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1. Introduction

In this work we investigate the Hopf bifurcation for the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, x)

∂t
+ ∂(gu(t, x))

∂x︸ ︷︷ ︸
growth in size

= ε2 ∂2u(t, x)

∂x2︸ ︷︷ ︸
random noise

−μu(t, x)︸ ︷︷ ︸
death

,

−ε2 ∂u(t,0)

∂x
+ gu(t,0) = αh

( +∞∫
0

γ (x)u(t, x)dx

)
,

u(0, .) = u0 ∈ L1+(0,+∞),

(1.1)

where u(t, x) represents the population density of certain species at time t with size x, g > 0, ε � 0,

μ > 0, α > 0, γ ∈ L∞+ (0,+∞) \ {0}, and the map h : R → R is defined by

h(x) = x exp(−ξx), ∀x � 0.

The model (1.1) is viewed as a size-structured model, for example for the growth of trees or fish
population, where x = 0 is the minimal size. The growth of individuals is described by two terms.
First, the term ∂(gu(t,x))

∂x represents the average growth rate of individuals, and the diffusion term

ε2 ∂2u(t,x)
∂x2 describes the stochastic fluctuations around the tendency to growth. So ε2 ∂2u(t,x)

∂x2 − ∂(gu(t,x))
∂x

describes the fact that given a group of individuals located in some small neighborhood of a given
size x0 ∈ (0,+∞), after a period of time this group of individuals will disperse due to the diffusion,
and the mean value of the distribution increases due to the convection term. The term −μu(t, x) is
classical and describes the mortality process of individuals following an exponential law with mean
1/μ. The birth function given by αh(

∫ +∞
0 γ (x)u(t, x)dx) is a Ricker [38,39] type birth function. This

type of birth function has been commonly used in the literature, to take into account some limitation
of births when the population increases. In particular, the birth rate function is αγ (x) when the total
population is close to zero. We refer to Arino [5], Arino and Sanchez [7], Calsina and Saldana [9],
Calsina and Sanchón [10], Webb [47], and Ackleh and Deng [1] (and references therein) for studies
on size-structured models in the context of ecology and cell population dynamics. As far as we know
such a model has not been considered in the context of population dynamics, while it seems very
natural to introduce a stochastic random noise to describe the growth of individuals with respect to
their size.
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In the special case when ε = 0, by making a simple change of variable we can assume that g = 1.
Then the system (1.1) becomes ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, x)

∂t
+ ∂u(t, x)

∂x
= −μu(t, x),

u(t,0) = αh

( +∞∫
0

γ (x)u(t, x)dx

)
,

u(0, .) = u0 ∈ L1+(0,+∞).

(1.2)

Now if we assume that

γ (x) = e−βx1[τ ,+∞)(x),

for some τ � 0 and set

Û (t) :=
+∞∫
τ

e−βxu(t, x)dx,

then for t � τ , we obtain the following delay differential equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dÛ (t)

dt
= αe−μτ h

(
Û (t − τ )

) − μÛ (t), ∀t � τ ,

Û (t) := e−μt

+∞∫
τ

e−βxu0(x − t)dx = e−(μ+β)t

+∞∫
τ−t

e−βlu0(l)dl, ∀t ∈ [0, τ ].

We refer to Hale and Verduyn Lunel [22], Wu [48], Diekmann et al. [17], and Arino, Hbid, and Ait
Dads [6] for detailed results on delay differential equations. System (1.1) can also be viewed as a
stochastic perturbation in the transport term of the above delay differential equation. If we consider
the special case

γ (x) = 1[0,+∞)(x),

then for any value of ε � 0, the total number of individuals U (t) := ∫ +∞
0 u(t, x)dx satisfies the fol-

lowing scalar ordinary differential equation⎧⎨⎩
dU (t)

dt
= αh

(
U (t)

) − μU (t), ∀t � 0,

U (0) = U0 � 0.

