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Infectious disease models and their meta-
epidemiology

Models have a long tradition of successful (or at least insightful) applications
in infectious diseases, e.g. SIR model almost a century

Can be very useful conceptually, with diverse interesting applications and
broadening spectrum

Mixture of data and speculation/assumptions

Acquired tremendous prominence during the COVID-19 pandemic

Crash test for models and for science at large

Used by both highly specialized and well-trained people and by others who
jumped into the fray

Long-standing issues becoame more manifest under the new expedient and
high-visibility circumstances



720,000
scientists
published

scientific papers
on COVID-19
iIndexed by
August 1, 2021

(loannidis J. et al, Royal
Society Open Science 2021)
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Figure 1. Topics of prominence for COVID-19 authors and publications. The columns represent the progress of the spread at three
different measuring points: by end of February 2020, end of June 2020, end of October 2020 and end of July 2021. The first row
represents the spread of authors of COVID-19 papers. The authors are assigned to their most dominant topic in their career. The data
are filtered to include only topics with greater than or equal to five authors assigned. The second row shows similarly the topics of
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Massive covidization of research citations and the citation elite
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Massive scientific productivity accompanied the COVID-19 pandemic. We evaluated
the citation impact of COVID-19 publications relative to all scientific work published
in 2020 to 2021 and assessed the impact on scientist citation profiles. Using Scopus
data until August 1, 2021, COVID-19 items accounted for 4% of papers published,
20% of citations received to papers published in 2020 to 2021, and >30% of citations
received in 36 of the 174 disciplines of science (up to 79.3% in general and internal
medicine). Across science, 98 of the 100 most-cited papers published in 2020 to 2021
were related to COVID-19; 110 scientists received 10,000 citations for COVID-19
work, but none received >10,000 citations for non—-COVID-19 work published in
2020 to 2021. For many scientists, citations to their COVID-19 work already
accounted for more than half of their total career citation count. Overall, these data
show a strong covidization of research citations across science, with major impact on
shaping the citation elite.

Significance

The COVID-19 pandemic saw a
massive mobilization of the
scientific workforce. We evaluated
the citation impact of COVID-19
publications relative to all
scientific work published in 2020
to 2021, finding that 20% of
citations received to papers
published in 2020 to 2021 were to
COVID-19-related papers. Across



Massive covidization of science

o 98 of the top-100 most-cited scientific articles published in 2020
were on COVID-19

o Tens of thousands of scientists received more citations to their
work in 2020-2021 than they had received in their entire career.

o Among the top-100 ranked scientists across science in 2020-
2021, 70 focused on Health Sciences subfields and most
(57/70) had risen to such extremely high ranks even though
they did not belong to the top-1000 ranked in 2018-2019. 12 of
the 70 were editors or journal staff who published profusely in
their journals, mostly on COVID-19.

o The massive funding of COVID-19 research will make reversal
of science covidization difficult after the end of the pandemic.
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Abstract

Background: Since the start of the COVID-19 outbreak, a large number of COVID-19-related papers have been
published. However, concerns about the risk of expedited science have been raised. We aimed at reviewing and
categorizing COVID-19-related medical research and to critically appraise peer-reviewed original articles.

Methods: The data sources were Pubmed, Cochrane COVID-19 register study, arXiv, medRxiv and bioRxiv, from 01/
11/2019 to 01/05/2020. Peer-reviewed and preprints publications related to COVID-19 were included, written in
English or Chinese. No limitations were placed on study design. Reviewers screened and categorized studies
according to i) publication type, i) country of publication, and Jif) topics covered. Original articles were critically
appraised using validated quality assessment tools.
Results: Among the 11,452 publications identified, 10,516 met the inclusion criteria, among which 7468 (71.0%)
were peer-reviewed articles. Among these, 4190 publications (56.1%) did not include any data or analytics
(comprising expert opinion pieces). Overall, the most represented topics were infectious disease (n = 2326, 22.1%),
. tht H epidemiology (n = 1802, 17.1%), and global health (n = 1602, 15.2%). The top five publishing countries were China
SCIentI IC qu a |ty 0 C VI D'1 9 a n SARS COV'Z (25.8%), United States (22.3%), United Kingdom (8.8%), Italy (8.1%) and India (3.4%). The dynamic of publication

showed that the exponential growth of COVID-19 peer-reviewed articles was mainly driven by publications without

' ' N . . v original data (mean 261.5 articles + 51.1 per week) as compared with original articles (mean of 69.3 + 22.3 articles
u bl |cat|0 nS | n the hl hest |m act mEd | cal per week). Original articles including patient data accounted for 713 (9.5%) of peer-reviewed studies. A total of 576

p g p original articles (80.8%) showed intermediate to high risk of bias. Last, except for simulation studies that mainly
used large-scale open data, the median number of patients enrolled was of 102 (IQR = 37-337).

H i Conclusions: Since the beginning of the COVID-19 pandemic, the majority of research is composed by publications

J Ou rna |S d u rI ng the ea rly pha Se Of the without original data. Peer-reviewed original articles with data showed a high risk of bias and included a limited number
of patients. Together, these findings underscore the urgent need to strike a balance between the velocity and quality of
research, and to cautiously consider medical information and clinical applicability in a pressing, pandemic context.
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Why might models fail”?

