G∈R=
‖� (G)‖.

(iii)
sup

\ ∈[[, [̂ ]
‖ 2‖L(�� \ (R,R=)) ‖�‖Lip(R= ,R=) < 1.

Note that by using (4.37) we deduce that

sup
\ ∈[[, [̂ ]

‖ 2‖L(�� \ (R,R=)) < +∞.

Thus, Assumption 4.24 makes sense.
Following the approach of Vanderbauwhede [216, Corollary 3.6] and Vander-

bauwhede and Iooss [217, Theorem 2], we obtain the following result on the smooth-
ness of the center manifold.

Theorem 4.25 (Smoothness of the Center Manifold) Let Assumptions 4.3 and
4.24 be satisfied. Then the map Ψ obtained in Theorem 4.22 belongs to the space
�:
1
(-2 , -ℎ) .

Definition 4.26 Let (", 3) be a metric space and � : " → " be a map. A fixed
point G ∈ " of � is said to be attracting if

lim
=→+∞

�= (G) = G for each G ∈ ".

The following lemma is an extension of the Fibre contraction theorem (which cor-
responds to the case : = 1). This result is taken from [216, Corollary3.6].
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Theorem 4.27 (Fibre contraction)Let : ≥ 1 be an integer and let ("0, 30) , . . . , (": , 3: )
be complete metric spaces, and consider a map � : "0× . . .×": → "0× · · · ×":

having the following the form

� (G0, G1, . . . , G: ) = (�0 (G0) , �1 (G0, G1) , . . . , �: (G0, G1, . . . , G: )) ,

where each map �; : "0 ×"1 × . . .×"; → "; (for each ; = 0, . . . , :,) is a uniform
contraction. That is, �0 is a contraction, and for each ; = 1, . . . , :, there exists a
constant 0 ≤ g; < 1 such that

3; (�; (G0, G1, . . . , G;−1, G;) , �; (G0, G1, . . . , G;−1, Ĝ;)) ≤ g; 3; (G; , Ĝ;) ,

whenever (G0, G1, . . . , G;−1) ∈ "0 × "1 × . . . × ";−1, and G; , Ĝ; ∈ "; .

Then � has a unique fixed point (G0, G1, . . . , G: ), satisfying

G0 = �0 (G0) ,
G1 = �1 (G0, G1) ,
...

G: = �: (G0, G1, . . . , G: ) .

If we assume assume in addition that each map (for each ; = 1, . . . , :)

�; (., G;) : "0 × "1 × . . . × ";−1 → ";

is continuous, then (G0, G1, . . . , G: ) is an attracting fixed point of �.

Proof We prove the lemma for : = 1. The proof for any integer : ≥ 1 can be easily
derived from this case. By the Banach fixed point theorem, �0 has a unique fixed
point G0 ∈ "0, and the map G1 → �1 (G0, G1) also has a unique fixed point G1 ∈ "1.
It is clear that (G0, G1) is the unique fixed point of �, so we only need to prove its
attractivity.

Let (G0, G1) ∈ "0 × "1. Consider the sequence (G0 (=), G1 (=)) defined by

(G0 (0), G1 (0)) := (G0, G1)

and
(G0 (= + 1), G1 (= + 1)) := (�0 (G0 (=)), �1 (G0 (=), G1 (=))) , ∀= ≥ 0.

Since �0 is a contraction, it is clear that lim=→+∞ G0 (=) = G0. It remains to show that
lim=→+∞ G1 (=) = G1. We observe first that

3 (G1 (= + 1), G1) = 3 (�1 (G0 (=), G1 (=)), �1 (G0, G1))
≤ 3 (�1 (G0 (=), G1 (=)), �1 (G0 (=), G1)) + 3 (�1 (G0 (=), G1), �1 (G0, G1))
≤ g13 (G1 (=), G1) + U=,

where
U= := 3 (�1 (G0 (=), G1), �1 (G0, G1)) → 0 as =→ +∞.
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Setting X= := 3 (G1 (=), G1), we obtain

X=+1 ≤ g1X= + U=, ∀= ≥ 0.

Since g1 < 1, it is not difficult to prove that {X=} is bounded sequence and

lim sup
=→+∞

X= ≤ g1 lim sup
=→+∞

X=.

Hence, lim sup=→+∞ X= = 0, and the proof is completed. �

We recall that the map Ψ : -2 → -ℎ is defined by

Ψ (G2) = Πℎ (� −  2Φ� )−1 ( 1G2) (0), ∀G2 ∈ -2 .

We define the map Γ0 : ��[ (R, -2) → ��[ (R,R=) by

Γ0 (D) = (� −  2Φ� )−1 (D) , ∀D ∈ ��[ (R, -2) .

For each X ≥ 0, the bounded linear operator ! : �� X (R,R=) → -ℎ is defined by

! (D) = ΠℎD(0), ∀D ∈ �� X (R, -2) .

Then we have
Ψ (G2) = !Γ0 ( 1G2), ∀G2 ∈ -2 ,

where Γ0 is a the unique solution of the fixed problem

Γ0 (D) = D +  2Φ� (Γ0 (D)) , ∀D ∈ ��[ (R, -2) .

We deduce that Γ0 : ��[ (R, -2) → ��[ (R,R=) is the unique solution of the fixed
problem

Γ0 = � +  2 ◦Φ� ◦ (Γ0) , (4.43)

where � (D) = D is the continuous imbedding from ��[ (R, -2) into ��[ (R,R=) .

From (4.43), we deduce that for each D ∈ ��[ (R, -2) ,

‖Γ0 (D) − D‖��[ (R,R=) ≤ ‖ 2‖L(��[ (R,R=) ,��[ (R,R=)) ‖�‖∞ ,

‖ΠℎΓ0 (D) (C)‖��0 (R,R=) ≤ ‖ ℎ ‖L(��0 (R,R=)) ‖Πℎ�‖∞ = r0, ∀C ∈ R.

For each subset � ⊂ ��[ (R, -2) , denote

"0,� =

{
Θ ∈ �

(
�,+

0
r0

)
: sup
D∈�
‖Θ(D) − D‖��[ (R,R=) < +∞

}
and set

"0 = "0,��[ (R,-2) .

From the above remarks, it follows that Γ0 (respectively Γ0 |� ) must be an element
of "0 (respectively "0,� ). Since +

0
r0 is a closed subset of ��[ (R,R=) , we know
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that for each subset � ⊂ ��[ (R, -2) , "0,� is a complete metric space endowed
with the metric

30,�

(
Θ, Θ̃

)
= sup
D∈�




Θ (D) − Θ̃ (D)



��[ (R,R=)

.

Set
30 = 30,��[ (R,-2) .

Lemma 4.28 (Regularity of the Nemytskii operator) Let � be a Banach space and
, ∈ �1

1

(
+r , �

)
. Let b ≥ X ≥ 0 be fixed. Define Φ, : + [r → �� b (R, �) , Φ�, :

+
[
r → �� b (R,L (R=, �)) , and Φ(1)

,
: + [r → L

(
�� X (R,R=) , �� b (R, �)

)
for

each C ∈ R, each D ∈ + [r , and each E ∈ �� X (R,R=) by

Φ, (D) (C) := , (D(C)) ∈ �,
Φ�, (D) (C) := �, (D (C)) ∈ L (R=, �) ,
Φ
(1)
,
(D) (E) (C) := �, (D(C)) (E(C)) ∈ �,

respectively. Then we have the following:

(a) If b > 0, then Φ, and Φ�, are continuous.
(b) For each D, E ∈ + [r , Φ(1), (D) ∈ L

(
�� X (R,R=) , �� b (R, �)

)
,


Φ(1), (D) −Φ(1), (E)


L(�� X (R,R=) ,�� b (R,�))

= sup
F ∈�� X (R,R=)




Φ(1), (D) (F) −Φ(1), (E) (F)



�� b (R,�)

≤ sup
C ∈R

4−( b−X) |C | ‖�, (D(C)) − �, (E(C))‖L(R= ,�)

= ‖Φ�, (D) −Φ�, (E)‖�� b−X (R,L(R= ,�))

and


Φ(1), (D)


L(�� X (R,R=) ,�� b (R,�)) ≤ ‖Φ�, (D)‖�� b−X (R,L(R= ,�)) ≤ |, |1,+r .
(c) If b > X, then Φ(1)

,
is continuous.

(d) If b ≥ X ≥ [, we have for each D, D̂ ∈ + [r that


Φ, (D) −Φ, (D̂) −Φ(1), (D̂) (D − D̂)



�� b (R,�)

≤ ‖D − D̂‖�� X (R,R=) pb−X (D, D̂)

where

pb−X (D, D̂) = sup
B∈[0,1]

‖Φ�, (BD + (1 − B)D̂) −Φ�, (D̂)‖�� b−X (R,L(R= ,�)) ,

and if b > X ≥ [, we have (by continuity of Φ�, )

pb−X (D, D̂) → 0 as ‖D − D̂‖��[ (R,R=) → 0.
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Proof We first prove that Φ, ∈ �0
1

(
+
[
r , ��

b (R, �)
)
. For each D, D̂ ∈ + [r and

each ' > 0, we have

‖Φ, (D) −Φ, (D̂)‖�� b (R,�) = sup
C ∈R

4−b |C | ‖, (D(C)) −, (D̂(C))‖�

= max

(
sup
|C | ≤'

4−b |C | ‖, (D(C)) −, (D̂(C))‖� , 2 ‖, ‖0 4−b'
)
.

(4.44)

Fix some arbitrary Y > 0. Let ' > 0 be such that 2 ‖, ‖0 4−b' < Y and denote
Ω = {D̂(C) : |C | ≤ '} . Since, is continuous and Ω is compact, we can find X1 > 0
such that

‖, (G) −, (Ĝ)‖ ≤ Y if Ĝ ∈ Ω, and ‖G − Ĝ‖ ≤ X1.

Let X = 4−['X1. If ‖D − D̂‖��[ (R,R=) ≤ X, then

‖D(C) − D̂(C)‖ ≤ X1,∀C ∈ [−', '] ,

and (4.44) implies
‖Φ, (D) −Φ, (D̂)‖�� b (R,�) ≤ Y.

We now prove that Φ(1)
,
∈ �

(
+
[
r ,L

(
�� X (R,R=) , �� b (R, �)

) )
. From the first

part of the proof, since � is an arbitrary Banach space, we deduce that Φ�, is
continuous. Moreover, for each D, D̂ ∈ + [r and each E ∈ �� X (R,R=) ,


Φ(1), (D) (E)




�� b (R,�)
= sup
C ∈R

4−b |C | ‖�, (D(C)) (E(C))‖�

≤ sup
C ∈R

4−( b−X) |C | ‖�, (D(C))‖L(R= ,�) 4−X |C | ‖E(C)‖R=

≤ ‖Φ�, (D)‖�� b−X (R,L(R= ,�)) ‖E‖�� X (R,R=) ,

and 


[Φ(1), (D) −Φ(1), (D̂)] (E)



�� b (R,�)

= sup
C ∈R

4−b |C | ‖�, (D(C)) (E(C)) − �, (D̂(C)) (E(C))‖�

≤ ‖Φ�, (D) −Φ�, (D̂)‖�� b−X (R,L(R= ,�)) ‖E‖�� X (R,R=) .

Thus, if b ≥ X, we have for each D ∈ + [r that

Φ
(1)
,
(D) ∈ L

(
�� X (R,R=) , �� b (R, �)

)
, ∀D ∈ + [r ,

and if b > X,

Φ
(1)
,
∈ �

(
+
[
r ,L

(
�� X (R,R=) , �� b (R, �)

))
, ∀` > 0.

Since+r is an open and convex subset ofR=,we have the following classical formula
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, (G) −, (H) =
∫ 1

0
�, (BG + (1 − B)H) (G − H) 3B, ∀G, H ∈ +r .

Therefore, for each D, D̂ ∈ + [r ,


Φ, (D) −Φ, (D̂) −Φ(1), (D̂) (D − D̂)



�� b (R,�)

= sup
C ∈R

4−b |C | ‖, (D(C)) −, (D̂(C)) − �, (D̂(C)) (D (C) − D̂ (C))‖

≤ sup
C ∈R

sup
B∈[0,1]

4−b |C | ‖ [�, (BD(C) + (1 − B)D̂(C)) − �, (D̂(C))] (D (C) − D̂ (C))‖

≤ ‖D − D̂‖�� X (R,R=) sup
B∈[0,1]

‖Φ�, (BD + (1 − B)D̂) −Φ�, (D̂)‖�� b−X (R,L(R= ,�)) .

The proof is complete. �

The following Lemma is taken from Vanderbauwhede and Iooss [217, Lemma
3].

Lemma 4.29 Let � be a Banach space and , ∈ �1
1

(
+r , �

)
. Let Φ, and Φ(1)

,
be

defined as in Lemma 4.28. Let Θ ∈ �
(
��[ (R, -2) , + [r

)
be such that

(a) Θ is of class �1 from ��[ (R, -2) into ��[+` (R,R=) for each ` > 0.
(b) The derivative of Θ takes the form

�Θ(D) (E) = Θ(1) (D) (E) , ∀D, E ∈ ��[ (R, -2) ,

for some globally bounded map

Θ(1) : ��[ (R, -2) → L (��[ (R, -2) , ��[ (R,R=)) .

Then

Φ, ◦ Θ ∈ �0
1 (��

[ (R, -2) , ��[ (R, �)) ∩ �1 (
��[ (R, -2) , ��[+` (R, �)

)
for each ` > 0, and

� (Φ, ◦ Θ) (D) (E) = Φ(1), (Θ (D))
(
Θ(1) (D) (E)

)
,

for each D, E ∈ ��[ (R, -2).

Proof By using Lemma 4.28, it follows that

Φ, ◦ Θ ∈ �0
1 (��

[ (R, -2) , ��[ (R, �))

and

D → Φ
(1)
,
(Θ (D)) Θ(1) (D) ∈ �

(
��[ (R, -2) ,L

(
��[ (R, -2) , ��[+` (R, �)

) )
.

Let D, D̂ ∈ ��[ (R, -2) . By Lemma 4.28, we also have
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Φ, (Θ (D)) −Φ, (Θ (D̂)) −Φ(1), (Θ (D̂)) (Θ(1) (D̂) (D − D̂))



��[+` (R,�)

≤



Φ, (Θ (D)) −Φ, (Θ (D̂)) −Φ(1), (Θ (D̂)) (Θ (D) − Θ (D̂))




��[+` (R,�)

+



Φ(1), (Θ (D̂)) [Θ (D) − Θ (D̂) − Θ(1) (D̂) (D − D̂)]




��[+` (R,�)
≤ ‖Θ (D) − Θ (D̂)‖��[+`/2 (R,R=) p`/2 (Θ (D) ,Θ (D̂))
+ ‖Φ�, (Θ (D̂))‖��`/2 (R,L(R= ,�))



Θ (D) − Θ (D̂) − Θ(1) (D̂) (D − D̂)


��[+`/2 (R,R=)

and the result follows. �

One may extend the previous lemma to any order : > 1.

Lemma 4.30 Let � be a Banach space and let , ∈ �:
1

(
+r , �

)
(for some integer

: ≥ 1). Let ; ∈ {1, . . . , :} be an integer. Suppose b ≥ 0, ` ≥ 0 are two real numbers
and X1, X2, . . . , X; ≥ 0 such that b = ` + X1 + X2 + . . . + X; . Define

Φ� (;), (D) (C) := � (;), (D (C)) ,∀C ∈ R,∀D ∈ + [r ,

Φ
(;)
,
(D) (D1, D2, . . . , D;) (C) := � (;), (D (C)) (D1 (C) , D2 (C) , . . . , D; (C)) ,

∀C ∈ R,∀D ∈ + [r ,∀D8 ∈ �� X8 (R,R=) , for 8 = 1, . . . , ;.

Then we have the following:

(a) If b > 0, then Φ� (;), : + [r → �� b
(
R,L (;) (R=, �)

)
is continuous.

(b) For eachD, E ∈ + [r ,Φ(;), (D) ∈ L
(;) (�� X1 (R,R=) , . . . , �� X; (R,R=) ; �� b (R, �)

)
,


Φ(;), (D) −Φ(;), (E)


L (;) (�� X1 (R,R=) ,...,�� X; (R,R=);�� b (R,�))

≤


Φ� (;), (D) −Φ� (;), (E)

��` (R,L (;) (R= ,�))

and 


Φ(;), (D)


L (;) (�� X1 (R,R=) ,...,�� X; (R,R=);�� b (R,�))
≤



Φ� (;), (D)

��` (R,L (;) (R= ,�)) ≤ |, |;,+r .
(c) If ` > 0, then Φ(;)

,
is continuous.

(d) If X1 ≥ [, we have for each D, D̂ ∈ + [r (with the convention for the derivatives
defined at the beginning of this section) that


Φ(;−1)

,
(D) −Φ(;−1)

,
(D̂) −Φ(;)

,
(D̂) (D − D̂)





L (;−1) (�� X2 (R,R=) ,...,�� X; (R,R=);�� b (R,�))

≤ ‖D − D̂‖�� X1 (R,R=) p
(;)
` (D, D̂) ,

where

p
(;)
` (D, D̂) = sup

B∈[0,1]



Φ� (;), (BD + (1 − B)D̂) −Φ� (;), (D̂)

��` (R,L (;) (R= ,�)) ,
and if ` > 0, we have by continuity of Φ� (;), that
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p
(;)
` (D, D̂) → 0 as ‖D − D̂‖��[ (R,R=) → 0.

Proof This proof is similar to that of Lemma 4.28. �

In the following lemma we use a formula for the : Cℎ differential of the composed
two maps. This formula is taken from Avez [10, p. 38]. This formula corrects the
one used in Vanderbauwhede [216, Proof of Lemma 3.11].

Lemma 4.31 Let � be a Banach space and let, ∈ �:
1

(
+r , �

)
. Let Φ, and, (:)

be defined as above. Let Θ ∈ �
(
��[ (R, -2) , + [r

)
be such that

(a) Θ is of class �: from ��[ (R, -2) into ��:[+` (R,R=) for each ` > 0;
(b) for each ; = 1, . . . , :, its derivative takes the form

�;Θ(D) (E1, E2, . . . , E;) = Θ(;) (D) (E1, E2, . . . , E;) ,∀D, E1, E2, . . . , E; ∈ ��[ (R, -2) ,

for someglobally boundedΘ(;) : ��[ (R, -2) → L (;) (��[ (R, -2) ; ��[ (R,R=)) .
ThenΦ, ◦Θ ∈ �0

1
(��[ (R, -2) , ��[ (R, �))∩�:

(
��[ (R, -2) , ��:[+` (R, �)

)
for each ` > 0. Moreover, for each ; = 1, . . . , : and each D, E1, E2, . . . , E; ∈
��[ (R, -2) ,

�; (Φ, ◦ Θ) (D) (E) = (Φ, ◦ Θ) (;) (D) (E1, E2, . . . , E;)

for someglobally bounded (Φ, ◦ Θ) (;) : ��[ (R, -2) → L (;) (��[ (R, -2) ; ��[ (R, �)) .
More precisely, we have for 9 = 1, . . . , : that

(i) (Φ, ◦ Θ) ( 9) (D) = Φ(1), (Θ(D)) �
( 9)Θ (D) + Φ̃, , 9 (D);

(ii) Φ̃, ,1 (D) = 0;
(iii) for 9 > 1, the map Φ̃, , 9 (D) is a finite sum

∑
_∈Λ 9

Φ̃, ,_, 9 (D), where for each

_ ∈ Λ 9 the map Φ̃, ,_, 9 (D) : ��[ (R, -2) → L ( 9) (��[ (R, -2) , ��[ (R, �))
has the following form

Φ̃, ,_, 9 (D)
(
D1, D2, . . . , D 9

)
= Φ

(;)
,
(Θ(D)) ©­«

� (A1)Θ (D)
(
D
8
A1
1
, D
8
A1
2
, . . . , D

8
A1
A1

)
, . . . ,

� (A;)Θ (D)
(
D
8
A;
1
, . . . , D

8
A;
A;

) ª®¬
with 2 ≤ ; ≤ 9 , 1 ≤ A8 ≤ 9 − 1 for 1 ≤ 8 ≤ ;,

A1 + A2 + . . . + A; = 9 ,{
8A<1 , . . . , 8A<A<

}
⊂ {1, . . . , 9} ,∀< = 1, . . . , ;{

8A<1 , . . . , 8A<A<

}
∩

{
8A=1 , . . . , 8A=A=

}
= ∅, if < ≠ =,

8A<1 ≤ 8A<2 ≤ . . . ≤ 8A<A< ,∀< = 1, . . . , ;,

and each _ ∈ Λ 9 corresponds to each particular such a choice.

Proof This proof is similar to that of Lemma 4.29. �
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Proof (Proof of Theorem 4.25) :

Step 1 (Existence of a fixed point): Let :, [, and [̂ be the numbers introduced
in Assumption 4.4.4. Let ` > 0 be such that :[ + (2: − 1) ` = [̂. We first apply
the fibre contraction Theorem 4.27. For each 9 = 1, . . . , : and each subset � ⊂
��[ (R, -2) , define " 9 ,� as the Banach space of all continuous maps Θ 9 : � →
L ( 9)

(
��[ (R, -2) , �� 9 [+(2 9−1)` (R,R=)

)
such that��Θ 9 �� 9 = sup

D∈�



Θ 9 (D)

L ( 9) (��[ (R,-2) ,�� 9[+(2 9−1)` (R,R=)) < +∞.

For 9 = 0, . . . , :, define the map � 9 ,� : "0,� × "1,� × . . . × " 9 ,� → " 9 ,� as
follows: If 9 = 0, set for each D ∈ � that

�0,� (Θ0) (D) = D +  2 ◦Φ� ◦ Θ0 (D).

If 9 = 1, set for each D ∈ � that

�1,� (Θ0,Θ1) (D) (.) = �1 +  2 ◦Φ(1)� (Θ0 (D)) ◦ Θ1 (D) , (4.45)

where �1 is the continuous imbedding from ��[ (R, -2) into ��[+` (R,R=) .
If : ≥ 2, set for each 9 = 2, . . . , : and each D ∈ � that

� 9 ,�
(
Θ0,Θ1, . . . ,Θ 9

)
(D)

=  2 ◦Φ(1)� (Θ0 (D)) ◦ Θ 9 (D) + �̂ 9 ,�
(
Θ0,Θ1, . . . ,Θ 9−1

)
(D) , (4.46)

where

�̂ 9 ,�
(
Θ0,Θ1, . . . ,Θ 9−1

)
(D) =

∑
_∈Λ 9

�̂_, 9,�
(
Θ0,Θ1, . . . ,Θ 9−1

)
(D)

and

�̂_, 9,�
(
Θ0,Θ1, . . . ,Θ 9−1

)
(D)

(
D0, D1, . . . , D 9

)
=  2 ◦Φ(;)� (Θ0 (D))

(
ΘA1 (D)

(
D
8
A1
1
, D
8
A1
2
, . . . , D

8
A1
A1

)
, . . . ,ΘA; (D)

(
D
8
A;
1
, . . . , D

8
A;
A;

))
with the same constraints as in Lemma 4.31 for _, A 9 , ;, and 8

A 9

:
.

Define
� 9 = � 9 ,��[ (R,-2) for each 9 = 0, . . . , : .

In the above definition one has to consider 2 as a linear operator from �� 9 [+(2 9−1)` (R,R=)
into �� 9 [+(2 9−1)` (R,R=) , and Φ(;)

�
(Θ0 (D)) as an element of

L ( 9)
(
��A1[+(2A1−1)` (R,R=) , . . . , ��A; [+(2A;−1)` (R,R=) ; �� 9 [+(2 9−1)` (R,R=)

)
.

Notice that

9[ + (2 9 − 1) ` >
;∑
:=1

A:[ + (2A: − 1)` (⇔ 9[ + (2 9 − 1) ` > 9[ + (2 9 − ;)`)
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since 2 ≤ ; ≤ 9 and
A1 + A2 + . . . + A; = 9 .

Finally, define � : "0 × "1 × . . . × ": → "0 × "1 × . . . × ": by

� (Θ0,Θ1, . . . ,Θ: ) = (�0 (Θ0) , �1 (Θ0,Θ1) , . . . , �: (Θ0,Θ1, . . . ,Θ: )) .

We now check that the conditions of the fibre contraction Theorem 4.27 are satisfied.
We have already shown that �0 is a contraction on "0,� (from the existence part
of the center manifold). It follows from (4.45) and (4.46) that � 9 (1 ≤ 9 ≤ :) is
a contraction on - 9 . More precisely, from Assumption 4.24-(iii), we have for each
9 = 1, . . . , : that

sup
D∈+ [r




 2 ◦Φ(1)� (D)




L(�� 9[+(2 9−1)` (R,R=) ,�� 9[+(2 9−1)` (R,R=))

≤ ‖ 2‖L(�� 9[+(2 9−1)` (R,R=)) sup
D∈+ [r




Φ(1)� (D)


L(�� 9[+(2 9−1)` (R,R=) ,�� 9[+(2 9−1)` (R,R=))
≤ sup\ ∈[[, [̂ ] ‖ 2‖L(�� \ (R,R=)) |� |1,+r
≤ sup\ ∈[[, [̂ ] ‖ 2‖L(�� \ (R,R=)) ‖�‖Lip(R= ,R=) < 1.

Thus, each � 9 is a contraction with respect to Θ 9 . The fixed point of �0 is Γ0, and
we denote by Γ = (Γ0, Γ1, . . . , Γ: ) the fixed point of �. Moreover, for ` = 0, each
� 9 is still a contraction so we have for each 9 = 1, . . . , : that

sup
D∈��[ (R,-2)



Γ 9 (D)

L ( 9) (��[ (R,R=) ,�� 9[ (R,R=)) < +∞.
Step 2 (Attractivity of the fixed point): In this part, we apply the fibre contraction
Theorem 4.27 to prove that for each compact subset � of ��[ (R, -2) and each
Θ ∈ "0 × "1 × . . . × ": ,

lim
<→+∞

�<� (Θ |� ) = Γ |� . (4.47)

Let � be a compact subset of ��[ (R, -2) . From the definition of �� , it is clear
that

Γ |�= �� (Γ |� )

and from the step 1, it is not difficult to see that for each 9 = 0, . . . , :, � 9 ,� is a
contraction. In order to apply the fibre contraction Theorem 4.27, it remains to prove
that for each 9 = 1, . . . , :, � 9 ,�

(
Θ0,� ,Θ1,� , . . . ,Θ 9−1,� , Γ 9 |�

)
∈ " 9 dependents

continuously on
(
Θ0,� ,Θ1,� , . . . ,Θ 9−1,�

)
∈ "0,� × "1,� × . . . × " 9−1,� .

We have

� 9
(
Θ0,� ,Θ1,� , . . . ,Θ 9−1,� , Γ

( 9) |�
)
(D)

=  2 ◦Φ(1)�
(
Θ0,� (D)

)
◦ Γ( 9) (D) + �̂ 9

(
Θ0,� ,Θ1,� , . . . ,Θ 9−1,�

)
(D).



196 4 Center Manifold and Center Unstable Manifold Theory

Since Γ( 9) (D) ∈ L ( 9)
(
��[ (R,R=) , �� 9 [ (R,R=)

)
and Φ(D) ∈ + [r , we can con-

siderΦ(1)
�

as a map from+ [r into L
(
�� 9 [ (R,R=) , �� 9 [+(2 9−1)` (R,R=)

)
, and by

Lemma 4.31 (c) this map is continuous.
Indeed, let Θ0, Θ̂0 ∈ "0 be two maps. Then we have

sup
D∈�




 2 ◦
[
Φ
(1)
�
(Θ0 (D)) −Φ(1)�

(
Θ̂0 (D)

)]
◦ Γ( 9) (D)





L ( 9) (��[ (R,-2) ,�� 9[+(2 9−1)` (R,R=))

≤ ‖ 2‖L(�� 9[+(2 9−1)` (R,R=))
· sup
D∈�




[Φ(1)� (Θ0 (D)) −Φ(1)�
(
Θ̂0 (D)

)]
◦ Γ( 9) (D)





L ( 9) (��[ (R,-2) ,�� 9[+(2 9−1)` (R,R=))

≤ ‖ 2‖L(�� 9[+(2 9−1)` (R,R=)) sup
D∈�




Γ( 9) (D)



L ( 9) (��[ (R,-2) ,�� 9[ (R,R=))

· sup
D∈�




Φ(1)� (Θ0 (D)) −Φ(1)�
(
Θ̂0 (D)

)



L ( 9) (�� 9[ (R,R=) ,�� 9[+(2 9−1)` (R,R=))

and by Lemma 4.28 we have

sup
D∈�




Φ(1)� (Θ0 (D)) −Φ(1)�
(
Θ̂0 (D)

)



L ( 9) (�� 9[ (R,R=) ,�� 9[+(2 9−1)` (R,R=))

≤ sup
D∈�




Φ�� (Θ0 (D)) −Φ��
(
Θ̂0 (D)

)



�� (2 9−1)` (R,L(R= ,R=))

≤ max
©­­­«

sup
|C | ≥'

4−(2 9−1)` |C |



�� (Θ0 (D) (C)) − ��

(
Θ̂0 (D) (C)

)



L(R= ,R=)

,

sup
|C | ≤'

4−(2 9−1)` |C |



�� (Θ0 (D) (C)) − ��

(
Θ̂0 (D) (C)

)



L(R= ,R=)

ª®®®¬ .
Since Θ̂0 is continuous, � is compact, it follows that Θ̂0 (�) is compact, and by

Ascoli’s theorem (see for example Lang [131]), the set �̂ =
⋃

|C | ≤',D∈�

{
Θ̂0 (D) (C)

}
is

compact. But since �� (.) is continuous, we have that for each Y > 0, there exists
[ > 0, such that for each G, H ∈ R=,

3

(
G, �̂

)
≤ [, 3

(
H, �̂

)
≤ [, and ‖G − H‖ ≤ [⇒ ‖�� (G) − �� (H)‖ ≤ Y.

Hence, the map Θ0,� →  2 ◦Φ(1)�
(
Θ0,� (.)

)
◦ Γ( 9) (.) is continuous.

It remains to consider 1 ≤ A8 ≤ 9 − 1, A1 + A2 + . . . + A; = 9 .We have
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 2 ◦
[
Φ
(;)
�
(Θ0 (D)) −Φ(;)�

(
Θ̂0 (D)

)] (
Θ̃A1 (D) , . . . , Θ̃A; (D)

)



L ( 9) (��[ (R,-2) ,�� 9[+(2 9−1)` (R,R=))

≤ ‖ 2‖L(�� 9[+(2 9−1)` (R,R=) ,�� 9[+(2 9−1)` (R,R=))
supD∈�




[Φ(;)� (Θ0 (D)) −Φ(;)�
(
Θ̂0 (D)

)] (
Θ̃A1 (D) , . . . , Θ̃A; (D)

)



L ( 9) (��[ (R,-2) ,�� 9[+(2 9−1)` (R,R=))

≤ ‖ 2‖L(�� 9[+(2 9−1)` (R,R=) ,�� 9[+(2 9−1)` (R,R=))
·



Φ(;)� (Θ0 (D)) −Φ(;)�

(
Θ̂0 (D)

)



L (;)

( ∏
?=1,...,;

��A? [+(2A?−1)` (R,R=);�� 9[+(2 9−1)` (R,R=)
)

· ∏
?=1,...,;




Θ̃A? (D)


L ( 9) (��[ (R,-2) ,��A? [+(2A?−1)` (R,R=))

and by Lemma 4.30 we have

supD∈�



Φ(;)� (Θ0 (D)) −Φ(;)�

(
Θ̂0 (D)

)



L (;)

( ∏
?=1,...,;

��A? [+(2A?−1)` (R,R=);�� 9[+(2 9−1)` (R,R=)
)

≤ supD∈�



Φ� (;)� (Θ0 (D)) −Φ� (;)�

(
Θ̂0 (D)

)



��

X (R,L (;) (R= ,R=))

with X = ( 9[ + (2 9 − 1) `) − ∑;
:=1 A:[ + (2A: − 1)` > 0. By using the same

compactness arguments as previously, we deduce that

sup
D∈�




Φ� (;)� (Θ0 (D)) −Φ� (;)�
(
Θ̂0 (D)

)



��

X (R,L (;) (R= ,R=))
→ 0

as 30,� (Θ0, Θ̂0) → 0. We conclude that the continuity condition of the fibre con-
traction Theorem 4.27 is satisfied for each � 9 ,� and (4.47) follows.

Step 3: In order to prove Theorem 4.25 it now remains to prove that for each
D, E ∈ ��[ (R, -2) ,∀ 9 = 1, . . . , :,

Γ 9−1 (D) − Γ 9−1 (E) =
∫ 1

0
Γ 9 (B(D − E) + E) (D − E) 3B, (4.48)

where the last integral is a Riemann integral. As assumed that (4.48) is satisfied,
we deduce that Γ0 : ��[ (R, -2) → ��:[+(2:−1)` (R,R=) is :-times continuously
differentiable, and since

Ψ(G2) = ! ◦ Γ0 ◦  1 (G2) = ΠℎΓ0 ( 1 (G2)) (0),

and !D = ΠℎD(0) is a bounded linear operator from ��:[+(2:−1)` (R,R=) into -ℎ ,
it follows that Ψ : -2 → -ℎ is :-times continuously differentiable.

We now prove (4.48). Set

Θ0 =
(
Θ0

0,Θ
0
1, . . . ,Θ

0
:

)
with

Θ0
0 (D) = D,Θ

0
1 (D) = �, and Θ

0
9 = 0,∀ 9 = 2, . . . , :
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and set
Θ< =

(
Θ<0 ,Θ

<
1 , . . . ,Θ

<
:

)
= �<

(
Θ0

)
,∀< ≥ 1.

Then from Lemma 4.31, we know that Θ<0 : ��[ (R, -2) → ��:[+(2:−1)` (R,R=)
is a �: -map and

� 9Θ<0 (D) = Θ
<
9 (D), ∀ 9 = 1, . . . , :, ∀D ∈ ��[ (R, -2) .

For each D, E ∈ ��[ (R, -2) and each ∀ 9 = 1, . . . , :,∀< ≥ 1,

Θ<9−1 (D) − Θ
<
9−1 (E) =

∫ 1

0
Θ<9 (B(D − E) + E) (D − E) 3B.

Let D, E ∈ ��[ (R, -2) be fixed. Denote

� = {B(D − E) + E : B ∈ [0, 1]} .

Then clearly � is a compact set, and from step 2, we have for each 9 = 0, . . . , : that

sup
F ∈�




Θ<9 (F) − Γ 9 (F)



�� 9[+(2 9−1)` (R,R=)

→ 0, as < → +∞.

Thus, (4.48) follows. �

It follows from the foregoing treatment that we can obtain the derivatives of Γ0 (D)
at D = 0. Assume that � (0) = 0 and �� (0) = 0, we have

�Γ0 (0) = �,
� (2)Γ0 (0) (D1, D2) =  2 ◦Φ(2)� (0) (�Γ0 (0) (D1), �Γ0 (0) (D2)) ,
� (3)Γ0 (0) (D1, D2, D3) =  2 ◦Φ(2)� (0)

(
� (2)Γ0 (0) (D1, D3), �Γ0 (0) (D2)

)
+ 2 ◦Φ(2)� (0)

(
�Γ0 (0) (D1), � (2)Γ0 (0) (D2, D3)

)
+ 2 ◦Φ(3)� (0) (�Γ0 (0) (D1), �Γ0 (0) (D2), �Γ0 (0) (D3)) ,

...

� (;)Γ0 (0) =
∑
_∈Λ 9

 2 ◦Φ(;)� (0)
(
� (A1)Γ (0) , . . . , �Γ(A;) (0)

)
.

(4.49)

We have the following Lemma.

Lemma 4.32 Let Assumptions 4.3 and 4.24 be satisfied. Assume also that � (0) = 0
and �� (0) = 0. Then

Ψ(0) = 0, and �Ψ(0) = 0,

and if : > 1,

� 9Ψ(0) (G1, . . . , G=) = Πℎ� (;)Γ0 (0) ( 1G1, . . . ,  1G=) (0),

where � (;)Γ0 (0) is given by (4.49). In particular, if : > 1 and

Πℎ�
9� (0) |-2×....×-2= 0, for 2 ≤ 9 ≤ :,
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then
� 9Ψ(0) = 0, for 1 ≤ 9 ≤ :.

In the context of Hopf bifurcation, we need an explicit formula for �2Ψ(0). Since
�Γ0 (0) = �, we obtain from the above formula that ∀G1, G2 ∈ -2 ,

�2Ψ(0) (G1, G2) = Πℎ ℎ
[
� (2)� (0) ( 1G1,  1G2)

]
(0),

where
 ℎ =  B +  D ,  1 (G2) (C) := 4�2 CG2 ,

 D ( 5 ) (C) := −
∫ +∞

C

4−�D (;−C)ΠD 5 (;)3;,

and
 B ( 5 ) (C) := lim

A→−∞
ΠB

(
4�. ∗ 5 (A + .)

)
(C − A).

Hence,

�2Ψ(0) (G1, G2)

= −
∫ +∞

0
4−�D;ΠD�

(2)� (0)
(
4�2;G1, 4

�2;G2

)
3;

+ lim
A→−∞

ΠB

(
4�. ∗ � (2)� (0)

(
4�2 (A+.)G1, 4

�2 (A+.)G2

))
(−A).

In order to explicit the term of the above formula, we remark that

lim
A→−∞

ΠB

(
4�. ∗ � (2)� (0)

(
4�2 (A+.)G1, 4

�2 (A+.)G2

))
(−A)

= lim
A→−∞

ΠB

∫ −A

0
4�(−A−B)� (2)� (0)

(
4�2 (A+B)G1, 4

�2 (A+B)G2

)
3B

= lim
A→−∞

∫ −A

0
4�;� (2)� (0)

(
4−�2;G1, 4

−�2;G2

)
3;

=

∫ +∞

0
4�;ΠB�

(2)� (0)
(
4−�2;G1, 4

−�2;G2

)
3;.

Therefore, we obtain the following formula

�2Ψ(0) (G1, G2)

= −
∫ +∞

0
4−�D;ΠD�

(2)� (0)
(
4�2;G1, 4

�2;G2

)
3;

+4�;ΠB� (2)� (0)
(
4−�2;G1, 4

−�2;G2

)
3;.

Assume that R= is a complex Banach space and � is twice continuously dif-
ferentiable in R= considered as a C-Banach space. We assume in addition that
�2 is diagonalisable, and denote by {E1, . . . , E=} a basis of -2 such that for
each 8 = 1, . . . , =, �2E8 = _8E8 . Then by Assumption 4.3 , we must have
_8 ∈ 8R,∀8 = 1, . . . , =. Moreover, for each 8, 9 = 1, . . . , =,
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�2Ψ(0)
(
E8 , E 9

)
= −

∫ +∞

0
4−(_8+_ 9);4−�D;ΠD� (2)� (0)

(
E8 , E 9

)
3;

+
∫ +∞

0
4�;ΠB�

(2)� (0)
(
4−_8;E8 , 4

−_ 9 ;E 9
)
3;

= −
( (
_8 + _ 9

)
� − (−�D)

)−1
ΠD�

(2)� (0)
(
E8 , E 9

)
+
∫ +∞

0
4−(_8+_ 9);4�B;ΠB� (2)� (0)

(
E8 , E 9

)
3;

= −
( (
_8 + _ 9

)
� − (−�D)

)−1
ΠD�

(2)� (0)
(
E8 , E 9

)
+

( (
_8 + _ 9

)
� − �B

)−1
ΠB�

(2)� (0)
(
E8 , E 9

)
.

Thus,

�2Ψ(0)
(
E8 , E 9

)
= −

( (
_8 + _ 9

)
� − (−�D)

)−1
ΠD�

(2)� (0)
(
E8 , E 9

)
+

( (
_8 + _ 9

)
� − �B

)−1
ΠB�

(2)� (0)
(
E8 , E 9

)
.

Note that by Assumption 4.3 8R ⊂ d (�B) , so the above formula is well defined.
As in Vanderbauwhede and Iooss [217, Theorem 3], we have the following theo-

rem about the existence of the local center manifold.