Hence, there is no bifurcation at the positive equilibrium in this case. In fact the positive equilibrium
(when it exists) is globally asymptotically stable.

The main question addressed in the paper is to understand how the diffusion rate ε2 influences
the stability and the Hopf bifurcation of the positive equilibrium of system (1.1). When ε = 0 and
g = 1, the model becomes a size-structured model which is very similar to the age-structured mod-
els studied by Webb [45], Iannelli [24], Cushing [16], and Magal and Ruan [33]. In particular, when
ε = 0, it was first observed by Thieme in [42] that this kind of problems can be regarded as abstract
non-densely defined Cauchy problems. Even in the case ε = 0, the existence of non-trivial periodic
solutions in such age/size-structured models is a very interesting and difficult problem, however, there
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are very few results (Prüss [36], Cushing [15], Bertoni [8]). It is believed that such periodic solutions
in age/size-structured models are induced by Hopf bifurcation (Inaba [25,26], Calsina and Ripoll [11]).

Recently a center manifold theory has been developed for non-densely defined Cauchy problems
in Magal and Ruan [35]. This center manifold theory allows us to obtain an abstract Hopf bifurcation
theorem (see Liu, Magal and Ruan [29]). This Hopf bifurcation theorem has been successfully applied
in [35] to the system (1.2) when

γ (x) = (x − τ )ne−β(x−τ )1[τ ,+∞)(x). (1.3)

It turns out that we can also establish such a Hopf bifurcation theorem when ε > 0 since the problem
can also be formulated as an abstract non-densely defined Cauchy problem. This leads to the existence
for a Hopf bifurcation when the parameter α > 0 increases. But our goal here is to study the effect
of the diffusion rate ε2 > 0 on the existence of Hopf bifurcation. So we investigate the bifurcation by
regarding α and ε as parameters of the semiflow. The problem turns to be delicate.

We would like to mention that Amann [2], Crandall and Rabinowitz [14], Da Prato and Lunardi [18],
Guidotti and Merino [21], Koch and Antman [28], Sandstede and Scheel [40], and Simonett [41]
investigated Hopf bifurcation in various partial differential equations including advection–reaction–
diffusion equations. However, their results and techniques do not apply to our model (1.1) as there
is a nonlinear and nonlocal boundary condition. Instead, we expect that our techniques might be
used to study Hopf bifurcation in the viscous conservation law (Sandstede and Scheel [40]) and other
advection–reaction–diffusion equations (for example, Cantrell et al. [12] and Chen et al. [13]).

The paper is organized as follows. In Section 2, we reformulate (1.1) as a non-densely defined
Cauchy problem, list the notation, and show the existence and uniqueness of solutions to this non-
densely defined Cauchy problem. The positive equilibrium of the system is studied in Section 3. In
Section 4, we linearize the system at the positive equilibrium and study the spectral properties of
the linearized equation. The characteristic equation is also given in this section. In Section 5, stability
of the system is considered. In particular, when α is proportional to ε, we obtain that the positive
equilibrium is locally asymptotically stable for ε large enough. In Section 6, we fix ε � 0 and consider
α as a parameter. In Section 6.1 we study the existence of purely imaginary eigenvalues when γ
is defined by (6.3). In particular, bifurcation diagrams are given for various cases. The transversality
condition is verified in Section 6.2 and Hopf bifurcation theorems are presented in Section 6.3. Finally,
in Section 7 we summarize the results of the paper and present some numerical simulations of the
model.

2. Preliminary

From here on, we will always assume that g = 1 and consider the system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, x)

∂t
+ ∂u(t, x)

∂x
= ε2 ∂2u(t, x)

∂x2
− μu(t, x), t � 0, x � 0,

−ε2 ∂u(t,0)

∂x
+ u(t,0) = αh

( +∞∫
0

γ (x)u(t, x)dx

)
,

u(0, .) = u0 ∈ L1+(0,+∞).