European Journal of Epidemiology (2020) 35:733-742
https://doi.org/10.1007/510654-020-00669-6
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A case study in model failure? COVID-19 daily deaths and ICU bed
utilisation predictions in New York state
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A case study in model failure? COVID-19 daily deaths and ICU bed utilisation predictions in New... 735
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Fig.1 A comparison of the daily death counts ground truth from CovidTracking (black), JHURD (red), JHUTS (dark blue), NYT (green) and
USAFacts (light blue) for the period March 15-June 5 for NY
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Fig.3 Discrepancies between each model and the ground truth, as measured by the maximum absolute percentage error (top) and the mean
absolute percentage error (bottom), for each version of the ground truth
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Fig.6 Predicted ICU bed usage (black) and its 95% PIs (grey shaded area) in NY for each reporting date, along with the ground truth (red) and
the maximum ICU capacity inclusive of non-COVID-19 ICU beds (blue) obtained from THE CITY
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Table 3

Potential reasons for the failure of COVID-19 forecasting along with examples and extent of potential amendments.

Reasons

Examples

How to fix: extent of potential amendments

Poor data input on key
features of the pandemic
that go into theory-based
forecasting (e.g. SIR models)

Early data providing estimates for case fatality
rate, infection fatality rate, basic reproductive
number, and other key numbers that are
essential in modeling were inflated.

May be unavoidable early in the course of
the pandemic when limited data are
available; should be possible to correct
when additional evidence accrues about
true spread of the infection, proportion of
asymptomatic and non-detected cases, and
risk-stratification. Investment should be
made in the collection, cleaning, and
curation of data.

Poor data input for
data-based forecasting (e.g.
time series)

Lack of consensus as to what is the ‘ground
truth” even for seemingly hard-core data such
as the daily the number of deaths. They may
vary because of reporting delays, changing
definitions, data errors, etc. Different models
were trained on different and possibly highly
inconsistent versions of the data.

As above: investment should be made in
the collection, cleaning, and curation of
data.

Wrong assumptions in the
modeling

Many models assume homogeneity, i.e. all
people having equal chances of mixing with
each other and infecting each other. This is an
untenable assumption and, in reality,
tremendous heterogeneity of exposures and
mixing is likely to be the norm. Unless this
heterogeneity is recognized, estimates of the
proportion of people eventually infected before
reaching herd immunity can be markedly
inflated

Need to build probabilistic models that
allow for more realistic assumptions;
quantify uncertainty and continuously
re-adjust models based on accruing
evidence

High sensitivity of estimates

For models that use exponentiated variables,
small errors may result in major deviations
from reality

Inherently impossible to fix; can only
acknowledge that uncertainty in
calculations may be much larger than it
seems



Lack of incorporation of
epidemiological features

Almost all COVID-19 mortality models focused
on number of deaths, without considering age
structure and comorbidities. This can give very
misleading inferences about the burden of
disease in terms of quality-adjusted life-years
lost, which is far more important than simple
death count. For example, the Spanish flu
killed young people with average age of 28
and its burden in terms of number of
quality-adjusted person-years lost was about
1000-fold higher than the COVID-19 (at least
as of June 8, 2020).

Incorporate best epidemiological estimates
of age structure and comorbidities in the
modeling; focus on quality-adjusted
life-years rather than deaths

Poor past evidence on
effects of available
interventions

The core evidence to support
“flatten-the-curve” efforts was based on
observational data from the 1918 Spanish flu
pandemic on 43 US cites. These data are
>100-years old, of questionable quality,
unadjusted for confounders, based on
ecological reasoning, and pertaining to an
entirely different (influenza) pathogen that had
~100-fold higher infection fatality rate than
SARS-CoV-2. Even thus, the impact on
reduction of total deaths was of borderline
significance and very small (10%-20% relative
risk reduction); conversely, many models have
assumed a 25-fold reduction in deaths (e.g.
from 510,000 deaths to 20,000 deaths in the
Imperial College model) with adopted
measures

While some interventions in the broader
package of lockdown measures are likely to
have beneficial effects, assuming huge
benefits is incongruent with past (weak)
evidence and should be avoided. Large
benefits may be feasible from precise,
focused measures (e.g. early, intensive
testing with thorough contact tracing for
the early detected cases, so as not to allow
the epidemic wave to escalate [e.g. Taiwan
or Singapore]; or draconian hygiene
measures and thorough testing in nursing
homes) rather than from blind lockdown of
whole populations.




Reasons

Examples

How to fix: extent of potential amendments

Lack of transparency

The methods of many models used by policy
makers were not disclosed; most models were
never formally peer-reviewed, and the vast
majority have not appeared in the
peer-reviewed literature even many months
after they shaped major policy actions

While formal peer-review and publication
may unavoidably take more time, full
transparency about the methods and
sharing of the code and data that inform
these models is indispensable. Even with
peer-review, many papers may still be
glaringly wrong, even in the best journals.

Errors

Complex code can be error-prone, and errors
can happen even by experienced modelers;
using old-fashioned software or languages can
make things worse; lack of sharing code and
data (or sharing them late) does not allow
detecting and correcting errors

Promote data and code sharing; use
up-to-date and well-vetted tools and
processes that minimize the potential for
error through auditing loops in the
software and code

Lack of determinacy

Many models are stochastic and need to have
a large number of iterations run, perhaps also
with appropriate burn-in periods; superficial
use may lead to different estimates

Promote data and code sharing to allow
checking the use of stochastic processes
and their stability

Looking at only one or a
few dimensions of the
problem at hand

Almost all models that had a prominent role
in decision-making focused on COVID-19
outcomes, often just a single outcome or a few
outcomes (e.g. deaths or hospital needs).
Models prime for decision-making need to
take into account the impact on multiple
fronts (e.g. other aspects of health care, other
diseases, dimensions of the economy, etc.)

Interdisciplinarity is desperately needed; as
it is unlikely that single scientists or even
teams can cover all this space, it is
important for modelers from diverse ways
of life to sit at the same table. Major
pandemics happen rarely, and what is
needed are models which combine
information from a variety of sources.
Information from data, from experts in the
field, and from past pandemics, need to
combined in a logically consistent fashion if
we wish to get any sensible predictions.