Theorem 4.33 Let Assumption 4.3 be satisfied. Let � : R= → R= be a map. Assume
there exists an integer : ≥ 1 such that � is :-times continuously differentiable
in some neighborhood of 0 with � (0) = 0 and �� (0) = 0. Then there exist a
neighborhood Ω of the origin in R= and a map Ψ ∈ �:

1
(-2 , -ℎ), with Ψ (0) = 0

and �Ψ (0) = 0, such that the following properties hold:

(i) If � is an interval of R and G2 : � → -2 is a solution of

3G2 (C)
3C

= �2G2 (C) + Π2� [G2 (C) +Ψ (G2 (C))] (4.50)

such that
D(C) := G2 (C) +Ψ (G2 (C)) ∈ Ω,∀C ∈ �,

then for each C, B ∈ � with C ≥ B,

D(C) = D(B) + �
∫ C

B

D(;)3; +
∫ C

B

� (D(;)) 3;.

(ii) If D : R→R= is a map such that for each C, B ∈ R with C ≥ B,

D(C) = D(B) + �
∫ C

B

D(;)3; +
∫ C

B

� (D(;)) 3;

and
D(C) ∈ Ω, ∀C ∈ R,

then
ΠℎD(C) = Ψ (Π2D(C)) ,∀C ∈ R,
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and Π2D : R→-2 is a solution of (4.50).
(iii) If : ≥ 2, then for each G1, G2 ∈ -2 ,

�2Ψ(0) (G1, G2)

= −
∫ +∞

0
4−�D;ΠD�

(2)� (0)
(
4�2;G1, 4

�2;G2

)
3;

+ lim
A→−∞

ΠB

(
4�. ∗ � (2)� (0)

(
4�2 (A+.)G1, 4

�2 (A+.)G2

))
(−A).

Moreover, C= is a C-Banach space, and if {E1, . . . , E=} is a basis of -2 such that
for each 8 = 1, . . . , =, �2E8 = _8E8 , with _8 ∈ 8R, then for each 8, 9 = 1, . . . , =,

�2Ψ(0)
(
E8 , E 9

)
= −

( (
_8 + _ 9

)
� − (−�D)

)−1
ΠD�

(2)� (0)
(
E8 , E 9

)
+

( (
_8 + _ 9

)
� − �B

)−1
ΠB�

(2)� (0)
(
E8 , E 9

)
.

Proof Set for each A > 0 that

�A (G) = � (G)j2
(
A−1Π2 (G)

)
jℎ

(
A−1 ‖Πℎ (G)‖

)
,∀G ∈ R=,

where j2 : -2 → [0, +∞) is a �∞ map with j2 (G) = 1 if ‖G‖ ≤ 1, j2 (G) = 0 if
‖G‖ ≥ 2, and jℎ : [0, +∞) → [0, +∞) is a �∞ map with jℎ (G) = 1 if |G | ≤ 1,
jℎ (G) = 0 if |G | ≥ 4.4. Then by using the same arguments as in the proof of Theorem
3 in [217], we deduce that there exists A0 > 0, such that for each A ∈ (0, A0] , �A
satisfies Assumption 4.24. By applying Theorem 4.25 to

3D(C)
3C

= �D(C) + �A (D(C)) , C ≥ 0, and D(0) = G ∈ � (�)

for A > 0 small enough, the result follows. �

In order to investigate the existence of an Hopf bifurcation we also need the
following result.

Proposition 4.34 Let the assumptions of Theorem 4.33 be satisfied. Assume that
G ∈ R= is equilibrium of {* (C)}C≥0 (i.e. G ∈ � (�) and �G + � (G) = 0) such that

G ∈ Ω.

Then
ΠℎG = Ψ (Π2G)

and Π2G is an equilibrium of the reduced equation

3G2 (C)
3C

= �2G2 (C) + Π2� [G2 (C) +Ψ (G2 (C))] .

Moreover, if one considers the linearized equation at Π2G

3H2 (C)
3C

= ! (G) H2 (C)
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with
! (G) = [�2 + Π2�� (G) [� + �Ψ (Π2G)]] ,

then we have the following spectral properties

f (! (G)) = f ((� + �� (G))0) ∩ {_ ∈ C : Re (_) ∈ [−[, []} .

Proof Let G ∈ R= be an equilibrium of {* (C)}C≥0 such that G ∈ Ω.We set

G2 = Π2G and D(C) = G,∀C ∈ R.

Then the linearized equation at G is given by

3F(C)
3C

= (� + �� (G)) F(C), for C ≥ 0, and F(0) = F0 ∈ R=. (4.51)

So
F(C) = 4 (�+�� (G)) (C)F0,∀C ≥ 0.

Moreover, we have
�Ψ (G2) H2 = Πℎ

[
Γ1

0 (D) ( 1H2)
]

and
Γ1

0 (D) (E) = E +  2Φ�� (G)
(
Γ1

0 (D) (E)
)
, ∀E ∈ ��[ (R, -2) .

It follows that
Γ1

0 (D) =
(
� −  2Φ�� (G)

)−1
E.

Thus,
�Ψ (G2) H2 = Πℎ

[ (
� −  2Φ�� (G)

)−1 ( 1H2)
]
.

By applying Theorem 4.22 to equation (4.51), we deduce that

,[ = {H2 + �Ψ (G2) H2 : H2 ∈ -2}

is invariant by
{
)(�+�� (G))0 (C)

}
C≥0 .Moreover, for eachF ∈ � (R,R=) the following

statements are equivalent:
(1) F ∈ ��[ (R,R=) is a complete orbit of

{
)(�+�� (G))0 (C)

}
C≥0 .

(2) ΠℎF(C) = �Ψ (G2) (Π2F(C)),∀C ∈ R, and Π2F(.) : R→ -2 is a solution of the
ordinary differential equation

3F2 (C)
3C

= �2F2 (C) + Π2�� (G) [F2 (C) + �Ψ (G2) (F2 (C))] .

The result follows from the above equivalence. �

4.4 Existence and Stability of the Center Unstable Manifold

In this section we will assume that the center unstable spectrum is not empty.
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Assumption 4.35 We assume that f2D (�) = {_ ∈ f (�) : Re_ ≥ 0} ≠ ∅.

Let
V− = min {−Re (_) : _ ∈ fB (�)} > 0,

or equivalently

V− = − lim
C→+∞

ln
(

4�B C)

L(-B) )

C
> 0.

From now on, we fix V ∈ (0, V−). From the proof of Lemma 4.5, we deduce that we
can find a constant number "B > 0 such that

‖4�CΠB ‖L(R=) ≤ "B4 (−V+Y)C ,∀C ≥ 0,∀Y ≥ 0. (4.52)

R

iR

−β− −β

σc(A) σu(A)σs(A)

Fig. 4.3: In this Figure, we illustrate the different parts of the spectrum fB (�), f2 (�)
and fD (�) as well as V−.

Let us recall that a function D : R → R is a negative orbit for the semiflow
{* (C)}C≥0 if and only if the function C → D(C) on R satisfies

D(C) = * (C − B)D(B),∀C, B ∈ (−∞, 0] with C ≥ B,

where {* (C)}C≥0 is a continuous semiflow generated by (4.21).
That is equivalent to say that for each B ∈ (−∞, 0] (fixed) the function C → D(C)

from [B, 0] satisfies
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D(C) = D(B) + �
∫ C−B

0
D(B + A)3A +

∫ C−B

0
� (D(B + A)) 3A,∀C ∈ [B, 0],

or equivalently by using the variation of constant formula

D(C) = 4�(C−B)D(B) +
∫ C

B

4�(C−f)� (D(f))3f,∀C ∈ [B, 0],

or (for short) by using the convolutions

D(C) = 4�(C−B)D(B) +
(
4�. ∗ � (D(B + .))

)
(C − B),∀C ∈ [B, 0] . (4.53)

Definition 4.36 Let [ ∈ (0, V−). The [-center unstablemanifold of (4.21), denoted
by +2D[ , is the set of all points G ∈ R= such that there exists D ∈ ��[ (R−,R=) , a
negative orbit of {* (C)}C≥0 , such that D(0) = G. That is to say that

+2D[ =
{
G ∈ R= : ∃D ∈ ��[ (R−,R=) , a negative orbit of {* (C)}C≥0 , such that D(0) = G

}
.

(4.54)

Fig. 4.4: Schematic representation of the center unstable manifold. In this figure
we plot the linear center unstable manifold and the center unstable manifold which
corresponds to a surface tangent at 0 to the linear center unstable manifold. The
surface representing center unstable manifold is delimited by the dashed curves.

For each [ > 0, +2D[ is invariant under the semiflow {* (C)}C≥0 , that is,

* (C)Vcu
[ = Vcu

[ , ∀C ≥ 0.

Moreover, we say that {* (C)}C≥0 is reduced on +2D[ if there exists a map Ψ2D :
-2D → -B such that

Vcu
[ = Graph (Ψ2D) = {G2D +Ψ2D (G2D) : G2D ∈ -2D} .

The proof of the following lemma is similar to the proof of Lemma 4.17.
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Lemma 4.37 Let Assumption 4.35 be satisfied. Then

(i) For each [ ∈ [0, V−) , each 5 ∈ ��[ (R−,R=) , and each C ∈ R−,

 B ( 5 ) (C) := lim
A→−∞

ΠB

(
4�. ∗ 5 (A + .)

)
(C − A) exists.

(ii) For each [ ∈ [0, V−) ,  B is a bounded linear operator from ��[ (R−,R=) into
��[ (R−, -B) . More precisely, for each a ∈ (−V−, 0) , there exists a constant
�̂B,a > 0 such that

‖ B ‖L(��[ (R− ,R=) ,��[ (R− ,-B)) ≤ �̂B,a ,∀[ ∈ [0,−a] .

(iii) For each [ ∈ [0, V−) , each 5 ∈ ��[ (R−,R=) , and each C, B ∈ R with C ≥ B,

 B ( 5 ) (C) − 4�(C−B) B ( 5 ) (B) = ΠB
(
4�. ∗ 5 (B + .)

)
(C − B).

Remark 4.38 As explained before in the chapter we can expressed  B ( 5 ) (C) as

 B ( 5 ) (C) =
∫ +∞

0
4�B \ΠB 5 (C − \)3\,∀C ≤ 0.

The following lemmas can be proved by using similar argument as for Lemma 4.20.

Lemma 4.39 Let Assumption 4.35 be satisfied. Let [ ∈ (0, V−) be fixed. For each
G2D ∈ -2D , each 5 ∈ ��[ (R−,R=) , and each C ∈ (−∞, 0] , denote

 1 (G2D) (C) := 4�2D CG2D ,  2D ( 5 ) (C) :=
∫ C

0
4�2D (C−B)Π2D 5 (B)3B,

where Π2D = Π2 + ΠD . Then  1 is a bounded linear operator from -2D into
��[ (R−, -2D) and

‖ 1‖L(-2D ,��[ (R− ,R=)) ≤ sup
C≥0




4−(�2D+[� )C


 < +∞,
‖ 2D ‖L(��[ (R− ,R=)) ≤ ‖Π2D ‖L(R=)

∫ +∞

0




4−(�2D+[� );


 3; < +∞.
Lemma 4.40 LetAssumption 4.35 be satisfied. Let [ ∈ (0, V−) andD ∈ ��[ (R−,R=)
be fixed. Then D is a negative complete orbit of {* (C)}C≥0 if and only if for each
C ∈ R−,

D(C) =  1 (Π2DD(0)) (C) +  2D (� (D(.))) (C) +  B (� (D(.))) (C), (4.55)

where Π2D = Π2 + ΠD .

Proof This proof is similar to the proof of Lemma 4.21. �

Let [ ∈ (0, V−) be fixed. Rewrite equation (4.55) as the following fixed point
problem: To find D ∈ ��[ (R−,R=) such that
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D =  1 (Π2DD(0)) +  2Φ� (D), (4.56)

where the nonlinear operator Φ� ∈ Lip (��[ (R−,R=) , ��[ (R−,R=)) is defined
by

Φ� (D) (C) = � (D(C)), ∀C ∈ R−,

and the linear operator  2 ∈ L (��[ (R−,R=) , ��[ (R−,R=)) is defined by

 2 =  2D +  B .

Moreover, we have the following estimates

‖ 1‖L(-2D ,��[ (R− ,R=)) ≤ sup
C≥0




4−(�2D+[� )C


 ,
‖Φ� ‖Lip ≤ ‖�‖Lip ,

and for each a ∈ (−V−, 0) , we have

‖ 2‖L(��[ (R,R=)) ≤ W (a, [) ,∀[ ∈ (0,−a] ,

where
W (a, [) := �̂B,a + ‖Π2D ‖L(R=)

∫ +∞

0




4−(�2D+[� );


 3;. (4.57)

Furthermore, by Lemma 4.40, the [-center-unstable manifold is given by

Vcu
[ = {G ∈ R= : ∃D ∈ ��[ (R−,R=) a solution of (4.56) and D(0) = G} . (4.58)

We state the existence of center-unstable manifolds for the abstract semilinear
Cauchy problem (4.21) with non-dense domain which can be proved similarly as
Theorem 4.10 in Magal and Ruan [153].

Theorem 4.41 (Global center unstablemanifold)Let Assumption 4.35 be satisfied.
Let [ ∈ (0, V−) be fixed and X0 = X0 ([) > 0 be such that

X0 ‖ 2‖L(��[ (R− ,R=)) < 1.

Then for each � ∈ Lip(R=,R=) with ‖�‖Lip(R= ,R=) ≤ X0, there exists a Lipschitz
continuous map Ψ2D : -2D → -B such that

Vcu
[ = {G2D +Ψ2D (G2D) : G2D ∈ -2D} .

Moreover, we have the following properties:

(i)
sup

G2D ∈-2D
‖Ψ2D (G2D)‖ ≤ ‖ B ‖L(��[ (R− ,R=)) sup

G∈R=
‖ΠB� (G)‖ .

(ii) We have
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‖Ψ2D ‖Lip(-2D ,-B) ≤
‖ B ‖L(��[ (R− ,R=)) ‖�‖Lip(R= ,R=) ‖ 1‖L(-2D ,��[ (R− ,R=))

1 − ‖ 2‖L(��[ (R− ,R=)) ‖�‖Lip(R= ,R=)
.

(4.59)

We now state and prove the existence of local center-unstable manifolds.

Theorem 4.42 (Local center-unstable manifold) Let Assumption 4.35 be satisfied.
Let A > 0 and � : �R= (0, A) → R= be a map. Assume that there exists an integer
: ≥ 1 such that � is :-time continuously differentiable in �R= (0, A) with

� (0) = 0 and �� (0) = 0.

Then there exists a neighborhood Ω of the origin in R= and a map Ψ2D ∈
�:
1
(-2D , -B) with

Ψ2D (0) = 0 and �Ψ2D (0) = 0,

such that
"2D = {G2D +Ψ2D (G2D) : G2D ∈ -2D}

is a locally invariant manifold by the semiflow generated by (4.21) around 0.
More precisely, the following properties hold:

(i) If � is an interval of R and G2D : � → -2D is a solution of

3G2D (C)
3C

= �02DG2D (C) + Π2D� (G2D (C) +Ψ2D (G2D (C))) (reduced equation)
(4.60)

such that
D(C) := GD2 (C) +Ψ2D (GD2 (C)) ∈ Ω,∀C ∈ �,

then for each C, B ∈ � with C ≥ B,

D(C) = D(B) + �
∫ C

B

D(;)3; +
∫ C

B

� (D(;)) 3;.

(ii) If D : (−∞, 0] →R= is a map such that for each C, B ∈ (−∞, 0] with C ≥ B,

D(C) = D(B) + �
∫ C

B

D(;)3; +
∫ C

B

� (D(;)) 3;

and
D(C) ∈ Ω, ∀C ∈ (−∞, 0] ,

then
ΠBD(C) = Ψ2D (Π2DD(C)) ,∀C ∈ (−∞, 0] ,

and Π2DD : (−∞, 0] →-2D is a solution of (4.60).

Proof In order to prove the local center-unstable manifold theorem, we apply The-
orem 4.41 to the Cauchy problem

3D

3C
= �D(C) + �A (D(C)) , C ≥ 0, D(0) = G ∈ R=,
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where �A : R= → R= is the following truncated function

�A (G) = � (G)j2D
(
A−1Π2D (G)

)
jB

(
A−1 ‖ΠB (G)‖

)
, ∀G ∈ R=,

j2D : -2D → [0, +∞) is a �∞ map with j2D (G) ≤ 1 and

j2D (G) =
{

1, if ‖G‖ ≤ 1,
0, if ‖G‖ ≥ 2,

and jB : [0, +∞) → [0, +∞) is a �∞ map with jB (H) ≤ 1,∀H ≥ 0, and

jB (H) =
{

1, if |H | ≤ 1,
0, if |H | ≥ 2.

The smoothness ofΨ2D is obtained by applying the same arguments as in Magal and
Ruan [153] to the above truncated system, and the result follows. �

The following theorem is the main result of this section. This result is proved
for discrete time systems with bounded Lipschitz map � in Vanderbauwhede [215]
and for ordinary differential equations in Vanderbauwhede [216] and Chow, Li and
Wang [32].

Theorem 4.43 (Stability of the center unstable manifold) Let Assumption 4.35 be
satisfied. Let [ ∈ (0, V−) be fixed. Then there exists X1 ([) ∈ (0, X0) (where X0 > 0 is
the constant introduced in Theorem 4.41), such that for each � ∈ Lip(R=,R=) with
‖�‖Lip(R= ,R=) ≤ X1 ([), there exists a continuous map �2D : R= → Vcu

[ such that for
each G ∈ R=,

Vcu
[ ∩ +̃[ (G) = {�2D (G)} ,

where
+̃[ (G) =

{
H ∈ R= : sup

C≥0
4[C ‖* (C)H −* (C)G‖ < +∞

}
.

More precisely, for each G ∈ R=, there is a constant "[ = "[ (G) > 0 such that

‖* (C)�2D (G) −* (C)G‖ ≤ 4−[C"[ ‖�2D (G) − G‖ ,∀C ≥ 0.

Before proving the theorem we give some preliminary lemmas. Recall that

��−[ (R+,R=) =
{
F ∈ � (R+,R=) : ‖F‖[ = sup

C ∈R+
4[C ‖F(C)‖ < +∞

}
.

In order to determine +̃[ (G), we have to find all F ∈ ��−[ (R+,R=) such that
C → * (C)G + F(C) is a solution of

D(C) = 4�CG +
(
4�. ∗ � (D(.))

)
(C), ∀C ∈ [0, g] . (4.61)

Lemma 4.44 Let Assumption 4.35 be satisfied. Let [ ∈ (0, V−) be fixed and F ∈
��−[ (R+,R=). Then the map C → * (C)G + F(C) is a solution of (4.61) if and only if
for each C ≥ 0,
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F(C) =4�B CΠBF(0) +
(
4�B ∗ ΠB [� (* (.)G + F(.)) − � (* (.)G)]

)
(C)

−
∫ +∞

C

4�D2 (C−B)Π2D [� (* (B)G + F(B)) − � (* (B)G)] 3B. (4.62)

Proof Let F ∈ ��−[ (R+,R=) be fixed. Assume first that C → * (C)G + F(C) is a
solution of (4.61). Then we have for each C, B ∈ [0, +∞) with C ≥ B that

* (C)G + F(C) =4�(C−B) (* (B)G + F(B))

+
(
4�. ∗ � (* (B + .)G + F(B + .))

)
(C − B)

and
* (C)G = 4�(C−B)* (B)G +

(
4�. ∗ � (* (B + .)G)

)
(C − B).

Then

F(C) =4�(C−B)F(B)

+
(
4�. ∗ [� (* (B + .)G + F(B + .)) − � (* (B + .)G)]

)
(C − B). (4.63)

By projecting the above equation on -2D , we obtain for each C, B ∈ [0, +∞) with
C ≥ B that

Π2DF(C) = 4�2D (C−B)Π2DF(B)+
∫ C

B

4�2D (C−;)Π2D [� (* (;)G + F(;)) − � (* (;)G)] 3;.

Then

Π2DF(B) = 4−�2D (C−B)Π2DF(C)−
∫ C

B

4�2D (B−;)Π2D [� (* (;)G + F(;)) − � (* (;)G)] 3;.

We have


4−�2D (C−B)

L(-2D) ≤ min

{
4
[

2 |C−B |"2, [2 , 4
−[1 (C−B)"D

}
, [1 > 0, ∀C ≥ B,

here [, "2, [2 and "D are constants (see Magal and Ruan [153] for details). Since
F ∈ ��−[ (R+,R=), we obtain for each C, B ∈ [0, +∞) with C ≥ B that


4−�2D (C−B)Π2DF(C)


 ≤ min

{
4
[

2 |C−B |"2, [2 , 4
−[1 (C−B)"D

}
‖Π2D ‖L(R=) ‖F‖[ 4−[C .

Then 


4−�2D (C−B)Π2DF(C)


→ 0 as C → +∞.

Thus

Π2DF(C) = −
∫ +∞

C

4�2D (C−;)Π2D [� (* (;)G + F(;)) − � (* (;)G)] 3;,∀C ≥ 0.

(4.64)
By projecting (4.63) on -B we obtain for each C ≥ 0 that

ΠBF(C) = 4�B CΠBF(0) +
(
4�B ∗ ΠB [� (* (.)G + F(.)) − � (* (.)G)]

)
(C). (4.65)
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So by summing (4.64) and (4.65), we obtain (4.62). Conversely, assume that F
satisfies (4.62). Then by projecting (4.62) on -B we obtain for each C ≥ 0 that

ΠBF(C) = ΠB4�CF(0) + ΠB
(
4�. ∗ [� (* (.)G + F(.)) − � (* (.)G)]

)
(C).

Then

ΠB (* (C)G + F(C)) = ΠB4�C (F(0) + G) + ΠB
(
4�. ∗ � (* (.)G + F(.))

)
(C). (4.66)

Furthermore, by projecting (4.62) on -2D we obtain for each C ≥ 0 that

Π2DF(C) = −
∫ +∞

C

4�(C−B)Π2D [� (* (B)G + F(B)) − � (* (B)G)] 3B.

Thus

Π2DF(C) − 4�2D CΠ2DF(0) = −
∫ +∞

C

4�(C−B)Π2D [� (* (B)G + F(B)) − � (* (B)G)] 3B

+
∫ +∞

0
4�(C−B)Π2D [� (* (B)G + F(B)) − � (* (B)G)] 3B

=

∫ C

0
4�(C−B)Π2D [� (* (B)G + F(B)) − � (* (B)G)] 3B.

Hence

Π2D (* (C)G + F(C)) = 4�2D CΠ2D (G + F(0)) +
∫ C

0
4�(C−B)Π2D� (* (B)G + F(B))3B.

(4.67)
By summing up (4.66) and (4.67), we deduce that C → * (C)G + F(C) is a solution of
(4.61). �

Rewrite (4.62) in the following abstract form

F =  ̃1 (FB) +  ̃2Φ̃(G, F),

where  ̃1 : -B → ��−[ (R+, -B) ,  ̃2 : ��−[ (R+,R=) → ��−[ (R+,R=) , and
Φ̃ : R= × ��−[ (R+,R=) → ��−[ (R+,R=) are defined as follows

 ̃1 (GB) (C) = 4�B CGB , C ∈ R+,
 ̃2 ( 5 ) (C) =

(
4�B . ∗ ΠB 5

)
(C) −

∫ +∞
C

4�2D (C−B)Π2D 5 (B)3B,∀C ∈ R+,
Φ̃(G, 5 ) (C) = � (* (C)G + 5 (C)) − � (* (C)G),∀C ∈ R+.

One has


Φ̃(G, 5 ) (C)


 = ‖� (* (C)G + 5 (C)) − � (* (C)G)‖ ≤ 4−[C ‖�‖Lip ‖ 5 ‖[ . (4.68)

Lemma 4.45 Let Assumption 4.35 be satisfied. Let [ ∈ (0, V−) be fixed. Then

 ̃1 ∈ L(-B , ��−[ (R+,R=)) and  ̃2 ∈ L(��−[ (R+,R=) , ��−[ (R+,R=))



4.4 Existence and Stability of the Center Unstable Manifold 211

with


 ̃2





L(��−[ (R+ ,R=) ,��−[ (R+ ,R=))

≤ W([) := �̂B,−[+‖Π2D ‖L(R=)
∫ +∞

0




4−(�2D+[� );


 3;
where �̂B,−[ > 0 is a constant, and

Φ̃(G, 0) = 0,

Φ̃(G, .) ∈ Lip (��−[ (R+,R=) , ��−[ (R+,R=)) ,∀G ∈ R=,

with 


Φ̃(G, .)



Lip
≤ ‖�‖Lip .

Proof This proof is straightforward. �

Proof (Proof of Theorem 4.45) Let [ ∈ (0, V−) and G ∈ R= be fixed. Let X0 > 0 be
the constant introduced in Theorem 4.41. Let X∗1 ∈ (0, X0) be such that

X∗1W([) < 1. (4.69)

Then for each � ∈ Lip (R=,R=) with ‖�‖Lip ≤ X∗1, we obtain that for each (G, FB) ∈
R= × -B , there exists a unique solution F = F̃(G, FB) ∈ ��−[ (R+,R=) such that

F =  ̃1 (FB) +  ̃2Φ̃(G, F)

and
F = (�3 −  ̃2Φ̃(G, .))−1 ̃1 (FB).

We have

‖F̃(G, FB) − F̃(G, F̃B)‖[ ≤ ; ‖FB − F̃B ‖ ,∀G ∈ R=,∀FB , F̃B ∈ -B,

where ; depends on [ and ‖�‖Lip but stays bounded as ‖�‖Lip → 0. To see the
continuous dependence of F̃(G, FB) on G ∈ R=, we remark that (4.69) and the
continuity of W([) imply that W(Z)X∗1 < 1 for some Z ∈ ([, V). Replacing [ by
Z in the above argument, we conclude that F̃(G, FB) belongs in fact to the space
��−Z (R+,R=), which is continuously imbedded in ��−[ (R+,R=).More precisely,
we have

‖F̃(G, FB)‖Z ≤



 ̃1





L(-B ,��−Z (R+ ,R=))

‖FB ‖ +



 ̃2





L(��−Z (R+ ,R=))




Φ̃(G + G0, F)




Z

≤



 ̃1





L(-B ,��−Z (R+ ,R=))

‖FB ‖ +



 ̃2





L(��−Z (R+ ,R=))

‖�‖Lip ‖F̃(G, FB)‖Z .

Therefore, we obtain an estimate independent of G,
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‖F̃(G, FB)‖Z ≤




 ̃1





L(-B ,��−Z (R+ ,R=))

‖FB ‖

1 −



 ̃2





L(��−Z (R+ ,R=))

‖�‖Lip

< +∞.

Moreover, we have

F̃(G + G0, FB) − F̃(G0, FB)

=  ̃1 (FB) +  ̃2Φ̃(G + G0, F̃(G + G0, FB)) −
[
 ̃1 (FB) +  ̃2Φ̃(G0, F̃(G0, FB))

]
=  ̃2

[
Φ̃(G + G0, F̃(G + G0, FB)) − Φ̃(G0, F̃(G0, FB))

]
=  ̃2

[
Φ̃(G + G0, F̃(G + G0, FB)) − Φ̃(G + G0, F̃(G0, FB))

]
+  ̃2

[
Φ̃(G + G0, F̃(G0, FB)) − Φ̃(G0, F̃(G0, FB))

]
.

Then

‖F̃(G + G0, FB) − F̃(G0, FB)‖[
≤




 ̃2





L(��−[ (R+ ,R=))

‖�‖Lip ‖F̃(G + G0, FB) − F̃(G0, FB)‖[

+



 ̃2





L(��−[ (R+ ,R=))




Φ̃(G + G0, F̃(G0, FB)) − Φ̃(G0, F̃(G0, FB))




[
.

Thus

‖F̃(G + G0, FB) − F̃(G0, FB)‖[

≤




 ̃2





L(��−[ (R+ ,R=))

1 −



 ̃2





L(��−[ (R+ ,R=))

‖�‖Lip




Φ̃(G + G0, F̃(G0, FB)) − Φ̃(G0, F̃(G0, FB))




[
.

For fixed F ∈ ��−Z (R+,R=) we claim that the mapping G → Φ̃(G, F) is continuous
from R= into ��−[ (R+,R=). In fact, by using (4.69), we have


Φ̃(G + G0, F) − Φ̃(G0, F)





[
= sup
C ∈R+

4[C ‖H (C)‖ ,

where

H(C) := [� (* (C) (G + G0) + F(C)) − � (* (C)G0 + F(C))]
− [� (* (C) (G + G0)) − � (* (C)G0)] .

Thus


Φ̃(G + G0, F) − Φ̃(G0, F)




[
= max

(
sup

0≤C≤)
4[) ‖H (C)‖ , 24 ([−Z )) ‖�‖Lip ‖F‖Z

)
.

By the continuity of G → * (C) (G) uniformly with respect to C ∈ [0, )] , we obtain
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lim sup
G→0




Φ̃(G + G0, F) − Φ̃(G0, F)




[
≤ 24 ([−Z )) ‖�‖Lip ‖F‖Z , ) ≥ 0.

So when ) goes to +∞, we obtain

lim
G→0




Φ̃(G + G0, F) − Φ̃(G0, F)




[
= 0.

From this and the fact that F̃(G, FB) ∈ ��−Z (R+,R=), it follows that F̃ : R= × -B →
��−[ (R+,R=) is continuous.

Define a map Γ : R= × -B → -2D by

Γ (G, FB) = Π2D (�3 −  ̃2Φ̃(G, .))−1 ̃1 (FB) (0), ∀G ∈ R=, FB ∈ -B .

Notice that Γ : R= × -B → -2D is continuous and Γ is Lipschitz continuous with
respect to FB with

‖Γ(G, .)‖Lip ≤ ‖Π02D ‖L(R=)




 ̃1





L(-B ,��−[ (R+ ,R=))

1 −



 ̃2





L(��−[ (R+ ,R=))

‖�‖Lip

.

We have by construction that

H ∈ +̃[ (G) ⇔ H = G + F with Π2DF = Γ (G,ΠBF) .

Then

+̃[ (G) = {GB + FB + G2D + Γ (G, FB) : FB ∈ -B}
= {I + G2D + Γ (G, I − GB) : I ∈ -B} .

Consider the map Θ : R= × -B → -2D defined by

Θ (G, I) = G2 + Γ (G, I − GB) ,∀G ∈ R=, I ∈ -B ,

we have +̃[ (G) = {I + Θ (G, I) : I ∈ -B} . SinceΓ : R=×-B → -2D is continuous and
Γ(G, FB) is Lipschitz continuous with respect to FB , so is Θ, and ‖Θ‖Lip ≤ ‖Γ‖Lip .
Finally, we look for H ∈ R=, such that

ΠBH = Ψ2D (Π2DH) and Π2DH =: Θ (G,ΠBH) .

But by (4.59), we deduce that ‖Ψ2D ‖Lip → 0 as ‖�‖Lip → 0. So (4.59) and
(4.69) imply that there exists X1 ∈

(
0, X∗1

)
such that for each � ∈ Lip (R=,R=) with

‖�‖Lip ≤ X1,
‖Θ(G, .)‖Lip ‖Ψ2D ‖Lip < 1.

Thus, there exists for each G ∈ R= a unique H̃2D (G) ∈ -2D such that

Θ (G,Ψ2D ( H̃2D (G))) = H̃2D (G)
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and the map H̃2 : R= → -2D is continuous. By setting �2D (G) = H̃2D (G) +
Ψ2D ( H̃2D (G)) the result follows. �

Theorem 4.46 (Local uniform convergence) Let Assumption 4.35 be satisfied. Let
[ ∈ (0, V−) be fixed. Then there exists X1 ([) ∈ (0, X0) (where X0 > 0 is the
constant introduced in Theorem 4.41), such that for each � ∈ Lip(R=,R=) with
‖�‖Lip(R= ,R=) ≤ X1 ([), the following holds: for each G̃ ∈ +2D[ and for each Y > 0,
there exists some X > 0 such that

‖* (C)G −* (C)�2D (G)‖ ≤ Y4−[C , ∀C ≥ 0, (4.70)

for all G ∈ R= with ‖G − G̃‖ < X.

Proof Let G̃ ∈ +2D[ be fixed. The proof of Theorem 4.45 implies that

F̃(G,Ψ2D ( H̃2 (G)) − Π0BG) (C) = * (C) (�2D (G)) −* (C) (G),∀C ≥ 0, ∀G ∈ R=,

where
�2D (G) = H̃2 (G) +Ψ2D ( H̃2 (G)) ∈ +2D[ .

It is clear that �2D (G̃) = G̃ if G̃ ∈ +2D[ and hence

F̃(G̃,Ψ2D ( H̃2 (G̃)) − ΠB G̃) = * (C) (�2D (G̃)) −* (C) (G̃) = 0,∀C ≥ 0,∀G̃ ∈ +2D[ .

Let G̃ ∈ +2D[ and Y > 0. By the continuity of F̃ : R= × -B → ��−[ (R+,R=) and
H̃2 : R= → -2D , we can find some X > 0 such that

| |F̃(G,Ψ2D ( H̃2 (G)) − Π0BG) − F̃(G̃,Ψ2D ( H̃2 (G̃)) − ΠB G̃) | |[ ≤ Y

whenever G ∈ R= and | |G − G̃ | | < X. Therefore,

sup
C ∈R+

4[C | |* (C) (�2D (G)) −* (C) (G) | |

= sup
C ∈R+

4[C | |F̃(G,Ψ2D ( H̃2 (G)) − ΠBG) (C) | |

= sup
C ∈R+

4[C | |F̃(G,Ψ2D ( H̃2 (G)) − ΠBG) (C) − F̃(G̃,Ψ2D ( H̃2 (G̃)) − ΠB G̃) (C) | |

≤ Y if G ∈ R= and | |G − G̃ | | < X.

The proof is complete. �

Remark 4.47 Our presentations focused on center-unstable manifolds. However,
similar results can be established for center-stable manifolds. In fact, we will use a
center-stable result to discuss the stability of Hopf bifurcation next section.
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4.5 Existence and the Uniqueness of Traveling Waves for Fisher-
KPP Equation

In this section we illustrate the consequence of the global attractors theory and
center unstable manifold to give a short proof for the existence and uniqueness of
the travelling waves for the Fisher-KPP equation. This section is taken from Ducrot,
Langlais and Magal [58].

4.5.1 Fisher-Kolmogorov-Petrovski-Piskunov’s traveling waves
problem

Let us consider a logistic reaction diffusion equation

mC# = mGG# + _#
[
1 − #

^

]
. (4.71)

When _ = V − ` > 0, the above equation corresponds a logistic or Fisher-
Kolmogorov-Petrovski-Piskunov (or for short Fisher-KPP) equation [77, 126]. Clas-
sically, V > 0 denotes the birth rate, ` > 0 corresponds to the death rate while
^ > 0 denotes the carrying capacity of the environment. Then if we look for special
solution of the form

# (C, G) = * (G − 2C)

Recall that for each 2 ≥ 2∗ = 2
√
_ this logistic equation has a unique (up to

translation) travelling wave solution connecting # = 0 to # = ^. This means that for
each 2 ≥ 2∗, there exists a non-increasing function* ≡ *2 (G) such that

* ′′(G) + 2* ′(G) + _* (G)
[
1 − * (G)

^

]
= 0, G ∈ R,

* (−∞) = ^, * (∞) = 0.
(4.72)

The dynamics of such a logistic equation is well known and, in many cases,
strongly related to travelling wave solutions. The literature about this topic is very
wide. We only quote some of them, see for instance [8, 21, 97, 133, 134, 184, 214,
220] as well as references therein.

In this section, we discuss the existence and uniqueness of solutions for (4.72) by
using invariant manifold techniques. Let us notice that (4.72) can be re-written as(

3

3G
+ 2

2

)2
* − 2

2

4
* +* (1 −*) = 0.

Next setting 
*1 := *

*2 :=
(
3

3G
+ 2

2

)
*.
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we obtain the following first order system of ordinary differential equations
(
3

3G
+ 2

2

)
*1 = *2(

3

3G
+ 2

2

)
*2 =

22

4
*1 −*1 (1 −*1).

Set
U :=

2

2
we obtain the system {

3*1
3G

= −U*1 +*2
3*2
3G

= −U*2 +
(
U2 − 1

)
*1 +*2

1
(4.73)

Note that this system is monotone increasing on [0, +∞)2 whenever

U ≥ 1. (4.74)

Moreover one has

3 (U*1 +*2)
3C

= −*1 (G) +*1 (G)2 = −*1 (G) (1 −*1 (G)) (4.75)

and the points
*

0 := (0, 0) and*1 := (1, U)

are the only equilibria of the system in [0, +∞)2.

4.5.2 Existence of travelling waves

Since [0, 1] × [0, U] is invariant by the semiflow {) (C)}C≥0 generated by the system
(4.73). There exists a connected subset � ⊂ [0, 1] × [0, U] , which is the global
attractor of the semiflow ) on [0, 1] × [0, U]. The global attractor is connected,
because the global attractor � attracts the connected set [0, 1] × [0, U]). The global
attractor � contains both equilibria (0, 0) and (1, U) , by considering the linear
functional % : R2 → R

% (*1,*2) = *1

we deduce that % (�) is compact and connected and contains %(0, 0) = 0 and
%(1, U) = 1. Hence one concludes that

% (�) = [0, 1] .

Moreover
) (C) � = �,∀C ≥ 0.
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Therefore {) (C)}C ∈R is a flow on �, and it follows that there exists a complete orbit
(*1,*2) ∈ �1 (

R,R2) of system (4.73) such that

(*1 (C),*2 (C)) ∈ �,∀C ≥ 0,

and passing C = 0 through

(*1,*2) with*1 = 1/2 and*2 ∈ [0, U] .

By using (4.75) we deduce that

lim
C→+∞

(*1 (C),*2 (C)) = (0, 0) and lim
C→−∞

(*1 (C),*2 (C)) = (1, U) .

Therefore � contains the equilibria, and all the travelling waves going from (1, U)
to (0, 0) .

4.5.3 Uniqueness of the travelling waves

In order to prove the uniqueness of the heteroclinic orbit going from (1, U) to (0, 0),
we will study the center-unstable manifold around the equilibrium (1, U).
Linearized equation at*1

= (1, U): Thematrix of the linearized equation of system
(4.73) at (1, U) is

!* =

[
−U 1
U2 + 1 −U

]
,

the characteristic equation is given by

(U + _)2 − U2 − 1 = 0⇔ _2 + 2U_ + U2 − U2 − 1 = 0

⇔ _2 + 2U_ − 1 = 0,

hence the spectrum of !* is given by

f (!* ) =
{
_−* , _

+
*

}
,

with
_−* := −U −

√
U2 + 1 < 0 < _+* := −U +

√
U2 + 1.

It follows that the center-unstable manifold at (1, U) is a one dimensional locally
invariant manifold. Since the center-unstable manifold at (1, U) contains the point of
any negative orbit staying in some neighborhood (small enough) of (1, U). It follows
that the traveling wave (or the complete orbit) going from (1, U) (at C = −∞) to (0, 0)
(to C = +∞) is unique (we refer for instance to [214] for an other proof).

The precise result proven is the following:

Theorem 4.48 Assume that U ≥ 1 (that reads 2 ≥ 2). Then there exists at most one
travelling wave going from (1, U) to (0, 0) for (4.72). More precisely, there exists a
unique solution*∗ (G) =

(
*∗1 (G),*

∗
2 (G)

)
of system (4.73) satisfying
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lim
G→−∞

*∗ (G) = (1, U) and lim
G→+∞

*∗ (G) = (0, 0).

Remark 4.49 The profiles of traveling waves are not always unique. We refer to
Ducrot, Langlais and Magal [58] for an example of non-unique traveling wave
profile.

4.6 Remarks and Notes

The chapter is devoted to the center manifold theory that was presented by Van-
derbauwhede in [216] and Vanderbauwhede and Iooss [217]. Our presentation is
inspired by Magal and Ruan [154] where Vanderbauwhede’s center manifold’s re-
sults was extended an abstract class of Cauchy problems on Banach spaces. The
second part of this chapter about the center-unstable manifold is inspired by Liu,
Magal and Ruan [146]. More results and references on the center manifold theory
will given at then end this chapter.

