

Epidemic modelling at different stages of infectious disease outbreaks

Robin Thompson Junior Research Fellow Christ Church, University of Oxford

Beginning

- Will initial cases lead to a major epidemic?
- Which interventions reduce the epidemic risk?

Middle

- How effective are current interventions?
- Which interventions will minimise numbers of cases?

End

- How should interventions be lifted?
- Is the epidemic over?

Assessing the risk of a major epidemic			Estimating changes in transmissibility		
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forwards

Outline

1. Assessing the risk of a major epidemic

- Estimating the probability of a major epidemic
- Application to COVID-19
- More complex models: heterogeneity in reporting, age structure, time-dependence

2. Estimating changes in disease transmissibility

- Estimation of R_t
- Extending the basic model
- Going forwards

Assessing the risk of a major epidemic			Estimating changes in transmissibility		
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forwards

Assessing the risk of a major epidemic

When a pathogen first arrives in a new host population, will initial cases fade out, or will they lead to a major epidemic?

Assessing th	e risk of a major	epidemic		Estimatin	g changes in transm	nissibility
Epidemic probability	COVID-19	Adding complexit	y Estima	ating R _t	Extensions	Going forwards
	Assess	Susceptible	k of a ma	ajor ep → R Removed	idemic	

- Assume we start with one infected individual
- Denote q_i = Prob(<u>no</u> major epidemic starting from *i* infected individuals)
- Want to find $1 q_1$

Two possibilities for the next event: infection or recovery

 $q_1 = \mathbb{P}(\text{infection}) \times q_2 + \mathbb{P}(\text{recovery}) \times q_0$

Two possibilities for the next event: infection or recovery

 $q_1 \approx \mathbb{P}(\text{infection}) \times {q_1}^2 + \mathbb{P}(\text{recovery})$

Assessing t	the risk of a major	r epidemic		Estimatin	g changes in transm	hissibility
Epidemic probability	COVID-19	Adding complexity	y Esti	mating <i>R</i> t	Extensions	Going forwards
	Assess	sing the risk s Susceptible	c of a m	najor ep → R _{Removed}	idemic	

Two possibilities for the next event: infection or recovery

 $q_1 \approx \mathbb{P}(\text{infection}) \times {q_1}^2 + \mathbb{P}(\text{recovery})$

$$q_1 = \frac{1}{R_e}$$
 or 1 $ER = 1 - q_1 = 1 - \frac{1}{R_e}$

Assessing the risk of a major epidemic			– Estimatir	ng changes in transr	nissibility
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forwards
Epidemic probability		Adding complexity ま <u>委 员 会</u>	Estimating R _t w the virus has sp to cases 1 to 50 51 to Jan: 291 cases Understand Hubei Province Vinter B Jan: Line lists released What is the epi	Extensions pread in China 101 to 500 22 Jan: 446 ca 22 Jan: 446 ca (approx. 70 patients demic risk outside ca	Going forwards More than 500 ases

Assessing the risk of a major epidemic			Estimating changes in transmissibility		
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forwards

R_e = Infection rate × Duration of infection

Interval-censored data

E.g. Symptoms – 10 Jan Hospitalisation – 11 Jan

Symptom onset to hospitalisation lies in the range 0-2 days

MDPI

Arricht Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations Rekin N. Thompson¹²

Assessing the risk of a major epidemic			Estimating changes in transmissibility		
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forwards

R_e = Infection rate × Duration of infection

Assessing the risk of a major epidemic			Estimatir	ng changes in transm	nissibility
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forwards

Heterogeneity in reporting rates

 $q_{i,j}$ = Prob(no major epidemic | *i* fast reporters, *j* slow reporters)

$$q_{1,0} = \frac{\alpha\beta}{\beta + \gamma^{(1)}} q_{2,0} + \frac{(1-\alpha)\beta}{\beta + \gamma^{(1)}} q_{1,1} + \frac{\gamma^{(1)}}{\beta + \gamma^{(1)}} q_{0,0},$$

$$q_{0,1} = \frac{\alpha\beta}{\beta + \gamma^{(2)}} q_{1,1} + \frac{(1-\alpha)\beta}{\beta + \gamma^{(2)}} q_{0,2} + \frac{\gamma^{(2)}}{\beta + \gamma^{(2)}} q_{0,0}$$

MDPI

Antel Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations Rekin N. Thompsen¹⁰

Assessing the risk of a major epidemic			Estimating changes in transmissibility		
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forwards

Heterogeneity in reporting rates

 $q_{i,j}$ = Prob(no major epidemic | *i* fast reporters, *j* slow reporters)

$$q_{1,0} = \frac{\alpha\beta}{\beta + \gamma^{(1)}} q_{1,0}{}^2 + \frac{(1-\alpha)\beta}{\beta + \gamma^{(1)}} q_{1,0} q_{0,1} + \frac{\gamma^{(1)}}{\beta + \gamma^{(1)}},$$
$$q_{0,1} = \frac{\alpha\beta}{\beta + \gamma^{(2)}} q_{1,0} q_{0,1} + \frac{(1-\alpha)\beta}{\beta + \gamma^{(2)}} q_{0,1}{}^2 + \frac{\gamma^{(2)}}{\beta + \gamma^{(2)}}.$$

