International Workshop on Differential Equations in Mathematical Biology

A mathematical analysis of the dynamics of prion proliferation

Meredith L. Greer¹, Laurent Pujo-Menjouet², Glenn F. Webb³

 ¹ Department of Mathematics Bates College
213 Hathorn Hall Bates College, Lewiston, Maine 04240 USA mgreer@bates.edu
² Department of Mathematics Vanderbilt University
1326 Stevenson Center, Nashville, TN 37240-0001, USA pujo@math.vanderbilt.edu

 ³ Department of Mathematics Vanderbilt University
1326 Stevenson Center, Nashville, TN 37240-0001, USA glenn.f.webb@vanderbilt.edu

ABSTRACT

How do the normal prion protein (PrP^{C}) and infectious prion protein (PrP^{Sc}) populations interact in an infected host? To answer this question, we analyze the behavior of these two populations by studying a system of differential equations. We prove that with parameter input consistent with experimentally determined values, we obtain the persistence of PrP^{Sc} . We also prove local stability results for the disease steady states, and a global stability result for the disease free steady state. Finally, we give numerical simulations, which are confirmed by experimental data.

Key Words: Prion diseases; Mathematical model; Global Stability; System of differential equations; Persistence of solution

AMS Classification: 34A34, 34D20, 34D23, 92B05, 92C60 92D25, 92D30