Lack of expertise in crucial
disciplines

The credentials of modelers are sometimes
undisclosed; when they have been disclosed,
these teams are led by scientists who may
have strengths in some quantitative fields, but
these fields may be remote from infectious
diseases and clinical epidemiology; modelers
may operate in subject matter vacuum

Make sure that the modelers’ team is
diversified and solidly grounded in terms of
subject matter expertise

Groupthink and bandwagon
effects

Models can be tuned to get desirable results
and predictions; e.g. by changing the input of
what are deemed to be plausible values for
key variables. This is especially true for

models that depend on theory and speculation,

but even data-driven forecasting can do the
same, depending on how the modeling is
performed. In the presence of strong
groupthink and bandwagon effects, modelers
may consciously fit their predictions to what
is the dominant thinking and expectations -
or they may be forced to do so.

Maintain an open-minded approach;
unfortunately, models are very difficult, if
not impossible, to pre-register, so
subjectivity is largely unavoidable and
should be taken into account in deciding
how much forecasting predictions can be
trusted

Selective reporting

Forecasts may be more likely to be published
or disseminated if they are more extreme

Very difficult to diminish, especially in
charged environments; needs to be taken
into account in appraising the credibility of
extreme forecasts
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[ Identification of studies via databases and registers

Records identified from PubMed (N=3987, n2019 =1263, n2021=2724) on Mar 30* 2022.

nze21=2086) on Mar 30 2022.

Records identified from PubMed using free full-text filter (N = 2903, n101s=816,

!

Records screened using eligibility

»| Records excluded
criteria (n =~ 2903) (n = 1340)

v

Reports sought for retrieval of

model type and disease modelled (n=167)
(n =~ 1563)
—— :
y
Papers included in analysis B
(n= 1338) 2

Reports not retrieved (not PMC open
access subset)

Excluded due to ineligibility (n=58)

Not a model (n—9)

Not a prediction of
infectious disease dynamics
(n=37)

Ineligible language (n=1)
Not one of the specified
types of models (n=8)

Not a publication (retraction
or erratum) (n=2)

Duplicate (Preprint and
original article (n=1)

Fig 1. Flow chart for study selection.

https://doi.org/10.1371/journal.pone.0275380.g001




Table 1. Characteristics of eligible studies.

2019 2021 non-COVID-19
N (%) N (%)
216 articles 304 articles

Type of model
Compartmental 26 (12.0) 91 (29.9)
Time series 80 (37.0) 82 (27.0)
Spatiotemporal 78 (36.1) 90 (29.6)
Agent-based 31(14.4) 37 (12.2)
Multiple 1(0.5) 4(1.3)
Type of disease
COVID-19 0(0) 0 (0)
General 33(15.3) 97 (31.9)
Influenza illnesses 20(9.3) 20 (6.6)
Malaria 15(6.9) 22(7.2)
Dengue 15(6.9) 20 (6.6)
Others 133 (61.6) 145 (48)
Journal
PLoS One 26 (12.0) 27 (8.9)
Sci Rep 20(9.3) 19 (6.3)
Int ] Environ Res Public Health 15(6.9) 21 (6.9)
BMC Infect Dis 16 (7.4) 12 (3.9)
PLoS Negl Trop Dis 11(5.1) 22(7.2)
PLoS Comput Biol 10 (4.6) 10 (3.3)
BMC Public Health 6(2.8) 9(3.0)
Chaos Solitons Fractals 0(0) 5(1.6)
Others 112 (52.0) 179 (58.9)

https://doi.org/10.1371/journal.pone.0275380.t001

2021 COVID-19
N (%)
818 articles

394 (48.0)
175 (21.4)
111 (13.6)
118 (14.4)
20 (2.4)

818 (100)
0(0)
0(0)
0(0)
0(0)
0(0)

62 (7.6)
52 (6.4)
27 (3.3)
10 (1.2)
0(0)
9(1.1)
13 (1.6)
20 (2.4)
625 (76.4)

All publications
N (%)
1338 articles

511 (39.2)
337(25.2)
279 (20.9)
186 (13.9)
25 (1.9)

818 (61.1)
130 (9.7)
40 (3.0)
37 (2.8)
35 (2.6)

278 (20.8)

115 (8.6)
91 (6.8)
63 (4.7)
38 (2.8)
33(2.5)
29 (2.2)
28 (2.1)
25 (1.9)
916 (68.5)



Table 2. Key transparency indicators overall and per year/COVID-19 focus.

N=1338 Code sharing Data sharing Registration COI Funding
N (%) N (%) N (%) N (%) N (%)
Overall 288 (21.5) 332 (24.8) 6 (0.4) 1197 (89.5) 1109 (82.9)
2019 38 (17.6) 59 (27.3) 3(1.4) 197 (91.2) 202 (93.5)
2021 250 (22.3) 273 (24.3) 3(0.3) 1000 (89.2) 907 (80.8)
COVID-19 207 (25.3) 199 (24.3) 0 730 (89.2) 635 (77.6)
non-COVID-19 43 (14.1) 74 (24.3) 3(1) 270 (88.8) 272 (89.5)
Fisher’s exact test (p-values)
2019 vs 2021 0.15 0.35 0.06 0.45 1.0x10°
2019 vs 2021 non-COVID-19 0.33 0.48 0.70 0.46 0.12
2021 non-COVID-19 vs. COVID-19 51x10° 1 0.02 0.83 35%x10°

COI: conflicts of interest

https://doi.org/10.1371/journal.pone.0275380.t002



Table 3. Key transparency indicators per disease type, model type, and journal.