MDPI

Anted Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations Rekin N. Themesen¹⁰

Assessing the risk of a major epidemic			Estimating changes in transmissibility		
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forwards

Age structure

 $q_{i,j,k,\dots} = \text{Prob}(\text{no major epidemic} \mid i \text{ in age group 1}, j \text{ in age group 2}, k \text{ in age group 3}, \dots)$

Assessing the risk of a major epidemic			Estimating changes in transmissibility		
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forwards

Time-dependence

 $q(1,t) = q(2,t+\Delta t)\beta(t)N\Delta t + q(0,t+\Delta t)\mu\Delta t + q(1,t+\Delta t)(1-\beta(t)N\Delta t - \mu\Delta t).$

Thompson et al., Astrophys Space Sci Proc (2020)

Assessing the risk of a major epidemic			Estimatir	ng changes in transm	nissibility
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forward

Assessing Epidemic Risks – Summary

Stochastic compartmental models can be used to estimate the Epidemic Risk (the probability that an imported case leads to a major epidemic) Epidemic Risk estimates can be generated analytically, informed by using outbreak data, and adjusted in real-time Estimates can be extended to include a range of features, including heterogeneity in reporting rates, age structure and temporal heterogeneity

Assessing the risk of a major epidemic			Estimating changes in transmissibility			
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forwards	

Outline

- 1. Assessing the risk of a major epidemic
 - Estimating the probability of a major epidemic
 - Application to COVID-19
 - More complex models: heterogeneity in reporting, age structure

2. Estimating changes in disease transmissibility

- Estimation of *R*_t
- Extending the basic model
- Going forwards

Assessing the risk of a major epidemicEstimating changes in transmissibilityEpidemic probabilityCOVID-19Adding complexityEstimating R_t ExtensionsGoing forwards

Two important quantities

Assessing the risk of a major epidemic			Estimating changes in transmissibility			
Epidemic probability	COVID-19	Adding complexity	Estimating <i>R</i> t	Extensions	Going forwards	
	Incidence	Epidemic curve	19-05-04 2009-05-1	I _t cases		
	Baye	es'rule: $P(A B) = \frac{P(B)}{A + B}$	$\frac{P(A)P(A)}{P(B)}$			
$P(I_t = x \mid R_t, \{w_s\}$	$, \{I_0, I_1, I_2, \dots, I_{t-1}\}$	1})	$P(R_t I_t = x, \{w_s\}, \{I_t \in V_s\})$	$(I_1, I_2, \dots, I_{t-1}))$		

Cori et al., Am. J. Epi., 2013

Cori et al., Am. J. Epi., 2013

Solution: Consider constant R_t over a window $\{t - \tau, t - \tau + 1, ..., t\}$

Cori et al., Am. J. Epi., 2013

Epidemic probability	COVID-19	Adding co	omplexity	Estimating R _t	Extensions	Going forwards	
Uncertainty in the serial interval, imported cases							
	(a) Input 1: Serial interval line-list data (a) Input 1: Serial interval line-list data (b) Input 2: Serial interval parametric of E.g.: Gamma (G), OffSet gy Weibull (W), OffSet weibu Log-normal (L) or OffSet log	Time recipient grange, days) 6-7 10-14 6-7 13-16	Analysis step 1: Estimate the serial interval	(e) Output 1: Posterior sample of serial interval distrib 0.4 0.2 0.1 0 0.2 0.1 0 0.2 0.1 0 0.2 0.1 0 0.2 0.1 0 0.2 0.1 0 0.5 Length of serial interval	outions 10		
	(c) Input 3: Disease incidence data	Current time 30 40	Analysis step 2: Estimate the reproduction number	(f) Output 2: Estimates of time-varying reproduction	number Rr Mean p5% Crl	Ready Step 1 of at most 9. View the interactive documentation for this state. Incidence Data Do you want to use pre-loaded incidence time series data or upload your own? Pre-loaded Own data Previous Next	

Thompson et al., Epidemics, 2019

Estimating changes in transmissibility

Thompson et al., Epidemics, 2019

Assessing the risk of a major epidemic			Estimating changes in transmissibility		
Epidemic probability	COVID-19	Adding complexity	Estimating R _t	Extensions	Going forwards

Conclusions – Estimating changes in transmissibility

- Parameter inference can be used to estimate reproduction numbers in real-time during epidemics
- This approach has been used worldwide for COVID-19
- Population heterogeneity is important (e.g. local cases may have different characteristics compared to imported cases)

Date (Month/Year)

Six challenges - Estimation of R_t

- 1. Unpicking effects of different measures
- 2. Reporting delays
- 3. Estimation when case numbers are low

Assessing the risk of a major epidemic			Estimating changes in transmissibility			
Epidemic probability	COVID-19 Adding complexity		Estimating R _t	Extensions	Going forwards	
	n of <i>R</i> t					
			Adam <i>et al.,</i> Research Square, 2020			

- 4. Effect of heterogeneity within populations: i) different groups;
- ii) super-spreading
- 5. Asymptomatic transmission
- 6. Temporal changes in serial interval

PROCEEDINGS B Key questions for modelling COVID-19 exit strategies Thompson et al., Proc Roy Soc B, 2020

Thanks!