Center manifold

The classical center manifold theory was first established by Pliss [175] and Kel-
ley [124] and was developed and completed in Carr [23], Sĳbrand [199], Vander-
bauwhede [216], etc. For the case of a single equilibrium, the centermanifold theorem
states that if a finite dimensional system has a non hyperbolic equilibrium, then there
exists a center manifold in a neighborhood of the non hyperbolic equilibrium which
is tangent to the generalized eigenspace associated to the corresponding eigenvalues
with zero real parts, and the study of the general system near the non hyperbolic
equilibrium reduces to that of an ordinary differential equation restricted on the lower
dimensional invariant center manifold. This usually means a considerable reduction
of the dimension which leads to simple calculations and a better geometric insight.
The center manifold theory has significant applications in studying other problems
in dynamical systems, such as bifurcation, stability, perturbation, etc. It has also
been used to study various applied problems in biology, engineering, physics, etc.
We refer to, for example, Carr [23] and Hassard et al. [99]. There are two classical
methods to prove the existence of center manifolds. The Hadamard (Hadamard [88])
method (the graph transformation method) is a geometric approach which bases on
the construction of graphs over linearized spaces,see Hirsch et al. [103] and Chow
et al. [34, 36]. The Liapunov-Perron (Liapunov [140], Perron [174]) method (the
variation of constants method) is more analytic in nature, which obtains the manifold
as a fixed point of a certain integral equation. The technique originated in Krylov and
Bogoliubov [127] and was furthered developed by Hale [90, 92], see also Ball [11],
Chow and Lu [39], Yi [229], etc. The smoothness of center manifolds can be proved
by using the contraction mapping in a scale of Banach spaces (Vanderbauwhede
and van Gils [218]), the Fiber contraction mapping technique (Hirsch et al. [103]),
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the Henry lemma (Henry [101], Chow and Lu [38]), among other methods (Chow
et al. [33]). For further results and references on center manifolds, we refer to the
monographs of Carr [23], Chow and Hale [30], Chow et al. [32], Sell and You [189],
Wiggins [224] and the survey papers of Bates and Jones [13], Vanderbauwhede
[215] and Vanderbauwhede and Iooss [217].

Recently, great attention has been paid to the study of center manifolds in infinite
dimensional systems and researchers have developed the center manifold theory
for various infinite dimensional systems such as partial differential equations(Bates
and Jones [8], Da Prato and Lunardi [30], Henry [54], Scheel [93]), semiflows
in Banach spaces (Bates et al. [9], Chow and Lu [21], Gallay [45], Scarpellini
[91],Vanderbauwhede [103], Vanderbauwhede and vanGils [105]), delay differential
equations (Hale [50], Hale and Verduyn Lunel [51], Diekmann and van Gils [34,35],
Diekmann et al. [36], Hupkes and Verduyn Lunel [58]), infinite dimensional non
autonomous differential equations (Mielke [81, 82], Chicone and Latushkin[15]),
and partial functional differential equations (Lin et al. [73], Faria et al.[43], Krisztin
[68], Nguyen and Wu [83], Wu [111]). Infinite dimensional systemsusually do not
have some of the nice properties the finite dimensional systems have. For example,
the initial value problem may not be well posed, the solutions may not be extended
backward, the solutions may not be regular, the domain of operators may not be
dense in the state space, etc. Therefore, the center manifold reduction of the infinite
dimensional systems plays a very important role in the theory of infinite dimensional
systems since it allows us to study ordinary differential equations reduced on the
finite dimensional center manifolds. Vanderbauwhede and Iooss [106] described
someminimal conditionswhich allow to generalize the approach ofVanderbauwhede
[104] to infinite dimensional systems.

In Magal and Ruan [154, 155] we consider a center manifold for non densely
Cauchy problems

D′(C) = �D(C) + � (D(C)), for C ≥ 0, and D(0) = G ∈ � (�),

where � : � (�) ⊂ - → - is a linear operator on aBanach space and� : � (�) → -

is Lipschitz continuous local arounds 0.
More recently, Ducrot and Magal [60] extended such an idea to a class of abstract

second order semi-linear differential equations on the real line. In [60] we obtain the
existence of wave train arising from a Hopf bifurcation.

Persistence of a normally hyperbolic manifold

The principle of the centermanifold theorem is to show that the linear centermanifold
persists for small perturbation of the linear system. There also exists some nonlinear
version of such results. That is the so called normally hyperbolic manifold. There
have been several important extensions of the classical center manifold theory for
invariant sets. For higher dimensional invariant sets, it is known that center manifolds
exist for an invariant torus with special structure (Chow and Lu [40]), for an invariant
set consisting of equilibria (Fenichel [74]), for some homoclinic orbits (Homburg
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[110], Lin [142] and Sandstede [188]), for skew-product flows (Chow and Yi [42]),
for any piece of trajectory of maps (Hirsch et al. [103]), and for smooth invariant
manifolds and compact invariant sets (Chow et al. [35, 37]).

We also refer to Ducrot Magal and Seydi [61, 62] and Magal and Seydi [157]
for more references and some extensions to abstract non densely densely defined
Cauchy problems.

Center unstable manifold

Given a non hyperbolic equilibrium, the center-unstable manifold is a locally invari-
ant manifold by the semiflow and is tangent to the generalized eigenspace associated
to the corresponding eigenvalues with non-negative real parts (Kelley [124]).The
local center-unstable manifold plays an important role in applications since it has
some nice stability properties. Compared to center manifold, it is also easier to use in
practice,since a point (locally around the equilibrium) belongs to the center-unstable
manifold if only if there exists a negative orbit (staying in some small neighborhood
of the equilibrium) passing through the point at time C = 0, while for the center
manifold a complete orbitis needed. Center-unstable manifolds in in nite dynamical
systems have been studied by many researchers. For example, Armbruster et al. [6]
investigated center-unstablemanifolds inKuramoto-Sivashinsky equation. Chow and
Lu [38] discussed the existence and smoothness of global center-unstable manifolds
for semilinear and fully nonlinear differential evolution equations. Dell’Antonio and
D’Onofrio [50] studied center-unstable manifolds for the Navier-Stokes equation.
Nakanishi and Schlag [172] established center-unstable and center-stable manifolds
around soliton manifolds for the nonlinear Klein-Gordon equation. Turyn [213] ob-
tained a center-unstable manifold theorem for parametrically excited surface waves.
Stumpf [205] discussed center-unstable manifolds for differential equations with
state-dependent delay.

In Liu, Magal and Ruan [145] we consider a center unstable manifold for non
densely Cauchy problems

D′(C) = �D(C) + � (D(C)), for C ≥ 0, and D(0) = G ∈ � (�),

where � : � (�) ⊂ - → - is a linear operator on aBanach space and� : � (�) → -

is Lipschitz continuous local arounds 0. In [145], we take advantage of the stability
property of the center-unstable manifold to prove a stability theorem for the periodic
orbits arsing from a Hopf bifurcation.



Chapter 5
Normal Forms

This chapter treats the normal form theory for ordinary differential equations. The
first part of this chapter addresses the computation of the normal form near a equi-
librium solution. In order to consider the behavior near an equilibrium solution for
the nonlinear system for which the linearized system has several eigenvalues on the
imaginary axis, one usually focuses on the flow on the center manifold. We con-
centrate our efforts to introduce a method to compute the normal form associated
with the flow on the center manifold in the second part. Our presentation in the first
part is inspired by Chow and Li and Wang [32], Chow and Hale [30], Bibikov [19],
Vanderbauwhede [216] andWiggins [225], and in the second part is inspired by Liu,
Magal and Ruan [147] where the normal form theory for an abstract class of Cauchy
problems on Banach spaces is presented.

5.1 Introduction

Consider
D′ = 5 (D), (5.1)

where D ∈ R=, 5 : R= → R= is �: for some : ≥ 2. Recall that the equilibrium
solutions D = D of system (5.1) must satisfy

5 (D) = 0 with D ∈ R=.

The change of variables E = D − D transforms (5.1) to the form

E′ = 5 (E + D), (5.2)

and E = 0 is an equilibrium solution of system (5.2 ). Therefore, without loss of
generality, we consider

D′(C) = 5 (D) = �D(C) + � (D(C)), C ≥ 0, (5.3)

221
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where D ∈ R=, 5 (0) = 0, � = � 5 (0) ∈ L(R=), and � := 5 − � satisfies � (0) = 0
and �� (0) = 0. It is well known that there exists a = × = nondegenerate matrix )
which can transform � into Jordan canonical form. Then, under the transformation

D = )D

and after dropping the hat, (5.3) becomes

D′(C) = )−1�)D + )−1� ()D),

where D ∈ R= (or C=) and )−1�) is in Jordan canonical form. We remark that the
transformation D = )D has simplified the linear part of (5.3) as much as possible.
The goal of the norm form theory is to simplify the nonlinear part of (5.3), that is, to
find a suitable (nonlinear) change of coordinates which will transform the nonlinear
part of (5.3) to the simplest possible form.

5.2 Normal Forms for Differential Equations Near a Equilibrium
Solution

Let K be R or C. In this section we consider

D′(C) = �D(C) + � (D), (5.4)

where D ∈ K=, � ∈ "= (K) , � (0) = 0 and �� (0) = 0. We write � (D) around the
origin D = 0 in (5.4) as a formal power series and then

D′(C) = �D(C) + �2 (D) + �3 (D) + · · · + �9 (D) +$ ( |D | 9+1), (5.5)

where �< (D) := 1
<!�

<� (0) (D, · · · , D), 2 ≤ < ≤ 9 .
We introduce linear vector spaces �=< (K=) with �< (D) ∈ �=< (K=), 2 ≤ < ≤ 9 .

LetΨ = {k1, · · · , k=} denote a basis of K=, and let D = (D1, · · · , D=) be coordinates
with respect to this basis. We refer to D3i,where i ∈ K=, 3 = (31, · · · , 3=),

=∑
9=1
3 9 =

<, 3 9 ≥ 0 are integers and D3 = D
31
1 D

32
2 ...D

3=
= , as a vector-valued homogeneous

polynomial of degree< in = variablesD = (D1, · · · , D=), and use the notation�=< (K=)
to denote the linear vector space formed by all the vector-valued homogeneous
polynomials of degree < in = variables D = (D1, · · · , D=) with coefficients in K=.
Then an obvious basis denoted by Φ< for �=< (K=) consists of all possible vector-
valued homogeneous polynomials of degree < in = variables D = (D1, · · · , D=) with
coefficients in Ψ, that is

Φ< =

 D3k 9 ��k 9 ∈ Ψ, 9 = 1, · · · , =,
=∑
9=1

3 9 = <, 3 9 ≥ 0 are integers
 .

The dimension of �=< (K=) is
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3< := dim�=< (K=) =
= (= + < − 1)!
<! (= − 1)! .

We take the reverse lexicographic ordering of the elements in the basis Φ< of
�=< (K=), that is, D bk8 ∈ Φ< with b = (b1, ..., b=) precedes Djk 9 ∈ Φ< with
j = (j1, ..., j=) if and only if the first non-zero difference 8 − 9 , b1 − j1, ..., b= − j=
is positive. We denote D3k 9 by i: if D3k 9 is the :th basis element with respect to
the reverse lexicographic ordering and then the basis Φ< with the elements in the
reverse lexicographic ordering is written as

Φ< =
{
i1, i2, . . . , i3<

}
.

We will not verify these statements about the space �=< (K=) and refer the reader to
the books [32], [225]. Let us consider a specific example to explain these statements.

Example 5.1 Let Ψ = {41, 42} be the standard basis of R2, that is, 41 =

(
1
0

)
and

42 =

(
0
1

)
, and let D = (D1, D2) be coordinates with respect to this basis. Then

�2
2 (R

2) =
{
D
31
1 D

32
2 i

��� i ∈ R2, 31 + 32 = 2, 3 9 ≥ 0, 9 = 1, 2, are integers
}

and

�2
3 (R

2) =
{
D
31
1 D

32
2 i

��� i ∈ R2, 31 + 32 = 3, 3 9 ≥ 0, 9 = 1, 2, are integers
}
.

The bases Φ2 and Φ3 with the elements in the reverse lexicographic ordering are

Φ2 =

{(
0
D2

1

)
,

(
0

D1D2

)
,

(
0
D2

2

)
,

(
D2

1
0

)
,

(
D1D2

0

)
,

(
D2

2
0

)}
,

and

Φ3 =

{(
0
D3

1

)
,

(
0

D2
1D2

)
,

(
0

D1D
2
2

)
,

(
0
D3

2

)
,

(
D3

1
0

)
,

(
D2

1D2
0

)
,(

D1D
2
2

0

)
,

(
D3

2
0

)}
respectively.

Our aim is to find a change of coordinates

D = � (D) (5.6)

to bring the equation (5.3) in the simplest possible form up to terms of a specified
order, called normal form, where� is a� 9 transformation in a neighborhood �(0, A)
of the origin and � (0) = 0. By substituting (5.6) into (5.3) and dropping the hat for
simplisity of notation, we obtain
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D′ = �� (D)−1�� (D) + �� (D)−1� (� (D)). (5.7)

The linear part of (5.7) is �� (0)−1��� (0)D. If � is already in the Jordan canonical
form, thus the diffeomorphism � may take the form

� (D) = D +$ ( |D |2) as D → 0

and (5.7) could be written as

D′ = �D + � (D), D ∈ �(0, A),

with � (D) = $ ( |D |2) as |D | → 0 which is in the simplest possible form up to terms
of the specified order 9 . The desired simplification of (5.3) will be obtained by
performing inductively a sequence of near identity change of coordinates on system
(5.5).

5.2.1 Computation of Normal Form and Normal Form Theorem

In the following we will obtain the simplest possible form of (5.5) up to terms 9 by
performing inductively a sequence of change of coordinates of the form

D = b< (D) = D + �< (D), D ∈ �< (0, A), (5.8)

where �< (D) ∈ �=< (K=) and �< (0, A) is a small neighborhood of the origin,
2 ≤ < ≤ 9 . Notice that the map b< (D) is a diffeomorphism in some neighborhood
of the origin and we take �< (0, A) small enough such that �b< (D) = � + ��< (D)
is invertible on it and

�b< (D)−1 = � − ��< (D) +$ ( |D |2<−2), D ∈ �< (0, A),

here � is the identity matrix. Substituting (5.8) into (5.5) and dropping the hats for
simplicity of notation, we get

D′ = �D(C) + �2 (D) + �3 (D) + · · · + �<−1 (D)
+ {�< (D) − [��< (D)�D − ��< (D)]}
+�<+1 (D) + · · · + � 9 (D)
+$ ( |D | 9+1),
D ∈ �< (0, A).

(5.9)

Now we introduce the Lie bracket [·, ·] operation

[�, �<] (D) ≡ ��< (D)�D − ��< (D).

Then (5.9) can be written as
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D′ = �D(C) + �2 (D) + �3 (D) + · · · + �<−1 (D)
+ {�< (D) − [�, �<]}
+�<+1 (D) + · · · + � 9 (D)
+$ ( |D | 9+1),
D ∈ �< (0, A).

(5.10)

Notice that after the change of coordinates (5.8), only terms of order higher than
< − 1 are modified.

Define a linear operator Θ< : �=< (K=) → �=< (K=) by

(Θ<�<) (D) := [�, �<] (D) ≡ ��< (D)�D−��< (D), �< (D) ∈ �=< (K=). (5.11)

From elementary linear algebra, we know that �=< (K=) can be (non uniquely) rep-
resented as the direct sum

�=< (K=) = R< ⊕ C<, (5.12)

where
R< := '(Θ<)

is the range of Θ<, and C< is some complementary space of R< into �=< (K=).
The range of the operators Θ<, defined in the spaces �=< (K=), contains exactly

the terms that can be taken away from the equation in the computation of the normal
form. It is of interest to know when these ranges are the whole spaces �=< (K=),
since that corresponds to the cases where the terms of order <, 2 ≤ < ≤ 9 , can be
completely eliminated from the equation (5.5).

Theorem 5.2 (Normal FormTheorem) Let the decomposition (5.12) of�=< (K=) be
given for < = 2, . . . , 9 . Then the appropriate transformations D = b< (D), where D ∈
�< (0, A), �< (0, A) is a neighborhood of the origin and �<+1 (0, A) v �< (0, A), < =

2, · · · , 9 , can be chosen so that the system (5.5) is transformed into

D′ = �D + 62 (D) + 63 (D) + · · · + 6 9 (D) +$ ( |D | 9+1), (5.13)
D ∈ � 9 (0, A),

with 6< (D) ∈ C< for < = 2, · · · , 9 . System (5.13) is said to be in normal form
through order 9 .

Proof We start from < = 2. Substituting (5.8) with < = 2 into (5.5) and dropping
the hats, (5.9) becomes

D′ = �D(C) + {�2 (D) − [��2 (D)�D − ��2 (D)]}
+�3 (D) + · · · + � 9 (D)
+$ ( |D | 9+1),
D ∈ �2 (0, A).

(5.14)

Since �2 (D) ∈ �=< (K=), �2 (D) = 52 (D) + 62 (D) with 52 ∈ R2 and 62 ∈ C2. We can
find a �2 (D) ∈ �=< (K=) such that Θ2 (�2 (D)) = 52 (D) and then (5.14) becomes
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D′ = �D(C) + 62 (D) + �3 (D) + · · · + � 9 (D) +$ ( |D | 9+1), (5.15)
D ∈ �2 (0, A).

We assume that after computing the normal form up to terms of order < − 1,
2 ≤ < ≤ 9 , the equation becomes

D′(C) = �D(C)+62 (D)+63 (D)+· · ·+6<−1 (D)+�< (D)+· · ·+� 9 (D)+$ ( |D | 9+1). (5.16)

Substituting (5.8) into (5.16) and dropping the hats, we get

D′ = �D(C) + 62 (D) + 63 (D) + · · · + 6<−1 (D)
+

{
�< (D) − [�, �<] (D)

}
+�<+1 (D) + · · · + � 9 (D)
+$ ( |D | 9+1), D ∈ �<R= (0, A).

(5.17)

Since �< (D) ∈ �=< (K=), �< (D) = 5< (D) + 6< (D) with 5< (D) ∈ R< and 6< (D) ∈
C<. We can find a �< (D) ∈ �=< (K=) such that Θ< (�< (D)) = 5< (D) and then
(5.17) becomes

D′ = �D(C) + 62 (D) + 63 (D) + · · · + 6< (D)
+�<+1 (D) + · · · + � 9 (D)
+$ ( |D | 9+1), D ∈ �<R= (0, A).

The proof is completed by induction. �

It is obvious that the simplified system (5.13) is strongly depending on the specific
choice of the complementary spaces C< and then the normal form of (5.5) is not
unique. The key to compute the normal form of the vector field is to find C<.

5.2.2 Resonance Conditions and Resonant Monomial

Let � ∈ K=×= and � ∈ K?×? be matrices and set f(�) = {_1, ..., _=}, f(�) =
{`1, ..., `?}, _ = (_1, · · · , _=) , 3 = (31, · · · , 3=) , _ · 3 = _131 + · · · + _=3= and
38 ≥ 0, 8 = 1, . . . , =, are integers. Consider a linear operator Γ : �=< (K?) →
�=< (K?) defined by

Γ (�) (D) := �� (D) �D − �� (D) ,∀� (D) ∈ �=< (K?). (5.18)

We refer to [19] for the proofs of the following results.

Lemma 5.3 The spectrum of the linear operator Γ is the following set

f (Γ) =
_ · 3 − ` 9 : 9 = 1, · · · , ?,

=∑
9=1

3 9 = <

 .
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In the following, we assume that the linear operator � in (5.5) is a Jordan canonical
matrix for convenience. Let D = (D1, D2, . . . , D=) be coordinates with respect to the
standard basis {41, 42, . . . , 4=} of K=. Now we present the resonance conditions and
resonant monomials.

Definition 5.4 (Resonance conditions and resonant monomial) Let _1, · · · , _= be
the eigenvalues of �. The following relations are called resonant conditions:

_ · 3 − _ 9 = 0, (5.19)

where 1 ≤ 9 ≤ = and
=∑
9=1
3 9 ≥ 2. A monomial D34 9 (

=∑
9=1
3 9 = < ≥ 2 and 1 ≤ 9 ≤ =

) is called a resonant monomial of order < if and only if (5.19) holds for 3 and 9 .
We say that equation (5.5) satisfies the nonresonance conditions relative to f(�) of
order < if

_ · 3 − _ 9 ≠ 0, for all _ 9 ∈ f(�), all 3 = (31, · · · , 3=) with
=∑
9=1

3 9 = <.

From Lemma 5.3, we get the following result.

Theorem 5.5 Let f(�) = {_1, · · · , _=} . The spectrum of the linear operator Θ<
defined in (5.11) is the following set:

f (Θ<) =
_ · 3 − _ 9 : 9 = 1, · · · , =,

=∑
9=1

3 9 = <

 . (5.20)

Theorem 5.6 Let � is a Jordan canonical matrix. Then the appropriate transforma-
tions D = b< (D), D ∈ �< (0, A), where �< (0, A) is a neighborhood of the origin and
�<+1 (0, A) v �< (0, A), < = 2, · · · , 9 , can be chosen so that 6< (D) in the right side
of (5.13) consists of resonant monomials of order <, < = 2, · · · , 9 .

Remark 5.7 Since the change of coordinates (5.8) are local diffeomorphisms near
the origin, the normal form theorem presented in the above gives only local results
of (5.5) near the origin. Furthermore the normal form theorem above is about the
normal form up to certain finite order 9 . If � (D) is analytic in D, then it is clear that
we can formally transform (5.5) to a normal form with 9 = ∞, that is,

D′ = �D +
∑
<≥2

6< (D).

However, the issue of convergence of the power series for the normal forms and
the associated transformations of variables should be considered. The answer for
the issue of convergence is positive under some conditions for ordinary differential
equations, and we refer to Chow et al. [32]. In fact in the applications of normal
forms, usually the flow is completely determined by the terms of a normal form up
to a certain finite order, for example, we only need compute the normal form up to
third order for Hopf bifurcations.



228 5 Normal Forms

5.2.3 The Matrix Representation Method

One method to find the complementary subspace C< or normal form is to use the
matrix representation M< of the linear operator Θ< with respect to the given basis
Φ< of �=< (K=). Then M< is a 3< × 3< matrix and K3< = C̃< ⊕ R̃<, where R̃< is
the range of M< in K3< and C̃< any complementary subspace. Our choice of C̃<
is certainly not unique. According to Fredholm Theorem, C̃< =  4A ((M<)) ) is a
complementary subspace, where  4A ((M<)) ) is the null-space of the transpose of
M<. Other complementary subspaces to R̃< can be obtained from  4A ((M<)) ) by
performing elementary algebraic calculations. It is obvious that

�=< (K=) = C< ⊕ R<
where

C< : =

{
^ =

3<∑
8=1

b8i8 ∈ �=< (K=)
����� i8 ∈ Φ<, (b1, ..., b3< ) ∈ C̃<

}
, (5.21)

R< : =

{
^ =

3<∑
8=1

b8i8 ∈ �=< (K=)
����� i8 ∈ Φ<, (b1, ..., b3< ) ∈ R̃<

}
,

R< is the range of Θ<, and C< is a complementary space of R< into �=< (K=).
We refer to [32], [216] and [222] for more details and also for other methods to get
the complementary subspace C< or normal form. Here we will show an example to
expain this method.

Example 5.8 (The Takens-Bogdanov Normal Form)We will compute the normal
form up to terms of order 2 for the following vector field on R2 in the neighborhood
of the origin

D′(C) = �D(C) +
(
21D

2
1 + 22D1D2 + 23D

2
2

31D
2
1 + 32D1D2 + 33D

2
2

)
+$ ( |D |3),

where � =
(

0 1
0 0

)
. Let {41, 42} be the standard basis of R2, and let D = (D1, D2) be

coordinates with respect to this basis. The basis Φ2 of �2
2 (R

2) with the elements in
the reverse lexicographic ordering is

Φ2 =

((
0
D2

1

)
,

(
0

D1D2

)
,

(
0
D2

2

)
,

(
D2

1
0

)
,

(
D1D2

0

)
,

(
D2

2
0

))
.

We first obtain the matrix representation M2 of the linear operator Θ2 with respect
to the given basis Φ2:
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M2 =

©­­­­­­­«

0 0 0 0 0 0
2 0 0 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 −1 0 2 0 0
0 0 −1 0 1 0

ª®®®®®®®¬
.

Then R6 = C̃2 ⊕ R̃2, where R̃2 is the range of M2 in R6 and C̃2 any complementary
subspace. Let (41, 42, . . . , 46) be the standard basis of R6 and then  4A ((M2)) ) =
B?0=

{
41,42 + 244

}
is a complementary subspace of R̃2. Therefore �2

2 (R
2) = C2 ⊕

R2, where

C2 = B?0=

{(
0
D2

1

)
,

(
2D2

1
D1D2

)}
.

Thus we obtain the normal form up to terms of order 2

D′(C) = �D(C) + 31

(
0
D2

1

)
+ 221 + 32

5

(
2D2

1
D1D2

)
+$ ( |D |3).

5.3 Normal Forms for Reduced Differential Equations on the
Center Manifold

In studying nonlinear dynamical problems, the centre manifold theory of chapter 14
gives a reduction in the dimension of the system. We usually restrict our analysis
to the flow on the centre manifold near a equilibrium solution which is useful for
the study of bifurcation problems. In this section we will consider the computation
of normal form associated with the flow on the center manifold for the differential
equation of the form

D′(C) = �D(C) + � (D(C)),∀C ∈ R, (5.22)

where � ∈ "= (R) is a = by = matrix and � : R= → R= is �: with � (0) = 0 and
�� (0) = 0, : > 1.The notations -8 ,Π8 , �8 with 8 = 2, B, D, ℎ, which we will use in
the following, are defined in chapter 14.

Assumption 5.9 We assume that f2 (�) = f (�) ∩ 8R ≠ ∅.

The center manifold theorem of Chapter 14 tells us that there exists a �: -smooth
function Ψ : -2 → -ℎ with Ψ(0) = 0, �Ψ(0) = 0, such that

" = {G2 +Ψ (G2) : G2 ∈ -2} (center manifold)

is a locally invariant center manifold of (5.22). Moreover, as Π2 is defined on R=,
we can project (5.22) on -2 and obtain the following reduced system

3D2 (C)
3C

= �2D2 (C) + Π2� [D2 (C) +Ψ (D2 (C))] . (5.23)
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The qualitative behaviour of the flow of (5.22) near the equilibrium solution D = 0
is determined by its behaviour on the center manifold.

5.3.0.1 An Outline on the Methods

This chapter is devoted to the computation of the normal form of the reduced system
(5.23). First, one needs to realize that the center manifold Ψ is known only through
an implicit fixed point procedure and when

�;Ψ(0) = 0 for each ; = 1, ..., :,

the Taylor’s expansion of the reduced system (5.23) is simply given by

3D2 (C)
3C

= �2D2 (C) +
:∑
;=1

1
;!
Π2�

;� (0) (D2 (C), ..., D2 (C)) + ℎ.>.C.

We will show two ways to compute the normal form of the reduced system (5.23).
One is to compute the Taylor’s expansion of the reduced system first and then we
can compute the normal form of the reduced system (5.23) using the procedure in
section 2 of this chapter. The other way is to compute the normal form of the reduced
system (5.23) directly.

In general, the only information available to compute the Taylor’s expansion and
normal form of the reduced system is the following result in Chapter 14.

Lemma 5.10 Let Assumptions 5.9 be satisfied. Let A > 0 and � : �R= (0, A) → R=
be a : -time continuously differentiable map (: > 1) with � (0) = 0, �� (0) = 0 and

Πℎ�
9� (0) |-2×-2×...×-2= 0 for each 9 = 2, ..., : .

Then
� 9Ψ(0) = 0 for each 9 = 1, ..., : .

Description of the method for computing the normal form up to terms of order
3: Assume first that

Πℎ�
2� (0) |-2×-2≠ 0.

Let �2 ∈ +2 (-2 , -ℎ) be an vector-valued homogeneous polynomials of degree 2
(see next subsection for a precise definition). Consider the following global change
of variable

E := D − �2 (Π2D) ⇔
{

Π2E = Π2D

ΠℎE = ΠℎD − �2 (Π2D)
⇔ D = E + �2 (Π2E) . (5.24)

Then we obtain



5.3 Normal Forms for Reduced Differential Equations on the Center Manifold 231

3E (C)
3C

=
3D (C)
3C
− ��2 (Π2D) (Π2

3D (C)
3C
)

= �D + � (D) − ��2 (Π2D) (Π2 [�D + � (D)])
= � [E + �2 (Π2E)] + � (E + �2 (Π2E))
−��2 (Π2E) (Π2 [�E + � (E + �2 (Π2E))]).

Then we obtain the following system after the change of variable

3E (C)
3C

= �E (C) + � (E(C)) for C ≥ 0 and E(0) = G ∈ � (�), (5.25)

where

� (E) = � (E + �2 (Π2E)) − [�, �2] (Π2E) − ��2 (Π2E) (Π2� (E + �2 (Π2E)))

and [·, ·] is the Lie bracket

[�, �2] (E2) = ��2 (E2) (�2E2) − ��2 (E2) , ∀E2 ∈ -2 .

We can rewrite � as

� (E) = � (E) − [�, �2] (Π2E) + [� (E + �2 (Π2E)) − � (E)]
−��2 (Π2E) (Π2� (E + �2 (Π2E))) .

Since �� (0) = 0, we obtain

1
2!
Πℎ�

2� (0) (E2 , E2) =
1
2!
Πℎ�

2� (0) (E2 , E2) − [�, �2] (E2) .

Therefore, in order to cancel out the second order term we need to solve

[�, �2] (E2) =
1
2!
Πℎ�

2� (0) (E2 , E2) with �2 ∈ +2 (-2 , -ℎ) (5.26)

which is the key point to compute the normal form for reduced system and we solve
it in next subsection.

If we solved (5.26), then by applying center manifold theorem of chapter 14 and
Lemma 5.10 to system (5.25), we deduce that the reduced system of (5.25) has the
following form

3E2

3C
= �2E2 + Π2� (E2 + �2 (E2)) + '(E2), (5.27)

where
'(E2) = Π2� (E2 + �2 (E2) +Ψ (E2)) − Π2� (E2 + �2 (E2))

and Ψ : -2 → -ℎ is a local center manifold of the new system (5.25) satisfying

Ψ (0) = 0, �Ψ (0) = 0, and �2Ψ (0) = 0.
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Now assuming the � is �4-smooth locally around 0 (so is Ψ). Then we see that
'(E2) is of order 4 and the Taylor’s expansion of the reduced system (5.27) at the
order 3 is given by

3E2

3C
= �2E2 +

1
2!
Π2�

2� (0) (E2 , E2)

+ 1
2!

{
Π2�

2� (0) (�2 (E2) , E2) + Π2�2� (0) (E2 , �2 (E2))
}

+ 1
3!
Π2�

3� (0) [E2 , E2 , E2] + ℎ.>.C.

Therefore, in order to compute the Taylor’s expansion of the reduced system at the
order 3, we only need to compute �2. Then we can apply the normal form theory of
section 2 to the Taylor’s expansion of the reduced system.

An alternative approach, to compute both the Taylor’s expansion and the normal
form of the reduced system would be to use the following change of variables

D := E + �2 (Π2E)

wherein
�2 ∈ +2 (-2 ,R=).

In this case

D := E + �2 (Π2E) ⇔
{
Π2D = Π2E + Π2�2 (Π2E)
ΠℎD = ΠℎE + Πℎ�2 (Π2E) .

Then the map b2 (E2) = E2 +Π2�2 (E2) from -2 into itself is only locally invertible
around 0. This type of change of variables leads to the normal form theory for
reduced system on the center manifold directly.

5.3.1 Normal Form Theory - Nonresonant Type Results

Let < ≥ 1. Let . be a closed subspace of R=. Let LB ((R=)< , . ) be the space
of bounded <-linear symmetric maps from (R=)< = R= × R= × ... × R= into .
and LB

(
-<2 ,R

=
)
be the space of bounded <−linear symmetric maps from -<2 =

-2 × -2 × ... × -2 into R=. That is, for each ! ∈ LB
(
-<2 ,R

=
)
,

! (G1, ..., G<) ∈ R=, ∀ (G1, ..., G<) ∈ -<2 ,

and the maps (G1, .., G<) → ! (G1, ..., G<) and (G1, .., G<) → �! (G1, ..., G<) are
<−linear bounded from -<2 into R=. Let LB

(
-<2 , -ℎ

)
be the space of bounded

<−linear symmetric maps from -<2 = -2 × -2 × ... × -2 into -ℎ which belongs to
LB

(
-<2 ,R

=
)
.

Let ; = dim(-2) and. be a subspace of -.We define+< (-2 , . ) the linear space
of vector homogeneous polynomials of degree<.More precisely, letΛ =

{
1 9

}
9=1,...,;

be a basis of -2 and G = (G1, ..., G;) be the coordinates with respect to this basis,
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+< (-2 , . ) is the space of finite linear combinations of maps of the form

G2 =

;∑
9=1
G 91 9 ∈ -2 → G

=1
1 G

=2
2 ...G

=;
;
+

where =1 + =2 + ... + =; = <, = 9 ≥ 0 are integers and + ∈ . .
Define a map G : LB

(
-<2 , .

)
→ +< (-2 , . ) by

G(!) (G2) = ! (G2 , · · · , G2), ∀! ∈ LB
(
-<2 , .

)
.

Let � ∈ +< (-2 , . ), we have � (G2) = 1
<!�

<� (0) (G2 , · · · , G2). So

G−1 (�) = 1
<!
�<� (0).

In other words, we have

! =
1
<!
�<� (0) ⇔ � (G2) = ! (G2 , ..., G2) , ∀G2 ∈ -2 .

It follows that G is a bĳection from LB
(
-<2 , .

)
into +< (-2 , . ). So we can also

define +< (-2 ,R=) as

+< (-2 ,R=) := G(LB
(
-<2 ,R

=
)
).

We refer to G=1
1 G

=2
2 ...G

=;
;
+ with =1 + =2 + ... + =; = < and + ∈ . as vector-valued

homogeneous polynomials of degree< in ; variables G1, . . . G; . All the vector-valued
homogeneous polynomials of degree < in ; variables G1, . . . G; with coefficients in
. form a linear vector space, which we denote by �;< (. ). If i = (i1, ..., i?) is a
basis of ., then an obvious basis denoted by Φ< for �;< (. ) consists of all possible
vector-valued homogeneous polynomials of degree < in ; variables G1, · · · , G; with
coefficients in i. Let ? = dim(-ℎ) and q =

{
B 9

}
9=1,..., ? be a basis of -ℎ . Notice

that ; + ? = =. An obvious basis for �;< (-ℎ) is

Φℎ< =

 G=1
1 G

=2
2 ...G

=;
;
B 9

�� B 9 ∈ q, 9 = 1, · · · , ?,
;∑
9=1
= 9 = <, = 9 ≥ 0 are integers


and for �;< (-2) is

Φ2< =

 G=1
1 G

=2
2 ...G

=;
;
1 9

�� 1 9 ∈ Λ, 9 = 1, · · · , ;,
;∑
9=1
= 9 = <, = 9 ≥ 0 are integers

 .
It is obvious that under the basis

{
1 9

}
9=1,...,; of -2 , if �< ∈ +

< (-2 , . ), then
�< (G2) ∈ �;< (. ) for G2 ∈ -2 .

In order to use the usual formalism in the context of normal form theory, we now
define the Lie bracket.
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Definition 5.11 For each �< ∈ +< (-2 , . ), we define the Lie bracket

[�, �<] (G2) := ��< (G2) (�G2) − ��< (G2), ∀G2 ∈ -2 .

Let �2 ∈ L (-2) be the part of � in -2 , then we obtain

[�, �<] (G2) = ��< (G2) (�2G2) − ��< (G2),∀G2 ∈ -2 .

Setting ! := 1
<!�

<� (0) ∈ LB
(
-<2 , -ℎ

)
, we have

�� (G2) (H) = <! (H, G2 , ..., G2) , �� (G2)�2G2 = <! (�2G2 , G2 , ..., G2) ,

and

[�, �] (G2) =
3

3C

[
! (4�2 CG2 , . . . , 4�2 CG2)

]
(0) − �! (G2 , . . . , G2). (5.28)

We consider two types of change of variables, namely, �< ∈ +< (-2 , -ℎ) and
�< ∈ +< (-2 ,R=), respectively in the following.

5.3.1.1 Mm ∈ \
m (^c , ^h)

We consider the following change of variables

D = E + �< (Π2E) , �< ∈ +< (-2 , -ℎ). (5.29)

Then �< (Π2E) ∈ �;< (-ℎ) and

�< (E2) := !< (E2 , E2 , ..., E2) ,∀ Π2E := E2 ∈ -2 .

The map E2 → ��< (E2) is differentiable and

� (��<) (E2) (H) = ���< (E2) (H) = <�!< (H, E2 , ..., E2) .

Define a map b : R= → R= by

b (E) := E + �< (Π2E) ,∀E ∈ R=.

Since the range of �< is included in -ℎ , we obtain the following equivalence

D = b (E) ⇔ E = b−1 (D) ,

where
b−1 (D) := D − �< (Π2D) ,∀D ∈ R=,

and
Π2b

−1 (D) = Π2D,∀D ∈ R=.

The following result justifies the change of variables (5.29) .
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Lemma 5.12 Let Assumptions 5.9 be satisfied and let �< ∈ +< (-2 , -ℎ). Assume
that D ∈ � ( [0, g] ,R=) is an integrated solution of the Cauchy problem

3D(C)
3C

= �D(C) + � (D(C)), C ∈ [0, g] , D(0) = G ∈ R=. (5.30)

Then E(C) = b−1 (D(C)) is the integrated solution of the Cauchy problem

3E(C)
3C

= �E(C) + � (E(C)), C ∈ [0, g] , E(0) = b−1 (G) ∈ R=, (5.31)

where � : R= → R= is the map defined by

� (E) = � (b (E)) − [�, �<] (Π2E) − ��< (Π2E) [Π2� (b (E))] .

Conversely, if E ∈ � ( [0, g] ,R=) is an integrated solution of (5.31), then D(C) =
b (E(C)) is the integrated solution of (5.30).

Proof Assume that D ∈ � ( [0, g] ,R=) is the integrated solution of the system (5.30),
that is,

D(C) = G + �
∫ C

0
D(;)3; +

∫ C

0
� (D(;))3;,∀C ∈ [0, g] .

Set
E(C) = b−1 (D(C)) = D − �< (Π2D) ,∀C ∈ [0, g] .

We have

�

∫ C

0
E(;)3; = �

∫ C

0
D(;)3; −

∫ C

0
��< (Π2D(;)) 3;

= D(C) − G −
∫ C

0
� (D(;))3; −

∫ C

0
��< (Π2D(;)) 3;

= D(C) − �< (Π2D(C)) − (G − �< (Π2G))
+ (�< (Π2D(C)) − �< (Π2G))

−
∫ C

0
� (D(;))3; −

∫ C

0
��< (Π2D(;)) 3;

= E(C) − b−1 (G) + (�< (Π2D(C)) − �< (Π2G))

−
∫ C

0
� (D(;))3; −

∫ C

0
��< (Π2D(;)) 3;.

Since dim (-2) < +∞, C → Π2D(C) satisfies the following ordinary differential
equations

3Π2D(C)
3C

= �2Π2D(C) + Π2� (D(C)).

By integrating both sides of the above ordinary differential equations, we obtain
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�< (Π2D(C)) − �< (Π2G) =
∫ C

0
��< (Π2D(;))

(
3Π2D(;)
3;

)
3;

=

∫ C

0
��< (Π2D(;)) [�2Π2D(;) + Π2� (D(;))] 3;.

It follows that

�

∫ C

0
E(;)3; = E(C) − b−1 (G)

+
∫ C

0
��< (Π2D(;)) [�2Π2D(;) + Π2� (D(;))] 3;

−
∫ C

0
� (D(;))3; −

∫ C

0
��< (Π2D(;)) 3;.

Thus
E(C) = b−1 (G) + �

∫ C

0
E(;)3; +

∫ C

0
� (E(;))3;,

in which

� (E) = � (b (E)) + ��< (Π2b (E))
−��< (Π2b (E)) [�2Π2b (E) + Π2� (b (E))] .

Since Π2b = Π2 , the first implication follows. The converse follows from the first
implication by replacing � by � and b−1 by b. �

Define Θ< : +< (-2 , -ℎ) → +< (-2 , -ℎ) by

Θ< (�<) := [�, �<],∀�< ∈ +< (-2 , -ℎ).

We decompose +< (-2 , -ℎ) into the direct sum

+< (-2 , -ℎ) = R< ⊕ C<,

where
R< := '(Θ<)

is the range of Θ<, and C< is some complementary space of R< into +< (-2 , -ℎ).
Set for each [ > 0,

��[ (R,R=) :=
{
5 ∈ � (R,R=) : sup

C ∈R
4−[ |C | ‖ 5 (C)‖ < +∞

}
.

By using lemmas ?? and ?? of chapter 14, we now prove the following lemma.