Code sharing

N (%)
Disease modelled
p (Fisher’s exact test) 7.4%107°
COVID-19 207 (25.3)
General (theoretical model) 31(23.8)
Influenza illnesses 6 (15)
Malaria 2(5.4)
Dengue 12 (34.3)
Other diseases 30 (10.8)
Type of model
p (Fisher’s exact test) 0.001
Compartmental 104 (20.4)
Time Series 65 (19.3)
Spatiotemporal 52 (18.6)
Agent-based 63 (33.9)
Multiple 4(16)
Journal
p (Fisher exact) 0.15
PLoS One 30 (26.1)
Sci Rep 23 (25.3)
Int J Environ Res Public Health 8(12.7)
Other journals 227 (21.2)

COL: conflicts of interest

Data sharing

N (%)

0.47
199 (24.3)
34 (26.2)

10 (25)
7 (18.9)
13 (37.1)
69 (24.8)

0.006
103 (20.2)
81 (24)
84 (30.1)
58 (31.2)
6(24)

1.7 x 107"
63 (54.8)
21(23.1)
7(11.1)

241 (22.5)

Registration
N (%)

0.001
0(0)
0(0)
0 (0)

2(5.4)
0 (0)

4(1.4)

0.15
0(0)
2(0.6)
3(1.1)
1(0.5)
0 (0)

0.11
1(0.9)
1(1.1)
1(1.6)
3(0.3)

COI
N (%)

0.01
730 (89.2)
94 (72.3)
38 (95)
37 (100)
35 (100)
263 (94.6)

<1x107
419 (82)

319 (94.7)

263 (94.3)
173 (93)
23 (92)

25% 107"
115 (100)
91 (100)
63 (100)
928 (86.8)

Funding
N (%)

28x107"°
635 (77.6)
108 (83.1)
39 (97.5)
35 (94.6)
35 (100)
257 (92.4)

0.008
405 (79.3)
276 (81.9)
247 (88.5)
161 (86.6)

20 (80)

34x107
115 (100)
70 (76.9)
63 (100)
861 (80.5)

https://doi.org/10.1371/journal.pone.0275380.t003



Manual validation

We also checked a random sample of 29 (10%) of papers that were found to be sharing code,
33 (10%) of those sharing data, and all 6 that were registered. Of these, 24/29 (82.8%) actually
shared code, 29/33 (87.9%) actually shared data and 5/6 (83.3%) were indeed registered. The
papers that used registration were two malaria models [24, 25], one vector model [26] (which
focused on malaria vectors) one polio (Sabin 2 virus [27]) model and one rotavirus model
[28]. The majority were from 2021 [24, 26, 27] and were also malaria models (two malaria and
one vector that was essentially malaria [24-26]). A majority was also classified as spatiotempo-
ral [24-26]. We also checked a random sample of 10% of the negatives i.e. the ones that were
classified as non-transparent and found that 133/133 (100%) weren’t registered, 95/106
(89.6%) didn’t share code and 75/101 (74.3%) didn’t share data. Therefore, the corrected esti-
mates of the proportions of publications sharing code and sharing data were (0.215 x 0.828) +
(0.785 x 0.104) = 26.0% and (0.248 x 0.879) + (0.752 x 0.257) = 41.1%, respectively. The mod-
est number of false-negatives for detecting data sharing through the text mining algorithms
reflected mostly situations where it was mentioned that the data can be downloaded through a
link, or the reference was in a figure, or the phrasing was interwined and difficult to separate
effectively by the text mining algorithm.

Finally, of the 120 articles (10%) that text mining found that they contained a COI state-
ment, there was indeed a placeholder for this statement in all articles, but the vast majority of
the statements (115 (95.8%)) disclosed no conflict at all. Of the 111 (10%) articles where text
mining found that they contained a funding statement, all of them had indeed such a state-
ment, but 13 (11.7%) stated that they had no funding. Examining a random sample of 10% of
the negatives regarding COI and funding disclosures we found that 19/23 (82.6%) of funding
disclosures and 14/14 (100%) of COI disclosures were true negatives.
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ORIGINAL ARTICLE

Effect estimates of COVID-19 non-pharmaceutical interventions are
non-robust and highly model-dependent

Vincent Chin®®, John P.A. Ioannidis%"&"* Martin A. Tanner¢, Sally Cripps®°

Abstract

Objective: To compare the inference regarding the effectiveness of the various non-pharmaceutical interventions (NPIs) for COVID-
19 obtained from different SIR models.

Study design and setting: We explored two models developed by Imperial College that considered only NPIs without accounting for
mobility (model 1) or only mobility (model 2), and a model accounting for the combination of mobility and NPIs (model 3). Imperial
College applied models 1 and 2 to 11 European countries and to the USA, respectively. We applied these models to 14 European
countries (original 11 plus another 3), over two different time horizons.

Results: While model 1 found that lockdown was the most effective measure in the original 11 countries, model 2 showed that
lockdown had little or no benefit as it was typically introduced at a point when the time-varying reproduction number was already
very low. Model 3 found that the simple banning of public events was beneficial, while lockdown had no consistent impact. Based on
Bayesian metrics, model 2 was better supported by the data than either model 1 or model 3 for both time horizons.

Conclusion: Inferences on effects of NPIs are non-robust and highly sensitive to model specification. In the SIR modeling framework,
the impacts of lockdown are uncertain and highly model-dependent. © 2021 Elsevier Inc. All rights reserved.