(2.1)

Assumption 2.1. Assume that ε > 0, μ > 0, α > 0, γ ∈ L∞+ (0,+∞) \ {0}, and h : R → R is defined by

h(x) = x exp(−ξx), ∀x ∈ R,

where ξ > 0.
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In the sequel, we will use the integrated semigroup theory to study such a PDE. We refer to
Arendt [3], Thieme [43], Kellermann and Hieber [27], and the book of Arendt et al. [4] for details on
this subject. We also refer to Magal and Ruan [33] for some recent results and update references.

Consider the space

X := R × L1(0,+∞)

endowed with the usual product norm

∥∥∥∥(
α
ϕ

)∥∥∥∥ = |α| + ‖ϕ‖L1(0,+∞).

Define the linear operator A : D(A) ⊂ X → X by

A

(
0
ϕ

)
=

(
ε2ϕ′(0) − ϕ(0)

ε2ϕ′′ − ϕ′ − μϕ

)
with

D(A) = {0} × W 2,1(0,+∞).

Then

X0 := D(A) = {0} × L1(0,+∞).

Define H : X0 → X by

H

(
0
ϕ

)
=

(
αh(

∫ +∞
0 γ (x)ϕ(x)dx)

0

)
.

By identifying u(t) to v(t) = ( 0
u(t)

)
the partial differential equation (2.1) can be rewritten as the fol-

lowing non-densely defined Cauchy problem

dv(t)

dt
= Av(t) + H

(
v(t)

)
, for t � 0, and v(0) =

(
0

u0

)
∈ D(A). (2.2)

In the sequel, for z ∈ C,
√

z denotes the principal branch of the general multi-valued function z
1
2 .

The branch cut is the negative real axis and the argument of z, denoted by arg z, is π on the upper
margin of the branch cut. Then z = ρeiθ , θ ∈ (−π,π), ρ > 0, and

√
z = √

ρei θ
2 . In the sequel, we will

use the following notation:

Ω := {
λ ∈ C: Re(λ) > −μ

}
, (2.3)

and for λ ∈ Ω,

Λ := 1 + 4ε2(λ + μ). (2.4)

Since λ ∈ Ω, Re(Λ) > 0, we can use the above definition to define
√

Λ. Set
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σ± := 1 ± √
Λ

2ε2
, (2.5)

Λ0 = 1 + 4ε2μ := Λ for λ = 0, (2.6)

and

σ−
0 = 1 − √

Λ0

2ε2
:= σ− for λ = 0. (2.7)

So σ± are solutions of the equation

ε2σ 2 − σ − (λ + μ) = 0. (2.8)

Observe that

Re(σ+) > 0 and Re(σ−) < 0.

Besides these, later on we will also use the following notation:

R0 := 2αχ

1 + √
Λ0

, (2.9)

χ :=
+∞∫
0

γ (x)exp
(
σ−

0 x
)

dx, (2.10)

χ0 := lim
ε→0

χ =
+∞∫
0

γ (x)exp(−μx)dx, (2.11)

and

η(ε,α) := 1 + √
Λ0

2χ

(
1 − ln

2αχ

1 + √
Λ0

)
= α

R0
(1 − ln R0). (2.12)

If γ (x) ∈ L1+(0,+∞) and α = cε with c > 0, set

lim
ε→+∞ R0 = c√

μ

+∞∫
0

γ (x)dx := R∞
0 , (2.13)

lim
ε→+∞

η(ε,α)

ε
=

√
μ∫ +∞

0 γ (x)dx

(
1 − ln R∞

0

) := η∞. (2.14)

To study the characteristic equation, for λ ∈ Ω, define

�(ε,α,λ) := 1 − 2η(ε,α)

1 + √
Λ

+∞∫
γ (x)eσ−x dx. (2.15)
0
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Moreover, if we consider

�̃(ε,α,λ) := 1 + √
Λ

2
�(ε,α,λ) = −ε2σ− + 1 − η(ε,α)