Lemma 5.13 If
5 (C) = C:4_CG

for some : ∈ N, _ ∈ 8R, and G ∈ R=, then
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( D +  B) (Πℎ 5 ) (0) = (−1): :! (_� − �ℎ)−(:+1) ΠℎG ∈ � (�ℎ) ⊂ R=,

where  D and  B are defined in lemmas ?? and ?? of chapter 14.

Proof We have

 D ( 5 ) (0) = −
∫ +∞

0
4_;;:4−�D;ΠDG3;

= − 3
:

3_:

∫ +∞

0
4_;4−�D;ΠDG3;

= − 3
:

3_:
(−_� + �D)−1 ΠDG

=
3:

3_:
(_� − �D)−1 ΠDG

= (−1): :! (_� − �D)−(:+1) ΠDG.

Similarly, we have for ` > l� that

(`� − �)−1  B ( 5 ) (0) = lim
g→−∞

(`� − �)−1 ΠB

(
4�. ∗ 5 (g + .)

)
(−g)

= lim
g→−∞

∫ −g

0
4�B (−g−B) (`� − �)−1 ΠB 5 (B + g)3B

= lim
A→+∞

∫ A

0
4�B (A−B) (`� − �)−1 ΠB 5 (B − A)3B

=

∫ +∞

0
4�B; (`� − �)−1ΠB 5 (−;)3;.

So we obtain that

(`� − �)−1  B ( 5 ) (0) =
∫ +∞

0
(−;): 4−_;4�; (`� − �)−1 ΠBG3;

=
3:

3_:
(_� − �)−1 (`� − �)−1 ΠBG

= (−1): :! (_� − �)−(:+1) (`� − �)−1 ΠBG

= (`� − �)−1 (−1): :! (_� − �B)−(:+1) ΠBG.

Since (`� − �)−1 is one to one, we deduce that

 B ( 5 ) (0) = (−1): :! (_� − �B)−(:+1) ΠBG

and the result follows. �

The following proposition is related to nonresonant conditions (seeGuckenheimer
and Holmes [86], Chow and Hale [30], and Chow et al. [32]).

Proposition 5.14 Let Assumptions 5.9 be satisfied. For each ' ∈ +< (-2 , -ℎ) , there
exists a unique map �< ∈ +< (-2 , -ℎ) such that
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[�, �<] (G2) = '(G2),∀G2 ∈ -2 . (5.32)

Moreover, (5.32) is equivalent to

�< (G2) = ( D +  B) ('(4�2 .G2)) (0),

or
!< (G1, . . . , G<) = ( D +  B) (�

(
4�2 .G1, . . . , 4

�2 .G<

)
) (0),

with !< := 1
<!�

<�< (0) and � := 1
<!�

<'(0).

Proof Let �< ∈ +< (-2 , -ℎ) . Then !< = 1
<!�

<�< (0) ∈ LB
(
-<2 , -ℎ

)
and

[�, �<] (G2) =
3

3C

[
!< (4�2 CG2 , . . . , 4�2 CG2)

]
(0) − �ℎ!< (G2 , . . . , G2).

Assume that �< ∈ +< (-2 , -ℎ) satisfies (5.32). Then !< = 1
<!�

<�< (0) satisfies

3

3C

[
!< (4�2 CG1, ..., 4

�2 CG<)
]
(0) = �ℎ!< (G1, ..., G<) + � (G1, ..., G<),

where � = 1
<!�

<'(0) ∈ LB
(
-<2 , -ℎ

)
. Then (5.32) is satisfied if and only if for

each (G1, ..., G<) ∈ -<2 and each C ∈ R,

3

3C

[
!< (4�2 CG1, ..., 4

�2 CG<)
]
(C) = �ℎ!< (4�2 CG1, ..., 4

�2 CG<)
+� (4�2 CG1, ..., 4

�2 CG<).
(5.33)

Set
E(C) := !< (4�2 CG1, ..., 4

�2 CG<), ∀C ∈ R

and
F(C) := � (4�2 CG1, ..., 4

�2 CG<), ∀C ∈ R.

The system (5.33) can be rewritten as

3E(C)
3C

= �ℎE(C) + F(C), ∀C ∈ R. (5.34)

Since !< and � are bounded multilinear maps and f (�2) ⊂ 8R, it follows that for
each [ > 0,

E ∈ ��[ (R,R=) and F ∈ ��[ (R,R=) .

Let [ ∈
(
0,min

(
min

_∈f (�B)
− Re (_) , min

_∈f (�D)
Re (_)

))
. By projecting (5.34) on -D ,

we have
3ΠDE(C)
3C

= �DΠDE(C) + ΠDF(C),

or equivalently, ∀C, B ∈ R with C ≥ B,
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ΠDE(C) = 4�D (C−B)ΠDE(B) +
∫ C

B

4�D (C−;)ΠDF(;)3;,

ΠDE(B) = 4−�D (C−B)ΠDE(C) −
∫ C

B

4−�D (;−B)ΠDF(;)3;.

By using the fact that E ∈ ��[ (R,R=) , we obtain when C goes to +∞ that

ΠDE(B) =  D (ΠDF) (B), ∀B ∈ R.

Thus, for B = 0 we have

ΠD!< (G1, ..., G<) =  D (ΠD� (4�2 .G1, ..., 4
�2 .G<)) (0). (5.35)

By projecting (5.34) on -B , we obtain

3ΠBE(C)
3C

= �BΠBE(C) + ΠBF(C),

or equivalently, ∀C, B ∈ R with C ≥ B,

ΠBE(C) = 4�B (C−B)ΠBE(B) +
(
4�B . ∗ ΠBF(. + B)

)
(C − B).

By using the fact that E ∈ ��[ (R,R=) , we have when B goes to −∞ that

ΠBE(C) =  B (ΠBF) (C), ∀C ∈ R.

Thus, for C = 0 it follows that

ΠB!< (G1, ..., G<) =  B (ΠB� (4�2 .G1, ..., 4
�2 .G<)) (0). (5.36)

Summing up (5.35) and (5.36), we deduce that

!< (G1, ..., G<) = ( D +  B) (�
(
4�2 .G1, ..., 4

�2 .G<

)
) (0). (5.37)

Conversely, assume that !< (G1, ..., G<) is defined by (5.37) and set

E(C) := ( D +  B)
(
�

(
4�2 .G1, ..., 4

�2 .G<

))
(C), ∀C ∈ R.

Then we have
E(C) = !< (4�2 CG1, ..., 4

�2 CG<), ∀C ∈ R.

Moreover, using Lemma ??-(iii) and Lemma ??-(iii), we deduce that for each C, B ∈ R
with C ≥ B,

E(C) = 4�(C−B)E(B) +
(
4�. ∗ F(. + B)

)
(C − B),

or equivalently,

E(C) = E(B) + �
∫ C

B

E(;)3; +
∫ C

B

F(;)3;
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and then
3E(C)
3C

= �E(C) + F(C), ∀C ∈ R.

The result follows. �

Remark 5.15 (An explicit formula for !< in Proposition 5.14) Since ; :=
dim (-2) < +∞, we can find a basis {41, ..., 4;} of -2 such that the matrix of �2
(with respect to this basis) is reduced to the Jordan’s form. Then for each G2 ∈ -2 ,
4�2 CG2 is a linear combination of elements of the form

C:4_CG 9

for some : ∈ {1, ..., ;} , some _ ∈ f (�2) ⊂ 8R, and some G 9 ∈ {41, ..., 4;}. Let
_1, ..., _< ∈ f (�2) ⊂ 8R, G1, ..., G< ∈ {41, ..., 4;} , :1, ..., :< ∈ {1, ..., ;}. Define

5 (C) := �
(
C:14_1CG1, ..., C

:<4_<CG<

)
,∀C ∈ R,

Since � ∈ LB
(
-<2 , -ℎ

)
is <-linear, we obtain

5 (C) = C:4_C H

with
: = :1 + :2 + ... + :<, _ = _1 + .... + _<,

and
H = � (G1, ..., G<) .

Now by using Lemma 5.13, we obtain the explicit formula

( D +  B)
(
�

(
(.):1 4_1.G1, ..., (.):< 4_<.G<

))
(0) = (−1): :! (_� − �ℎ)−(:+1) ΠℎH ∈ R=.

Remark 5.16 Let f(�2) = {_1, ..., _;}, f(�ℎ) = {`1, ..., `?}, 3 = (31, · · · , 3;) ,
38 ≥ 0 are integers. From the proof of proposition 5.14, we get that the spectra of
Θ< is

f (Θ<) =
_ · 3 − ` 9 : 9 = 1, · · · , ?,

;∑
9=1

3 9 = <

 ,
where _ = (_1, · · · , _;), _ · 3 = _131 + · · · + _;3; . The result in Proposition 5.14 is
equivalent to say that equation (5.22) satisfies the following nonresonance conditions
relative to f2 (�) ⊂ f(�) of order <:

_ · 3 − ` 9 ≠ 0, for all ` 9 ∈ fℎ (�) ⊂ f(�), all 3 = (31, · · · , 3;) with
;∑
9=1

3 9 = <.

Thus the range of Θ< must be the whole space +< (-2 , -ℎ).
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5.3.1.2 Mm ∈ \
m (^c ,R

n)

We consider the following change of variables

D(C) = F(C) + �< (Π2F(C)), �< ∈ +< (-2 ,R=). (5.38)

Then �< (Π2E) ∈ �;< (R=) and the map � +�< ◦Π2 : R= → R= is locally invertible
around 0. From (5.28), for each � ∈ +< (-2 ,R=), to find �< ∈ +< (-2 ,R=)
satisfying

[�, �<] (G2) = � (G2), (5.39)

is equivalent to find !< ∈ LB
(
-<2 ,R

=
)
satisfying

3

3C

[
!< (4�2 CG1, . . . , 4

�2 CG<)
]
C=0 = �!< (G1, . . . , G<) + �̂ (G1, . . . , G<) (5.40)

for each (G1, . . . , G<) ∈ -<2 with

G(�̂) = �.

By projecting on -2 and -ℎ , it follows that solving system (5.39) is equivalent to
find �2< ∈ +< (-2 , -2) and �ℎ< ∈ +< (-2 , -ℎ) satisfying

[�2 , �2<] = Π2� (5.41)

and
[�, �ℎ<] = Πℎ�. (5.42)

Define Θ2< : +< (-2 , -2) → +< (-2 , -2) by

Θ2<
(
�2<

)
:= [�2 , �2<],∀�2< ∈ +< (-2 , -2) (5.43)

and Θℎ< : +< (-2 , -ℎ) → +< (-2 , -ℎ) by

Θℎ<

(
�ℎ<

)
:= [�, �ℎ<],∀�ℎ< ∈ +< (-2 , -ℎ).

We decompose +< (-2 , -2) into the direct sum

+< (-2 , -2) = R2< ⊕ C2< ,

where
R2< := '(Θ2<)

is the range of Θ2<, and C2< is some complementary space of R2< into +< (-2 , -2).
The range of the linear operator Θ2< can be characterized by using the so called

non-resonance theorem.

Proposition 5.17 Let Assumptions 5.9 be satisfied. Let � ∈ R2<⊕+< (-2 , -ℎ). Then
there exists �< ∈ +< (-2 ,R=) (non-unique in general) satisfying

[�, �<] (G2) = � (G2). (5.44)
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Furthermore, if # (Θ2<) = {0} (the null space of Θ2<), then �< is uniquely deter-
mined.

Proof It is clear that we can solve (5.41). Moreover, we can apply Proposition 5.14
and deduce that (5.42) can be solved. �

Remark 5.18 In practice, we often have

# (Θ2<) ∩ '(Θ2<) = {0} ,

In this case, a natural splitting of +< (-2 , -2) will be

+< (-2 , -2) = '(Θ2<) ⊕ # (Θ2<).

Define %< : +< (-2 ,R=) → +< (-2 ,R=) the bounded linear projector satisfying

P< (+< (-2 ,R=)) = R2< ⊕ +< (-2 , -ℎ), and (� − P<) (+< (-2 ,R=)) = C2<.

Again consider the system (5.30). Assume that �� (0) = 0. Without loss of
generality we also assume that for some < ∈ {2, ..., :} ,

Πℎ�
9� (0) |-2×-2×...×-2= 0, G

(
Π2�

9� (0) |-2×-2×...×-2
)
∈ C29 , ((�<−1))

for each 9 = 1, ..., < − 1.
We will show that we can find �< ∈ +< (-2 ,R=) such that after the change of

variables (5.38) we can rewrite the system (5.30) as

3F(C)
3C

= �F(C) +� (F(C)), for C ≥ 0, and F(0) = (� +�< ◦Π2)−1G ∈ R=, (5.45)

where � satisfies the condition (�<). This will provide a normal form method.

Lemma 5.19 Let Assumptions 5.9 be satisfied. Let �< ∈ +< (-2 ,R=) . Assume that
D ∈ � ( [0, g] ,R=) is an integrated solution of the Cauchy problem (5.30). Then
F(C) = (� + �< ◦ Π2)−1 (D(C)) is an integrated solution of the system (5.45), where
� : � (�) → R= is the map defined by

� (F(C)) = � (F(C)) − [�, �<] (Π2F(C)) +$ (‖F(C)‖<+1).

Conversely, if F ∈ � ( [0, g] ,R=) is an integrated solution of (5.45), then D(C) =
(� + �< ◦ Π2) F(C) is an integrated solution of (5.30).

Lemma 5.19 can be proved similarly as Lemma 5.12, here we omit it.

Proposition 5.20 LetAssumptions 5.9 be satisfied. Let A > 0 and let� : �R= (0, A) →
R= be a map. Assume that there exists an integer : ≥ 1 such that � is :-time continu-
ously differentiable in �R= (0, A) with � (0) = 0 and�� (0) = 0. Let< ∈ {2, ..., :} be
such that � satisfies the condition (�<−1). Then there exists amap�< ∈ +< (-2 ,R=)
such that after the change of variables

D(C) = F(C) + �< (Π2F(C)) ,
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we can rewrite system (5.30) as (5.45) and � satisfies the condition (�<), where

� (F(C)) = � (F(C)) − [�, �<] (Π2F(C)) +$ (‖F(C)‖<+1).

Proof Let G2 ∈ -2 .We have

� (G2) = � (G2) − [�, �<] (Π2G2) +$ (‖G2 ‖<+1).

It follows that

� (G2) =
1
2!
�2� (0) (G2 , G2) + .... +

1
(< − 1)!�

<−1� (0) (G2 , . . . , G2)

+P<
[

1
<!
�<� (0) (G2 , . . . , G2)

]
+ (� − P<)

[
1
<!
�<� (0) (G2 , . . . , G2)

]
− [�, �<] (G2) +$ (‖G2 ‖<+1)

since �� (0) = 0. Moreover, by using Proposition 5.17 we obtain that there exists a
map �< ∈ +< (-2 ,R=) such that

[�, �<] (G2) = P<
[

1
<!
�<� (0) (G2 , . . . , G2)

]
.

Hence,

� (G2) =
1
2!
�2� (0) (G2 , G2) + .... +

1
(< − 1)!�

<−1� (0) (G2 , . . . , G2)

+(� − P<)
[ 1
<!�

<� (0) (G2 , . . . , G2)
]
+$ (‖G2 ‖<+1).

(5.46)

By the assumption, we have for all 9 = 1, ..., < − 1 that

Πℎ�
9� (0) |-2×-2×...×-2= Πℎ� 9� (0) |-2×-2×...×-2= 0

and

G
(
Π2�

9� (0) |-2×-2×...×-2
)
= G

(
Π2�

9� (0) |-2×-2×...×-2
)
∈ C29 .

Now by using (??), we have

1
<!
Πℎ�

<� (0) |-2×-2×...×-2= ΠℎG−1
[
(� − P<)

(
1
<!
�<� (0) (G2 , . . . , G2)

)]
= 0

and

G
(
Π2�

<� (0) |-2×-2×...×-2
)
= G

{
Π2G−1 [(� − P<) (�<� (0) (G2 , . . . , G2))]

}
∈ C2<.

The result follows. �
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5.3.2 Normal Form Computation

In this section we provide the methods to compute the Taylor’s expansion and normal
form of the reduced system at any order of a system topologically equivalent to the
original system: {

3D(C)
3C

= �D(C) + � (D(C)), C ≥ 0,
D(0) = G ∈ R=.

(5.47)

Assumption 5.21 Assume that � ∈ �: (R=, R=) for some integer : ≥ 2 with

� (0) = 0 and �� (0) = 0.

Set
�1 := �.

Once again we consider two cases, namely, �< ∈ +< (-2 , -ℎ) and �< ∈
+< (-2 ,R=), respectively.

5.3.2.1 Mm ∈ \
m (^c , ^h)

For 9 = 2, ..., :, we apply Proposition 5.14. Then there exists a unique function
� 9 ∈ + 9 (-2 , -ℎ) satisfying[

�, � 9

]
(G2) =

1
9!
Πℎ�

9�9−1 (0) (G2 , ..., G2) ,∀G2 ∈ -2 . (5.48)

Define b 9 : R= → R= and b−1
9

: R= → R= by

b 9 (G) := G + � 9 (Π2G) and b−1
9 (G) := G − � 9 (Π2G),∀G ∈ R=.

Then

�9 (G) := �9−1
(
b 9 (G)

)
−

[
�, � 9

]
(Π2G) − �� 9 (Π2G)

[
Π2�9−1

(
b 9 (G)

) ]
.

Moreover, we have for G ∈ R= that

Π2�9 (G) = Π2�9−1
(
b 9 (G)

)
= Π2�9−1

(
G + � 9 (Π2G)

)
.

Since the range of � 9 is included in -ℎ , by induction we have

Π2�9 (G) = Π2�
(
G + �2 (Π2G) + �3 (Π2G) + ... + � 9 (Π2G)

)
.

Now, we obtain

Πℎ�
9�: (0) |-2×-2×...×-2= 0 for all 9 = 1, ..., : .

Setting
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D: (C) = b−1
: ◦b

−1
:−1◦...b

−1
2 (D(C)) = D(C)−�2 (Π2D(C))−�3 (Π2D(C))−...−�: (Π2D(C)) ,

we deduce that D: (C) is an integrated solution of the system
3D: (C)
3C

= �D: (C) + �: (D: (C)), C ≥ 0,

D: (0) = G: ∈ � (�).
(5.49)

Applying the center manifold theorem in Chapter 14 and Lemma 5.10 to system
(5.49), we obtain the following result which is one of the main results of this Chapter.

Theorem 5.22 Let Assumptions 5.9, 5.21 be satisfied. Then by using the change of
variables

D: (C) = D(C) − �2 (Π2D(C)) − �3 (Π2D(C)) − ... − �: (Π2D(C))
⇔
D(C) = D: (C) + �2 (Π2D: (C)) + �3 (Π2D: (C)) + ... + �: (Π2D: (C)) ,

the map C → D(C) is an integrated solution of the Cauchy problem ( 5.47) if and
only if C → D: (C) is an integrated solution of the Cauchy problem (5.49). Moreover,
the reduced system of Cauchy problem (5.49) is given by the ordinary differential
equations on -2 :

3G2 (C)
3C

= �2G2 (C) + Π2�
[

G2 (C) + �2 (G2 (C)) +
�3 (G2 (C)) + ... + �: (G2 (C))

]
+ '2 (G2 (C)) , (5.50)

where the remainder term '2 ∈ �: (-2 , -2) satisfies

� 9'2 (0) = 0 for each 9 = 1, ..., :,

or in other words '2 (G2 (C)) is a remainder term of order :. If we assume in addition
that � ∈ �:+2 (R=, -) , then the map '2 ∈ �:+2 (-2 , -2) and '2 (G2 (C)) is a
remainder term of order : + 2, that is

'2 (G2) = ‖G2 ‖:+2$ (G2) , (5.51)

where $ (G2) is a function of G2 which remains bounded when G2 goes to 0, or
equivalently,

� 9'2 (0) = 0 for each 9 = 1, ..., : + 1.

Proof By applying the center manifold theorem in Chapter 14 and Lemma 5.10 to
system (5.49), there exists Ψ: ∈ �: (-2 , -ℎ) such that the reduced system of (5.49)
is given by

3G2 (C)
3C

= �2G2 (C)+Π2� [G2 (C) + �2 (G2 (C)) + �3 (G2 (C)) + ... + �: (G2 (C)) +Ψ: (G2 (C))]

and
� 9Ψ: (0) = 0 for 9 = 1, ..., : .

By setting
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'2 (G2) = Π2� [G2 + �2 (G2) + �3 (G2) + ... + �: (G2) +Ψ: (G2)]
−Π2� [G2 + �2 (G2) + �3 (G2) + ... + �: (G2)] ,

we obtain the first part of the theorem. If we assume in addition that � ∈
�:+2 (R=,R=) , then Ψ: ∈ �:+2 (-2 , -ℎ) . Thus,

'2 ∈ �:+2 (-2 , -2) .

Set
ℎ(G2) := G2 + �2 (G2) + �3 (G2) + ... + �: (G2) .

We have

'2 (G2) = Π2 {� [ℎ(G2) +Ψ: (G2)] − � [ℎ(G2)]}

= Π2

∫ 1

0
�� (ℎ(G2) + BΨ: (G2)) (Ψ: (G2)) 3B.

Define
ℎ̂(G2) := ℎ(G2) + BΨ: (G2) .

Since �� (0) = 0, we have

��

(
ℎ̂(G2)

)
(Ψ: (G2)) = �� (0) (Ψ: (G2)) +

∫ 1

0
�2�

(
; ℎ̂(G2)

) (
ℎ̂(G2),Ψ: (G2)

)
3;

=

∫ 1

0
�2�

(
; ℎ̂(G2)

) (
ℎ̂(G2),Ψ: (G2)

)
3;.

Hence,

'2 (G2) = Π2
∫ 1

0

∫ 1

0
�2� (; (ℎ(G2) + BΨ: (G2))) (ℎ(G2) + BΨ: (G2) ,Ψ: (G2)) 3;3B

(5.52)
and ℎ(G2) is a term of order 1, Ψ: (G2) is a term of order : + 1, it follows that (5.52)
holds. This completes the proof. �

Remark 5.23 In order to apply the above approach, we first need to computeΠ2 and
�2 , then Πℎ := � − Π2 can be derived. The point to apply the above procedure is to
solve system (5.48). To do this, one may compute

(_� − �ℎ)−:
1
9!
Πℎ�

9� (0) (5.53)

for each _ ∈ 8R and each : ≥ 1 by using Remark 5.15, or one may directly
solve system (5.48) by computing Πℎ 1

9!�
9�9−1. This last approach will involve the

computation of (5.53) for some specific values of _ ∈ 8R and some specific values
of : ≥ 1. This turns out to be the main difficulty in applying the above method.

In the application of chapter 17, we will use the last part of Theorem 5.22 to avoid
some unnecessary computations. We will apply this theorem for : = 2, � in �4,
and the remainder term '2 (G2) of order 4. This means that if we want to compute
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the Taylor’s expansion of the reduced system to the order 3 (which is very common
in such a context), we only need to compute �2. So in application the last part of
Theorem 5.22 will help to avoid a lot of computations.

5.3.2.2 Mm ∈ \
m (^c ,R

n)

Now we apply Proposition 5.20 recursively to (5.47). Set

D1 := D.

For < = 2, ..., :, let �< ∈ +< (-2 ,R=) be defined such that

[�, �<] (G2) = P<
[

1
<!
�<�<−1 (0) (G2 , . . . , G2)

]
for each G2 ∈ -2 .

We use the change of variables

D<−1 = D< + �< (Π2D<) .

Then we consider �< given by Proposition 5.20 and satisfying

�< (D<) = �<−1 (D<) − [�, �<] (Π2D<) +$ (‖D<‖<+1).

By applying Proposition 5.20, we have

Πℎ�
9�< (0) |-2×-2×...×-2= 0, for all 9 = 1, ..., <,

and
G

(
Π2�

9�< (0) |-2×-2×...×-2
)
∈ C29 , for all 9 = 1, ..., <.

Thus by using the change of variables locally around 0

D: (C) = (� + �:Π2)−1 ... (� + �3Π2)−1 (� + �2Π2)−1 D(C),

we deduce that D: (C) is an integrated solution of system (5.49). By using the center
manifold theorem in Chapter 14 and Lemma Lemma 5.10 to (5.49), we obtain the
following result which is the main result of this Chapter and indicates that systems
(5.49) and (5.47) are locally topologically equivalent around 0.

Theorem 5.24 Let Assumptions 5.9 and 5.21 be satisfied. Then by using the change
of variables locally around 0

D: (C) = (� + �:Π2)−1 ... (� + �3Π2)−1 (� + �2Π2)−1 D(C)
⇔
D(C) = (� + �2Π2) (� + �3Π2) ... (� + �:Π2) D: (C),

the map C → D(C) is an integrated solution of the Cauchy problem (5.47) if and
only if C → D: (C) is an integrated solution of the Cauchy problem (5.49). Moreover,
the reduced equation of Cauchy problem (5.49) is given by the ordinary differential
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equations on -2 :

3G2 (C)
3C

= �2G2 (C) +
:∑
<=2

1
<!
Π2�

<�: (0) (G2 (C), ..., G2 (C)) + '2 (G2 (C)) ,

where

G
(

1
<!
Π2�

<�: (0) |-2×-2×...×-2
)
∈ C2<, for all < = 1, ..., :,

and the remainder term '2 ∈ �: (-2 , -2) satisfies

� 9'2 (0) = 0 for each 9 = 1, ..., :,

or in other words '2 (G2 (C)) is a remainder term of order :. If we assume in addition
that � ∈ �:+2 (R=,R=) . Then the reduced equation of Cauchy problem (5.49) is
given by the ordinary differential equations on -2 :

3G2 (C)
3C

= �2G2 (C) +
:+1∑
<=2

1
<!
Π2�

<�: (0) (G2 (C), ..., G2 (C)) + '2 (G2 (C)) ,

the map '2 ∈ �:+2 (-2 , -2) , and '2 (G2 (C)) is a remainder term of order : +2, that
is

'2 (G2) = ‖G2 ‖:+2$ (G2) ,

where $ (G2) is a function of G2 which remains bounded when G2 goes to 0, or
equivalently,

� 9'2 (0) = 0 for each 9 = 1, ..., : + 1.

Proof By the center manifold theorem in Chapter 14 and 5.10 to (5.49), there exists
Ψ: ∈ �: (-2 , -ℎ) such that the reduced system of (5.49) is given by

3G2 (C)
3C

= �2G2 (C) + Π2�: [G2 (C) +Ψ: (G2 (C))]

and
� 9Ψ: (0) = 0 for 9 = 1, ..., : .

By setting
'2 (G2) = Π2�: [G2 +Ψ: (G2)] − Π2�: (G2) ,

we obtain the first part of the Theorem. If we assume in addition that � ∈
�:+2 (R=,R=) , then Ψ: ∈ �:+2 (-2 , -ℎ) . Thus, '2 ∈ �:+2 (-2 , -2) and

'2 (G2) = Π2 {�: [G2 +Ψ: (G2)] − �: (G2)}

= Π2

∫ 1

0
��: (G2 + BΨ: (G2)) (Ψ: (G2)) 3B.

Set
ℎ(G2) := G2 + BΨ: (G2) .
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Since �� (0) = 0, we have

��: (ℎ(G2)) (Ψ: (G2)) = ��: (0) (Ψ: (G2)) +
∫ 1

0
�2�: (;ℎ(G2)) (ℎ(G2),Ψ: (G2)) 3;

=

∫ 1

0
�2�: (;ℎ(G2)) (ℎ(G2),Ψ: (G2)) 3;.

Hence,

'2 (G2) = Π2
∫ 1

0

∫ 1

0
�2�: (; (G2 + BΨ: (G2))) (G2 + BΨ: (G2) ,Ψ: (G2)) 3;3B

and Ψ: (G2) is a term of order : + 1, it follows that

'2 (G2) = ‖G2 ‖:+2$ (G2) .

The result follows. �

5.4 Remarks and notes

Anormal form theoremwas obtained first by Poincaré [176] and later by Siegel [197]
for analytic differential equations. Simpler proofs of Poincaré’s theorem and Siegel’s
theorem were given in Arnold [7], Meyer [165], Moser [168], and Zehnder [231].
Normal form theory has been extended to various classes of differential equations.
In the context of functional differential equations we refer to Faria [72, 73]. In the
context of autonomous partial differential equations we refer to Ashwin and Mei
[9] (PDEs on the square), Eckmann et al. [65] (abstract parabolic equations), Faou
et al. [68, 69] (Hamiltonian PDEs), Hassard, Kazarinoff and Wan [99] (Functional
Differential Equations), Faria [70, 71] (PDEs with delay), Foias et al. [78] (Navier-
Stokes equation), Kokubu [125] (reaction-diffusion equations), McKean and Shatah
[162] (Schrödinger equation and heat equations), Nikolenko [173] (abstract semi-
linear equations), Shatah [192] (Klein-Gordon equation), Zehnder [232] (abstract
parabolic equations), Chow et al. [41] (and references therein) for a normal form
theory in quasiperiodic partial differential equations. Liu et al. [147] present a normal
form theory for an abstract non-densely defined Cauchy problem on Banach space
recently.

For the computation of normal forms near a equilibrium solution presented in the
first part of this chapter, we refer to the books [32], [216], [19] [30], [225], [86] by
Arnold [7], Chow and Hale [30], Guckenheimer and Holmes [86], Meyer and Hall
[164], Siegel and Moser [198], Chow et al. [32], Kuznetsov [129], Bibikov [19],
Wiggins [225] and others for more details.

In the study of nonlinear dynamical systems, the center manifold theory is very
important in reducing the dimension of equations, while the normal form theory is
very useful in simplifying the forms of equations restricted on the center manifolds.
Both of them are useful for the study of bifurcation problems. The second part of
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this chapter is devoted to show methods to compute the normal form associated with
the flow on center manifold which is inspired by Liu, Magal and Ruan [147]. In this
part we present two approaches to compute the normal form associated with the flow
on center manifold. One method is to compute the Taylor’s expansion of the reduced
system associated with the flow on center manifold by performing inductively a
sequence of change of coordinates on the nonlinear hyperbolic part of the system
and then we can compute the normal form of the reduced system using the procedure
in section 2 of this chapter. We can also use a sequence of change of coordinates to
get the Taylor’s expansion of the reduced system associated with the flow on center
manifold and, simultaneously, to eliminate the non-resonant terms of the reduced
system.



Part II
Applications to Predator Prey Systems





Chapter 6
A Holling’s predator-prey model with handling
and searching predators

This chapter provide an example of monotone ordinary differential equation in the
context of predator prey system. This chapter is based on the paper of Hsu, Liu and
Magal [118].

6.1 Introduction

The article is devoted to the following predator prey system with handling and
searching predators

# ′ = V## − `## − X#2︸ ︷︷ ︸
Logistic growth

−# ^ %(︸ ︷︷ ︸
Consumption of prey by predators

%′
(
= −(`% + [)%(︸ ︷︷ ︸

Mortality

−%( d ^ #︸ ︷︷ ︸
Searching becoming handling

+ W%�

%′
�
= −`%%�︸ ︷︷ ︸

Mortality

+ %( d ^ # −W%�︸︷︷︸
Handling becoming searching

+ V% (%( + %� )︸ ︷︷ ︸
New born predator

(6.1)
where # (C) is the number of prey at time C, %( (C) is the number of predators searching
for prey at time C, and %� (C) is the number of predators handling the prey at time C.

Here the terminology "handling and searching predators" refers toHolling himself
[109]. We should mention that Metz and Diekmann had similar ideas of searching
and handling predator in their edited book [163, pages 6-7]. In the model (6.1), the
term V% (%( (C) + %� (C)) is the flux of new born predators. Here we assume that
all the new born predators are handlers. The parameter d should be interpreted as a
conversion rate. The term %( (C) d ^ # (C) (in the %(-equation or the %� -equation)
is a flux of searching predators becoming handling predators. The term W%� (C) (in
the %(-equation or the %� -equation) is the flux of handling predators becoming
searching predators. The term `% is the natural mortality of the predators and [ is an
extra mortality term for the searching predators only. The term # (C) ^ %( (C) in the

253
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#-equation corresponds to the consumption of the prey by the predators. The part
V## (C) − `## (C) − X# (C)2 in the #-equation is the standard logistic equation.

Themain idea about thismodel is to distinguish the vital dynamics (birth and death
process) of the predators and their survival due to the consumption of prey. In the
model the survival of predators will depend on the status searching or handling. The
handling predators are satisfied with their consumption of prey and they don’t need
to find more prey to survive. At the opposite the searching predators are unsatisfied
with their consumption of prey and they need to find some prey to survive. Once a
searching predator finds a prey (or enough prey) he becomes a handling and after
some time the handling predator becomes a searching predator again.

This process only influences the survival of predators which depends on their
ability to find a prey. In our model, a predator can reproduce at time C because he
found enough prey to survive from its birth until the time C. In section 6.2 we will
first make some basic assumptions in order for the predators to extinct in absence of
prey. Then based on these setting we will analyze the dynamical properties of the
system (6.1). The main advantage with the model (6.1) is that we can separate the
vital dynamic and consumption of prey to describe the behavior of the predators.
This will be especially very convenient if we want to add an age or size structure to
the predator population. This kind of question is left for future work.

In section 6.6 we will see that our model is also comparable to the standard

predator prey model whenever d =
j

Y
and W =

1
Y
for Y > 0 small which means

that predators are going back and forth from handling to searching very rapidly.
In that case (as a singular limit) we obtain a convergence result to the standard
Rosenweig-MacArthur model [183]

# ′ = A#

(
1 − #

 

)
− % <#

0 + # ,

%′ = %

(
<#

0 + # − 3
)
,

(6.2)

which is the most popular predator-prey system discussed in the literature.
Let us recall that the derivation of Holling type II functional response <#

0+# can
be found in Holling [108, 109] and Hsu, Hubbell and Waltman [115]. There are two
mathematical problems for the system (6.2), namely, the global asymptotic stability
of the locally asymptotically stable interior equilibrium (when it exists) and the
uniqueness of the limit cycles when the interior equilibrium is unstable. For the
global asymptotic stability of this equilibrium we may apply the Dulac’s criterion
Hsu, Hubbell andWaltman [117], weak negative Bendixson Lemma Cheng, Hsu and
Lin [26] or construction Lyapunov function Ardito and Ricciardi [5]. For uniqueness
of limit cycle of Rosenzweig-MacArthur model (6.2), Cheng [25] employed the
symmetry of the prey isocline to prove the exponential asymptotic stability of each
limit cycle. Kuang and Freedman [128] reduced (6.2) to a generalized Lienard
equation which has the uniqueness of limit cycle Zhang [239]. We refer to Murray
[169], Hastings [100], Turchin [212] for more results about predator prey models.

The plan of the paper is the following. In section 6.2we set some basic assumptions
in order for the predators to extinct in absence of prey. In section 6.3 we prove
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that the system is dissipative. In section 6.4 we study the uniform persistence and
extinction properties of the predators. We study the system in the interior region
which corresponds the region of co-existence of prey and predators in section 6.5.
We shouldmention that we can obtain a rather complete description of the asymptotic
behavior thanks to the fact the system is competitive (for a new partial order). In
section 6.6 we prove the convergence of our model to the Rosenweig-MacArthur
model. In section 6.7 we apply the model to the Canadian snowshoe Hares and the
Lynx.

6.2 Basic assumptions

In this section, we set some basic assumptions in order for the predators to extinct
in absence of prey. Consider the total number of predators

% = %� + %( .

Then
%′ = (V% − `% − [) %( + (V% − `%) %� .

The following assumptions mean that when %(
%�

> − V%−`%
V%−`%−[ , the total population

of predators decreases. The total population of predators increases otherwise.

Assumption 6.1 We assume that all the parameters of the model (6.1) are strictly
positive and

V# − `# > 0, V% − `% > 0 and V% − `% − [ < 0.

In absence of prey the dynamics of predator population is described by{
%′
(
= −(`% + [)%( + W%�

%′
�
= V%%( + (V% − `% − W) %� .

Define
" =

[
−`% − [ W

V% V% − `% − W

]
. (6.3)

By using Assumption 6.1 we have

tr (") = (V% − `% − W) − (`% + [) < 0.

Therefore in absence of prey the population of predators goes to extinct if and only
if

det (") = − (`% + [) (V% − `% − W) − V%W > 0.

This last inequality can be equivalently reformulated in the following assumption.

Assumption 6.2 (Extinction of the predators) We assume that
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(V% − `% − W) < −
V%W

`% + [
⇔ (V% − `%) < −

W

`% + [
(V% − `% − [) . (6.4)

Remark 6.3 The first inequality in (6.4) implies that (V% − `% − W) < 0. Moreover
the second inequality in (6.4) and (V% − `%) > 0 imply that (V% − `% − [) < 0.

Lemma 6.4 Let Assumptions 6.1 and 6.1 be satisfied. Then in absence of prey the
population of predators goes to extinct.

6.3 Dissipativity

In this section, we will prove that the system (6.1) is dissipative. We look for a
positive left eigen-vector (%̃( , %̃� ) ∈ (0, +∞)2 and an eigenvalue _ > 0 such that

(%̃( , %̃� )
[
−`% − [ W

V% V% − `% − W

]
= −_(%̃( , %̃� )

that is equivalent to{
− (`% + [) %̃( + V% %̃� = −_%̃(
W%̃( + (V% − `% − W) %̃� = −_%̃�

⇔
{
V% %̃� = [(`% + [) − _] %̃(
W%̃( = [− (V% − `% − W) − _] %̃� .

Thus the sign %̃( and %̃� are the same if we impose

_ ∈ (0,min ((`% + [) ,− (V% − `% − W)))

and _ must satisfy the following equation

1 =
[(`% + [) − _]

V%

[− (V% − `% − W) − _]
W

=: Ψ (_) .

The function _→ Ψ (_) decreases between 0 and min ((`% + [) ,− (V% − `% − W))
and by using (6.4) we have Ψ(0) > 1. It follows that there exists a unique _∗ ∈
(0,min ((`% + [) ,− (V% − `% − W))) such that

1 =
[(`% + [) − _∗]

V%

[− (V% − `% − W) − _∗]
W

. (6.5)

Note that
[− (V% − `% − W) − _∗]

W
< 1⇔ − (V% − `%) < _∗.

By assumption (V% − `%) > 0 it follows from (6.5) that

[(`% + [) − _∗]
V%

> 1.

Since
W%̃( = [− (V% − `% − W) − _∗] %̃� ,
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it follows that
%̃� > %̃( > 0. (6.6)

By using %(-equation and %� -equation of system (6.1) we obtain

%̃(%
′
( + %̃�%

′
� = −_∗

[
%̃(%( + %̃�%�

]
−

(
%̃( − %̃�

)
%( d ^ #. (6.7)

By using the #-equation and comparison principle it is clear that we can find some
#∗ = max (# (0), (V# − `# ) /X) such that

# (C) ≤ #∗,∀C ≥ 0,

where # (0) is the initial value. Then it follows that

d

(
%̃� − %̃(

)
# ′+%̃(%′(+%̃�%

′
� ≤ −d

(
%̃� − %̃(

)
`##−_∗

[
%̃(%( + %̃�%�

]
+d

(
%̃� − %̃(

)
V##

∗

and the dissipativity follows.
Set

" =

d

(
%̃� − %̃(

)
V##

∗

min (`# , _∗)
> 0.

As a consequence of the last inequality, we obtain the following results.

Proposition 6.5 Let Assumptions 6.1 and 6.2 be satisfied. The system (6.1) generates
a unique continuous semiflow {* (C)}C≥0 on [0,∞)3. Moreover the domain

� =

{
(#, %( , %� ) ∈ [0,∞)3 : d

(
%̃� − %̃(

)
# + %̃(%( + %̃�%� ≤ "

}
is positively invariant by the semiflow generated by*. That is to say that

* (C)� ⊂ �,∀C ≥ 0.

Furthermore � attracts every point of [0,∞)3 for*. That is to say that

lim
C→∞

X(* (C)G, �) = 0,∀G ∈ [0,∞)3,

where X(G, �) := infH∈� ‖G− H‖ is the Hausdorff’s semi-distance. As a consequence
the semiflow of* has a compact global attractor A ⊂ [0,∞)3.

6.4 Uniform persitence and extinction of predators

In this section, we study the uniform persistence and extinction of the predators.
Firstly we consider the existence of the equilibrium. The equilibrium

(
#, %( , %�

)
∈

[0,∞)3 satisfies the following system
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0 = #

[
V# − `# − X# − ^ %(

]
,

0 = −(`% + [)%( − %( d ^ # + W%� ,
0 = −`%%� + %( d ^ # − W%� + V%

(
%( + %�

)
.