Different models, different inferences

Chin, loannidis, Tanner, Cripps.
J Clin Epidemiol 2021
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Table 1. Comparison of the value of R, at lockdown (LD) and its 95% Cls between models 1 and 2 for all eleven countries analyzed in Flaxman
et al. [1] for the time horizon March 4th to May 5th. Values of basic reproduction number Ry and R: immediately after the introduction of other
NPIs for both models are given in Table A.5 in the Appendix.

Model 1 Model 2

Country R; one day before LD R; at LD % change R atLD

UK 3.39 0.68 —79.67 1.11
(2.84, 3.94) (0.55, 0.81) (—85.29, —72.96) (0.75, 1.60)

Austria 2.96 0.52 —81.42 0.87
(1.67, 4.50) (0.40, 0.64) (-88.80, -69.47) (0.42, 1.55)

Belgium 4.30 0.90 —78.31 4.83
(2.87, 6.06) (0.78, 1.02) (—85.99, -67.26) (3.47, 6.45)

Denmark 3.25 0.68 —78.11 0.58
(1.98, 4.81) (0.57, 0.80) (—86.01, —65.70) (0.28, 1.05)

France 4.06 0.71 -82.08 1.69
(2.98, 4.95) (0.61, 0.82) (—87.07, —74.21) (1.16, 2.39)

Germany 3.68 0.73 —79.99 1.02
(2.94, 4.51) (0.60, 0.85) (—85.84, —72.48) (0.68, 1.47)

Italy 2.90 0.70 —75.35 1.30
(2.17, 3.46) (0.63, 0.78) (-80.98, -66.51) (0.86, 1.76)

Norway 2.42 0.40 —82.30 0.50
(1.36, 3.71) (0.25, 0.57) (—91.04, —69.16) (0.27,0.79)

Spain 4.29 0.67 —-84.05 1.78
(3.35, 5.39) (0.59, 0.75) (—88.43, —78.72) (1.22, 2.42)

Sweden - - - -
Switzerland 2.67 0.55 —78.61 0.93

(1.93, 3.48) (0.44, 0.68) (—86.43, —67.32) (0.62, 1.31)




Table 2. Estimates and standard errors of the differences of various information criteria against model 1; the Watanabe-Akaike information criterion,
WAIC1 = -2lppd + 2pw a1c1 and W AIC2 = —2lppd 4 2pw a1¢:o Which uses Ippd as a measure of fit with pw 4 [c1 and pw a1 as the
effective number of parameters to penalize the fit respectively; the Deviance information criterion DIC = —2log p(y|0 Bayes) + 2pn1¢ Which

uses log p(y|énaym), as the measure of fit, and pp ¢ as the penalty. Note that a negative value implies a better predictive model compared to

model 1, and the preferred model for each criteria and time period is shown in bold. See Appendix B for computational details.

Model Time period Awmm AWA]CQ ADIC

2 Up to May 5th ~31.21 £ 0.30 ~29.95 £0.34 -30.46+0.28
3 Up to May 5th -24.03 +£0.31 -22.49 1 0.36 -23.2910.29
2 Up to July 12th -54.27 + 1.78 -49,93 1 3.42 -51.95 1 0.37
3 Up to July 12th -36.74 £ 1.30 -32.24 £3.22 -34.97 £0.37




Table 3. Comparison of the value of I2: at lockdown (LD) and its 95% Cls between models 1 and 2 for all eleven countries analyzed in Flaxman
et al. [1] and an additional three countries of Greece, Netherlands and Portugal, for the time horizon March 4th to July 12th.

Country Model 1 Model 2
R one day before LD Ry atlD % change Ry atlD
UK 3.08 0.81 -73.25 1.20
(2.32, 3.78) (0.76, 0.86) (—79.28, —64.03) (0.72, 1.82)
Austria 1.82 0.61 —64.58 0.72
(1.16, 2.81) (0.55, 0.67) (—78.02, —47.53) (0.30, 1.42)
Belgium 2.10 0.70 —65.58 1.43
(1.46, 2.98) (0.67, 0.73) (-76.83, -51.27) (0.90, 2.05)
Denmark 1.73 0.68 —59.12 0.56
(1.16, 2.48) (0.60, 0.76) (—72.79, —41.89) (0.25, 1.05)
France 2.26 0.71 ~67.37 1.77
(1.59, 3.12) (0.67, 0.75) (—77.65, —53.86) (1.11, 2.60)
Germany 3.31 0.71 —78.13 1.12
(2.51, 4.19) (0.66, 0.76) (-83.73, -70.87) (0.69, 1.67)
Italy 1.74 0.75 —55.66 1.41
(1.26, 2.32) (0.71, 0.79) (—68.31, —39.35) (0.88, 2.03)
Norway 1.52 0.57 -60.72 0.53
(0.97, 2.22) (0.48, 0.66) (—74.83, —40.59) (0.27, 0.88)
Spain 3.47 0.75 —77.74 1.74
(2.51, 4.46) (0.72, 0.79) ( -83.34, -69.56) (1.07, 2.49)
Sweden - - - -
Switzerland 1.76 0.61 —64.49 0.96
(1.25, 2.41) (0.57, 0.64) (—75.75, —50.23) (0.58, 1.39)
Greece 1.46 0.69 51.03 0.35
(0.90, 2.05) (0.63, 0.74) (—67.21, —22.64) (0.16, 0.61)
Netherlands 1.77 0.66 —62.14 1.00
(1.34, 2.25) (0.61, 0.70) (-72.27, -49.34) (0.61, 1.44)
Portugal 1.74 0.83 -50.31 0.66

(1.12, 2.39) (0.80, 0.86) (—65.50, —25.24) (0.36, 1.07)




Table A.4. RMSE of daily death counts for models 1 and 2 for the data
up to May 5th and July 12th. A lower RMSE between models 1 and 2
for each country is shown in bold.