+∞∫
0

γ (x)eσ−x dx, (2.16)

when ε tends to infinity, and take α = cε, then �̃(ε,α,λ)
ε goes to

�̂(+∞, c, λ) := √
λ + μ − √

μ

(
1 − ln

c
∫ +∞

0 γ (x)dx√
μ

)
. (2.17)

Let L : D(L) ⊂ X → X be a linear operator on a Banach space X . Denote by ρ(L) the resolvent set of L.
The spectrum of L is σ(L) = C \ ρ(L). The point spectrum of L is the set

σP (L) := {
λ ∈ C: N(λI − L) �= {0}}.

Let Y be a subspace of X . Then we denote by LY : D(LY ) ⊂ Y → Y the part of L on Y , which is defined
by

LY x = Lx, ∀x ∈ D(LY ) := {
x ∈ D(L) ∩ Y : Lx ∈ Y

}
.

In particular, we denote A0 the part of A in D(A). So

A0x = Ax for x ∈ D(A0) = {
x ∈ D(A): Ax ∈ D(A)

}
.

We consider the linear operator Â0 : D( Â0) ⊂ L1(0,+∞) → L1(0,+∞) defined by

Â0(ϕ) = ε2ϕ′′ − ϕ′ − μϕ (2.18)

with

D( Â0) = {
ϕ ∈ W 2,1(

(0,+∞),R
)
: ε2ϕ′(0) − ϕ(0) = 0

}
.

We have the following relationship between A0 and Â0 :

D(A0) = {0} × D( Â0)

and

A0

(
0
ϕ

)
=

(
0

Â0ϕ

)
.

First we have the following lemma about the representation of the resolvent of A.

Lemma 2.2. We have

Ω ⊂ ρ( Â0) = ρ(A0) = ρ(A),

and for each λ ∈ Ω we obtain the following explicit formula for the resolvent of A:
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(λI − A)−1
(

α
ψ

)
=

(
0
ϕ

)
⇔ ϕ(x) = (λI − Â0)

−1(ψ)(x) + α
2 exp(σ−x)

1 + √
Λ

, (2.19)

where (λI − Â0)
−1 is defined by

(λI − Â0)
−1(ψ)(x) = 1√

Λ

[ x∫
0

exp
(
σ−(x − t)

)
ψ(t)dt +

+∞∫
x

exp
(
σ+(x − t)

)
ψ(t)dt

]

+
√

Λ − 1

(
√

Λ + 1)
√

Λ

[ +∞∫
0

exp(−σ+t)ψ(t)dt

]
exp(σ−x). (2.20)

Next we prove the following proposition.

Proposition 2.3. The following two assertions are satisfied:

(a) A0 the part of A in D(A) is the infinitesimal generator of an analytic semigroup of bounded linear opera-
tors {T A0 (t)}t�0 on D(A).

(b) A is a Hille–Yosida operator on X .

Proof. It is well known that Â0 is the infinitesimal generator of an analytic semigroup. In fact, we
first consider the linear operator A1 : D(A1) ⊂ L1(0,+∞) → L1(0,+∞) defined by A1(ϕ) = ε2ϕ′′ and
D(A1) = D( Â0). It is well known that A1 is the infinitesimal generator of an analytic semigroup
[20,30]. Consider the linear operator A2 : D(A2) ⊂ L1(0,+∞) → L1(0,+∞), A2(ϕ) = −ϕ′ − μϕ with
D(A2) = W 2,1((0,+∞),R). Define Â0 = A1 + A2. From [37, Theorem 7.3.10], we deduce that Â0 is
sectorial. Furthermore, for λ ∈ R we have

∥∥∥∥(λI − A)−1
(

α
0

)∥∥∥∥ = |α|2
∫ +∞

0 exp(σ−x)dx

1 + √
Λ

= |α| 2

1 + √
Λ

× 1

−σ−

= |α| 2

1 + √
Λ

× 2ε2

−1 + √
Λ

= |α| 4ε2

−1 + Λ
= |α| 4ε2

4ε2(λ + μ)
,

so we obtain for λ ∈ R that ∥∥∥∥(λI − A)−1
(

α
0

)∥∥∥∥ � |α|
λ + μ

, ∀λ > −μ.