By using Assumptions 6.1 and 6.2, we deduce that the only equilibrium satisfying
# = 0 is �1 = (0, 0, 0). If we assume next that # > 0, we obtain the system

0 = V# − `# − X# − ^ %( ,
0 = −(`% + [)%( − %( d ^ # + W%� ,
0 = −`%%� + %( d ^ # − W%� + V%

(
%( + %�

)
.

From the first equation we have

# = #̂ − ^

X
%(

with
#̂ =

V# − `#
X

.

By adding the last two equations, we have

%� =
(`% + [ − V%)
(V% − `%)

%( .

Combining the above two equations with

−(`% + [)%( − %( d ^ # + W%� = 0,

we have(
−(`% + [) −

(V# − `# ) d ^
X

+ W (`% + [ − V%)(V% − `%)

)
%( +

^2 d

X
%

2
( = 0

and then

%( = 0 or %( =
(
(`% + [) −

W(`% + [ − V%)
(V% − `%)

)
X

^2 d
+ (V# − `# )

^
.

Thus we get the following lemma.

Lemma 6.6 Let Assumptions 6.1 and 6.2 be satisfied. System (6.1) always has the
following two boundary equilibria

�1 = (0, 0, 0), �2 =
(
#̂, 0, 0

)
.

Moreover there exists a unique interior equilibrium �∗ =
(
#∗, %∗

(
, %∗

�

)
if and

only if

(V# − `# ) (V% − `%) ^ d + X (V% − `%) (`% + [) > −XW(V% − `% − [). (6.8)
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Furthermore, we have

#∗ =
− (V% − `%) (`% + [) − W(V% − `% − [)

(V% − `%) ^ d
> 0,

%∗
(
=
X (V% − `%) (`% + [) + XW(V% − `% − [) + (V# − `# ) (V% − `%) ^ d

(V% − `%) ^2 d
> 0,

%∗
�
= − (V% − `% − [)

V% − `%
%∗
(
> 0.

6.4.1 Stability of the equilibrium K1

The Jacobian matrix at the equilibrium �1 is
V# − `# 0 0

0 −`% − [ W

0 V% V% − `% − W


and the characteristic equation is

[(_ + `% + [) (_ − (V% − `% − W)) − V%W] [_ − (V# − `# )] = 0.

So one of the eigenvalues is _1,�1 = V# − `# > 0. Thus we can get that the
equilibrium �1 is unstable. The rest of the spectrum coincides with the spectrum of
the matrix " defined in (6.3). Thus we obtain the following lemma.

Lemma 6.7 Let Assumptions 6.1 and 6.2 be satisfied. The equilibrium �1 is hyper-
bolic and the unstable manifold is one dimensional.

6.4.2 Stability of the equilibrium K2

The Jacobian matrix at the equilibrium �2 is
− (V# − `# ) −^#̂ 0

0 −
(
(`% + [) + d^#̂

)
W

0 d ^ #̂ + V% V% − `% − W


and the characteristic equation is[(
_ + `% + [ + d^#̂

)
(_ − (V% − `% − W)) − W

(
d^#̂ + V%

)]
[_ + (V# − `# )] = 0.

So one of the eigenvalues is _1,�2 = − (V# − `# ) < 0 and the remaining part of the
characteristic equation is

_2 + 0_ + 1 = 0

with
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0 =

(
`% + [ + d ^ #̂

)
− (V% − `% − W)

and

1 = (`% + W − V%)
(
`% + [ + d ^ #̂

)
− W

(
d ^ #̂ + V%

)
.

By using Assumptions 6.1 and 6.2 we have 0 > 0. Moreover by using the Routh-
Hurwitz criterion �2 is stable if and only if 1 > 0 which corresponds to

(`% + W − V%)
(
`% + [ + d^#̂

)
− W

(
d ^ #̂ + V%

)
> 0

⇔ (V# − `# ) (V% − `%) ^ d + X (V% − `%) (`% + [) < −XW(V% − `% − [)

Now we obtain the following result.

Lemma 6.8 Let Assumptions 6.1 and 6.2 be satisfied. �2 is unstable if the interior
equilibrium exits (i.e. the condition 6.8 is satisfied) and the unstable manifold is one
dimensional and the stable manifold is two dimensional.

6.4.3 Extinction of the predators and the global stability of K2

We decompose the positive cone " = R3
+ into the interior region

◦
" = {(#, %( , %� ) ∈ " : # > 0 and %( + %� > 0} ,

the boundary region with predators only

m"% := {(#, %( , %� ) ∈ " : # = 0} , (6.9)

and the boundary region with prey only

m"# := {(#, %( , %� ) ∈ " : %( + %� = 0} . (6.10)

Each sub domain
◦
" , m"% and m"# is positively invariant by the semiflow generated

by (6.1).

Theorem 6.9 Let Assumptions 6.1 and 6.2 be satisfied. Assume that �2 is lo-
cally asymptotically stable (i.e.

(
`% + [ + d^#̂

)
(`% + W − V%) > W

(
V% + d^#̂

)
).

Then the predator goes to extinction. More precisely for each initial value in
" = (# (0), %( (0), %� (0)) ∈ [0,∞)3,

lim
C→∞

%( (C) + %� (C) = 0.

and
lim
C→∞

# (C) =
{
#̂, if # (0) > 0,
0, if # (0) = 0.
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Proof The boundary region with predator only m"% is positively invariant by the
semiflow generated by (6.1) and by Assumption 6.2 any solution starting from m"%

exponentially converges to �1.
So it remains to investigate the limit of a solution starting from

◦
" ∪ m"# \{�1}.

We consider the Liapunov function

+ (#, %( , %� ) =
∫ #

#̂

b − #̂
b

3b + 21%( + 22%� (6.11)

where 21 > 0 and 22 > 0 to be determined. We have

¤+ =
(
# − #̂

)
(V# − `# − X# − ^%()

+21 (−(`% + [)%( − d^%(# + W%� )
+22 (−`%%� + d^%(# − W%� + V% (%( + %� ))
=

(
# − #̂

) (
−X

(
# − #̂

)
− ^%(

)
+21

(
−(`% + [)%( − d^%(

(
# − #̂

)
− d^%( #̂ + W%�

)
+22

(
−`%%� + d^%(

(
# − #̂

)
+ d^%( #̂ − W%� + V% (%( + %� )

)
.

Thus we obtain

¤+ = −X
(
# − #̂

)2
+ ^%(

(
# − #̂

)
(−1 − 21d + 22d)

+%(
(
−21 (`% + [) − 21d^#̂ + 22d^#̂ + 22V%

)
+%� (−22`% + 21W − 22W + 22V%) .

We claim that we can choose 21 > 0 and 22 > 0 such that 22 = 21 +
1
d

and the

following inequalities are satisfied

−21 (`%+[)−21d^#̂+22d^#̂+22V% < 0 and −22`%+21W−22W+22V% < 0. (6.12)

In fact the inequalities in (6.12) lead to consider the lines

22 = 21
W

`% + W − V%
(!1)

and

22 = 21
(`% + [) + d^#̂
V% + d^#̂

(!2).

By Assumption 6.2 (see Remark 6.3) we have `% + W − V% > 0 and by Assumption
6.1 we have `% + [ > V% and then

(`% + [) + d^#̂
V% + d^#̂

> 1.

Note that
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(`% + [) + d^#̂
V% + d^#̂

>
W

`% + W − V%
⇔

(
`% + [ + d^#̂

)
(`% + W − V%) > W

(
V% + d^#̂

)
and thus we obtain that the slope of !2 is greater than the slope of !1. Finally we
have

lim
#→0+

+ (#, %( , %# ) = (# − #̂) − #̂ ln
(
#

#̂

)
+ 21%( + 22%# = +∞.

By LaSalle’s invariance principle we obtain that �2 is globally asymptotically stable
for the system restricted to

◦
" ∪ m"# \{�1}. �

6.4.4 Uniform persistence of the predators

We decompose the positive cone into

R3
+ = m" ∪

◦
"

where the boundary region is defined as

m" := m"% ∪ m"# .

It is clear that both regions
◦
" and m" are positively invariant by the semiflow

generated by the system. Moreover we have the following result.

Theorem 6.10 Let Assumptions 6.1 and 6.2 be satisfied. If the interior equilibrium
exits then the predators uniformly persist with respect to the domain decomposition(
m",

◦
"

)
. That is to say that there exists a > 0 such that for each initial value

# (0) > 0 and %( (0) + %� (0) > 0

lim inf
C→∞

# (C) > a and lim inf
C→∞

%( (C) + %� (C) > a.

Proof The equilibrium �1 = {(0, 0, 0)} is clearly chained to �2 = {(#̂, 0, 0)}. By
using Theorem 4.1 in [96], we only need to prove that

, B (�8) ∩
◦
" = ∅,

where 8 = 1, 2 and

, B (�8) = {(#, %( , %� ) ∈ " : l((#, %( , %� )) ≠ ∅ and l((#, %( , %� )) ⊂ �8} ,

where l means the l-limit set. Assume that there exists �0 =
(
#0, %0

(
, %0

�

)
∈
◦
"

(which means #0 > 0 and %0
(
+%0

�
> 0) such that l(�0) ⊂ �1. Then for any Y > 0,
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there exists C0 ≥ 0, such that

# (C) + %( (C) + %� (C) ≤ Y,∀C ≥ C0

where (# (C), %( (C), %� (C)) = * (C)�0. By using the first equation of model (6.1)

# ′ = V## − `## − X#2 − # ^ %( ,

we have
# ′ ≥ # (V# − `# − XY − ^ Y) .

Therefore for Y > 0 small enough, we have V# − `# − XY − ^ Y > 0 and then

lim
C→∞

# (C) = ∞

which is in contradiction to the dissipativity of the model. Assume that there exists
�0 =

(
#0, %0

(
, %0

�

)
∈
◦
" such that l(�0) ⊂ �2. Then for any Y > 0, there exists

C0 ≥ 0, such that ���# (C) − #̂ ��� + %( (C) + %� (C) ≤ Y,∀C ≥ C0
where (# (C), %( (C), %� (C)) = * (C)�0. By using the two last equation of system
(6.1), we obtain

%′
(
≥ −(`% + [)%( − %(d^

(
#̂ + Y

)
+ W%�

%′
�
≥ −`%%� + %( d ^

(
#̂ − Y

)
− W%� + V% (%( + %� )

(6.13)

By using the fact that for Y > 0 small enough the right hand side of (6.13) is a
cooperative system together with Lemma 6.8 we deduce that

lim
C→∞

%( (C) + %� (C) = ∞.

This gives a contradiction with the dissipativity of the system. Therefore the uniform
persistence follows. �

As a consequence of the dissipativity as well as the uniform peristence (seeMagal
and Zhao [160]) we deduce the following result.

Theorem 6.11 Let Assumptions 6.1 and 6.2 be satisfied. Assume in addition that
the interior equilibrium exits. Then the system (6.1) has a global attractor �0 in the
interior region

◦
" . Namely �0 is a compact invariant set by the semiflow generated

by (6.1) on
◦
" and �0 is locally stable and attracts the compact subsets of

◦
" .
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6.5 Interior region

In this section, we will study the system in the interior region which corresponds to
the region of co-existence of prey and predators.

6.5.1 Local stability of K∗

The Jacobian matrix at the equilibrium �∗ is
(
V# − `# − 2X#∗ − ^ %∗

(

)
−#∗ ^ 0

−%∗
(
d ^ − (`% + [ + d ^ #∗) W

%∗
(
d ^ d ^ #∗ + V% V% − `% − W

 .
and the characteristic equation is

_3 + ?1_
2 + ?2_ + ?3 = 0

with

?1 = −
(
V# − `# − 2X#∗ − ^ %∗(

)
+ (`% + [ + d ^ #∗) − (V% − `% − W) ,

?2 = − (`% + [ + d ^ #∗)
(
V# − `# − 2X#∗ − ^ %∗(

)
− #∗ ^%∗( d ^

+
(
V# − `# − 2X#∗ − ^ %∗(

)
(V% − `% − W)

− (`% + [ + d ^ #∗) (V% − `% − W) − ( d ^ #∗ + V%) W,
?3 =

(
V# − `# − 2X#∗ − ^ %∗(

)
(`% + [ + d ^ #∗) (V% − `% − W)

+#∗ ^W%∗( d ^ + W
(
V# − `# − 2X#∗ − ^ %∗(

)
( d ^ #∗ + V%) +

%∗( d ^#
∗ ^ (V% − `% − W) .

By using Routh-Hurwitz criterion, we get that the equilibrium �∗ is stable if and
only if

?1 > 0, ?1?2 − ?3 > 0 and ?3 > 0.

By computing, we have

?1 =
−^ d (V% − `% − W) (V% − `%) − W (X + ^ d) (V% − `% − [) − X (V% − `%) (`% + [)

^ d (V% − `%)
,

?2 =
[ (V% − `% − W) (`% + [) + WV%] {(V% − `%) [X (V% + [ + W) + ^ d (V# − `# )] − 2XW[}

^ d (V% − `%)2
,

?3 =

[(V% − `% − W) (`% + [) + WV%]
{
−X (V% − `% − W) (`% + [) − WXV%−

^ d (V% − `%) (V# − `# )

}
^ d (V% − `%)

.

Thus we have the following result.
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Lemma 6.12 Let Assumptions 6.1, 6.2 and inequality (6.8) be satisfied. The equi-
librium �∗ is stable if and only if (V? − `?) [^d(V# − `# ) + X([ + W)] <
X[2W[ − V? (V? − `?)].

6.5.2 Three dimensional K-competitive system

In this section we use a Poincaré-Bendixson theorem for three dimensional K-
competitive system.

Theorem 6.13 ([201, Theorem 4.2 p. 43]) Let the autonomous system of ordinary
differential equations G ′ = 5 (G) be a competitive system, where 5 is continuously
differentiable on an open subset � ⊂ R3 and suppose that � contains a unique equi-
librium point ? which is hyperbolic. Suppose further that, B (?) is one-dimensional
and tangent at ? to a vector E � 0. If @ ∈ � \, B (?) and W+ (@) has compact closure
in � then l(@) is a nontrival periodic orbit.

By applying this theorem to the system (6.1) restricted to the interior global
attractor �0 we obtain the following result.

Theorem 6.14 Suppose that �∗ =
(
#∗, %∗

(
, %∗

�

)
exists and is hyperbolic and unsta-

ble for (6.1). Then the stable manifold , B (�∗) of �∗ is one dimensional and the
omega limit setl (# (0), %( (0), %� (0)) is a nontrivial periodic orbit inR3

+ for every
(# (0), %( (0), %� (0)) ∈ R3

+ \, B (�∗).

Proof The Jacobian matrix of the vector field (6.1) at the point (#, %( , %� ) ∈
(0,∞)3 is given by

� =
©­«
(V# − `# ) − 2X# − ^%( −^# 0

−d^%( − (`% + [) − d^# W

d^%( d^# + V% −`% + V% − W
ª®¬ . (6.14)

The off-diagonal entries of � are sign-stable and sign symmetric in R3
+.

Let
K =

{
(#, %( , %� ) ∈ R3 : # ≥ 0, %( ≥ 0, %� ≤ 0

}
.

The system isK-competitive, since the matrix of the time-reversed linearized system
−� is cooperative with respect to the cone K. �

6.6 Convergence to the Rosenzweig-MacArthur model

The time scale for the life expectancy (as well as the time scale needed for the
reproduction) is the year, while the time needed for the lynx to handle the rabbit
is measured by days (no more than one week). Therefore there is a huge difference
between the time scales for the vital dynamic and the consumption dynamic.
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The consumption of prey by the predator is a fast process compared to the vital
dynamic which is slow. In the model W−1 is the average time spent by the predators
to handle prey. W−1 should be very small in comparison with the other parameters.
Then it makes sense to make the following assumption.

Assumption 6.15 Assume that

d =
j

Y
and W =

1
Y

with Y � 1 is small.

Under the above assumption the system (6.1) becomes

·
# Y = (V# − `# ) # Y − X(# Y)2 − ^# Y %Y(
·
%Y
(
= −(`% + [)%Y( −

j

Y
^# Y%Y

(
+ 1
Y
%Y
�

·
%Y
�
= −`%%Y� + j

Y
^# Y%Y

(
− 1
Y
%Y
�
+ V%

(
%Y
(
+ %Y

�

) (6.15)

and we fix the initial value

# Y (0) = #0 ≥ 0, %Y( (0) = %(0 ≥ 0 and %Y� (0) = %�0 ≥ 0.

The first equation of (6.15) is
·
# Y = (V# − `# ) # Y − X(# Y)2 − ^# Y %Y( . (6.16)

Hence ·
# Y ≤ (V# − `# ) # Y . (6.17)

By summing the two last equations of (6.15) we obtain
·
%Y = (V% − `%) %Y − [%Y( (6.18)

and %Y
(
≥ 0 implies that

·
%Y ≤ (V% − `%) %Y . (6.19)

Therefore by using (6.17) and (6.19) we obtain the following finite time estimation
uniform in Y.

Lemma 6.16 For each g > 0 we can find a constant " = " (g, #0, %0) > 0
(independent of Y > 0) such that

0 ≤ # Y (C) ≤ " and 0 ≤ %Y (C) ≤ ",∀C ∈ [0, g] . (6.20)

and
sup

C ∈[0,g ]
|
·
# Y (C) | ≤ " and sup

C ∈[0,g ]
|
·
%Y (C) | ≤ ". (6.21)
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Proof We first deduce (6.20) by using the inequalities (6.17) and (6.19). By using
the fact %( ≥ 0 and %� ≥ 0 we have

0 ≤ %Y( (C) ≤ ", and 0 ≤ %Y� (C) ≤ ",∀C ∈ [0, g] . (6.22)

Therefore by injecting these estimations into (6.16) and (6.18) we deduce (6.21). �

By using Lemma 6.6, and the Arzela-Ascoli theorem we deduce that we can find
a sequence Y= → 0 such that

lim
=→∞

# Y= = # and lim
=→∞

%Y= = %

where the convergence is taking place in � ( [0, g],R) for the uniform convergence
topology.

Moreover by using the fact that %Y
�
= %Y − %Y

(
, the %Y

(
-equation can be rewritten

as
·
%Y( = −

(
(`% + [) +

j

Y
^# Y

)
%Y( +

1
Y

(
%Y − %Y(

)
. (6.23)

By using (6.22), the map C → %Y
(
(C) is bounded uniformly in Y. So the family

Y= → %
Y=
(

is bounded in !∞ ((0, g) ,R) which is the dual space of !1 ((0, g) ,R).
Therefore by using the Banach-Alaoglu-Bourbaki’s theorem, we can find a sub-
sequence (denoted with the same index) such that Y= → %

Y=
(

convergences to %( ∈
!∞ ((0, g) ,R) for the weak star topology off

(
!∞ ((0, g) ,R) , !1 ((0, g) ,R)

)
. That

is to say that for each j ∈ !1 ((0, g) ,R)

lim
=→∞

∫ g

0
j(C)

(
%
Y=
(
(C) − %( (C)

)
3C = 0.

By multiplying (6.23) by j ∈ �1
2 ((0, g) ,R) (the space �1 functions with compact

support in (0, g)) and by integrating over [0, g] we obtain

−
∫ g

0

·
j(C)%Y=

(
(C)3C =

∫ g

0
j(C)

[
−

(
(`% + [) +

j

Y=
^# Y= (C)

)
%
Y=
(
(C) + 1

Y=

(
%Y= (C) − %Y=

(
(C)

)]
3C.

Hence by multiplying both sides by Y= and by taking the limit when = goes to infinity
we obtain

0 =
∫ g

0
j(C) [− (j^# (C)) %( (C) + (%(C) − %( (C))] 3C

and since �1
2 ((0, g) ,R) is dense in !1 ((0, g) ,R) we deduce that

%
Y=
(
(C) ∗⇀ 1

1 + j^# (C) %(C) as =→∞.

By using the first equation of (6.15) and (6.18), we have
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# Y= (C) = 4
∫ C

0 V#−`#−^%
Y=
(
(f)3f#0

1 + X
∫ C

0 4
∫ ;

0 V#−`#−^%
Y=
(
(f)3f#03;

,

%Y= (C) = 4 (V%−`%)C%0 −
∫ C

0 4
(V%−`%) (C−B)[%Y

(
(f)3f.

By taking the limit on both sides we deduce that
·
# = (V# − `# ) # (C) − X# (C)2 −

^# (C)
1 + j^# (C) %(C),

·
% = (V% − `%) % − [

1
1 + j^# (C) %.

Therefore we obtain the following theorem.

Theorem 6.17 Let g > 0 be fixed. For each fixed initial values #0 ≥ 0, %(0 ≥ 0 and
%�0 ≥ 0, we have the following results:

lim
Y→0

# Y (C) = # (C) and lim
Y→0

%Y( (C) + %
Y
� (C) = %(C)

where the limit is uniform on [0, g], (# Y (C), %Y
(
(C), %Y

�
(C)) is the solution of (6.15)

with the initial conditions

# Y (0) = #0 ≥ 0, %Y( (0) = %(0 ≥ 0 and %Y� (0) = %�0 ≥ 0

and (# (C), %(C)) is the solution of the Rosenzweig-MacArthur model
·
# = (V# − `# ) # (C) − X# (C)2 −

^# (C)
1 + j^# (C) %(C),

·
% = (V% − `% − [) % + [

j^# (C)
1 + j^# (C) %

(6.24)

with the initial conditions

# (0) = #0 and %(0) = %(0 + %�0.

Remark 6.18 If instead of the model (6.1) we consider the following model
·
# = (V# − `# ) # − X#2 − ^# ; %(
·
%( = −(`% + [)%( − d^#<%( + W%� ,
·
%� = V% (%( + %� ) − `%%� + d^#<%( − W%�

(6.25)

Then by using the same procedure above we obtain a convergence result to the most
classical predator prey model

·
# = (V# − `# ) # (C) − X# (C)2 −

^# (C);
1 + j^# (C)< %(C),

·
% = (V% − `% − [) % + [

j^# (C)<
1 + j^# (C)< %.

(6.26)
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By choosing ; = < we obtain the classical Holling’s type functional response.

6.7 Application to the Snowshoe Hares and the Lynx

In this section we reconsider predator-prey system form by the hares (prey) and
lynxes (predator) in the years 1900-1920 recorded by the Hudson Bay Company.
The data are available for example in [52].

Year Hares (in thousands) Lynx (in thousands)
1900 30 4
1901 47.2 6.1
1902 70.2 9.8
1903 77.4 35.2
1904 36.3 59.4
1905 20.6 41.7
1906 18.1 19
1907 21.4 13
1908 22 8.3
1909 25.4 9.1
1910 27.1 7.4
1911 40.3 8
1912 57 12.3
1913 76.6 19.5
1914 52.3 45.7
1915 19.5 51.1
1916 11.2 29.7
1917 7.6 15.8
1918 14.6 9.7
1919 16.2 10.1
1920 24.7 8.6

Table 6.1: Numbers of hares (prey) and lynxes (predator) in the years 1900-1920
recorded by the Hudson Bay Company

The limit model obtain for Y small enough is given by
·
# = (V# − `# ) #

(
1 − X#

V# − `#

)
− ^%#

1 + j^# ,
·
% = (V% − `% − [) % + [

j^%#

1 + j^#

(6.27)

with initial value

# (0) = #0 = 30 × 103 and %(0) = %0 = 4 × 103.
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Symbol Interpretation Value Unit Method
1/`# Life expectancy of hares 1 year fixed
V# Birth rate of hares 1.6567 number of new born/year fitted
X Carrying capacity of hares 303000 year fitted
^ 3.2 × 10−5 fitted
j 0.11 fitted

1/`% Life expectancy of Lynx 7 year fixed
V% Birth rate of Lynx 8.5127 number of new born/year fitted
[ Extra mortality of searching Lynx 9.24 year−1 fitted

V% − `% − [ Growth of searching lynx −0.8702 fitted
[j Convertion rate 1.0164 fitted

Table 6.2: List parameters for the model (6.27), their interpretations, values and
symbols. In this table we have fixed `# and `% and we have obtain all the remaining
parameters by using a least square method between the data in Table 6.1 the solution
of the model (6.27). The life expectancy of Snowshoe Hares is not known [28, 82].
Here we fix the life expectancy of hares to be 1 year (similarly to [230]). In the wild a
Canadian Lynx can live up to 14 years. Here we fix the life expectancy to be 7 years
(see [67] for more result). A Canadian lynx can have between 1 and 8 new babies
[123]. So the estimation obtained for the brith rate of lynx is still reasonable.

1900 1902 1904 1906 1908 1910 1912 1914 1916 1918 1920
0

20 000

40 000

60 000

80 000
N Data

P Data

N Model

P Model

Fig. 6.1: In this figure we run a simulation of the model (6.27) (solide lines) compared
with the data (circles).

In section 6.6, we proved that the model (6.27) can be obtained as singular limit
(when Y → 0) of the following model
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·
# Y = (V# − `# ) # Y

(
1 − X# Y

V# − `#

)
− ^# Y %Y

(

·
%Y
(
= −(`% + [)%Y( −

j

Y
^# Y%Y

(
+ 1
Y
%Y
�

·
%Y
�
= −`%%Y� + j

Y
^# Y%Y

(
− 1
Y
%Y
�
+ V%

(
%Y
(
+ %Y

�

) (6.28)

and we fix the initial value

# Y (0) = #0 = 30 × 103 ≥ 0, %Y( (0) = %(0 ≥ 0 and %Y� (0) = %�0 ≥ 0.

In Theorem 6.17 we proved that for Y small enough

%Y( (C) '
1

1 + j^# (C) %(C) and %
Y
' (C) '

(
1 − 1

1 + j^# (C)

)
%(C) = j^# (C)

1 + j^# (C) %(C).
(6.29)

By using the value for j^ estimated in Table 6.2, we obtain the following initial
values for the model (6.28)

%Y(0 =
%0

1 + j^#0
=

4 × 103

1 + 1.0164 × 30 × 103 and %Y'0 =
j^#0

1 + j^#0
%0 =

1.0164 × 30 × 103

1 + 1.0164 × 30 × 103 4×103.

(6.30)
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Fig. 6.2: In this figure we run a simulation of the model (6.28) (solide and dotted
lines) compared with the data (circles). The solide lines correspond to Y = 10−4 and
the dotted lines correspond to Y = 5.10−3.
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Fig. 6.3: In this figure we run a simulation of the model (6.28) with Y = 10−4 for
solide line and with Y = 5.10−3 for dotted line.

From Figures 6.1 and 6.2 , we can see that Y does not need to be very small
(Y = 10−4) to get an almost perfect match of our model (6.28) with the Rosenzweig-
MacArthur model (6.27). Our simulations for hares and lynxes fit the data reported
by the Hudson Bay Company. As we mentioned the main advantage with the model
(6.28) is that we can separate the vital dynamic and consumption of prey (hares) to
describe the behavior of the predators (lynxes). From our model (6.28), people can
study the interaction between predator and prey in detail and get more information.

6.8 Remarks and notes

6.9 MATLAB codes

6.9.1 Figure 6.1

1 f u n c t i o n example
2 t s p a n = [1900 1920 ] ;
3 x=[1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

1910 1911 1912 1913 1914 1915 1916 1917 1918
1919 1920 ] ; % y e a r s

4 y=[3∗1 e4 4 .72∗1 e4 70 .2∗1 e3 77 .4∗1 e3 36 .3∗1 e3 20 .6∗1
e3 18 .1∗1 e3 21 .4∗1 e3 22∗1 e3 25 .4∗1 e3 27 .1∗1 e3
40 .3∗1 e3 57∗1 e3 76 .6∗1 e3 52 .3∗1 e3 19 .5∗1 e3 11 .2∗1
e3 7 .6∗1 e3 14 .6∗1 e3 16 .2∗1 e3 24 .7∗1 e3 ] ;



6.9 MATLAB codes 273

5 z =[4∗1 e3 6 .1∗1 e3 9 .8∗1 e3 35 .2∗1 e3 59 .4∗1 e3 41 .7∗1 e3
19∗1 e3 13∗1 e3 8 .3∗1 e3 9 .1∗1 e3 7 .4∗1 e3 8∗1 e3
12 .3∗1 e3 19 .5∗1 e3 45 .7∗1 e3 51 .1∗1 e3 29 .7∗1 e3
15 .8∗1 e3 9 .7∗1 e3 10 .1∗1 e3 8 .6∗1 e3 ] ;

6 z0 = [30∗1 e3 ; ( 4∗1 e3 ) / ( 1+1 .0164∗30∗1 e3 ) + ( (1 .0164∗30∗1
e3 ) ∗ (4∗1 e3 ) ) / ( 1+1 .0164∗30∗1 e3 ) ] ;

7

8

9 s o l = ode45 (@myfun , t span , z0 ) ;
10

11 t = l i n s p a c e ( t s p a n ( 1 ) , t s p a n ( 2 ) , 100 ) ;
12

13 z_new = deva l ( so l , t ) ;
14

15 % we p l o t t h e d a t a
16 p l o t ( x , y , ’ ro ’ , ’ LineWidth ’ , 3 ) ;
17 ho ld on
18 p l o t ( x , z , ’ bo ’ , ’ LineWidth ’ , 3 ) ;
19 ho ld on
20 % we p l o t t h e s o l u t i o n o f t h e model
21 p l o t ( t , z_new ( 1 , : ) , ’ r ’ , ’ l i n ew i d t h ’ , 3 ) ;
22 ho ld on
23 p l o t ( t , z_new ( 2 , : ) , ’ b ’ , ’ l i n ew i d t h ’ , 3 ) ;
24 ho ld on
25 %x l a b e l ( ’ year ’ )
26 %y l a b e l ( ’ year ’ )
27 l e g end ( ’N Data ’ , ’P Data ’ , ’N Model ’ , ’P Model ’ )
28

29 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
30 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
31

32 f u n c t i o n dz = myfun ( t , z )
33 muN = 1 ;
34 betaN = 1 . 6 5 67 ;
35 d e l t a = 0 . 6567 / 303000 ;
36 k = 3 .2∗1 e −5;
37 X = 0 . 1 1 ;
38 muP = 1 / 7 ;
39 be t aP = 8 . 5 1 27 ;
40 e t a = 9 . 2 4 ;
41

42 dz = z e r o s ( 2 , 1 ) ;
43 dz ( 1 ) = ( betaN −muN) ∗z ( 1 ) ∗ (1 − ( d e l t a ∗z ( 1 ) ) / ( betaN −muN)

) −( k∗z ( 1 ) ∗z ( 2 ) ) / ( 1+X∗k∗z ( 1 ) ) ;
44 dz ( 2 ) = ( be taP −muP− e t a ) ∗z ( 2 ) +( e t a ∗k∗X∗z ( 1 ) ∗z ( 2 ) ) / ( 1+

X∗k∗z ( 1 ) ) ;
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45 dz=dz ( : ) ;

6.9.2 Figure 6.2

1 f u n c t i o n example
2 t s p a n = [1900 1920 ] ;
3 x=[1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

1910 1911 1912 1913 1914 1915 1916 1917 1918
1919 1920 ] ;

4 y=[3∗1 e4 4 .72∗1 e4 70 .2∗1 e3 77 .4∗1 e3 36 .3∗1 e3 20 .6∗1
e3 18 .1∗1 e3 21 .4∗1 e3 22∗1 e3 25 .4∗1 e3 27 .1∗1 e3
40 .3∗1 e3 57∗1 e3 76 .6∗1 e3 52 .3∗1 e3 19 .5∗1 e3 11 .2∗1
e3 7 .6∗1 e3 14 .6∗1 e3 16 .2∗1 e3 24 .7∗1 e3 ] ;

5 z =[4∗1 e3 6 .1∗1 e3 9 .8∗1 e3 35 .2∗1 e3 59 .4∗1 e3 41 .7∗1 e3
19∗1 e3 13∗1 e3 8 .3∗1 e3 9 .1∗1 e3 7 .4∗1 e3 8∗1 e3
12 .3∗1 e3 19 .5∗1 e3 45 .7∗1 e3 51 .1∗1 e3 29 .7∗1 e3
15 .8∗1 e3 9 .7∗1 e3 10 .1∗1 e3 8 .6∗1 e3 ] ;

6 y0 = [30∗1 e3 ; ( 4∗1 e3 ) / ( 1+1 .0164∗30∗1 e3 ) ; ( ( 1 . 0 1 64∗30∗1
e3 ) ∗ (4∗1 e3 ) ) / ( 1+1 .0164∗30∗1 e3 ) ] ;

7 z0 = [30∗1 e3 ; ( 4∗1 e3 ) / ( 1+1 .0164∗30∗1 e3 ) ; ( ( 1 . 0 1 64∗30∗1
e3 ) ∗ (4∗1 e3 ) ) / ( 1+1 .0164∗30∗1 e3 ) ] ;

8 s o l 1 = ode45 (@myfun , t span , y0 ) ;
9 s o l 2 = ode45 (@myfun2 , t span , z0 ) ;
10 t = l i n s p a c e ( t s p a n ( 1 ) , t s p a n ( 2 ) , 100 ) ;
11 y_new = deva l ( so l1 , t ) ;
12 z_new = deva l ( so l2 , t ) ;
13

14 p l o t ( x , y , ’ ro ’ , ’ LineWidth ’ , 3 ) ;
15 ho ld on
16 p l o t ( x , z , ’ bo ’ , ’ LineWidth ’ , 3 ) ;
17 ho ld on
18 p l o t ( t , z_new ( 1 , : ) , ’ r ’ , ’ l i n ew i d t h ’ , 3 ) ;
19 ho ld on
20 p l o t ( t , z_new ( 2 , : ) +z_new ( 3 , : ) , ’ b ’ , ’ l i n ew i d t h ’ , 3 ) ;
21 ho ld on
22 p l o t ( t , y_new ( 1 , : ) , ’ r : ’ , ’ l i n ew i d t h ’ , 3 ) ;
23 ho ld on
24 p l o t ( t , y_new ( 2 , : ) +y_new ( 3 , : ) , ’ b : ’ , ’ l i n ew i d t h ’ , 3 ) ;
25 ho ld on
26

27 l e g end ( ’N Data ’ , ’P Data ’ , ’N Model ’ , ’P Model ’ , ’N
Model ’ , ’P Model ’ )

28

29 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
30 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
31
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32 f u n c t i o n dy = myfun ( t , y )
33 muN = 1 ;
34 betaN = 1 . 6 5 67 ;
35 d e l t a = 0 . 6567 / 303000 ;
36 k = 3 . 2 e −5;
37 X = 0 . 1 1 ;
38 muP = 1 / 7 ;
39 be t aP = 8 . 5 1 27 ;
40 e t a = 9 . 2 4 ;
41 ep i s on =5∗1e −3;
42 rho=X/ ep i s on ;
43 r =1 / e p i s o n ;
44 dy = z e r o s ( 3 , 1 ) ;
45 dy ( 1 ) = ( betaN −muN) ∗y ( 1 ) ∗ (1 − ( d e l t a ∗y ( 1 ) ) / ( betaN −muN)

)−k∗y ( 1 ) ∗y ( 2 ) ;
46 dy ( 2 ) = −(muP+ e t a ) ∗y ( 2 ) − rho ∗k∗y ( 1 ) ∗y ( 2 ) +y ( 3 ) / e p i s o n ;
47 dy ( 3 ) = −muP∗y ( 3 ) +X/ e p i s on ∗k∗y ( 1 ) ∗y ( 2 ) −y ( 3 ) ∗ r + be t aP

∗ ( y ( 2 ) +y ( 3 ) ) ;
48 ho ld on
49

50 f u n c t i o n dz = myfun2 ( t , z )
51 muN = 1 ;
52 betaN = 1 . 6 5 67 ;
53 d e l t a = 0 . 6567 / 303000 ;
54 k = 3 . 2 e −5;
55 X = 0 . 1 1 ;
56 muP = 1 / 7 ;
57 be t aP = 8 . 5 1 27 ;
58 e t a = 9 . 2 4 ;
59 ep i s on =1e −4;
60 rho=X/ ep i s on ;
61 r =1 / e p i s o n ;
62 dz = z e r o s ( 3 , 1 ) ;
63 dz ( 1 ) = ( betaN −muN) ∗z ( 1 ) ∗ (1 − ( d e l t a ∗z ( 1 ) ) / ( betaN −muN)

)−k∗z ( 1 ) ∗z ( 2 ) ;
64 dz ( 2 ) = −(muP+ e t a ) ∗z ( 2 ) − rho ∗k∗z ( 1 ) ∗z ( 2 ) +z ( 3 ) / e p i s o n ;
65 dz ( 3 ) = −muP∗z ( 3 ) +X/ e p i s on ∗k∗z ( 1 ) ∗z ( 2 ) −z ( 3 ) ∗ r + be t aP

∗ ( z ( 2 ) +z ( 3 ) ) ;

6.9.3 Figure 6.3

1 f u n c t i o n example
2 t s p a n = [1900 1920 ] ;
3 x=[1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

1910 1911 1912 1913 1914 1915 1916 1917 1918
1919 1920 ] ;
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4 y=[3∗1 e4 4 .72∗1 e4 70 .2∗1 e3 77 .4∗1 e3 36 .3∗1 e3 20 .6∗1
e3 18 .1∗1 e3 21 .4∗1 e3 22∗1 e3 25 .4∗1 e3 27 .1∗1 e3
40 .3∗1 e3 57∗1 e3 76 .6∗1 e3 52 .3∗1 e3 19 .5∗1 e3 11 .2∗1
e3 7 .6∗1 e3 14 .6∗1 e3 16 .2∗1 e3 24 .7∗1 e3 ] ;

5 z =[4∗1 e3 6 .1∗1 e3 9 .8∗1 e3 35 .2∗1 e3 59 .4∗1 e3 41 .7∗1 e3
19∗1 e3 13∗1 e3 8 .3∗1 e3 9 .1∗1 e3 7 .4∗1 e3 8∗1 e3
12 .3∗1 e3 19 .5∗1 e3 45 .7∗1 e3 51 .1∗1 e3 29 .7∗1 e3
15 .8∗1 e3 9 .7∗1 e3 10 .1∗1 e3 8 .6∗1 e3 ] ;

6 y0 = [30∗1 e3 ; ( 4∗1 e3 ) / ( 1+1 .0164∗30∗1 e3 ) ; ( ( 1 . 0 1 64∗30∗1
e3 ) ∗ (4∗1 e3 ) ) / ( 1+1 .0164∗30∗1 e3 ) ] ;

7 z0 = [30∗1 e3 ; ( 4∗1 e3 ) / ( 1+1 .0164∗30∗1 e3 ) ; ( ( 1 . 0 1 64∗30∗1
e3 ) ∗ (4∗1 e3 ) ) / ( 1+1 .0164∗30∗1 e3 ) ] ;

8 s o l 1 = ode45 (@myfun , t span , y0 ) ;
9 s o l 2 = ode45 (@myfun2 , t span , z0 ) ;
10 t = l i n s p a c e ( t s p a n ( 1 ) , t s p a n ( 2 ) , 200 ) ;
11 y_new = deva l ( so l1 , t ) ;
12 z_new = deva l ( so l2 , t ) ;
13

14

15 p l o t ( y_new ( 1 , : ) , y_new ( 2 , : ) +y_new ( 3 , : ) , ’ k : ’ , ’
l i n ew i d t h ’ , 3 ) ;

16 ho ld on
17 p l o t ( z_new ( 1 , : ) , z_new ( 2 , : ) +z_new ( 3 , : ) , ’ k ’ , ’ l i n ew i d t h

’ , 3 ) ;
18 ho ld on
19 x l a b e l ( ’N’ ) ;
20 y l a b e l ( ’ P_S+P_H ’ )
21

22

23 s e t ( gca , ’ Fon tS i z e ’ , 30) ;
24 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
25

26

27

28 f u n c t i o n dy = myfun ( t , y )
29 muN = 1 ;
30 betaN = 1 . 6 5 67 ;
31 d e l t a = 0 . 6 5 6 7 / 3 0 3 0 0 0 ; ;
32 k = 3 . 2 e −5;
33 X = 0 . 1 1 ;
34 muP = 1 / 7 ;
35 be t aP = 8 . 5 1 27 ;
36 e t a = 9 . 2 4 ;
37 ep i s on =5∗1e −3;
38 rho=X/ ep i s on ;
39 r =1 / e p i s o n ;
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40 dy = z e r o s ( 3 , 1 ) ;
41 dy ( 1 ) = ( betaN −muN) ∗y ( 1 ) ∗ (1 − ( d e l t a ∗y ( 1 ) ) / ( betaN −muN)

)−k∗y ( 1 ) ∗y ( 2 ) ;
42 dy ( 2 ) = −(muP+ e t a ) ∗y ( 2 ) − rho ∗k∗y ( 1 ) ∗y ( 2 ) +y ( 3 ) / e p i s o n ;
43 dy ( 3 ) = −muP∗y ( 3 ) +X/ e p i s o n ∗k∗y ( 1 ) ∗y ( 2 ) −y ( 3 ) ∗ r + be t aP

∗ ( y ( 2 ) +y ( 3 ) ) ;
44 ho ld on
45

46 f u n c t i o n dz = myfun2 ( t , z )
47 muN = 1 ;
48 betaN = 1 . 6 5 67 ;
49 d e l t a = 0 . 6567 / 303000 ;
50 k = 3 . 2 e −5;
51 X = 0 . 1 1 ;
52 muP = 1 / 7 ;
53 be t aP = 8 . 5 1 27 ;
54 e t a = 9 . 2 4 ;
55 ep i s on =1e −4;
56 rho=X/ ep i s on ;
57 r =1 / e p i s o n ;
58 dz = z e r o s ( 3 , 1 ) ;
59 dz ( 1 ) = ( betaN −muN) ∗z ( 1 ) ∗ (1 − ( d e l t a ∗z ( 1 ) ) / ( betaN −muN)

)−k∗z ( 1 ) ∗z ( 2 ) ;
60 dz ( 2 ) = −(muP+ e t a ) ∗z ( 2 ) − rho ∗k∗z ( 1 ) ∗z ( 2 ) +z ( 3 ) / e p i s o n ;
61 dz ( 3 ) = −muP∗z ( 3 ) +X/ e p i s on ∗k∗z ( 1 ) ∗z ( 2 ) −z ( 3 ) ∗ r + be t aP

∗ ( z ( 2 ) +z ( 3 ) ) ;





Chapter 7
Hopf bifurcation for a Holling’s predator-prey
model with handling and searching predators

This chapter provides an application of Hopf bifurcation, center manifold and normal
form theories in the context of predator prey system.