Up to May 5Sth Up to July 12th
Country Model 1 Model 2 Model 1 Model 2
UK 14541 145.64 134.26 129.68
Austria 5.88 5.88 448 4.57
Belgium 71.16 52.91 25.20 15.84
Denmark 3.27 3.08 242 2.39
France 242.07 227.22 187.33 168.34
Germany 48.62 48.75 37.04 36.32
Italy 85.96 71.29 63.47 57.42
Norway 3.06 3.07 2.21 2.22
Spain 95.23 9243 143.82 135.03
Sweden 35.82 35.55 33.12 33.09
Switzerland 14.61 14.34 10.37 10.31
Greece 1.72 1.91
Netherlands 21.48 21.01
Portugal 6.29 5.75
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Excess death calculations depend on modeling
(Levitt, Zonta, loannidis, Envir Res 2022)

We assessed excess deaths for the entire two-year period 2020-2021 33 high-
income countries with available weekly mortality data according to age strata in
mortality.org.

Total population of 1 billion, 1.9 million COVID19 deaths recorded during this
period.

Three published modeling calculations do not use age-adjustment
The eLife modeling estimates 2.0 million deaths

The Economist modeling estimates 2.2 million deaths

The Lancet/IHME modeling estimates 2.8 million deaths

Our modeling estimates 2.2 million deaths without age adjustment
1.5 million deaths with age adjustment



A close look at excess deaths (2020-2021) in Germany

e Our age-adjusted estimate is 43,000 excess deaths

o Without age-adjustment we calculated 117,000 excess deaths

e Lancet calculated 203,000 excess deaths

e ecLife calculated 88,000 excess deaths

e Economist calculated 113,000 excess deaths

e Baum (2022) calculated 22,000 excess deaths after age adjustment

o Koenig et al (2022) calculated ~130,000 excess deaths without age adjustment
e The recorded COVID-19 deaths were 111,000

e In Germany, the number of people aged >80 years increased from 4.8
million in 2016 to 5.8 million in 2020, so consideration of age is crucial.



Excess death estimates from multiverse analysis in 2009-2021

Michael Levitt,a* Francesco Zonta_,b John P.A. Toannidis®



Table 1: Average, standard deviation, minimum, maximum and range for estimates of relative
excess deaths (expressed as percentage of expected deaths, p%) for the two-ycar pandemic
riod 2020-2021 for each of the 33 countries.

Average | SD of | Minimum | Maximum | Range
Country Abbreviation p% p% p% p% of p%
Australia AUS -9.7 32 -16.2 -2.4 13.9
Austria AUT 32 3.0 -3.4 9.2 126
Belgium BEL 14 29 -5.0 8.8 138
Canada CAN 22 20 4.9 6.9 11.7
Switzerland CHE -13 31 -8.2 57 13.9
Chile CHL 6.4 3.8 -1.7 151 16.8
Czechia CZE 8.7 3.9 -0.5 16.7 17.2
Germany DEU 1.0 19 -4.4 4.5 8.9
Denmark DNK -7.6 4.0 -18.6 -0.3 183
Spain ESP 36 22 -26 10.9 135
Estonia EST 1.7 48 -10.8 11.0 219
Europe EUM 23 22 -3.7 74 1.1
Finland FIN -53 3.1 -11.9 16 13.4
France FRA 24 2.0 -3.8 6.1 10.0
United Kingdom GBR 42 19 -1.2 10.0 1.3
Greece GRC 56 28 -1.3 10.6 12.0
Croatia HRV 7.0 31 -1.2 148 16.1
Hungary HUN 6.8 27 0.5 131 126
Iceland ISL -7.3 20 -12.2 21 101
Israel ISR -15 29 -71 46 116
Italy ITA 54 24 -0.5 10.8 1.2
South Korea KOR -13.5 52 -245 -1.1 235
Lithuania LTU 8.6 32 20 188 16.8
Luxembourg LUX 26 39 -10.6 44 15.0
Latvia LVA 7.0 31 -1.0 140 15.0
Netherlands NLD 25 20 25 7.8 104
Norway NOR 94 36 -16.1 -1.4 147
New Zealand NZL -9.1 25 -15.5 -42 1.3
Poland POL 14.2 35 39 199 159
Portugal PRT 36 24 2.7 8.6 1.3
Slovakia SVK 10.2 44 0.7 20.7 200
Slovenia SVN 47 34 4.0 118 167
Sweden SWE 6.7 34 -12.5 42 16.7
United States USA 16.6 0.8 14.3 18.7 4.3
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Figure 1

Year Between 2009 and 2021 (Summing Two Adjacent Years)



Table 2: Distribution of the country rank of the excess death esti in the pandemic 2-year period 2020-2021 expressed as a p gc of the
expected deaths p% for the 33 countries as calculated for each of the 66 different reference baseline year sets..