Finally, it is readily checked that (see the proof of Lemma 4.7)

∥∥T Â0
(t)

∥∥ � e−μt,

which implies that

∥∥(λI − Â0)
−1

∥∥ � 1

λ + μ
, ∀λ > −μ.

So A is a Hille–Yosida operator. �
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Set

X+ := R+ × L1+(0,+∞), X0+ := X0 ∩ X+.

Lemma 2.4. For λ > 0 large enough, (λI − A)−1 X+ ⊂ X+.

Proof. This lemma follows directly from the explicit formula (2.19) of the resolvent of A. �
By using the results in Thieme [42], Magal [31], and Magal and Ruan [34], we have the following

theorem.

Theorem 2.5 (Existence). There exists a unique continuous semiflow {U (t)}t�0 on X0+ such that ∀x ∈ X0+,

t → U (t)x is the unique integrated solution of

dU (t)x

dt
= AU (t)x + H

(
U (t)x

)
, U (0)x = x,

or equivalently,

U (t)x = x + A

t∫
0

U (l)x dl +
t∫

0

H
(
U (l)x

)
dl, ∀t � 0.

3. The semiflow and its equilibrium

Now we consider the positive equilibrium solutions of Eq. (2.2).

Lemma 3.1 (Equilibrium). There exists a unique positive equilibrium of the system (2.1) (or Eq. (2.2)) if and
only if

R0 := 2αχ

1 + √
Λ0

> 1, (3.1)

where χ and Λ0 are defined in Eq. (2.10) and Eq. (2.6), respectively. Moreover, when it exists, the positive
equilibrium v̄ = ( 0

ū

)
is given by the following formula

ū(x) = C̄ exp
(
σ−

0 x
)
, (3.2)

where

C̄ := 1

ξχ
ln

2αχ

1 + √
Λ0

= 1

ξχ
ln R0. (3.3)

Proof. We have

A

(
0
ū

)
+ H

(
0
ū

)
= 0 ⇔

(
0
ū

)
= (−A)−1

(
αh(

∫ +∞
0 γ (x)ū(x)dx)

0

)
.

According to the explicit formula of the resolvent of A, taking λ = 0, we have
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(
0
ū

)
= (−A)−1

(
αh(

∫ +∞
0 γ (x)ū(x)dx)

0

)
⇔ ū(x) = αh

( +∞∫
0

γ (x)ū(x)dx

)
2 exp(σ−

0 x)

1 + √
Λ0

. (3.4)

So

ū �= 0 iff

+∞∫
0

γ (x)ū(x)dx �= 0.

Integrating both sides of Eq. (3.4) by multiplying γ (x), then we have

+∞∫
0

γ (x)ū(x)dx = αh

( +∞∫
0

γ (x)ū(x)dx

) +∞∫
0

γ (x)
2 exp(σ−

0 x)

1 + √
Λ0

dx.

In order to have ū(x) > 0, we have

1 = α exp

(
−ξ

+∞∫
0

γ (x)ū(x)dx

)
2

∫ +∞
0 γ (x)exp(σ−

0 x)dx

1 + √
Λ0

= exp

(
−ξ

+∞∫
0

γ (x)ū(x)dx

)
R0 ⇔

+∞∫
0

γ (x)ū(x)dx = 1

ξ
ln R0, (3.5)

and the result follows. �
4. Linearized equation and spectral properties

From now on, we set

v̄ =
(

0
ū

)
with ū(x) = C̄ exp

(
σ−

0 x
)
, ∀R0 > 1, (4.1)

where C̄ = 1
ξχ ln R0.