7.1 Introduction

We continue to consider the system (6.1) of Chapter 16 and assume that the system
(6.1) satisfies Assumptions 6.1 and 6.2. For model (6.1), we get that there exists a
unique interior equilibrium �∗ =

(
#∗, %∗

(
, %∗

�

)
if and only if (6.8) holds in Chapter

16. Note that (6.8) is equivalent to the following inequality

V# − `# >
X [W[ − (V% − `%) (`% + [ + W)]

^d (V% − `%)
. (7.1)

The goal of this chapter is to apply the bifurcation theory, center manifold the-
ory and normal form method to investigate the existence and properties of the Hopf
bifurcation around the unique interior equilibrium �∗ for the model (6.1). For conve-
nience, we set the following assumption in order for the unique interior equilibrium
�∗ to exist.

Assumption 7.1 We assume that the inequality (6.8) or the inequality (7.1) holds.

We choose the parameter U := V# − `# as the Hopf bifurcation parameter
and start with the linearization of (6.1) around the positive equilibrium �∗ in the
following.

7.2 Linearized System

279
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First of all, we translate the unique interior equilibrium �∗ of system (6.1) to the
origin. Let # = # − #∗, %( = %( − %∗( , %� = %� − %∗� . Then after dropping the
hat, system (6.1) becomes

3D(C)
3C

= 5 (D(C)), C ≥ 0 (7.2)

with D = ©­«
#

%(
%�

ª®¬ ∈ R3, and

5 (D(C)) = ©­«
(V# − `# ) (# + #∗) − X (# + #∗)2 − ^ (# + #∗)

(
%( + %∗(

)
−(`% + [)

(
%( + %∗(

)
− d ^

(
%( + %∗(

)
(# + #∗) + W

(
%� + %∗�

)
− (`% + W)

(
%� + %∗�

)
+ d ^

(
%( + %∗(

)
(# + #∗) + V%

(
%( + %∗( + %� + %

∗
�

) ª®¬ .
Linearization at the zero equilibrium of (7.2) yields

3D(C)
3C

= �D(C), C ≥ 0 (7.3)

where � is the Jacobian matrix at the equilibrium �∗ defined in section 16.5.1 of

Chapter 16 and D = ©­«
#

%(
%�

ª®¬ ∈ R3, and (7.2) can be written as

3D(C)
3C

= �D(C) + � (D(C)), C ≥ 0 (7.4)

with
� (D(C)) = 5 (D(C)) − �D(C) (7.5)

satisfying � (0) = 0 and �� (0) = 0. The characteristic equation is

Δ(_)
U

:= _3 + ?1_
2 + ?2_ + ?3 = 0 (7.6)

which is defined in section 16.5.1 of Chapter 16 and the stability of the equilibrium
�∗ is also obtained in lemma 6.12 of Chapter 16.

7.3 Existence of Hopf bifurcation

Under Assumptions 6.1, 6.2 and 7.1, we get ?3 > 0 and then _ = 0 is not a eigenvalue
of (7.6). Let _ = 8l, l > 0 be a pure imaginary root of (7.6). Then we have

−8l3 − ?1l
2 + 8?2l + ?3 = 0.

Separating the real part and the imaginary part of the above equation, we get

?2 = l
2,
?3
?1
= l2.
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Thus (7.6) has a pair of pure imaginary roots ±8l with l = √?2 if and only if

?2 > 0 and ?3 = ?1?2.

By computing, we obtain that under the following Assumption 7.2, (7.6) has a pair
of pure imaginary roots ±8l with l = √?2 if and only if U = U★ with

U★ =
X [2W[ − (V% − `%) (V% + [ + W)]

^d (V% − `%)
+ (7.7)

X (V% − `%)
[
(V% − `%)2 − W[

]
W^d[ − X {(V% − `% − W) (`% + [) + WV%}

.

Assumption 7.2 Assume that W[ − (V% − `%)2 > 0.

Let _± (U) := f(U) ± 8a(U) with f(U★) = 0, a(U★) = l > 0 are the eigenvalues
of (7.6) in a neighborhood of U = U★. By computation, we get

3Re (_± (U))
3U

����
U=U★

= −
[ (V% − `% − W) (`% + [) + WV%]

(
2?1 ?2
(V%−`%) + 2?2

)
[
?2 − 3l2

]2 + [2?1l]2

�������
U=U★

≠ 0

and then we derive the following Theorem.

Theorem 7.3 Let Assumptions 6.1, 6.2, 7.1 and 7.2 be satisfied. Then the model (6.1)
undergoes a Hopf bifurcation at the positive equilibrium �∗ when U = U★, where
U := V# − `# and U★ is defined in (7.7).

7.4 Computation of the Normal Form

In this section, we study the direction and stability of theHopf bifurcation by applying
the normal form theory developed in Chapter 15 to system (7.4). In order to apply
the center manifold theory and normal form theory, we include the parameter U into
the state variable of system (7.4) and consider the system

3U

3C
= 0,

3D

3C
= �(U)D + � (U, D),

where

�(U) =

U − 2X#∗ − ^ %∗

(
−#∗ ^ 0

−%∗
(
d ^ − (`% + [ + d ^ #∗) W

%∗
(
d ^ d ^ #∗ + V% V% − `% − W

 , (7.8)

and � (U, D) = 5 (U, D) − �(U)D with
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5 (U, D)

=
©­«
U (# + #∗) − X (# + #∗)2 − ^ (# + #∗)

(
%( + %∗(

)
−(`% + [)

(
%( + %∗(

)
− d^

(
%( + %∗(

)
(# + #∗) + W

(
%� + %∗�

)
− (`% + W)

(
%� + %∗�

)
+ d^

(
%( + %∗(

)
(# + #∗) + V%

(
%( + %∗( + %� + %

∗
�

) ª®¬ .
Making the change of variables

U = U + U★,

we obtain the system after dropping the hat
3U

3C
= 0,

3D

3C
= �(U + U★)D + � (U + U★, D).

Separating the linear and nonlinear part, we have
3U

3C
= 0,

3D

3C
= �(U★)D +, (U, D),

(7.9)

with, (U, D) = � (U + U★, D) + �(U + U★)D − �(U★)D.
Consider the linear operator A : R4→ R4 defined by

A
(
U

D

)
=

(
0

�(U★)D

)
and the mapH : R4→ R4 defined by

H
(
U

D

)
=

(
0

, (U, D)

)
.

Then we have
H

(
0
0

)
= 0 and �H

(
0
0

)
= 0.

Now set F =
(
U

D

)
and we can reformulate system (7.9) as the following system

3F(C)
3C

= AF(C) + H (F(C)) . (7.10)

7.4.1 Projectors on the Eigenspaces

In order to use the center manifold theory and change of variables to compute the
Taylor’s expansion of the reduced system of a system topologically equivalent to
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the original system (7.10), we need to compute the projectors on the generalized
eigenspaces associated with eigenvalues of A. Note that

(_� − �(U★))−1 =

©­«
�11 �21 �31
�12 �22 �32
�13 �23 �33

ª®¬U★, _
|_� − �(U★) | =

©­«
�11 �21 �31
�12 �22 �32
�13 �23 �33

ª®¬U★, _
Δ(_)

U★

, (7.11)

where Δ(_)
U★

is defined in (7.6), and ©­«
�11 �21 �31
�12 �22 �32
�13 �23 �33

ª®¬U★, _ is the adjoint matrix of

(_� − �(U★)) and �8 9 is the cofactor of the element in the 8th row and 9 th column of
(_� − �(U★)), 8, 9 = 1, 2, 3. Furthermore the resolvent of �(U★) has the following
Laurent’s expansion around _̂ ∈ f (�(U★)) with _̂ = 8l or −8l:

(_� − �(U★))−1 =

+∞∑
==−1
(_ − _̂)=�_̂=.

The projector Π�(U
★)

_̂
on the generalized eigenspace associated with _̂ = 8l or −8l

is �_̂−1. Since

(_ − _̂) (_� − �(U★))−1 =

+∞∑
<=0
(_ − _̂)<�_̂<−1

and

lim
_→_̂

(_ − _̂)
Δ(_)

U★

= lim
_→_̂

1
Δ′(_)

U★

=
1

Δ′(_̂)
U★

,

Π
�(U★)
_̂

= �_̂−1 = lim
_→_̂
(_ − _̂) (_� − �(U★))−1

= lim
_→_̂

©­­«
(_ − _̂)
Δ(_)

U★

©­«
�11 �21 �31
�12 �22 �32
�13 �23 �33

ª®¬U★, _
ª®®¬ =

©­«
�11 �21 �31
�12 �22 �32
�13 �23 �33

ª®¬U★, _̂
Δ′(_̂)

U★

.

Then

Π
�(U★)
8l

©­«
0
0
1

ª®¬ =
©­«
�31
�32
�33

ª®¬U★, 8l
Δ′(8l)

U★

.

Define Π�(U
★)

2 : R3 → R3 by
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Π
�(U★)
2

©­«
#

%(
%�

ª®¬ = Π�(U
★)

8l

©­«
#

%(
%�

ª®¬ + Π�(U
★)

−8l
©­«
#

%(
%�

ª®¬ , ∀ ©­«
#

%(
%�

ª®¬ ∈ R3.

Set
Π
�(U★)
ℎ

:= � − Π�(U
★)

2 .

Denote
-2 := Π�(U

★)
2

(
R3

)
, -ℎ := Π�(U

★)
ℎ

(
R3

)
,

and
�2 := �(U★) |-2 , �ℎ := �(U★) |-ℎ .

Let

11 =
©­«
�31
�32
�33

ª®¬U★, 8l , 12 = 11 =
©­«
�31
�32
�33

ª®¬U★, −8l . (7.12)

It is obvious that (11, 12) is a basis of -2 . In the following, we set

41 =
©­«

1
0
0

ª®¬ , 42 =
©­«

0
1
0

ª®¬ , 43 =
©­«

0
0
1

ª®¬ .
Lemma 7.4 Let Assumptions 6.1, 6.2, 7.1 and 7.2 be satisfied. Then for each _ ∈
8R \ {−8l, 8l} , we have(

_� − �(U★)
��
Π
�(U★)
ℎ (R3)

)−1
Π
�(U★)
ℎ

4: = Φ:,_

with

Φ:,_ =
©­­«
Φ1
:,_

Φ2
:,_

Φ3
:,_

ª®®¬ =
©­«
�:1
�:2
�:3

ª®¬U★, _
Δ(_)

U★

−

©­«
�:1
�:2
�:3

ª®¬U★, 8l
(_ − 8l) Δ′(8l)U★

−

©­«
�:1
�:2
�:3

ª®¬U★, −8l
(_ + 8l) Δ′(−8l)U★

,

: = 1, 2, 3.

For _ = 8l, (
8l� − �(U★)

��
Π
�(U★)
ℎ (R3)

)−1
Π
�(U★)
ℎ

4: = Φ:,8l

with
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Φ:,8l =
©­­«
Φ1
:,8l

Φ2
:,8l

Φ3
:,8l

ª®®¬ =
1

28l (Δ′(8l)U★)2 Δ′(−8l)U★
×

©­­«28lΔ′(8l)U★Δ′(−8l)U★
©­­«
3�:1
3_
3�:2
3_
3�:3
3_

ª®®¬U★, 8l − 8lΔ
′′(8l)U★Δ′(−8l)U★

©­«
�:1
�:2
�:3

ª®¬U★, 8l
− (Δ′(8l)U★)2

©­«
�:1
�:2
�:3

ª®¬U★, −8l
ª®®¬ ,

: = 1, 2, 3.

For _ = −8l, (
−8l� − �(U★)

��
Π
�(U★)
ℎ (R3)

)−1
Π
�(U★)
ℎ

4: = Φ:,−8l

with

Φ:,−8l =
©­­«
Φ1
:,−8l

Φ2
:,−8l

Φ3
:,−8l

ª®®¬ =
1

−28l (Δ′(−8l))2U★ Δ′(8l)U★
×

©­­«−28lΔ′(8l)U★Δ′(−8l)U★
©­­«
3�:1
3_
3�:2
3_
3�:3
3_

ª®®¬U★, −8l
+8lΔ′′(−8l)U★Δ′(8l)U★

©­«
�:1
�:2
�:3

ª®¬U★, −8l
− (Δ′(−8l)U★)2

©­«
�:1
�:2
�:3

ª®¬U★, 8l
ª®®¬ , : = 1, 2, 3.

Proof Since

(
_� − �(U★)

)−1

©­­­­­­­­«

©­«
�11
�12
�13

ª®¬U★, 8l
Δ′(8l)U★

ª®®®®®®®®¬
=

1
_ − 8l

©­­­­­­­­«

©­«
�11
�12
�13

ª®¬U★, 8l
Δ′(8l)U★

ª®®®®®®®®¬
and
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(
_� − �(U★)

)−1

©­­­­­­­­«

©­«
�11
�12
�13

ª®¬U★, −8l
Δ′(−8l)U★

ª®®®®®®®®¬
=

1
_ + 8l

©­­­­­­­­«

©­«
�11
�12
�13

ª®¬U★, −8l
Δ′(−8l)U★

ª®®®®®®®®¬
,

for each _ ∈ 8R \ {−8l, 8l} , we have(
_� − �(U★)

��
Π
�(U★)
ℎ (R3)

)−1
Π
�(U★)
ℎ

41

=
(
_� − �(U★)

)−1
(
41 − Π�(U

★)
2 41

)

=

©­«
�11
�12
�13

ª®¬U★, _
Δ(_)

U★

−

©­«
�11
�12
�13

ª®¬U★, 8l
(_ − 8l) Δ′(8l)U★

−

©­«
�11
�12
�13

ª®¬U★, −8l
(_ + 8l) Δ′(−8l)U★

.

For _ = 8l,
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8l� − �(U★)

��
Π
�(U★)
ℎ (R3)

)−1
Π
�(U★)
ℎ

41

= lim
_→8l

_∈d(�(U★))

(
_� − �(U★)

��
Π
�(U★)
ℎ (R3)

)−1
Π
�(U★)
ℎ

41

= lim
_→8l

_∈8R\{−8l,8l }

©­­­­­­­­«

©­«
�11
�12
�13

ª®¬U★, _
Δ(_) −

©­«
�11
�12
�13

ª®¬U★, 8l
(_ − 8l) Δ′(8l)U★

−

©­«
�11
�12
�13

ª®¬U★, −8l
(_ + 8l) Δ′(−8l)U★

ª®®®®®®®®¬
= lim

_→8l
_∈8R\{−8l,8l }

{
1

Δ(_) (_ − 8l) (_ + 8l) Δ′(−8l)U★Δ′(8l)U★
×

©­­«(_ − 8l) (_ + 8l) Δ′(8l)U★Δ′(−8l)U★
©­«
�11
�12
�13

ª®¬U★, _
−Δ(_) (_ + 8l) Δ′(−8l)U★

©­«
�11
�12
�13

ª®¬U★, 8l − Δ(_) (_ − 8l) Δ′(8l)U★ ©­«
�11
�12
�13

ª®¬U★, −8l
ª®®¬


= lim
_→8l

_∈8R\{−8l,8l }

(_ − 8l)2

Δ(_) (_ − 8l) (_ + 8l) Δ′(−8l)U★Δ′(8l)U★
×

lim
_→8l

_∈8R\{−8l,8l }


1

(_ − 8l)2
©­­«(_ − 8l) (_ + 8l) Δ′(8l)U★Δ′(−8l)U★

©­«
�11
�12
�13

ª®¬U★, _
−Δ(_) (_ + 8l) Δ′(−8l)U★

©­«
�11
�12
�13

ª®¬U★, 8l
ª®®¬


− lim
_→8l

_∈8R\{−8l,8l }

©­­«Δ(_) (_ − 8l) Δ′(8l)U★
©­«
�11
�12
�13

ª®¬U★, −8l
ª®®¬

=
1

28l (Δ′(8l)U★)2 Δ′(−8l)U★
×

©­­«28lΔ′(8l)U★Δ′(−8l)U★
©­­«
3�11
3_
3�12
3_
3�13
3_

ª®®¬U★, 8l − 8lΔ
′′(8l)U★Δ′(−8l)U★

©­«
�11
�12
�13

ª®¬U★, 8l
− (Δ′(8l)U★)2

©­«
�11
�12
�13

ª®¬U★, −8l
ª®®¬ .
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Similarly we can prove the other results. �

It is easy to prove the following results.

Lemma 7.5 Let Assumptions 6.1, 6.2, 7.1 and 7.2 be satisfied. We have

f (A) = f
(
�(U★)

)
∪ {0} .

Moreover, for _ ∈ d (A) = C \ (f (�(U★)) ∪ {0}) , we have

(_� − A)−1
(
U

D

)
=

( U

_
(_� − �(U★))−1

D

)
and the eigenvalues 0 and ±8l of A are simple. The corresponding projectors
Π0,Π±8l : R4 → R4 on the generalized eigenspace of A associated to 0,±8l,
respectively, are given by

Π0

(
A

D

)
=

(
A

0

)
,

Π±8l

(
A

D

)
=

(
0

Π
�(U★)
±8l D

)
.

In this context, the projectors Π2 : R4 → R4 and Πℎ : R4 → R4 are defined by

Π2 (H) = (Π0 + Π8l + Π−8l) (H) , ∀H ∈ R4,

Πℎ (H) = (� − Π2) (H) , ∀H ∈ R4.

Denote
.2 := Π2

(
R4

)
, .ℎ := Πℎ

(
R4

)
,

and
A2 := A |.2 , Aℎ := A |.ℎ .

Then we have

Π2

(
0R
4:

)
=

(
0R

Π
�(U★)
2 4:

)
, : = 1, 2, 3.

Define the basis of .2 = Π2
(
R4) by

1̂1 =

(
1

0R3

)
, 1̂2 =

(
0R
11

)
, 1̂3 =

(
0R
12

)
.

We have the following lemma.

Lemma 7.6 Let Assumptions 6.1, 6.2, 7.1 and 7.2 be satisfied. For _ ∈ 8R we have
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(_� − Aℎ)−1 Πℎ

(
0
4:

)
=

©­«
0(

_� − �(U★) |
Π
�(U★)
ℎ (R3)

)−1
Π
�(U★)
ℎ

4:

ª®¬ , : = 1, 2, 3.

7.4.2 Change of Variables

In the following, we will compute the Taylor expansion of the reduced system
of a system topologically equivalent to the original system (7.10). We apply the
procedure described in section 15.3.2 of Chapter 15 and apply the method with
: = 2 in Theorem 5.22 of Chapter 15. Therefore we must find !2 ∈ LB

(
.2
2 , .ℎ

)
by

solving the following equation for each (F1, F2) ∈ .2
2 :

3

3C

[
!2 (4A2 CF1, 4

A2 CF2)
]
(0) = Aℎ!2 (F1, F2)+

1
2!
Πℎ�

2H (0) (F1, F2). (7.13)

Then define �2 ∈ +2 (.2 , .ℎ) by

�2 (Π2F) := !2 (Π2F,Π2F) , ∀F ∈ R4,

and the change of variables e2 : R4 → R4 and e−1
2 : R4 → R4 by

e2 (F) := F + �2 (Π2F) and e−1
2 (F) := F − �2 (Π2F), ∀F ∈ R4.

By applying Theorem 5.22 to (7.10) with : = 2, we obtain the following theorem.

Theorem 7.7 Let Assumptions 6.1, 6.2, 7.1 and 7.2 be satisfied. By using the change
of variables

F2 (C) = e−1
2 (F(C)) = F(C)−�2 (Π2F(C)) ⇔ F(C) = e2 (F2 (C)) = F2 (C)+�2 (Π2F2 (C)) ,

the map C → F(C) is an integrated solution of the system (7.10) if and only if
C → F2 (C) is an integrated solution of the system

3F2 (C)
3C

= AF2 (C) + H2 (F2 (C)), C ≥ 0, (7.14)

whereH2 : R4 → R4 is defined by

H2 (F) = H (e2 (F)) + A�2 (Π2F) − ��2 (Π2F)A2Π2F
−��2 (Π2F)Π2H (e2 (F)) .

Moreover, the reduced system of the system (7.14) is given by the ordinary differential
equations on R × -2 :

3U(C)
3C

= 0,
3G2 (C)
3C

= �2G2 (C) + Π�(U
★)

2 , (� + �2)
(
U(C)
G2 (C)

)
+ '2

(
U(C)
G2 (C)

)
,

(7.15)



2907 Hopf bifurcation for a Holling’s predator-prey model with handling and searching predators

where '2 ∈ �4 (R × -2 , -2) , and '2
(
U(C)
G2 (C)

)
is a remainder of order 4, that is,

'2

(
U

G2

)
= ‖(U, G2)‖4$ (U, G2) ,

where $ (U, G2) is a function of (U, G2) which remains bounded when (U, G2) goes
to 0, or equivalently,

� 9'2 (0) = 0 for each 9 = 1, ..., 3.

Furthermore,
m 9'2 (0)
m 9U

= 0, ∀ 9 = 1, ..., 4,

which implies that

'2

(
U

G2

)
= $

(
U3 ‖G2 ‖ + U2 ‖G2 ‖2 + U ‖G2 ‖3 + ‖G2 ‖4

)
.

Proof Weapply Theorem5.22 to (7.10) and deduce that there existsΨ2 ∈ �2 (.2 , .ℎ)
such that the reduced system of (7.14) consists of ordinary differential equations on
.2 of the form

3F2 (C)
3C

= A2F2 (C) + Π2H [F2 (C) + �2 (F2 (C))] + '̂2 (F2 (C)) ,

where '̂2 ∈ �4 (.2 , .2) is the remainder term of order 4 and

'̂2 (F2) := Π2 {H [F2 + �2 (F2) +Ψ2 (F2)] − H [F2 + �2 (F2)]} ,

with � 9 '̂2 (0) = 0,∀ 9 = 1, 2, 3. Since the first component of H is 0, by using the
formula for Π2 we deduce that '̂2 (F2) has the following form

'̂2

(
U

G2

)
=

©­«
0R

'2

(
U

G2

) ª®¬ .
Moreover, since for each U ∈ R small enough,

(
U

0R3

)
∈ .2 is an equilibrium solution

of (7.10) and belongs to the center manifold. It follows that(
U

0R3

)
= Π2

(
U

0R3

)
+Ψ2

(
Π2

(
U

0R3

))
.

Thus Π2
(
U

0R3

)
=

(
U

0R3

)
and

Ψ2

(
U

0R3

)
= 0, ∀U ∈ R small enough.
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So we must have
'̂2

(
U

0R3

)
= 0, ∀U ∈ R small enough.

We deduce that
m 9 '̂2 (0)
m 9U

= 0,∀ 9 = 1, ..., 4.

This completes the proof. �

In order to apply the above theorem to compute the Taylor expansion of the
reduced system it only remains to compute !2.

Set
F1 :=

(
U1
D1

)
, F2 :=

(
U2
D2

)
, F3 :=

(
U3
D3

)
∈ R4

with D8 =
©­«
#8
%(,8
%�,8

ª®¬ , 8 = 1, 2, 3.We have

�2H (0) (F1, F2) =
(

0R
�2, (0) (F1, F2)

)
and

�3H (0) (F1, F2, F3) =
(

0R
�3, (0) (F1, F2, F3)

)
,

where

�2, (0) (F1, F2)

=
©­«
U1#2 + U2#1 − 2X#2#1 − ^#1%(,2 − ^#2%(,1
−d ^%(,1#2 − d ^%(,2#1
d ^%(,1#2 + d ^%(,2#1

ª®¬
and

�3, (0) (F1, F2, F3) = 0.

Next recall that

3

3C

[
!2 (4A2 CF1, 4

A2 CF2)
]
(0) = !2 (A2F1, F2) + !2 (F1,A2F2) .

So system (7.13) can be rewritten as

!2 (A2F1, F2) + !2 (F1,A2F2) = Aℎ!2 (F1, F2) +
1
2!
Πℎ�

2H (0) (F1, F2).

Note that !2 (1̂1, 1̂2)=!2 (1̂2, 1̂1), !2 (1̂1, 1̂3)=!2 (1̂3, 1̂1), !2 (1̂2, 1̂3)=!2 (1̂3, 1̂2).
(i) Computation of !2 (1̂1, 1̂1).We have

Πℎ�
2H (0) (1̂1, 1̂1) = 0,A2 1̂1 = 0.
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So the equation

!2

(
A2 1̂1, 1̂1

)
+ !2

(
1̂1,A2 1̂1

)
= Aℎ!2 (1̂1, 1̂1) +

1
2!
Πℎ�

2H (0) (1̂1, 1̂1)

is equivalent to
0 = Aℎ!2 (1̂1, 1̂1).

Since 0 belongs to the resolvent set of Aℎ , we obtain that

!2 (1̂1, 1̂1) = 0. (7.16)

(ii) Computation of !2 (1̂1, 1̂2).We have

1
2!
�2H (0) (1̂1, 1̂2) =

1
2

©­­­«
0R©­«

(�31)U★, 8l
0
0

ª®¬
ª®®®¬

and
A2 1̂1 = 0,A2 1̂2 = 8l1̂2.

So in this case system (7.13) becomes

8l!2

(
1̂1, 1̂2

)
= Aℎ!2 (1̂1, 1̂2) +

1
2!
Πℎ�

2H (0) (1̂1, 1̂2).

Now by using Lemmas 7.4 and 7.6, we obtain

!2 (1̂1, 1̂2) =
1
2
(8l� − Aℎ)−1 Πℎ�

2H (0) (1̂1, 1̂2)

=
1
2
(8l� − Aℎ)−1 Πℎ

©­­­«
©­­­«

0R©­«
(�31)U★, 8l
0
0

ª®¬
ª®®®¬
ª®®®¬

=

(
0

1
2 (�31)U★, 8l Φ1,8l

)
,

where Φ1,8l is defined in Lemma 7.4.
(iii) Computation of !2 (1̂1, 1̂3).We have

1
2!
�2H (0) (1̂1, 1̂3) =

1
2!

©­­­«
0©­«

(�31)U★, −8l
0
0

ª®¬
ª®®®¬

and
A2 1̂1 = 0,A2 1̂3 = −8l1̂3.

So in this case system (7.13) becomes
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−8l!2

(
1̂1, 1̂3

)
= Aℎ!2 (1̂1, 1̂3) +

1
2!
Πℎ�

2H (0) (1̂1, 1̂3).

Now by using Lemmas 7.4 and 7.6, we obtain

!2 (1̂1, 1̂3) =
1
2!
(−8l� − Aℎ)−1 Πℎ�

2H (0) (1̂1, 1̂3) =
(

0
1
2 (�31)U★, −8l Φ1,−8l

)
,

where Φ1,−8l is defined in Lemma 7.4.
(iv) Computation of !2 (1̂2, 1̂2).We have

1
2
�2H (0) (1̂2, 1̂2) =

©­­­«
0©­«

−X (�31)2U★, 8l − ^ (�31)U★, 8l (�32)U★, 8l
−d ^ (�31)U★, 8l (�32)U★, 8l
d ^ (�31)U★, 8l (�32)U★, 8l

ª®¬
ª®®®¬

and
A2 1̂2 = 8l1̂2.

In this case system (7.13) becomes

28l!2 (1̂2, 1̂2) = Aℎ!2 (1̂2, 1̂2) +
1
2!
Πℎ�

2H (0) (1̂2, 1̂2).

and Lemmas 7.4 and 7.6 imply

!2 (1̂2, 1̂2) =
1
2
(28l� − Aℎ)−1 Πℎ�

2H (0) (1̂2, 1̂2) =
(

0
1
2z1

)
, (7.17)

with

z1 =
©­«
z11
z12
z13

ª®¬ = 2
(
−X (�31)2U★, 8l − ^ (�31)U★, 8l (�32)U★, 8l

)
Φ1,28l

+2d ^ (�31)U★, 8l (�32)U★, 8l
(
Φ3,28l −Φ2,28l

)
,

where Φ 9 ,28l , 9 = 1, 2, 3, are defined in Lemma 7.4.
(v) Computation of !2 (1̂2, 1̂3). We have

�2H (0) (1̂2, 1̂3)

=

©­­­«
0©­«

−2X (�31)U★, 8l (�31)U★, −8l − ^ (�31)U★, 8l (�32)U★, −8l − ^ (�32)U★, 8l (�31)U★, −8l
−d ^

(
(�32)U★, 8l (�31)U★, −8l + (�31)U★, 8l (�32)U★, −8l

)
d ^

(
(�32)U★, 8l (�31)U★, −8l + (�31)U★, 8l (�32)U★, −8l

) ª®¬
ª®®®¬

and
A2 1̂2 = 8l1̂2, A2 1̂3 = −8l1̂3.

In this case system (7.13) reduces to
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!2

(
A2 1̂2, 1̂3

)
+ !2

(
1̂2,A2 1̂3

)
= Aℎ!2 (1̂2, 1̂3) +

1
2!
Πℎ�

2H (0) (1̂2, 1̂3)

and then
0 = Aℎ!2 (1̂2, 1̂3) +

1
2!
Πℎ�

2H (0) (1̂2, 1̂3).

Thus
−Aℎ!2 (1̂2, 1̂3) =

1
2!
Πℎ�

2H (0) (1̂2, 1̂3),

and by Lemmas 7.4 and 7.6, we have

!2 (1̂2, 1̂3) =
1
2
(−Aℎ)−1 Πℎ�

2H (0) (1̂2, 1̂3) =
(

0
1
2
z2

)
, (7.18)

with

z2 =
©­«
z21
z22
z23

ª®¬
=

(
−2X (�31)U★, 8l (�31)U★, −8l − ^ (�31)U★, 8l (�32)U★, −8l − ^ (�32)U★, 8l (�31)U★, −8l

)
Φ1,0

+d ^
(
(�32)U★, 8l (�31)U★, −8l + (�31)U★, 8l (�32)U★, −8l

) (
Φ3,0 −Φ2,0

)
,

where Φ 9 ,0, 9 = 1, 2, 3, are defined in Lemma 7.4.
(vi) Computation of !2 (1̂3, 1̂3). We have

�2H (0) (1̂3, 1̂3) =
©­­­«

0©­«
−2X (�31)2U★, −8l − 2^ (�31)U★, −8l (�32)U★, −8l
−2d ^ (�31)U★, −8l (�32)U★, −8l
2d ^ (�31)U★, −8l (�32)U★, −8l

ª®¬
ª®®®¬

and
A2 1̂3 = −8l1̂3.

In this case system (7.13) becomes

−28l!2 (1̂3, 1̂3) = Aℎ!2 (1̂3, 1̂3) +
1
2!
Πℎ�

2H (0) (1̂3, 1̂3).

It follows from Lemmas 7.4 and 7.6 that

!2 (1̂3, 1̂3) =
1
2
(−28l� − Aℎ)−1 Πℎ�

2H (0) (1̂3, 1̂3) =
(

0
1
2
z3

)
with
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z3 =
©­«
z31
z32
z33

ª®¬ =
(
−2X (�31)2U★, −8l − 2^ (�31)U★, −8l (�32)U★, −8l

)
Φ1,−28l(7.19)

+2d ^ (�31)U★, −8l (�32)U★, −8l
(
Φ3,−28l −Φ2,−28l

)
,

where Φ 9 ,−28l , 9 = 1, 2, 3, are defined in Lemma 7.4.

7.4.3 Computation of the Taylor’s Expansion of the Reduced System

By using the formula obtained for !2 and �2, we get the Taylor’s expansion of the
reduced system (7.15) up to terms of order 3.

Theorem 7.8 Let Assumptions 6.1, 6.2, 7.1 and 7.2 be satisfied. The reduced system
(7.15) expressed in terms of the basis

{
1̂1, 1̂2, 1̂3

}
has the following form


3U(C)
3C

= 0,

3

3C

(
G(C)
H(C)

)
= "2

(
G(C)
H(C)

)
+

(
�2 + �3 + '̃2

) ©­«
U(C)(
G(C)
H(C)

) ª®¬ ,
(7.20)

where
"2 =

[
8l 0
0 −8l

]
,

the maps �2 and �3 : C3 → C2 are defined by

�2
©­«
U(
G

H

) ª®¬ =
(
Ub11 − Xb2

11

)
Υ1 − ^b21 b11Υ2

and

�3
©­«
U(
G

H

) ª®¬ = (Ub12 − 2Xb11b12) Υ1 − ^ (b11b22 + b12b21) Υ2,

the remainder term '̃2 ∈ �4 (
R3,R2) is given by

'̃2
©­«
U(C)(
G(C)
H(C)

) ª®¬ = '2 ©­«
U(C)(
G(C)
H(C)

) ª®¬ − Xb2
12Υ1 − ^b22 b12Υ2

and thus

'̃2
©­«
U(
G

H

) ª®¬ = $
(
U3





( GH )



 + U2




( GH )



2

+ U




( GH )



3

+




( GH )



4

)
,
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here

Υ1 =

(
Υ11
Υ12

)
=

©­«
o1

Δ′ (8l)U★
+ o2
Δ′ (−8l)U★

o1
Δ′ (−8l)U★

+ o2
Δ′ (8l)U★

ª®¬ , (7.21)

Υ2 =

(
Υ21
Υ22

)
= d

©­«
o3

Δ′ (8l)U★
+ o4
Δ′ (−8l)U★

− 1
Δ′ (8l)U★

o3
Δ′ (−8l)U★

+ o4
Δ′ (8l)U★

− 1
Δ′ (−8l)U★

ª®¬
+ ©­«

o1
Δ′ (8l)U★

+ o2
Δ′ (−8l)U★

o1
Δ′ (−8l)U★

+ o2
Δ′ (8l)U★

ª®¬ ,
and b8 9 , 8, 9 = 1, 2 and o8 , 8 = 1, 2, 3, 4 are defined in (7.22) and (7.23), respectively.

Proof Since

� 9, (0) (F1, F2, . . . F 9 ) = 0, 9 ≥ 3, F8 :=
©­­­«

U8©­«
#8
%(,8
%�,8

ª®¬
ª®®®¬ ∈ R

4,

the reduced system (7.15) can be rewritten as follows by using the Taylor’s expansion
of, around 0:

3U(C)
3C

= 0,

3G2 (C)
3C

= �2G2 (C) + 1
2Π

�(U★)
2 �2, (0)

(
(� + �2)

(
U(C)
G2 (C)

))2
+ '2

(
U(C)
G2 (C)

)
,

where '2 ∈ �4 (R × -2 , -2) is defined in (7.15) and is a remainder of order 4. Set

G2 = G11 + H12, (G, H) ∈ C2.

Since
{
1̂1, 1̂2, 1̂3

}
is used as the basis for .2 = Π2 (. ) , i.e., {11, 12} is a basis of

-2 := Π�(U
★)

2

(
R3) , we obtain that

"2 =

[
8l 0
0 −8l

]
and

(� + �2)
(
U

G2

)
= U1̂1 + G1̂2 + H1̂3 + !2

(
U1̂1 + G1̂2 + H1̂3, U1̂1 + G1̂2 + H1̂3

)
= U1̂1 + G1̂2 + H1̂3 + G2!2

(
1̂2, 1̂2

)
+ H2!2

(
1̂3, 1̂3

)
+2UG!2

(
1̂1, 1̂2

)
+ 2UH!2

(
1̂1, 1̂3

)
+ 2GH!2

(
1̂2, 1̂3

)
.

Then it follows that
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(� + �2)
(
U

G2

)
=

(
U

b

)
, (7.22)

where b = ©­«
b1
b2
b3

ª®¬ with
b1 = b11 + b12, b11 = G (�31)U★, 8l + H (�31)U★, −8l ,

b12 = UG (�31)U★, 8l Φ1
1,8l + UH (�31)U★, −8l Φ1

1,−8l + GHz21 +
1
2
G2z11 +

1
2
H2z31,

b2 = b21 + b22, b21 = G (�32)U★, 8l + H (�32)U★, −8l ,

b22 = UG (�31)U★, 8l Φ2
1,8l + UH (�31)U★, −8l Φ2

1,−8l + GHz22 +
1
2
G2z12 +

1
2
H2z32.

b3 = b31 + b32, b31 = G (�33)U★, 8l + H (�33)U★, −8l ,

b32 = UG (�31)U★, 8l Φ3
1,8l + UH (�31)U★, −8l Φ3

1,−8l + GHz23 +
1
2
G2z13 +

1
2
H2z33.

Then we deduce that

1
2!
�2, (0)

((
U

b

))2
=

©­«
Ub1 − Xb2

1 − ^ b1b2
−d ^b2 b1
d ^b2b1

ª®¬ .
Note that

det
(
(�31)U★, 8l (�31)U★, −8l
(�32)U★, 8l (�32)U★, −8l

)
≠ 0

and
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Π
�(U★)
2

©­«
1
0
0

ª®¬ =
©­«
�11
�12
�13

ª®¬U★, 8l
Δ′(8l)U★

+

©­«
�11
�12
�13

ª®¬U★, −8l
Δ′(−8l)U★

=

(
o1

Δ′(8l)U★
+ o2
Δ′(−8l)U★

)
11 +

(
o1

Δ′(−8l)U★
+ o2
Δ′(8l)U★

)
12,

Π
�(U★)
2

©­«
0
1
0

ª®¬ =
©­«
�21
�22
�23

ª®¬U★, 8l
Δ′(8l)U★

+

©­«
�21
�22
�23

ª®¬U★, −8l
Δ′(−8l)U★

=

(
o3

Δ′(8l)U=U★
+ o4
Δ′(−8l)U=U★

)
11 +

(
o3

Δ′(−8l)U=U★
+ o4
Δ′(8l)U=U★

)
12,

Π
�(U★)
2

©­«
0
0
1

ª®¬ =
©­«
�31
�32
�33

ª®¬U★, 8l
Δ′(8l)U★

+

©­«
�31
�32
�33

ª®¬U★, −8l
Δ′(−8l)U★

=
1

Δ′(8l)U★
11 +

1
Δ′(−8l)U★

12

with

o1 =

det
(
(�11)U★, 8l (�31)U★, −8l
(�12)U★, 8l (�32)U★, −8l

)
det

(
(�31)U★, 8l (�31)U★, −8l
(�32)U★, 8l (�32)U★, −8l

) , o2 =

det
(
(�31)U★, 8l (�11)U★, 8l
(�32)U★, 8l (�12)U★, 8l

)
det

(
(�31)U★, 8l (�31)U★, −8l
(�32)U★, 8l (�32)U★, −8l

) ,(7.23)

o3 =

det
(
(�21)U★, 8l (�31)U★, −8l
(�22)U★, 8l (�32)U★, −8l

)
det

(
(�31)U★, 8l (�31)U★, −8l
(�32)U★, 8l (�32)U★, −8l

) , o4 =

det
(
(�31)U★, 8l (�21)U★, 8l
(�32)U★, 8l (�22)U★, 8l

)
det

(
(�31)U★, 8l (�31)U★, −8l
(�32)U★, 8l (�32)U★, −8l

) .
By projecting on -2 , we obtain that

1
2!
Π
�(U★)
2 �2, (0)

(
(� + �2)

((
U

G2

)))2

= Π
�(U★)
2

©­«
Ub1 − Xb2

1 − ^ b1b2
−d ^b2 b1
d ^b2b1

ª®¬
=

(
Ub1 − Xb2

1 − ^ b1b2

)
Π
�(U★)
2

©­«
1
0
0

ª®¬ − d ^b2 b1

Π�(U
★)

2
©­«

0
1
0

ª®¬ − Π�(U
★)

2
©­«

0
0
1

ª®¬
 .
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Thus we obtain �2, �3 and '̃2 . �

7.4.4 Computation of the Normal Form of the Reduced System

We will compute the normal form of the reduced system (7.20) up to terms of order
3 by performing inductively a sequence of change of coordinates of the form

D = e<,2 (D) = D + �<,2 (D), D ∈ �< (0, A), (7.24)

where �<,2 (D) ∈ �3
< (C3) and �< (0, A) is a small neighborhood of the origin,

2 ≤ < ≤ 3. Consider the linear operator Θ<,2 : �3
< (C3) → �3

< (C3) by

(
Θ<,2�<,2

)
(D) = [�, �<,2] (D) = �D�<,2 (D)�D − ��<,2 (D), (7.25)

D =
©­«
U

G

H

ª®¬ , �<,2 = ©­«
�1
<,2

�2
<,2

�3
<,2

ª®¬ ∈ �3
< (C3), � =


0 0 0
0 8l 0
0 0 −8l

 .
A basis denoted by Φ< for �3

< (C3), 2 ≤ < ≤ 3, consists of all possible vector-
valued homogeneous polynomials of degree< in 3 variables U, G, H with coefficients
in {41, 42, 43}, that is

Φ< =

 D
34 9

�� , D3 = U31G32 H33 , 3 = (31, 32, 33),
3∑
8=1
38 = <, 38 ≥0 are integers,

9 = 1, · · · , 3.

