International Workshop on Differential Equations in Mathematical Biology

Discrete precipitations in a reaction-diffusion system

D. Hilhorst¹, R. van der Hout², M. Mimura³, I. Ohnishi⁴

¹ Laboratoire de Mathématique Université de Paris-Sud (Bât. 425), 91405 Orsay Cedex, France Danielle.Hilhorst@math.u-psud.fr

²Mathematical Institute, Leiden University, PB 9512, 2300 RA Leiden, The Netherlands rein.vanderhout@planet.nl

³Institute for Nonlinear Sciences and Applied Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526 Japan isamu_o@math.sci.hiroshima-u.ac.jp

⁴Department of Mathematics, Institute for Mathematical Institute School of Science and Technology, Meiji University Higashimita, Tama-ku, Kawasaki, 214-8571 Japan mimura@math.meiji.ac.jp

Some reaction-diffusion systems exhibit a structure of spatially distinct bands of precipitated material, with clearly visible scaling properties. The phenomenon that we study has first been observed by Liesegang. In a spatial domain Ω an immobile reactant \mathcal{B} is present, with uniform concentration b_0 . Starting at an initial time t = 0, the boundary $\partial\Omega$ is brought in contact with a different reactant \mathcal{A} , that penetrates into Ω through a diffusive process. Inside Ω , \mathcal{A} and \mathcal{B} react, to produce a third substance \mathcal{C} . This substance on the one hand diffuses through Ω , and on the other hand crystallizes ("precipitates") to form an immobile product \mathcal{D} . This precipitation process starts as soon as the concentration c of \mathcal{C} has surpassed a critical value $C_s > 0$; the precipitation rate is thought to linearly depend on c. In places where \mathcal{D} has been formed, the precipitation process continues as long as c remains positive. We study here a one-dimensional reaction-diffusion system. Our purpose is to show that in a singular limit it gives rise to distinct regions where \mathcal{D} is present, and that these regions have a regular spatial structure.