Rank Rank Rank in Sort from Highest p% to Lowest p% Summing Two Adjacent Years
Location LOC AVE SD [1|2|3|4[5|6|7]|8]|9/1011/12/1314/15/16/17 18/19/20 21/22|23|24/25|26|27|28/29|30/31/32/3:
United States USA 129 0.54 |p816 1
Poland POL 179 0.44 [15pA 1
Slovakia SVK 326 088 |2 11| (2
Lithuania LTU 468 1.23 1246269 (21
Czechia CZE 473 1.05 6l1[1] [1
Latvia LVA 714 168 1(7[+91515/3[3 1[1
Croatia HRV 721 1.57 11412271063 1| [1
Hungary HUN 768 1.14 2 |(1013/25/14 2
Chile CHL 9.09 276 11|2/105/7[43l7 9|7[1[1 11
Greece GRC 10.23 1.84 1| [1/4/162210(7 /2 11 1
italy ITA 1055 2.01 11 2/2|7/1523/8/4/1[1]1
Slovenia SVN 1256 2.04 101023 4 4 11/1[1 1
United Kingdom | GBR 13.08 2.02 5/1 8/10i18 5/9/9/1
Portugal PRT 14.62 1.64 1/2|9/25146(6 [1]1
Spain ESP 14.86 1.99 1] [2[2/129586/112] [1
Austria AUT 16.35 251 2(8/7/ 7002 1112
Netherlands NLD 17.97 1.83 1/1/1/83717/4(5/1| |1
France FRA 1852 211 2/1/8/1245/8|5/9
Estonia EST 19.11 454 2/1/3|5/6/1]2|7 6/ ¢16/ R[4 [1
Canada CAN 19.38 237 1| [3]1/4]4 §[154310—1
Belgium BEL 2112 1.85 11117278 311101
Germany DEU 2217 1.38 1/2/24 824331
Switzerland CHE 2435 0.93 10/53114 81
Israel ISR 2476 0.85 1/5/1289 71
Luxembourg LUX 2562 093 11244636
Finland FIN 27.29 0.54 18916/ 2~
Sweden SWE 2895 1.09 1] [2 181
Iceland ISL 29.85 248 1 |4/6/11 7/4|5/2
Denmark DNK 29.88 1.75 171 Ez 4
New Zealand NZL 3220 1.46 2+—32296/6
Norway NOR 3239 1.31 882514
Australia AUS 3321 0.98 111
South Korea KOR 34.80 0.70 1] [1]6




Table 3: Effcct of changing the width of the projected period of interest from 1 to 4 years for the most recent years (2021
alone, 2020 alone, 2020-2021, 2019-2021, 2018-2021).

1 1 <2 <3 <4
Year Year | Years> | Years> | Years>

i 2020 2019 3;;:9 max max max

Location LOC | 2020 2021 +2021 +2020 +2020 (2020,2021) | (2020,2021) | (2020,2021)
+2021 +2021 |- <2 Years> | - <3 Years> | - <4 Years>

Australia AUS | -10.7 82 95 8.7 -84 13 0.5 0.2
Austria AUT | 37 28 33 05 0.6 04 33 43
Belgium BEL | 76 47 14 -1.3 -1.9 6.2 8.9 9.5
Canada CAN | 35 1.0 23 0.2 0.3 1.2 33 3.7
Switzerland CHE | 30 53 1.2 -3.0 -3.6 42 6.0 6.6
Chile CHL | 36 102 6.7 2.2 01 34 8.0 10.2
Czechia CZE | 55 116 86 36 17 3.0 8.0 9.9
Germany DEU | 0.2 21 1.0 0.3 -0.2 11 23 23
Denmark DNK | 90 69 -7.8 -74 6.1 0.9 05 0.8
Spain ESP | 88 -14 3.6 0.2 -04 5.2 85 9.2
Estonia EST | 68 94 15 A7 -25 79 111 1.9
Finland FIN -6.1 4.6 -54 -5.8 -5.3 08 12 0.6
France FRA | 38 06 23 0.5 -01 15 33 39
United Kingdom GBR 6.2 23 4.2 11 04 20 5.0 58
Greece GRC | 10 99 56 31 14 43 6.8 8.6
Croatia HRV | 19 118 6.9 23 0.9 49 9.5 10.9
Hungary HUN | 16 1138 6.7 27 14 5.1 9.1 104
Iceland ISL 69 -75 -7.2 6.5 -6.0 03 04 0.9
Israel ISR | 19 -08 -1.3 -25 -3.3 05 16 24
Italy ITA 89 21 55 2.0 05 34 6.9 8.3
South Korea KOR | 131 -13.0| -131 128 “11.6 0.2 -0.2 -14
Lithuania LTU 39 133 85 27 0.7 49 10.6 127
Luxembourg LUX | -06 438 -2.7 -3.8 -3.4 22 3.2 28
Latvia LVA | -28 163 6.8 26 15 9.5 137 149
Netherlands NLD | 33 18 25 0.1 0.4 0.8 3.2 36
Norway NOR | -10.1 -86 -9.4 -8.9 -8.2 08 03 05
New Zealand NZL | 107 -75 -9.0 -7.3 6.5 15 0.2 -1.0
Poland POL | 10.2 178 14.2 8.2 59 36 9.5 1.9
Portugal PRT | 36 33 35 0.9 0.2 0.1 27 34
Slovakia SVK 03 207 10.2 41 20 10.5 16.6 18.7
Slovenia SVN 75 18 47 11 -0.2 28 6.4 7.8
Sweden SWE | -22 -106 -6.6 -7.9 -7.2 45 57 5.1
United States USA | 158 176 16.7 10.6 7.8 0.9 7.0 9.8




Over- or under-estimation of COVID-19 deaths?
(loannidis, Eur J Epidemiol 2021)

F=0.05%, F=0.1%, F=0.4%, F=1.0%, F=0.05%, F=0.1%, F=0.4%, F=1.0%, F=0.05%, F=0.1%, F=0.4%, F=1.0%,
X m=0.2% m=0.2% m=0.2% m=0.2% m=0.9% m=0.9% m=0.9% m=0.9% m=1.5% m=1.5% m=1.5% m=1.5%




Preserving equipoise and performing
randomised trials for COVID-19 social
distancing interventions

loana Alina Cristeal ), Florian Naudet? (> and John P. A. loannidis?

1Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; 2Uni\fe\rs.it\,' Rennes, CHU Rennes,
Inserm, CIC 1414 (Centre d’Investigation Clinique de Rennes), F-35000, Rennes, France and 3Departments of
Medicine, of Epidemiology and Population Health of Biomedical Data Science, and of Statistics, and Meta-
Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA

Abstract

In the coronavirus disease 2019 (COVID-19) pandemic, a large number of non-pharmaceut-
ical measures that pertain to the wider group of social distancing interventions (e.g. public
gathering bans, closures of schools, workplaces and all but essential business, mandatory
stay-at-home policies, travel restrictions, border closures and others) have been deployed.
Their urgent deployment was defended with modelling and observational data of spurious
credibility. There is major debate on whether these measures are effective and there is also
uncertainty about the magnitude of the harms that these measures might induce. Given
that there is equipoise for how, when and if specific social distancing interventions for
COVID-19 should be applied and removed/modified during reopening, we argue that inform-
ative randomised-controlled trials are needed. Only a few such randomised trials have already
been conducted, but the ones done to-date demonstrate that a randomised trials agenda is
feasible. We discuss here issues of study design choice, selection of comparators (intervention
and controls), choice of outcomes and additional considerations for the conduct of such trials.
We also discuss and refute common counter-arguments against the conduct of such trials.
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Pre-registration of mathematical models ()
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Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, and Meta-Research Innovation Center at Stanford
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ARTICLE INFO ABSTRACT
Keywords: Pre-registration is a research practice where a protocol is deposited in a repository before a scientific project
Mathematical modeling is performed. The protocol may be publicly visible immediately upon deposition or it may remain hidden
:fe"'eg'sn‘am“ until the work is completed/published. It may include the analysis plan, outcomes, and/or information about

1as

how evaluation of performance (e.g. forecasting ability) will be made, Pre-registration aims to enhance the
trust one can put on scientific work. Deviations from the original plan, may still often be desirable, but pre-
registration makes them transparent. While pre-registration has been advocated and used to variable extent in
diverse types of research, there has been relatively little attention given to the possibility of pre-registration for
mathematical modeling studies. Feasibility of pre-registration depends on the type of modeling and the ability

Reproducibility



Table 1
Conditions that may favor or disfavor pre-registration.

Pre-registration favored Pre-registration disfavored

Rigorous design thought in advance Design to be fine-tuned iteratively
Standardized procedures preconceived Procedures to be discovered

Optimal choices conceived in advance Optimal choices unknown

Confirmatory research Exploratory discovery research
Outcome/performance evaluation, e.g. forecasting No outcome/performance evaluation
Projects can be separated into specific steps Projects too chaotic even to specify steps
Data are to be collected prospectively Existing data are used

Table 2

Potential advantages and disadvantages of pre-registration.

Potential advantages
Increased trust in research work
More objective assessment of model performance
Decrease in the possibility of bias/manipulation of results and inferences
Making research visible in public earlier
Reduction of redundancy in research efforts, better overall research agenda
Allowing to claim early credit for scientific work and ideas®

Potential disadvantages
Extra work needed
Fake pre-registration (registration has happened after the study was done)
Over-optimism that quality and efficiency of research would improve




Decision-making
personal and public

must be

multi-dimensional

loannidis, Eur J Clin Invest
2020

Cause of excess
death

People with
AMI and other
acute disease
not given
proper hospital
care

People with
cancer having
delayed
treatment

Disrupted
cancer
prevention

Other healthcare
disruption

Suicides

Violence
(domestic,
homicide)

Starvation

Tuberculosis

Childhood
diseases

Alcoholism and
other diseases
of despair

Multiple chronic
diseases

Lack of proper
medical care

Reason/comments

Patients afraid to go to hospital and hospitals

reducing admissions afraid of overload

Postponement of cancer treatment in
anticipation of COVID-19 overload

Inability to offer cancer prevention services
under aggressive measures

Postponement or cancellation of elective
procedures and regular care

Mental health disruption

Mental health disruption

Disruption in food production and transport

Disruption of tuberculosis management
programmes

Disruption of vaccination programmes

Mental health disruption, unemployment

Unemployment, lack of health insurance and
poverty

Disruption of healthcare, as hospitals
and health programmes get financially
disrupted, furlough personnel or even shut
down services

Possible time horizon for
excess deaths

Acute, during pandemic

Next5Sy

Next 20 y

WVariable for different
medical conditions

Both acute and long-term

Acute, possibly long-term

Acute, and possibly worse
over next several years

NextSy

Next 5y

Next 10y

Next 20 y

Next 20 y



Mass formation, inequalities and long-term adverse outcomes (Schippers,
loannidis, Joffe, Frontiers in Public Health 2022)

MODERATORS

- Social order (in)stability

- Healthcare/welfare support

- Other crises (e.g., war)

- Pre-existing poverty and hardship

- Preexisting mental health problems

GOVERNMENT
RESPONSE MASS FORMATION

CROWD BEHAVIOR

ANUAN

Covid-19
Crisis

Non pharmaceutical
Interventions (NPI’s)
e.g., Lockdowns

PSYCHOLOGICAL
TACTICS

- Crowd manipulation
- Crowd control

Experience of:
- Social isolation
- Meaninglessness

- Aggression
- Social rejection

- Breakdown of normal hehayior
- Anxiety, frustration and - Social unrest

aggressive feelings
Outcomes for
humankind

Rising
Inequalities

SIDE
EFFECTS

- Financial insecurity/hardship

- Learning losses

- Mental & physical health deterioration
- Collectivetrauma




Some concluding comments

o Models are here to stay and they can be valuable

o Improvements are possible at the level of data input, transparency,
relevance, real-life value, pre-registration (when applicable)

o Meta-epidemiological assessments can offer an observatory of how
models perform and also form a basis for possible interventions to
further improve them
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