 .
The dimension of �3

< (C3) is

3< := dim�3
< (C3) = 3 (< + 2)!

2!<!
.

A direct calculation shows that for any D34 9 ∈ Φ<,

Θ<,2

(
D34 9

)
=

(
8l32 − 8l33 − _ 9

)
D34 9 , _ 9 ∈ f(�), where _1 = 0, _2 = 8l, _3 = −8l.

Hence we know that �3
< (C3) can be represented as the direct sum

�3
< (C3) = '(Θ<,2) ⊕  4A (Θ<,2),

where '(Θ<,2) is the range of Θ<,2 , and  4A (Θ<,2) is the null-space of Θ<,2 and
spanned by all resonant monomials of order <, 2 ≤ < ≤ 3, that is,

 4A (Θ<,2) = B?0={D34: : _ · 3 = _: , : = 1, 2, 3, D3 = U31G32 H33 , 3 = (31, 32, 33),
3∑
9=1
3 9 = <, 3 9 ≥0 are integers, _ · 3 =

3∑
9=1
3 9_ 9 },
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where {41, 42, 43} is the standard basis of C3 and _ = (_1, _2, _3) with _1 = 0,
_2 = 8l, _3 = −8l. Then it follows that

 4A (Θ2,2) = span
©­«
U2

0
0

ª®¬ , ©­«
GH

0
0

ª®¬ , ©­«
0
UG

0

ª®¬ , ©­«
0
0
UH

ª®¬
 ,

 4A (Θ3,2) = span
©­«
U3

0
0

ª®¬ , ©­«
UGH

0
0

ª®¬ , ©­«
0
U2G

0

ª®¬ , ©­«
0
G2H
0

ª®¬ , ©­«
0
0
U2H

ª®¬ , ©­«
0
0
GH2

ª®¬
 .

By using the change of coordinates

D = e2,2 (D) = D + �2,2 (D), D ∈ �2 (0, A) (7.26)

and dropping the hat and the auxiliary equation introduced for handling the param-
eter, we get

3

3C

(
G(C)
H(C)

)
= "2

(
G(C)
H(C)

)
+

(
�1GU

�1HU

)
+

(
�̃3 + '̃12

) ©­«
U(C)(
G(C)
H(C)

) ª®¬ ,
with

�1 = (�31)U★, 8l

(
o1

Δ′(8l)U★
+ o2
Δ′(−8l)U★

)
. (7.27)

In order to get the third order terms of the normal form, we must compute �2,2 and
the third order terms

�̃3 = �3 (D) + �D�2 (D)�2 (D) − �D�2 (D)
(
�1GU

�1HU

)

with D = ©­«
U(
G

H

) ª®¬ . It is sufficient to get the coefficients of
(
G2H
0

)
and

(
0
GH2

)
for

studying the Hopf bifurcation. Since

�2
©­«

0(
G

H

) ª®¬ = s1G
2 +s2GH +s3H

2,

with
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s1 =

(
s11
s12

)
(7.28)

= −X (�31)2U★, 8l
(
Υ11
Υ12

)
− ^ (�31)U★, 8l (�32)U★, 8l

(
Υ21
Υ22

)
,

s2 =

(
s21
s22

)
= −2X (�31)U★, 8l (�31)U★, −8l

(
Υ11
Υ12

)
−^

[
(�32)U★, 8l (�31)U★, −8l + (�32)U★, −8l (�31)U★, 8l

] (
Υ21
Υ22

)
,

s3 =

(
s31
s32

)
= −X (�31)2U★, −8l

(
Υ11
Υ12

)
− ^ (�32)U★, −8l (�31)U★, −8l

(
Υ21
Υ22

)
(7.29)

and ©­­­­­­­«
�2

2,2
©­«©­«

0
G

H

ª®¬ª®¬
�3

2,2
©­«©­«

0
G

H

ª®¬ª®¬

ª®®®®®®®¬
=

1
8l

(
s11G

2 −s21GH − 1
3s31H

2

1
3s12G

2 +s22GH −s32H
2

)
,

we get that the normal form has the following form after dropping the auxiliary
equation introduced for handling the parameter,

3

3C

(
G(C)
H(C)

)
= "2

(
G(C)
H(C)

)
+

(
�1GU

�1HU

)
+

(
�2G

2H

�2GH
2

)
(7.30)

+$ ( | (G, H) |U2 + |(U, (G, H)) |4),

with

�2 = −
[
2Xz21 (�31)U★, 8l + z11X (�31)U★, −8l

]
Υ11

− ^
[
z22 (�31)U★, 8l +

1
2
z12 (�31)U★, −8l + z21 (�32)U★, 8l +

1
2
z11 (�32)U★, −8l

]
Υ21

+ 1
8l

(
2
3
s31s12 −s11s21 +s22s21

)
.

The normal form (7.30) can be written in real coordinates (F1, F2) through the
change of variables G = E1 − 8E2, H = E1 + 8E2. Setting E1 = d cos \, E2 = d sin \,
this normal form becomes{

¤d = ;1Ud + ;2d3 +$ (U2d + |(d, U) |4),
·
\ = −l +$ ( | (d, U) |),

(7.31)
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where

;1 = Re (�1) = 2?2
©­­«
(
W[ − (V% − `%)2

)
?1

V% − `%
+ ?2

ª®®¬ > 0, ;2 = Re (�2) .

From Chapter 13 or [32], we know that the sign of ;2 determines the direction of the
bifurcation and the stability of the nontrivial periodic orbits. In summary we have
the following theorem.

Theorem 7.9 Let Assumptions 6.1, 6.2, 7.1 and 7.2 be satisfied. The direction of
the Hopf bifurcation described in Theorem 7.3 and the stability of the bifurcating
periodic solutions are determined by the sign of ;2 : Hopf bifurcation is supercritical
and the bifurcating periodic solutions are stable if ;2 < 0, and subcritical and
unstable if ;2 > 0.

7.5 Numerical Simulations and Conclusions

By carrying out bifurcation analysis and normal form computation of the model
(6.1), we discussed the existence and properties of Hopf bifurcation. In this section,
we provide some numerical simulations to illustrate the results. We firstly choose
parameters X = 8, ^ = 1/2, d = 2, `% = 1/7, V% = 8.5127, [ = 9.24, W = 91. In
order to get the properties of Hopf bifurcation using Theorem 7.9, we need compute
;1 and ;2. By Matlab we get U★ = 676.347, ;1 = Re (�1) = 0.496645, ;2 = Re (�2) =
−1.61528. Then we choose U = V# − `# = 1.6567−1 = 0.6567 < U★, # (0) = 0.7,
%( (0) = 1.40684, %� (0) = 0.0071 in Figure 7.1 and U = V# − `# = 700 − 1 =
699 > U★, # (0) = 2.70 × 10−81, %( (0) = 1467, %� (0) = 145.7 in Figure 7.2,
respectively, and obtain graphs of # (C), %( (C) and %� (C) by using Matlab.

Figure 7.1 and Figure 7.2, demonstrate that the positive equilibrium �∗ of system
(6.1) is asymptotically stable when the intrinsic growth rate U of the prey species
is less than its critical value U★ and system (6.1) undergoes a Hopf bifurcation and
a stable non-trivial periodic solution bifurcates from the positive equilibrium when
the intrinsic growth rate U of the prey species passes through the critical value U★
which consists with Theorem 7.9.
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Fig. 7.1: In this figure we run a simulation of the model (7.1) with stable positive
equilibrium �∗.
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Fig. 7.2: In this figure we run a simulation of the model (7.1) with stable periodic
solution around the positive equilibrium �∗.

7.6 Remarks and notes

By Chapter 15, we have two ways to compute the normal form of the reduced system
of a system topologically equivalent to the original system (7.10). One is to compute
the Taylor’s expansion of the reduced system first and then we can compute the
normal form of the reduced system. The other way is to compute the normal form
of the reduced system directly. We use the first way to compute the normal form for
Hopf bifurcation in this Chapter. We refer to the books [99] by Hassard, Kazarinoff
and Wan, [30] by Chow and Hale, [32] by Chow et al., [129] by Kuznetsov, [225]
by Wiggins and others for more results on the existence and properties of Hopf
bifurcation.

7.7 MATLAB codes

7.7.1 Figure 7.1

1

2 t s p a n = [1 6 00 ] ;
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3

4 y0 = [2 . 70∗1 e − 8 1 ; 1 4 6 7 ; 1 4 5 . 7 ] ;
5 [T ,Y] = ode45 (@myfun , t span , y0 ) ;
6 s u b p l o t ( 2 , 2 , 1 )
7 p l o t (T ,Y( : , 1 ) , ’ r ’ , ’ l i n ew i d t h ’ , 1 . 5 ) ;
8 x l a b e l ( ’ t ’ )
9 y l a b e l ( ’N’ )

10 s e t ( gca , ’ Fon tS i z e ’ , 15) ;
11 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
12 s u b p l o t ( 2 , 2 , 2 )
13 p l o t (T ,Y( : , 2 ) , ’ b ’ , ’ l i n ew i d t h ’ , 1 . 5 ) ;
14 x l a b e l ( ’ t ’ )
15 y l a b e l ( ’ P_S ’ )
16 s e t ( gca , ’ Fon tS i z e ’ , 15) ;
17 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
18 s u b p l o t ( 2 , 2 , 3 )
19 p l o t (T ,Y( : , 3 ) , ’ g ’ , ’ l i n ew i d t h ’ , 1 . 5 ) ;
20 x l a b e l ( ’ t ’ )
21 y l a b e l ( ’P_H ’ )
22 s e t ( gca , ’ Fon tS i z e ’ , 15) ;
23 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
24 s u b p l o t ( 2 , 2 , 4 )
25 p l o t 3 (Y( : , 1 ) ,Y( : , 2 ) ,Y( : , 3 ) , ’ k ’ , ’ l i n ew i d t h ’ , 1 . 5 ) ;
26

27 x l a b e l ( ’N’ )
28 y l a b e l ( ’ P_S ’ )
29 z l a b e l ( ’P_H ’ )
30 s e t ( gca , ’ Fon tS i z e ’ , 15) ;
31 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
32

33 f u n c t i o n dy = myfun ( t , y )
34 muN = 1 ;
35 betaN = 700 ;
36 d e l t a = 8 ;
37 k =1 / 2 ;
38 rho =2;
39 muP = 1 / 7 ;
40 be t aP = 8 . 5 1 27 ;
41 e t a = 9 . 2 4 ;
42 r =91;
43 dy = z e r o s ( 3 , 1 ) ;
44 dy ( 1 ) = ( betaN −muN) ∗y ( 1 ) − d e l t a ∗y ( 1 ) ∗y ( 1 ) −k∗y ( 1 ) ∗y ( 2 )

;
45 dy ( 2 ) = −(muP+ e t a ) ∗y ( 2 ) − rho ∗k∗y ( 1 ) ∗y ( 2 ) +y ( 3 ) ∗ r ;
46 dy ( 3 ) = −muP∗y ( 3 ) +k∗y ( 1 ) ∗y ( 2 ) ∗ rho −y ( 3 ) ∗ r + be t aP ∗ ( y ( 2 )

+y ( 3 ) ) ;
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47 dy=dy ( : ) ;
48 end

7.7.2 Figure 7.2

1

2 t s p a n = [1 6 00 ] ;
3

4 y0 = [2 . 70∗1 e − 8 1 ; 1 4 6 7 ; 1 4 5 . 7 ] ;
5 [T ,Y] = ode45 (@myfun , t span , y0 ) ;
6 s u b p l o t ( 2 , 2 , 1 )
7 p l o t (T ,Y( : , 1 ) , ’ r ’ , ’ l i n ew i d t h ’ , 1 . 5 ) ;
8 x l a b e l ( ’ t ’ )
9 y l a b e l ( ’N’ )

10 s e t ( gca , ’ Fon tS i z e ’ , 15) ;
11 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
12 s u b p l o t ( 2 , 2 , 2 )
13 p l o t (T ,Y( : , 2 ) , ’ b ’ , ’ l i n ew i d t h ’ , 1 . 5 ) ;
14 x l a b e l ( ’ t ’ )
15 y l a b e l ( ’ P_S ’ )
16 s e t ( gca , ’ Fon tS i z e ’ , 15) ;
17 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
18 s u b p l o t ( 2 , 2 , 3 )
19 p l o t (T ,Y( : , 3 ) , ’ g ’ , ’ l i n ew i d t h ’ , 1 . 5 ) ;
20 x l a b e l ( ’ t ’ )
21 y l a b e l ( ’P_H ’ )
22 s e t ( gca , ’ Fon tS i z e ’ , 15) ;
23 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
24 s u b p l o t ( 2 , 2 , 4 )
25 p l o t 3 (Y( : , 1 ) ,Y( : , 2 ) ,Y( : , 3 ) , ’ k ’ , ’ l i n ew i d t h ’ , 1 . 5 ) ;
26

27 x l a b e l ( ’N’ )
28 y l a b e l ( ’ P_S ’ )
29 z l a b e l ( ’P_H ’ )
30 s e t ( gca , ’ Fon tS i z e ’ , 15) ;
31 s e t ( gca , ’ FontWeight ’ , ’ bo ld ’ ) ;
32

33 f u n c t i o n dy = myfun ( t , y )
34 muN = 1 ;
35 betaN = 700 ;
36 d e l t a = 8 ;
37 k =1 / 2 ;
38 rho =2;
39 muP = 1 / 7 ;
40 be t aP = 8 . 5 1 27 ;
41 e t a = 9 . 2 4 ;
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42 r =91;
43 dy = z e r o s ( 3 , 1 ) ;
44 dy ( 1 ) = ( betaN −muN) ∗y ( 1 ) − d e l t a ∗y ( 1 ) ∗y ( 1 ) −k∗y ( 1 ) ∗y ( 2 )

;
45 dy ( 2 ) = −(muP+ e t a ) ∗y ( 2 ) − rho ∗k∗y ( 1 ) ∗y ( 2 ) +y ( 3 ) ∗ r ;
46 dy ( 3 ) = −muP∗y ( 3 ) +k∗y ( 1 ) ∗y ( 2 ) ∗ rho −y ( 3 ) ∗ r + be t aP ∗ ( y ( 2 )

+y ( 3 ) ) ;
47 dy=dy ( : ) ;
48 end





Chapter 8
Large Speed Traveling Waves for the
Rosenzweig-MacArthur predator-prey Model
with Spatial Diffusion

This chapter focuses on traveling wave solutions for the so-called Rosenzweig-
MacArthur predator-prey model with spatial diffusion. The main results of this note
are concerned with the existence and uniqueness of traveling wave solution as well
as periodic wave train solution in the large wave speed asymptotic. Depending on
the model parameters we more particularly study the existence and uniqueness of a
traveling wave connecting two equilibria or connecting an equilibrium point and a
periodic wave train. We also discuss the existence and uniqueness of such a periodic
wave train. Our analysis is based on ordinary differential equation techniques by
coupling the theories of invariant manifolds together with those of global attractors.

8.1 Introduction

In this work we study the traveling solutions for the so-called diffusive Rosenzweig-
MacArthur predator-prey system that reads as follows

DC = X1DGG + �D
(
1 − D

 

)
− � DE

1 + �D ,

EC = X2EGG − �E + �
DE

1 + �D .
(8.1)

This system is posed for the one-dimensional spatial variable G ∈ R while C denotes
time.

In the above system of equations D = D(C, G) denotes the density of the prey
population while E = E(C, G) corresponds to those of the predator, at time C > 0
and spatial location G ∈ R. The positive parameters X1 and X2 represent the diffusion
coefficients for the prey and the predator, respectively. The underlying kinetic system
describes the dynamics of the populations as well as their interactions and reads as
the following ordinary differential equations (ODE for short)

D′(C) = �D
(
1 − D

 

)
− � DE

1 + �D ,

E′(C) = −�E + � DE

1 + �D ,
(8.2)

309
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wherein �, �, �, �, � and  are given positive constants. More precisely � stands
for the growth factor for the prey species,  denotes its carrying capacity, � and �
are the interaction rates for the two species while � corresponds to the natural death
rate for the predator. Finally the parameter � measures the "satiation" effect of the
predator population. We refer the reader to Holling [? ] and Rosenzweig [? ? ] for
more details on this model.

The aim of this work is to discuss the existence and qualitative properties of the
traveling wave and the periodic wave train solutions for (8.1) . To discuss this issue,
we first rescale the system by introducing

* = �D, + = �E/�, C ′ = �C, G ′ = (�/X2)1/2G,

3 =
X1
X2
, U = �/(�� ), W = � , V = �/(��).

With these new variables and normalized parameters, (8.1) rewrites, omitting the
prime for notational simplicity, as the following reaction-diffusion system

*C = 3*GG + U* (W −*) −
*+

1 +* ,

+C = +GG −+ + V
*+

1 +* ,
(8.3)

while the underlying kinetic system, namely (8.2), becomes
* ′ = U* (W −*) − *+

1 +* ,

+ ′ = −+ + V *+

1 +* .
(8.4)

As mentioned above, the goal of this work is to discuss some properties of the
traveling wave and periodic wave train solutions for the reaction-diffusion system
(8.3). Here recall that a traveling wave solution corresponds to an entire solution of
(8.3) (that is a solution defined for all time C ∈ R) of the form

* (C, G) = D(B), + (C, G) = E(B) with B = G + 2C,

where 2 ∈ R is some constant that stands for the wave speed. When the profile
B ↦→ (D(B), E(B)) is periodic we speak about periodic wave train with speed 2.
Plugging this specific form into (8.3) yields the following ODE system for the wave
profiles (D, E) = (D(B), E(B)) for B ∈ R

2D′ = 3D′′ + UD(W − D) − DE

1 + D ,

2E′ = E′′ − E + V DE

1 + D .
(8.5)

Traveling wave solutions for the above system or more generally for predator-
prey systems have been widely investigated in the last decades. One may refer the
reader to the works of Dunbar [63, 64? ] who proposed ODE methods coupled with
topological arguments to prove the existence of such special solutions. One may also
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refer to Gardner [81] who developed topological arguments based on the Conley
index to obtain the existence of solutions with suitable behaviour at B = ±∞. We
also refer to Huang, Lu and Ruan [119] for more general results also based on a
coupling between ODE methods and topological arguments. We refer to Ruan [185]
a result of existence of periodic wave train by using using Hopf bifurcation method.
We refer the reader to the work of Hosono [112] and the references cited therein for
results about the Lotka-Volterra predator-prey system as well as to the recent work
of Li and Xiao [138] (see also the references therein) for results about the existence
of traveling waves for more general functional responses and also for a nice review
on this topic. The connexion between wave solutions and the asymptotic behaviour
of the Cauchy problem (8.3) (when equipped with suitable initial data) has been
scarcely studied. One may refer the reader to Gardner [80] who studied the local
stability of wave solutions and to Ducrot, Giletti andMatano [54] (and the references
therein) for results related to the so-called asymptotic speed of spread. We also refer
to [4, 53, 113, 121] for other recent results.

One important difficulty when studying traveling wave solutions for predator-prey
interactions relies on the ability of the underlying kinetic to develop sustained oscil-
lations, typically through Hopf bifurcation. Hence the behaviour of the solutions of
the corresponding reaction-diffusion system are expected to exhibit somehow com-
plex spatio-temporal oscillations. Therefore the traveling wave solutions describing
for instance the spatial invasion of a predator is also expected to exhibit oscillating
patterns, connecting a predator-free equilibrium and some oscillating state, such as
a periodic wave train (see [119, 185] for results about the existence of such periodic
solutions using bifurcation methods). According to our knowledge, this question
related to the shape and the behaviour of traveling waves remains largely open. It
has been addressed by Dunbar in [? ] and further developed by Huang [120]. In this
aforementioned work, the author developed refined singular perturbation analysis
based on the hyperbolicity of the periodic solutions of the kinetic system to con-
struct oscillating traveling wave in the large speed asymptotic. In this work we revisit
this issue by developing a dynamical system approach to obtain a complete picture
of the traveling wave solutions for system (8.5), in the large wave speed asymptotic,
2 � 1. Our methodology also allows us to provide uniqueness results, on the one
hand for traveling waves and, on the other hand, also for periodic wave trains with
large wave speed.

In this paper, we describe in particular sharp conditions on the parameters of
the system that ensure the existence of a unique traveling wave solution for (8.5)
connecting the predator free equilibrium to the interior equilibrium or to a unique
periodic wave train. To reach such a refined description, we develop a methodology
based on dynamical system arguments. Here we will more precisely couple center
manifold and more generally invariant manifold reduction together with the global
attractor theory and qualitative analysis for ODE. In fact, the method presented here
is rather general and can be used to work on the traveling waves with other and
more general nonlinearities. It can also be extended to handle infinite dimensional
problems such as reaction-diffusion systems with time delay.

To perform our analysis, wemake use of successive rescaling arguments to restrict
our analysis to a system of two ordinary differential equations. Firstly let us set
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D̂(B) = D(−2B), Ê(B) = E(−2B).

Then, dropping the hats on D and E for notational convenience, (8.5) becomes
−D′ = 3

22 D
′′ + UD(W − D) − DE

1 + D ,

−E′ = 1
22 E

′′ − E + V DE

1 + D .
(8.6)

Next let us set Y = 1
22 , D1 = D, D2 = D

′, E1 = E and E2 = E
′, so that the above problem

(8.6) rewrites as 
D′1 = D2,

3YD′2 = −D2 − UD1 (W − D1) +
D1E1

1 + D1
,

E′1 = E2,

YE′2 = −E2 + E1 − V
D1E1

1 + D1
.

(8.7)

Set
D̂1 (B) = D1 (YB), D̂2 (B) = D2 (YB), Ê1 (B) = E1 (YB), Ê2 (B) = E2 (YB),

and (8.7) becomes (dropping the hats for notational convenience)
D′1 = YD2,

3D′2 = −D2 − UD1 (W − D1) +
D1E1

1 + D1
,

E′1 = YE2,

E′2 = −E2 + E1 − V
D1E1

1 + D1
,

(8.8)

where all the parameters 3, U, W, V and Y are strictly positive.
Asmentioned above, in this paper wewill investigate traveling waves and periodic

wave trains for (8.5), that correspond to heteroclinic connexions and periodic orbits,
respectively, for system (8.7) or equivalently (8.8). Here we focus our study on
the large speed asymptotic, namely 2 � 1, that is 0 < Y = 1

22 � 1. To study
this problem we will use center manifold reduction arguments to rewrite (8.8) on
a suitable invariant set as a small perturbation of the kinetic system (8.4). The
description of the heteroclinic and periodic orbits of the perturbed problem are then
investigated using global attractor theory.

The organization of the paper is as follows. Section 2 is devoted to the description
of the global attractor for the Rosenzweig-MacArthur model (8.4) with a particular
attention paid on the heteroclinic orbits and their uniqueness. Section 3 is concerned
with the study of some complete orbit of (8.8), in the regime 0 < Y � 1. We first
reformulate this problem as a small perturbation of (8.4). We then study its global
attractor and derive existence and uniqueness results for the traveling waves and
periodic wave trains for (8.5) whenever 2 is large enough. In the last section we
present some numerical simulations for the system in order illustrate our results.
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8.2 Global attractors for the Rosenzweig-MacArthur model

In this section we propose a refine description of the global attractor of the
Rosenzweig-MacArthur model

* ′(C) = U* (W −*) − *+

1 +* ,

+ ′(C) = −+ + V *+

1 +* .
(8.9)

The results presented in this section are mainly due to Hsu [116][Theorem 3.3],
Hsu, Hubbell and Waltman [114, Lemma 4] where the global stability of the interior
equilibrium is obtained by using the 18.13 criteria, and to Cheng [25] who proved
the uniqueness of the periodic orbit. In this section, we reformulate these results
using the theory of the global attractor and as mentioned above we propose a refine
description of this object by studying the existence and uniqueness of heteroclinic
orbit starting from the no predator region (+ = 0) to the interior global attractor
(where * > 0 and + > 0). The results presented in the next main section, about
(8.8), will make use of the refined description presented in this section.

To study (8.9) let us first observe that this system admits the following equilibrium
points. The boundary equilibria are given by

(*0, +0) = (0, 0) and (*1, +1) = (W, 0). (8.10)

and the unique interior equilibrium whenever W (V − 1) > 1, is given by

(*2, +2) =
(

1
V − 1

,
UV [W (V − 1) − 1]

(V − 1)2

)
. (8.11)

Next define the functions

� (*,+) = U* (W −*) − *+

1 +* =
*

1 +* [ 5 (*) −+]

and

� (*,+) = +
(
V*

1 +* − 1
)
= (V − 1)

+

(
* −*2

)
1 +*

with the nullclines

5 (*) = U(W −*) (1 +*) and* = *2

for *-equation and +-equation, respectively. Note that the map 5 (*) is symmetric
with respect to the vertical line* =

W−1
2 .

We make the following parameter regimes for convenience and will refer these
conditions throughout the paper:
(H1): W (V − 1) > 1;
(H2): W (V − 1) > V + 1;
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(H3): 1 < W (V − 1) < V + 1.
We now discuss the existence of global attractor for (8.9) those existence is

ensured by the next lemma.

Lemma 8.1 (Global attractor) Let (H1) be satisfied. There exists ' > 0 such that
the triangle

T =
{
(*,+) ∈ [0,∞)2 : V* ++ ≤ '

}
is positively invariant by the semiflow generated by (8.9). The (positive) semiflow
generated by (8.9) in R2

+ admits a global attractor, denoted byAR2
+
, that is contained

in T. Furthermore the triangle T contains all the non negative equilibria of (8.9).

Note that the invariance property follows from the fact that for all ' > 0 large enough
V� (*,+) + � (*,+) < 0 whenever V* ++ = ' and* ≥ 0 and + ≥ 0.

We now focus on the precise description AR2
+
. To that aim we first discuss the

existence of an interior attractor by considering the regions

m*R
2
+ =

{
(*,+) ∈ R2

+ : + = 0
}
and m+R2

+ =
{
(*,+) ∈ R2

+ : * = 0
}
,

and leading to the state space (disjoint) decompositionR2
+ = Int

(
R2
+
)
∪
(
m*R

2
+ ∪ m+R2

+
)
.

In the following lemma we are using the notion of global attractor considered first by
Hale [93, 94]. We refer to Magal and Zhao [160] and Magal [151] for more results
and examples about global attractors only attracting compact subsets.

Lemma 8.2 Let (H1) be satisfied. The semiflow generated by (8.9) restricted to R2
+

(respectively m*R2
+, m+R2

+ and Int
(
R2
+
)
) has a global attractor AR2

+
(respectively

Am*R2
+
, Am+ R2

+
and AInt(R2

+) ) which is a compact and connected subset which
attracts all the compact subsets of R2

+ (respectively m*R2
+, m+R2

+ and Int
(
R2
+
)
).

Remark 8.3 The global attractor AInt(R2
+) only attracts the compact subsets of

Int
(
R2
+
)
. That is to say that AInt(R2

+) does not attract the bounded subsets of the
interior region Int

(
R2
+
)
(see Magal and Zhao [160] for more examples).

It is readily checked that the global attractor in m+R2
+ is Am+ R2

+
= {(0, 0)} while

the global attractor in m*R2
+ is

Am*R2
+
=

{
(*,+) ∈ R2

+ : * ∈ [0, W] and + = 0
}
.

Indeed Am*R2
+
contains the two equilibria in m*R2

+ as well as the heteroclinic orbit
joining these two equilibria.

Proof (Proof of Lemma 8.2) Note that the existence of the boundary attractors fol-
lows from the invariance of these sets together with the dissipativity stated in Lemma
8.1. Next to prove the existence of the interior attractor AInt(R2

+) , it is sufficient (see
for instance Hale and Waltman [96]) to show that the state space decomposition(
m*R

2
+ ∪ m+R2

+; Int
(
R2
+
) )
is uniformly persistent, namely there exists some constant

Θ > 0, such that for each (*0, +0) ∈ [0,∞)2 with*0 > 0 and +0 > 0

∃Θ > 0, ∀(*0, +0) ∈ Int
(
R2
+

)
, lim inf

C→∞
min (* (C), + (C)) ≥ Θ. (8.12)
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To prove this property, since the two equilibria, "1 = (0, 0) and "2 = (W, 0), on
the boundary m*R2

+ ∪ m+R2
+ are chained in the sense of Hale and Waltman’s [96].

Therefore it is sufficient to prove the local repulsivity of each of these equilibria with
respect to the interior region Int

(
R2
+
)
. Assume by contradiction that for some Y > 0

small enough one has

*0 > 0 and +0 > 0 and* (C) ++ (C) ≤ Y,∀C ≥ 0.

Then by using the*-equation of (8.9) we obtain

* ′ ≥ [U(W − Y) − Y]*.

Therefore by choosing Y > 0 small enough (so that [U(W − Y) − Y] > 0) we deduce
that* (C) → ∞ as C →∞. which is impossible since the system is dissipative.
Similarly assume that

+0 > 0 and |* (C) − W | ++ (C) ≤ Y,∀C ≥ 0.

Then by using the +-equation of (8.9) we obtain

+ ′ ≥ −+ + V (W − Y)+
1 + (W − Y) .

Choosing Y > 0 small enough (so that V
(W − Y)

1 + (W − Y) > 1 ⇔ (V − 1) (W − Y) > 1)

one deduces that + (C) → ∞ as C → ∞, which is a contradiction, that completes the
proof of (8.12). �

Before going to the description of the global attractor, let us first describe the
interior attractor. To do so we summarized in the next theorem some important
known results about (8.9).

Theorem 8.4 System (8.9) enjoys the following properties.

(i) If (H3) is satisfied, then the interior equilibrium is globally asymptotically stable
for system (8.9) restricted to Int(R2

+).
(ii) If (H2) is satisfied, then (8.9) admits a unique stable periodic orbit surrounding

the interior equilibrium and the system has no other periodic orbit.

Note that (8) has been proved by Hsu, Hubbell and Waltman [114, Lemma 4] using
18.13’s criterion which proved that the system has no periodic orbit whenever (H3)
holds. More precisely, setting i(*,+) = 1+*

*
+ b+1 for some constant b > 0 such

that (W−1)U
V−1 < b <

(
1
V−1 −

W−1
4

)
4U
V−1 , then, the aforementioned works proved that for

each 0 < [ < 1 there exists <[ > 0 such that

m* (i�) + m* (i�) ≤ −<[ , ∀(*,+) ∈
[
[, [−1]2

. (8.13)

As far as the second point (88) which is concerned the uniqueness of the periodic
orbit was proved by Cheng [? ] while its stability was proved in [114]. Note also that
(8.9) undergoes an Hopf bifurcation around the interior equilibrium whenever we
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choose the bifurcation parameter W and this Hopf bifurcation occurs at W = W★ with
W★ (V − 1) = V + 1.

These results are related to the interior attractor and reformulated as follows.

Corollary 8.5 (Interior attractor) The following holds.

(i) Assume that (H3) holds. Then the interior attractor AInt(R2
+) reduces to the

interior equilibrium.
(ii) Assume that (H2) holds. Then the interior attractor AInt(R2

+) consists of the
unique interior equilibrium, the unique interior periodic orbit and an infinite
number of heteroclinic orbits joining the unique interior equilibrium and the
unique periodic orbit.

To complete this section, we are able to describe the global attractor AR2
+
. Our

result reads as follows.

Theorem 8.6 (Global attractor) Let (H1) be satisfied. Then system (8.9) admits
a unique heteroclinic orbit (*,+) joining (W, 0) to the boundary of the interior
attractor AInt(R2

+) . The global attractor AR2
+
is composed of three disjoint parts

AR2
+
= [0, W] × {0}

⋃
{(* (C), + (C)), C ∈ R}

⋃
AInt(R2

+) .

Proof The proof of this result requires three steps. We firstly derive the existence
of heteroclinic orbits using a connectedness argument for the global attractor. Then
we show that heteroclinic orbits starts from the stationary point (W, 0) and finally
we conclude to the uniqueness of such heroclinic orbit by using a center unstable
manifold argument (see [59] where a rather similar argument was used to derive a
uniqueness property for traveling wave solutions arising in some epidemic problem).
Connectedness arguments: The largest global attractor AR2

+
is connected since it

attracts the convex subset T. It follows that the projection of AR2
+
on the horizontal

and vertical axis is a compact interval.
The global attractor AR2

+
contains the interior global attractor AInt(R2

+) which is
compact, connected and locally stable. The global attractor AR2

+
also contains the

boundary attractorAm*R2
+
. The connectedness ofAR2

+
and compactness ofAInt(R2

+)
and Am*R2

+
imply

AR2
+
−

(
AInt(R2

+)
⋃
Am*R2

+

)
≠ ∅.

Moreover by using Theorem 3.2 due to Hale and Waltman [96] we deduce that for
each point (*,+) ∈ AR2

+
−

(
AInt(R2

+)
⋃Am*R2

+

)
the alpha and limit sets satisfy the

following
U(*,+) ∈ Am*R2

+
and l(*,+) ∈ AInt(R2

+) .

Finally since the boundary attractor has a Morse decomposition "1 = {(0, 0)} and
"2 = {(W, 0)} we have either

U(*,+) = "1 or U(*,+) = "2,∀(*,+) ∈ AR2
+
−

(
AInt(R2

+)
⋃
Am*R2

+

)
.
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No existence of heteroclinic orbit starting from (0, 0): Assume by contradiction
that there exists one. Next by looking the +-equation we deduce that

+ (C) = exp
(∫ C

C0

(
−1 + * (B)

1 +* (B)

)
3B

)
+ (C0), ∀C, C0 ∈ R.

Since + (C0) > 0 and there exists ) < 0 such that * (C) remains sufficiently small for
all negative times C < ) , so that + (C) → ∞ as C → −∞ that which contradicts the
boundedness of the global attractor.

Existence and uniqueness of an heteroclinic orbit starting from (W, 0): We
only need to prove the uniqueness. The linearized equation around (W, 0) has two
eigenvalues: _1 = −UW < 0 and _2 =

VW

1+W − 1 > 0 with eigenspaces

�_1 =
{
(*,+) ∈ R2 : + = 0

}
and �_2 =

{
(*,+) ∈ R2 : * − W = − W

W (V − 1) − 1 + U W (1 + W)+
}

with W

W (V−1)−1+U W (1+W) > 0 Note that R2 = �_1

⊕
�_2 .

The center-unstable manifold at (W, 0) is one dimensional. Let k2D : �_2 → �_1 be
a �1 center-unstable manifold and consider the one dimensional manifold defined
by

"2D := {G2D + k2D (G2D) : G2D ∈ �_2 }.

It is locally invariant under the semiflow generated by (8.9) around (W, 0). Since
�G2Dk2D (0) = 0, the manifold "2D is tangent to �_2 at (W, 0). Moreover we know
that there exists Y > 0, such that "2D contains all negative orbits of the semiflow
generated by (8.9) staying in the ball �R2 ((W, 0), Y) for all negative times.

In order to prove the uniqueness, we assume that there exists two heteroclinic
orbits

$1 = (*1 (C), +1 (C))C ∈R ⊂ Int
(
R2
+

)
and $2 = (*2 (C), +2 (C))C ∈R ⊂ Int

(
R2
+

)
going from (W, 0) to the interior attractor AInt(R2

+) . Since

lim
C→−∞

(*1 (C), +1 (C)) = (W, 0) and lim
C→−∞

(*2 (C), +2 (C)) = (W, 0),

without loss of generality, one may assume that

(*1 (C), +1 (C))C≤0 ⊂ �R2 ((W, 0), Y) and (*2 (C), +2 (C))C≤0 ⊂ �R2 ((W, 0), Y)

which imply that (*1 (C), +1 (C))C≤0 ⊂ "2D and (*2 (C), +2 (C))C≤0 ⊂ "2D .
Let Π_1 and Π_2 be the linear projectors from R2 to �_1 and �_2 , respectively. We
can find C1 < 0 and C2 < 0 such that Π_2 (*1 (C1), +1 (C1)) = Π_2 (*2 (C2), +2 (C2)) and
thenk2D (Π_2 (*1 (C1), +1 (C1))) = k2D (Π_2 (*2 (C2), +2 (C2))). Thus (*1 (C1), +1 (C1)) =
(*2 (C2), +2 (C2)). By the uniqueness of the solutions for system (8.9), we get (*1 (C1 +
·), +1 (C1 + ·)) = (*2 (C2 + ·), +2 (C2 + ·)) and thus $1 = $2. The uniqueness of the
heteroclinic orbit starting from (W, 0) follows and this completes the proof of the
theorem.
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Fig. 8.1: In this figure we run a simulation of the Rosenzweig-MacArthur model with
U = 1, V = 3 and W = 18.7 (in Figure (a)) and W = 2.4 (in Figure (b)). In both figures
we plot the heteroclinic orbit joining the boundary equilibrium and the interior
equilibrium (in Figure (a)) and the interior limit cycle which is a stable periodic
orbit (in Figure (b)). In this figurewe also plot the nullclines 5 (*) = U(W−*) (1 +*)
and* = *2.
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8.3 Application of a center manifold theorem to the traveling
wave problem

This section is devoted to the study of traveling wave profile system of equations
(8.8) for Y � 1. We will firstly apply a center manifold reduction on a suitable
invariant region. The reduced system will be analysed. In the same spirit as in the
previous section we will describe its global and interior attractor to obtain various
results about the existence and uniqueness of traveling wave solutions as well as
refined information about periodic wave trains.

8.3.1 Reduction of the traveling wave problem

Transformed system: In order to work with a subspace of equilibria for Y = 0 we
use the following change of variable

*1 = D1,
*2 = D2 + � (D1, E1),
+1 = E1,
+2 = E2 + � (D1, E1)

⇔


D1 = *1,
D2 = *2 − � (*1, +1),
E1 = +1,
E2 = +2 − � (*1, +1).

(8.14)

By using this change of variable the system (8.8) becomes
* ′1 = YD2 = Y [*2 − � (*1, +1)] ,
3* ′2 = 3D

′
2 + 3� (*1, +1) ′ = −*2 + 3mD� (*1, +1)* ′1 + 3mE� (*1, +1)+ ′1,

+ ′1 = YE2 = Y [+2 − � (*1, +1)] ,
+ ′2 = E′2 + � (*1, +1) ′ = −+2 + mD� (*1, +1)* ′1 + mE� (*1, +1)+ ′1

and therefore we obtain
* ′1 = Y [*2 − � (*1, +1)] ,
3* ′2 = −*2 + Y3%(*1,*2, +1, +2),
+ ′1 = Y [+2 − � (*1, +1)] ,
+ ′2 = −+2 + Y&(*1,*2, +1, +2),

(8.15)

wherein % and & are given by

%(*1,*2, +1, +2) = mD� (*1, +1) [*2 − � (*1, +1)] + mE� (*1, +1) [+2 − � (*1, +1)]

and

&(*1,*2, +1, +2) = mD� (*1, +1) [*2 − � (*1, +1)]+mE� (*1, +1) [+2 − � (*1, +1)] .

Truncated system: Let d : R→ R be a �∞ function such that
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d(G) =


1, if G ≥ 0,
∈ [0, 1], if G ∈ [−1/2, 0],
0, if G ≤ −1/2.

Define the set

E =
{
(*1,*2, +1, +2) ∈ R4 : (*1, +1) ∈ T and |*2 − � (*1, +1) | ≤ 1, |+2 − � (*1, +1) | ≤ 1

}
.

Let ! > 0 be given large enough such that

! ≥ 2 + max
(*1 ,+1) ∈T

|� (*1, +1) | + max
(*1 ,+1) ∈T

|� (*1, +1) |

+ max
(*1 ,*2 ,+1 ,+2) ∈E

|%(*1,*2, +1, +2) | + max
(*1 ,*2 ,+1 ,+2) ∈E

|&(*1,*2, +1, +2) |.

Let j : R→ R be a �∞ function such that

j(G) =


1, if G ∈ [−!, !],
∈ [0, 1], if G ∈ [−(! + 1),−!] ∪ [!, (! + 1)],
0, if G ∉ [−(! + 1), (! + 1)] .

Then we have
* ′1 = Y [*2 − � (*1, +1)] j(*2 − � (*1, +1))d(*1),
3* ′2 = −*2 + Y3%(*1,*2, +1, +2)j(%(*1,*2, +1, +2))d(*1),
+ ′1 = Y [+2 − � (*1, +1)] j(+2 − � (*1, +1))d(*1),
+ ′2 = −+2 + Y&(*1,*2, +1, +2)j(&(*1,*2, +1, +2))d(*1).

(8.16)

Define
ℎ(G) = Gj(G), G ∈ R.

Then system (8.16) can be rewritten as
* ′1 = Y ℎ (*2 − � (*1, +1)) d(*1),
3* ′2 = −*2 + Y 3 ℎ (%(*1,*2, +1, +2)) d(*1),
+ ′1 = Y ℎ (+2 − � (*1, +1)) d(*1),
+ ′2 = −+2 + Y ℎ (&(*1,*2, +1, +2)) d(*1).

(8.17)

Remark 8.7 In this truncation procedure the function d(*1) serves to avoid the
singularity at *1 = −1 in � and �. The function ℎ(.) is used to obtain a bounded
Lipschitz perturbation of the system with Y = 0.
By setting - (C) = (*1 (C), +1 (C)) and . (C) = (*2 (C), +2 (C)), system (8.17) takes the
following form {

- ′(C) = Y�̃ (- (C), . (C)),
. ′(C) = −�. (C) + Y�̃ (- (C), . (C)), (8.18)

where �̃, �̃ ∈ �∞
(
R2 × R2,R2) are bounded and Lipschitz continuous functions

and where we have set � = diag(3−1, 1). Therefore the central space is given by

-2 =
{
(-,. ) ∈ R2 × R2 : . = 0

}
,
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while the stable space reads as

-B =
{
(-,. ) ∈ R2 × R2 : - = 0

}
.

Remark 8.8 Due to the choice of the constant ! > 0 the truncated system (8.17)
coincides with the original system (8.15) whenever (*1,*2, +1, +2) ∈ E. Moreover
the equilibria of system (8.15) belong to E (since *1 = D1 and +1 = E1 and the
equilibria of (8.8) satisfy D2 = E2 = 0 and (D1, E1) must be an equilibrium of (8.9)).
Conversely the equilibria of (8.17) in E must satisfy

*̃2 = � (*̃1, +̃1) = 0 and +̃2 = � (*̃1, +̃1) = 0.

Now by using Lemma 8.1 we have (*̃1, +̃1) ∈ T.

For [ > 0 and ? ∈ N \ {0} we define the weighted spaces

��[ (R;R?) =
{
D ∈ � (R,R?) : sup

C ∈R
4−[ |C | ‖D(C)‖ < ∞

}
.

Moreover for Y > 0 small enough we can apply the smooth center manifold theorem
proved by Vanderbauwhede [216, Theorem 3.1] and Vanderbauwhede and Iooss
[217, Theorem 1]. This yields the following reduction result.

Theorem 8.9 Let [ ∈ (0,min(1, 1/3)) be given and fixed. Then there exists Ỹ0 > 0
such that for each Y ∈ [0, Ỹ0] we can find a map ΦY =

(
Φ1
Y ,Φ

2
Y

)
∈ �: (R2,R2), for

each integer : > 0, satisfying the following properties

ΦY (0R) = 0R2 and �ΦY (0R) = 0L(R2) ,

and ΦY is bounded as well as its derivatives up to the order : and

lim
Y→0
‖ΦY ‖∞ = 0 and lim

Y→0
‖ΦY ‖Lip = 0.

Moreover we have the following properties:

(i) The global center manifold "Y = {(-,. ) : . = ΦY (-)} is invariant by the
semiflow generated by (8.17) (forward and backward in time). Namely if C →
- (C) is a solution of the reduced system on some interval � ⊂ R

- ′(C) = Y�̃ (- (C),ΦY (- (C))),∀C ∈ �, (8.19)

then C → (- (C),ΦY (- (C))) is a solution of (8.17) on �.
(ii) If C → (- (C), . (C)) is a solution of (8.17) on R which belongs to ��[ (R;R4),

then
(- (C), . (C)) ∈ "Y ,∀C ∈ R⇔ . (C) = ΦY (- (C)),∀C ∈ R.

Now let us prove the following invariance result.

Proposition 8.10 There exists Y0 ∈ (0, Ỹ0] such that triangleT is negatively invariant
by the flow generated by the reduced system (8.19). That is to say that
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- ′(C) = Y�̃ (- (C),ΦY (- (C))),∀C ∈ R and - (0) = -0 ∈ T ⇒ - (C) ∈ T for all C ≤ 0.

Furthermore the following subsets are both negatively invariant by the flow generated
by the reduced system (8.19).

mDT = {(*,+) ∈ T : + = 0} and mET = {(*,+) ∈ T : * = 0} .

Proof In the first step, we investigate the invariance for the boundary regions mDT
and mET. To that aim we claim that(

*2
+2

)
= ΦY

(
0
+1

)
⇒ *2 = 0. (8.20)

Indeed, assume that*1 = *2 = 0 in system, then

*1 = *2 = 0⇒ *2 − � (*1, +1) = 0 and %(*1,*2, +1, +2) = 0.

Therefore the two last components of the truncated system (8.16) become{
+ ′1 = Y ℎ (+2 − � (0, +1)) ,
+ ′2 = −+2 + Y ℎ (&(0, 0, +1, +2)) .

(8.21)

Now by applying the center manifold theorem to (8.21) (which applies for the value
of Y ∈ (0, Ỹ0) since the estimations for systems (8.17) and (8.21) remain unchanged
in the proof of the center manifold theorem), we deduce that we can find a map
ΨY ∈ �: (R,R) such that the center manifold of the two dimensional system (8.21)

+2 = ΨY (+1)

and the solution C → (+★1 (C), +
★
2 (C)) of (8.21) starting from an initial value

(+1,ΨY (+1)) satisfies
(+★1 , +

★
2 ) ∈ ��

[ (R;R2).

We conclude that

(*1,*2, +1, +2) = (0, 0, +★1 , +
★
2 ) ∈ ��

[ (R;R4)

is a solution of the truncated system (8.17). This completes the proof of the claim.
By using similar argument one deduces that(

*2
+2

)
= ΦY

(
*1
0

)
and*1 ≥ 0⇒ +2 = 0. (8.22)

We now turn to the invariance of the triangle T. By using the fact that{
* ′1 = Y ℎ

(
Φ1
Y (*1, +1) − � (*1, +1)

)
d(*1),

+ ′1 = Y ℎ
(
Φ2
Y (*1, +1) − � (*1, +1)

)
d(*1).

(8.23)

Whenever V*1 + +1 = ' and *1 ≥ 0 and +1 ≥ 0 in system (8.22), then d(*1) = 1
and for Y > 0 small enough (ℎ coincides with identity)
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V* ′1 ++
′
1 = Y

(
Φ1
Y (*1, +1) +Φ2

Y (*1, +1) − � (*1, +1) − � (*1, +1)
)
> 0.

Therefore by combining this fact together with (8.19) and (8.21), we deduce that the
triangle T is negatively invariant by the reduced system. �

8.3.2 Global attractors

We investigate preliminary properties of the perturbed two-dimensional (reduced)
system (8.19). Recall that (H1) is satisfied along this paper and T, mDT, mET are
negatively invariant with respect to this system for all Y ∈ (0, Y0]. Before going
further, by setting C = −YB and

(
*̃, +̃

)
(B) = (*1,*2) (C) the above system (8.19)

becomes, dropping the tilde for notational simplicity{
* ′ =

[
−Φ1

Y (*,+) + � (*,+)
]

:= �Y (*,+),
+ ′ =

[
−Φ2

Y (*,+) + � (*,+)
]

:= � Y (*,+).
(8.24)

Notice that T, mDT and mET become positively invariant with respect to the above
system. Then, for each such Y ∈ [0, Y0], we denote by {)Y (C)}C≥0 the strongly
continuous semiflow on the triangle T generated by (8.24). One may also observe it
continuously depends on Y, namely the map (Y, C, -) → )Y (C)- is continuous from
[0, Y0] × [0,∞) × T into T. Our first result reads as follows:

Lemma 8.11 Let Y ∈ [0, Y0] be given. Then the semiflow {)Y (C)}C≥0 possesses a
compact and connected global attractor AY ⊂ T attracting T in the sense that

dist ()Y (C)-,AY) → 0 as C →∞ uniformly for - ∈ T,

wherein dist (-,AY) = inf
. ∈AY

‖- −. ‖ denotes the Euclidean distance from - ∈ R2

to AY .

Proof Fix Y ∈ (0, Y0]. Since, for each C ≥ 0,)Y (C) : T→ T is completely continuous
and bounded dissipative (T is compact), Theorem 3.4.8 in [94] ensures the existence
of a global attractor for the semiflow )Y . In addition, since T is connected, the result
of Gobbino and Sardella [84] applies and ensures that AY is connected. �

Lemma 8.12 The family (AY)Y∈[0, Y0 ] is upper semi-continuous, in the sense that
for each Ŷ ∈ [0, Y0] one has

lim
Y→ Ŷ

X (AY ,A Ŷ) = 0,

wherein X (AY ,A Ŷ) is given by

X (AY ,A Ŷ) = sup
H∈AY

dist (H,A Ŷ) .
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Proof Since the map (Y, C, -) ↦→ )Y (C)- is continuous from [0, Y0] × [0,∞) × T
into the compact set T, Theorem 3.5.2 in [94] ensures that the family {�Y}Y∈[0, Y0 ]
is upper semi-continuous. �

Wecontinue this section by further studying some properties of the global attractor
AY . To that aim, we define

mT0 = mDT ∪ mET and T0 = T \ mT0 = {(*,+) ∈ T : * > 0 and + > 0} .

Here let us recall that, for all Y ∈ [0, Y0] and C ≥ 0, one has

)Y (C)T0 ⊂ T0 and )Y (C)mT0 ⊂ mT0. (8.25)

We prove the following uniform persistence result for )Y .
Lemma 8.13 There exists Y1 ∈ (0, Y0] and Θ > 0 such that for all Y ∈ (0, Y1] and
- ∈ T0 one has

lim inf
C→∞

dist
(
)Y (C)-, mT0

)
≥ Θ.

The proof of this lemma relies on the application of the results of Hale and
Waltman in [96].
Proof Firstly recall that

(�Y , � Y) → (�, �) as Y → 0 in �1 (T).

Next fix Y1 ∈ (0, Y0] such that

m*�Y (0, 0) >
1
2
m*� (0, 0) > 0, m*�Y (W, 0) <

1
2
m*� (W, 0) < 0,

m+� Y (0, 0) <
1
2
m+� (0, 0) < 0, m+� Y (W, 0) >

1
2
m+� (W, 0) > 0.

(8.26)

Now, in order to apply the result of Hale and Waltman, consider the extended
semiflow* (C) : T × [0, Y1] → T × [0, Y1] given by

* (C)
(
-

Y

)
:=

(
)Y (C)-
Y

)
, ∀

(
-

Y

)
∈ T × [0, Y1] .

Then* becomes a strongly continuous semiflow on the compact set - := T×[0, Y1].
Next consider the two positively invariant sets (see (8.24))

-0 := T0 × [0, Y1] and m-0 = mT0 × [0, Y1] .

Now in order to prove the lemma,wewill show that the pair
(
m-0, -0) is uniformly

persistent with respect to the extended semiflow *. To that aim, observe that *
possesses a compact global attractor, denoted by �. Then* |m-0 also admits a global
attractor �m = ( [0, W] × {0})×[0, Y1] while �̃m :=

⋃
/ ∈�m l(-) can be decomposed

as the follows

�̃m = "1
⋃

"2 with "1 :=
{(

0
0

)}
× [0, Y1] and "2 :=

{(
W

0

)}
× [0, Y1],
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that corresponds to a covering of �̃m by disjoint compact isolated invariant sets "1
and "2 for* |m-0 . Furthermore "1 is chained to "2 and this covering is acyclic (see
[96]), since m*�Y (0, 0) > 0 and m*�Y (W, 0) < 0.

Next since {* (C)}C≥0 is bounded dissipative and completely continuous on -
for each C ≥ 0, in view of Theorem 4.1 in [96] to prove that the pair

(
m-0, -0) is

uniformly persistent, it is sufficient to check that

, B ("8) ∩ -0 = ∅, ∀8 = 1, 2.

This latter property follows from the same repulsiveness arguments as the ones
developed in Lemma 8.2 using the inequalities in (8.25). �

Using the above lemma one obtains the following decomposition result.

Proposition 8.14 For each Y ∈ [0, Y1], there exist a global attractorA0, Y ⊂ T0 and
a global attractorAm,Y in mT0 for )Y and the following decomposition for the global
attractor AY (provided by Lemma 8.12) holds true

AY = A0, Y
⋃

,D
(
Am,Y

)
, (8.27)

where,D
(
Am,Y

)
=

{
- ∈ AY : U(-) ⊂ Am,Y

}
. Furthermore the family

(
A0, Y

)
Y∈[0, Y0 ]

is upper semi-continuous.

Proof The proof of the above result relies on the application of Theorem 3.2 in [96]
and Theorem 18.1 in [151]. To see this, let us first observe that the result in Lemma
8.13 can be reformulated as follows:

lim inf
C→∞

dist
(
)Y (C)-, mT0

)
≥ Θ,

for all - ∈ T0 and all Y ∈ [0, Y1]. Hence, since for each Y ∈ [0, Y1], )Y is completely
continuous and bounded dissipative and satisfies (8.24), the existence A0, Y Am,Y
together with the decomposition (8.26) follows from the results in [96]. Next, using
Lemma 8.12 and 8.13, the results of Magal in [151] applies and ensures the upper
semi-continuity for the family of interior attractors

{
A0, Y

}
Y∈[0, Y1 ] . This completes

the proof of the proposition. �

Remark 8.15 One may notice that, for all Y ∈ [0, Y1] one has Am,Y = [0, W] × {0}.
This point has – implicitly – already been used in the proof of Lemma 8.13.

In the following, we discuss some properties of the interior attractor A0, Y for
Y ∈ (0, Y1]. Our first result consists in the perturbation of Corollary 8.5 (8) and it
reads as follows.

Theorem 8.16 Assume that (H3) holds. Then there exists Y2 ∈ (0, Y1] such that

A0, Y =

{(
*2
+2

)}
, ∀Y ∈ [0, Y2] .

In other words, the interior attractor reduces to the interior equilibrium for all Y > 0
small enough.



3268 LargeSpeedTravelingWaves for theRosenzweig-MacArthur predator-preyModelwith SpatialDiffusion

Proof The proof of this result relies on the application of 18.13’s criterion. Note
that due to Lemma 8.13, one has

inf
- ∈mT0

dist
(
-,A0, Y

)
≥ Θ, ∀Y ∈ [0, Y0] .

Let  ⊂ T be compact such that

inf
- ∈mT0

dist (-,  ) ≥ Θ
2
and �0, Y ⊂  ∀Y ∈ [0, Y0] .

As for the proof of Theorem8.4 (8) given in [114],we consider the function i(*,+) =
1 +*
*

+ b+1 for some suitable b. Then, since (�Y , � Y) → (�, �) as Y → 0 for the
topology of �1 (T), one has

[m* (i�Y) + m+ (i� Y)] → [m* (i�) + m+ (i�)] ,

uniformly for (*,+) ∈  as Y → 0. According to the computations (8.13) recalled
in Theorem 8.4 one has

max
(*,+ ) ∈ 

[m* (i�) + m+ (i�)] < 0.

As a consequence, there exists Y2 ∈ (0, Y1] small enough and X > 0 such that, for all
Y ∈ [0, Y2] one has

[m* (i�Y) + m+ (i� Y)] ≤ −X, ∀(*,+) ∈  .

Since A0, Y ⊂  for all Y small enough, the result follows using 18.13’s criterion. �
Lemma 8.17 Assume that (H2) holds. Then there exists Y3 ∈ (0, Y1] such that the
interior equilibrium

(
*2, +2

)
is an unstable spiral points for the semiflow )Y , for

all Y ∈ [0, Y3]. More precisely, the linearized equation of system (8.24) around the
interior equilibrium has two complex conjugated eigenvalues with strictly positive
real parts, that is a two dimensional unstable manifold.

Proof Consider the Jacobianmatrix, denoted by �Y , associated to (8.24) at
(
*2, +2

)
.

Since (�Y , � Y) is �1 (T)−close to (�, �) as Y → 0, one has

�Y = � + >(1) as Y → 0.

Herein � is the Jacobian matrix at
(
*2, +2

)
of (8.24) with Y = 0 (that corresponds

to system (8.9)). It is readily checked that the eigenvalues _± of � are simple so
that the eigenvalues of �Y , _±, Y are simple and continuous with respect to Y. Hence
_±, Y = _± + >(1). This completes the proof of the result since _± are conjugated
complex numbers with positive real parts. �

Note that the system (8.24) has the same equilibria as system (8.9) and the system
(8.24) has the boundary equilibria (*0, +0) and (*1, +1) given in (8.10) and the
unique interior equilibrium (*2, +2) defined in (8.11), whenever (H1) holds.



8.3 Application of a center manifold theorem to the traveling wave problem 327

As a consequence of the Poincaré-Bendixon theorem, one obtains the following
corollary.

Corollary 8.18 Assume that (H2) holds. Then there exists Y4 ∈ (0, Y3] such that for
all Y ∈ [0, Y4], the interior attractor A0, Y contains a (non-trivial) periodic orbit
surrounding the interior equilibrium

(
*2, +2

)
.

8.3.3 Uniqueness of the periodic orbit and interior attractor

In this section we discuss the uniqueness of the periodic orbit for system (8.24)
and its relationship with the global interior attractor when the parameters satisfy the
condition

(H2) ⇔ *2 <
W − 1

2
. (8.28)

The aim of this section is to prove the following uniqueness result.

Theorem 8.19 (Unique stable periodic orbit)Under condition (8.28), for all Y > 0
small enough, there exists a unique stable periodic orbit surrounding the interior
equilibrium and the system has no other periodic orbit.

According to Corollary 8.18, for each Y > 0 small enough, let (*Y (C), +Y (C)) de-
notes any non constant periodic orbit of (8.24) and )Y > 0 its period. The associated
closed curve is denoted by ΓY , that is

ΓY = {(*Y (C), +Y (C)) , C ∈ [0, )Y]} .

Recall that ΓY encloses the interior equilibrium (*2, +2). Note also that ΓY ⊂ A0, Y .
Hence Proposition 8.14 ensures that there exists \ > 0 such that for all Y > 0 small
enough

*Y (C) ≥ \, +Y (C) ≥ \, ∀C ∈ R.

Throughout this section we also denote by Γ0 the unique non constant periodic
orbit of (8.9), that corresponds to (8.24) with Y = 0 (see Theorem 8.4 (88)). The
corresponding periodic solution of (8.9) is denoted by (*0 (C), +0 (C)) while )0 > 0
is its period.

The idea of this proof is to show that ΓY becomes close to Γ0 as Y → 0. Then, as
in [25] for the unperturbed system, we will prove that for all Y > 0 small enough,∫ )Y

0
[m*�Y (*Y (C), +Y (C)) + m+� Y (*Y (C), +Y (C))] 3C < 0.

According to Hale [91], the latter condition means that ΓY is locally asymptotically
stable and then it follows that ΓY is unique when Y > 0 is small enough.

To prove Theorem 8.19, let us firstly prove the following lemma.

Lemma 8.20 Let condition (8.28) be satisfied. Then, for each X ∈
(
*2,

W−1
2

)
, there

exists Y(X) > 0 small enough such for all Y ∈ (0, Y(X)] the curve ΓY intersects
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the line * = X. In other words, one has max {*Y (C) : C ∈ [0, )Y]} ≥ X for all
Y ∈ (0, Y(X)].

Proof Consider the function

F (*,+) =
∫ *

*2

(
Vb

1 + b − 1 +ΨY (b,+)
)

Vb

1 + b

3b + 1
V

∫ +

+ 2

[ −+2
[

3[,

wherein we have set ΨY (*,+) = −+−1Φ2
Y (*,+). Note that since ΦY (*,+) is

�1−small uniformly on the compact set (*,+) ∈ T with + ≥ \ > 0 and * ≥ \ > 0
then ΨY is also �1−small on the same compact set.

Next let us compute the derivative of function F (*Y , +Y) with respect to C along
the periodic orbit ΓY , that yields

3F (*Y (C), +Y (C))
3C

=

(
V*Y

1 +*Y
− 1 +ΨY (*Y , +Y)

)
V*Y

1 +*Y

[
−Φ1

Y (*Y , +Y) + � (*Y , +Y)
]
+ 1
V

+Y −+2
+Y

+ ′Y

++ ′Y
∫ *Y

*2

(1 + b)m+ΨY (b,+Y)
Vb

3b.

This rewrites as

3F (*Y , +Y)
3C

=
+ ′Y
+Y

1 +*Y
V*Y

[
−Φ1

Y (*Y , +Y) + � (*Y , +Y) +
*Y

1 +*Y
(+Y −+2)

]
++ ′

∫ *Y

*2

1 + b
Vb

m+ΨY (b,+Y)3b,

and denoting by Ψ̃Y (*,+) = − 1+*
V*
Φ1
Y (*,+), this yields

3F (*Y , +Y)
3C

=
+ ′Y
V+Y

[
Ψ̃Y ((*Y , +Y) + 5 (*Y) −+2

]
++ ′Y

∫ *Y

*2

(m+ΨY (b,+Y))
Vb

1 + b

3b.

Integrating the above equality on [0, )Y] leads

0 =
∫ )Y

0

3F (*Y (B), +Y (B))
3C

3B =

∮
ΓY

{
1
V+

(
Ψ̃Y (*,+) + 5 (*) −+2

)
+

∫ *

*2

1 + b
Vb

m+ΨY (b,+)3b
}
3+.

Now denoting by ΩY the interior of the periodic curve ΓY and using the Green-
Riemann formula, we infer the following identity

0 =
∫
ΩY

{
1
V+

(
m* Ψ̃Y (*,+) + 5 ′(*)

)
+ 1 +*

V*
m+ΨY (*,+)

}
3*3+. (8.29)

Nowfix X ∈
(
*2,

W−1
2

)
and recall that inf* ≤X 5 ′(*) = 5 ′(X) > 0. Set = {(*,+) ∈

T : * ∈ [\, X], + ≥ \} and observe that m+ΨY and Ψ̃Y tend to 0 as Y → 0,
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uniformly for (*,+) ∈  . Hence since  is bounded by some constant ' > 0, we
obtain uniformly for (*,+) ∈  and for all 0 < Y � 1

1
+

(
m* Ψ̃Y (*,+) + 5 ′(*)

)
+ 1 +*

V*
m+ΨY (*,+) ≥ 5 ′(X) + >(1).

Hence there exists Y(X) > 0 such that for all Y ∈ (0, Y(X)] one has

sup
(*,+ ) ∈ 

1
+

(
m* Ψ̃Y (*,+) + 5 ′(*)

)
+ 1 +*

V*
m+ΨY (*,+) > 0.

As a consequence, since ΓY ∪ΩY ⊂  and ΓY encloses the equilibrium, if the curve
ΓY does not intersect the line * = X for all Y > 0 small enough then the integral
on the right hand side of (8.29) would be positive which is a contradiction and we
complete the proof of the lemma. �

We continue the proof of Theorem 8.19 by showing the following lemma.

Lemma 8.21 Let condition (8.28) be satisfied. LetΓ0 denote the unique non-constant
periodic orbit of system (8.9). Then the following convergence holds

lim
Y→0

d(ΓY , Γ0) = 0

where d(ΓY , Γ0) denotes the Hausdorff’s semi-distance given by

d(ΓY , Γ0) := sup
G∈ΓY

X(G, Γ0) with X(G, Γ0) = inf
H∈Γ0
‖G − H‖.

In other words, for each neighborhood + of Γ0 there exists Y+ > 0 such that

ΓY ⊂ +,∀Y ∈ (0, Y+ ] .

Furthermore the period )Y > 0 of ΓY converges to )0, the period of Γ0, as Y → 0.

Proof Fix*★ = 1
2

[
*2 + W−1

2

)
⊂

(
*2,

W−1
2

)
.

Step 1: From Lemma 8.20 for all Y > 0 small enough, there exists CY ∈ R such that

*Y (CY) > *★.

Step 2: Using Arzela-Ascoli’s theorem we can find a sequence Y= → 0 and C →
(* (C), + (C)) a complete orbit of the unperturbed system (8.9) such that(

*Y= (C + CY), +Y= (C + CY)
)
→ (* (C), + (C)) (8.30)

for the topology of the local uniform convergence for C ∈ R. The definition of CY
above ensures that

* (0) > *★. (8.31)

Moreover, since (*Y (C), +Y (C)) ∈ T and *Y (C) ≥ \ and +Y (C) ≥ \ for all Y small
enough and ∀C ∈ R, one obtains that
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(*,+) (C) ∈ T, ∀C ∈ R and* (C) ≥ \, + (C) ≥ \, ∀C ∈ R.

Hence the limit orbit (*,+) lies in the interior attractorAInt(R2
+) of (8.9) while (8.31)

implies that the complete orbit is not reduced to the interior equilibrium, therefore

lim
C→∞

X ((* (C), + (C)) , Γ0) = 0.

Step 3: Let us fix "0 =
(
*0, +0) ∈ Γ0 such that

� ("0) > 0 and � ("0) > 0.

In order to simplify the rest of the proof, we fix the norm ‖ · ‖1 in R2 given by

‖ (*,+) ‖1 = |* | + |+ |, ∀(*,+) ∈ R2.

Let [ > 0 be small enough and let Y0 = Y0 ([) > 0 be small enough (depending on
[) such that

�Y (") > � ("0)/2 and � Y (") > � ("0)/2,

whenever ‖" − "0‖1 ≤ [ and Y ∈ (0, Y0).
By using the sign of � and � around "0, we can find "1 = (*1, +1) a point on

Γ0 such that

"0 < "1 (that is,*0 < *1 and +0 < +1) and ‖"1 − "0‖1 < [.

Let X ∈ (0, [) be such that{
" ∈ R2 : ‖" − "1‖1 ≤ X

}
⊂

{
" ∈ R2 : " ≥ "0 and ‖" − "0‖1 ≤ [

}
.

Step 4: By using the continuous dependency of the semiflow generated (8.24) with
respect to the initial condition and with respect to the parameter Y we deduce that
we can find X̂ ∈ (0, X) and Y1 ∈ (0, Y0) such that every solution of (8.24) starting in
the ball

�("1, X̂) :=
{
" ∈ R2 : ‖" − "1‖1 ≤ X̂

}
will belong to the larger ball

�("1, X) :=
{
" ∈ R2 : ‖" − "1‖1 ≤ X

}
at time C = )0.
Step 5: By using the Step 2, for all = large enough, we find "Y= ∈ ΓY= belonging in
the ball �("1, X̂) and the solution of the approximated system (8.24) starting from
"Y= belongs to the ball �("1, X) at C = )0.

Assume by contradiction that this solution leaves the triangle

) =
{
" ∈ R2 : " ≥ "0 and ‖" − "0‖1 ≤ [

}
without intersecting the point "Y= . By using Jordan’s theorem, we obtain a contra-
diction since the closed curve ΓY= cannot return back through the triangle ) from
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the "exit segment"

( =
{
" ∈ R2 : " ≥ "0 and ‖" − "0‖1 = [

}
.

This completes the proof of the lemma. �

We now complete the proof of Theorem 8.19 by proving, announced above that
for all Y > 0 small enough∫ )Y

0
[m*�Y (*Y (C), +Y (C)) + m+� Y (*Y (C), +Y (C))] 3C < 0.

However this estimate follows from some properties of the unique periodic orbit
(*0, +0) of (8.9) together with the convergence result stated in Lemma 8.21. Indeed,
note that Cheng [25] proved that, the unique unperturbed periodic orbit Γ0 satisfies∫ )0

0
[m*� (*0 (C), +0 (C)) + m+� (*0 (C), +0 (C))] 3C < 0,

while Lemma 8.21 ensures that

lim
Y→0

∫ )Y

0
[m*�Y (*Y (C), +Y (C)) + m+� Y (*Y (C), +Y (C))] 3C =

∫ )0

0
[m*� (*0 (C), +0 (C)) + m+� (*0 (C), +0 (C))] 3C < 0.

This completes the proof of the estimate and thus the one of Theorem 8.19.
As a consequence of the above result, we now can state the following properties

of the interior attractor A0, Y for all 0 < Y � 1.

Theorem 8.22 Assume that (H2) holds. Then for all Y > 0 small enough, the interior
global attractor A0, Y consists of the unique interior equilibrium

(
*2, +2

)
and the

interior of the unique periodic orbit surrounding the interior equilibrium, and an
infinite number of heteroclinic orbits joining the unique interior equilibrium and the
unique periodic orbit.

8.3.4 Existence and uniqueness of a traveling wave joining ($, 0) and
the interior global attractor

In this section, we use the previous results to provide a description of the heteroclinic
orbits for (8.24) as well as their uniqueness.

Lemma 8.23 Assume that (H1) holds. Then, for all Y > 0 small enough the equilibria
(0, 0) and (W, 0) are saddle points for the semiflow)Y . More precisely, the linearized
equation of system (8.24) around the equilibrium (0, 0) (or (W, 0)) has one eigenvalue
with positive real part and one with negative real part.

Proof Let us denote by �Y the Jacobian matrix associated to (8.24) at (0, 0). Since
(�Y , � Y) is �1 (T)−close to (�, �) as Y → 0, one has
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�Y = � + >(1) as Y → 0,

where � denotes the Jacobian matrix at (0, 0) of (8.24) with Y = 0 (that corresponds
to system (8.9)). It is easy to check that the eigenvalues of � are the following:
_+,� = UW > 0 and _−,� = −1 < 0. The eigenvalues _±,�Y of �Y are continuous with
respect to Y. Hence _±,�Y = _±,� + >(1). This completes the proof of the result. �

Proposition 8.24 Assume that (H1) holds. Then system (8.24) admits a unique het-
eroclinic orbit going from (0, 0) to (W, 0), for all 0 < Y � 1 small enough.

Proof Since mDT is positively invariant with respect to the system (8.24) and

� (*,+) = U* (W −*) − *+

1 +* =
*

1 +* [ 5 (*) −+],

by using the following fact
lim
Y→0
‖ΦY ‖∞ = 0,

we can deduce that there exists a unique heteroclinic orbit of system (8.24) going
from (0, 0) to (W, 0). �

We now discuss the existence and uniqueness of heteroclinc orbits for (8.24)
joining the boundary to the interior attractor. As in the previous section, we make
use of the connectedness of the global attractor to derive the existence of such
connections. We then discuss further properties.
Connectedness arguments: The largest global attractor AY is connected. Since
any continuous map maps a connected set into a connected set, it follows that the
projection of AY on the horizontal and vertical axis is a compact interval.

The global attractor AY contains the interior global attractor A0, Y which is
compacts connected and locally stable and also contains the boundary attractor
Am,Y . The connectedness of AY and compactness of A0, Y and Am,Y imply

AY − A0, Y
⋃
Am,Y ≠ ∅.

We deduce that for each point (*,+) ∈ AY − A0, Y
⋃Am,Y the U and l limit sets

satisfy the following

U(*,+) ∈ Am,Y and l(*,+) ∈ A0, Y .

Finally since the boundary attractor has a Morse decomposition "1 = {(0, 0)} and
"2 = {(W, 0)} we have either

U(*,+) = "1 or U(*,+) = "2,∀(*,+) ∈ AY − A0, Y
⋃
Am,Y .

Proposition 8.25 Assume that (H1) holds. There for all Y small enough, system
(8.24) does not admit any heteroclinic orbit going from (0, 0) to the interior global
attractor.

Proof Assume by contradiction that there exists one. Note that
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+ ′ = −Φ2
Y (*,+) +

(
−1 + V*

1 +*

)
+.

We deduce that

+ (C) = exp
(∫ C

C0

−1 + V* (B)
1 +* (B) 3B

) (
+ (C0) +

∫ C

C0

−Φ2
Y (* (C), + (C)) exp

(∫ B

C0

1 − V* (C)
1 +* (C) 3C

)
3B

)
.

Since there exists ) < 0 such that * (C) remains sufficiently small for all negative
times C < ) and + (C0) > 0, we deduce that

lim
C→−∞

+ (C) = +∞

which contradicts the fact that the solution belongs to the global attractor and is
therefore bounded. �

We complete this section by proving the uniqueness of the traveling wave solution
connecting (W, 0) to the interior global attractor. The arguments of this proof extend
those used in [59].

Proposition 8.26 Assume that (H1) holds. Then for all Y > 0 small enough, system
(8.24) admits a unique heteroclinic orbit going from (W, 0) to the interior global
attractor.

Proof We only need to prove the uniqueness. The center-unstable manifold at (W, 0)
is a one dimensional locally invariant manifold. By using the same arguments as in
section 2 for the uniqueness of the heteroclinic orbit starting from (W, 0) for system
(18.9), we can prove the uniqueness of the heteroclinic orbit going from (W, 0) to the
interior global attractor for system (8.24). �

8.4 Numerical simulations

In this section we intend to observe the previous results numerically. We run some
numerical simulations for the system

*C = 3*GG + U* (W −*) −
*+

1 +* , for G ∈ [0, 1000]

+C = +GG −+ + V
*+

1 +* , for G ∈ [0, 1000]
(8.32)

with Neumann boundary conditions

*G (C, G) = +G (C, G) = 0, for G = 0 and G = 1000,

and the initial values

* (0, G) = W and + (0, G) = 0.1 ∗ exp (−XG) .

Throughout the simulations the parameters will be unchanged and fixed as follows
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3 = 1, U = 1/4, W = 4, V = 2.

In order to capture large speed traveling waves, we impose exponentially decaying
initial distribution for the predator while the initial distribution for the prey is set to its
carrying capacity W. As for the usual Fisher-KPP equation, we expect that reducing
the exponential decay rate X increases the wave speed of the predator invasion. Using
formal computations around the unstable predator free equilibrium (W, 0) and using
the usual antsatz + (C, G) = 4−X (G−2C) , we obtain the following formula for the wave
speed depending on X

2 =

{
2
√
 if X >

√
 ,

X +  
X
if X ∈ (0,

√
 ),

with  =
W(V − 1) − 1

W + 1
> 0.

With the above parameter set, we have
√
 ≈ 0.77. Below we perform numerical

simulations of the model with two different decay rates X = 0.1 and X = 1. According
to our formal wave speed computations, we expect to obtain a predator invasion with
a small speed ( in fact the minimal wave speed) for X = 1 and with a larger wave
speed with X = 0.1.

In Figure 8.2, we observe the traveling wave joining (W, 0) and periodic wave
train when we start from a + (0, G) with X = 0.1.
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Fig. 8.2: In this figure we plot * (C, G) (left handside) and + (C, G) (right handside)
whenever the parameter X = 0.1 and C = 75 (above) and C = 150 (below). The
initial distribution * (0, G) = W and + (0, G) = 0.1 ∗ exp (−0.1G). We observe a
traveling wave joining (W, 0) and a periodic waves train with both predator and prey
oscillating periodically.
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In Figure 8.3, we observe slower predator invasion followed by some more com-
plex behaviours whenever we start from a + (0, G) with X = 1. The complexity in
such a problem was already observed by Sherratt, Smith and Rademacher [193] in
the multi-dimensional case.



8.4 Numerical simulations 337

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

U
(3

0
0

,x
)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

V
(3

0
0

,x
)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

U
(6

0
0

,x
)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

V
(6

0
0

,x
)

Fig. 8.3: In this figure we plot * (C, G) (left handside) and + (C, G) (right handside)
whenever the parameter X = 1 and C = 300 (above) and C = 600 (below). The initial
distribution * (0, G) = W and + (0, G) = 0.1 ∗ exp (−G). We observe a traveling wave
joining (W, 0) and the positive equilibrium superposed with a periodic traveling
pulse.
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The Figure 8.2 corresponds to our results when the speed of the traveling wave
(with X = 0.1) is larger than in Figure 8.3 (with X = 1). The description of the small
speed traveling waves is difficult question and left for further studies.

8.5 Discussion

In this paper we have studied all the large speed traveling solutions for the one-
dimensional diffusive Rosenzweig-MacArthur predator-prey system. The method-
ology developed in this manuscript is based on center manifold reduction coupled
with global attractor theory and its topological properties to understand some prop-
erties of the entire orbits (traveling waves, periodic wave train), for which the above
mentioned analytical tools are particularly well adapted. Note that global attractor
allows to obtain the existence of complete orbits, since every point of global attractor
belongs to such a bounded complete orbit. Furthermore, the connectedness of global
attractor allows in particular to prove the existence of complete orbits joining the
boundary region and the interior equilibrium or periodic orbit. These complete orbits
are nothing but traveling waves we are interested in.

As far as the reduction procedure is concerned, Fenichel’s results about the
persistence of normally hyperbolic invariant manifold may also be used. The two
reduction techniques, based on Fenichel’s theorem and center manifold theorem are
comparable. Both methodologies provides the existence of manifold that is only
locally invariant by the system (see [75, 216]).

In order to describe the system restricted to such a locally invariant manifold, one
needs to carefully consider the truncation of the original system. It is important to
observe that we consider the complete orbits that remain into the un-truncated region
of the state space, where the two systems (with and without truncation) coincide.
These tools permit to reduce the dimension as long as some bounded complete orbits
remain in the un-truncated region of the state space.

Let us mention that such reduction arguments can be extended to infinite dimen-
sional systems. We refer the reader to the books of Haragus and Iooss [98] and
of Magal and Ruan [155] for infinite dimensional extension of the center manifold
theorem. We also refer to Bates, Lu and Zeng [14, 15] and to Magal and Seydi [158]
for results about the perturbation of normally hyperbolic manifold in infinite dimen-
sional dynamical systems. More specifically the recent work of Magal and Seydi
[158] deals with small perturbation of normally hyperbolic manifold, extended in
particular the center manifold by allowing a nonlinear dynamic in the unperturbed
central part of the system, that is roughly speaking for rather general – infinite
dimensional – systems before perturbation with the form{

* ′(C) = � (* (C)),
+ ′(C) = �(* (C))+ (C),

wherein * corresponds to the central part and + corresponds to the hyperbolic part
of the system.
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This latest form is not only well adapted for the travelingwave problem considered
in this manuscript, but similar method can be applied to fast traveling wave for
general reaction-diffusion systems (see [98, 155] for more results). As mentioned in
the introduction this method can be developed in particular to handle more general
nonlinearities. On the other hand, as mention above, since the center manifold
is a flexible analytical tool with infinite dimensional extensions, the methodology
developed in this work can also be used to study large speed traveling wave solutions
for some infinite dimensional problems, including as a special case reaction-diffusion
systems with time delay.

To conclude we provide in the article a new combination of reduction techniques
and global analysis based on global attractors theory. Such amethod can be employed
in many other contexts to obtain the existence of large speed traveling waves.

8.6 Remarks and Notes
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