The linearized system of (2.2) around v̄ is

dv(t)

dt
= Av(t) + D H(v̄)v(t) for t � 0, v(t) ∈ X0, (4.2)

where

D H(v̄)

(
0
ϕ

)
=

(
αh′(

∫ +∞
0 γ (x)ū(x)dx)

∫ +∞
0 γ (x)ϕ(x)dx

0

)
=

(
η(ε,α)

∫ +∞
0 γ (x)ϕ(x)dx

0

)
with

η(ε,α) = αh′
( +∞∫

γ (x)ū(x)dx

)

0
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and

h′(x) = e−ξx(1 − ξx).

Using (3.5) we obtain

η(ε,α) = α

R0
(1 − ln R0)

= 1 + √
Λ0

2χ

(
1 − ln

2αχ

1 + √
Λ0

)
.

The Cauchy problem (4.2) corresponds to the following linear parabolic differential equation⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, x)

∂t
+ ∂u(t, x)

∂x
= ε2 ∂2u(t, x)

∂x2
− μu(t, x), t � 0, x � 0,

−ε2 ∂u(t,0)

∂x
+ u(t,0) = η(ε,α)

+∞∫
0

γ (x)u(t, x)dx,

u(0, .) = u0 ∈ L1(0,+∞).

(4.3)

Next we study the spectral properties of the linearized equation (4.2).

Definition 4.1. Let L : D(L) ⊂ X → X be the infinitesimal generator of a linear C0-semigroup {T L(t)}t�0
on a Banach space X . We define the growth bound ω0(L) ∈ [−∞,+∞) of L by

ω0(L) := lim
t→+∞

ln(‖T L(t)‖L(X))

t
.

The essential growth bound ω0,ess(L) ∈ [−∞,+∞) of L is defined by

ω0,ess(L) := lim
t→+∞

ln(‖T L(t)‖ess)

t
,

where ‖T L(t)‖ess is the essential norm of T L(t) defined by

∥∥T L(t)
∥∥

ess = κ
(
T L(t)B X (0,1)

)
,

here B X (0,1) = {x ∈ X: ‖x‖X � 1}, and for each bounded set B ⊂ X,

κ(B) = inf{ε > 0: B can be covered by a finite number of balls of radius � ε}

is the Kuratovsky measure of non-compactness.

In the following result, the existence of the projector was first proved by Webb [45,46] and the
fact that there is a finite number of points of the spectrum is proved by Engel and Nagel [20].

Theorem 4.2. Let L : D(L) ⊂ X → X be the infinitesimal generator of a linear C0-semigroup {T L(t)} on a
Banach space X . Then

ω0(L) = max
(
ω0,ess(L), max

λ∈σ(L)\σ (L)
Re(λ)

)
.

ess
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Assume in addition that ω0,ess(L) < ω0(L). Then for each γ ∈ (ω0,ess(L),ω0(L)], {λ ∈ σ(L): Re(λ) � γ } ⊂
σp(L) is nonempty, finite and contains only poles of the resolvent of L. Moreover, there exists a finite rank
bounded linear projector Π : X → X satisfying the following properties:

(a) Π(λ − L)−1 = (λ − L)−1Π, ∀λ ∈ ρ(L);
(b) σ(LΠ(X)) = {λ ∈ σ(L): Re(λ) � γ };
(c) σ(L(I−Π)(X)) = σ(L) \ σ(LΠ(X)).

To simplify the notation, we define Bα : D(Bα) ⊂ X → X as

Bαx = Ax + D H(v̄)x with D(Bα) = D(A), (4.4)

and denote by (Bα)0 the part of Bα on D(A).

Lemma 4.3. For each λ ∈ Ω = {λ ∈ C: Re(λ) > −μ}, we have

Re(1 + √
Λ) > 1,

λ ∈ ρ(Bα) ⇔ �(ε,α,λ) �= 0,

and the following explicit formula:

(λI − Bα)−1
(

β

ψ

)
=

(
0
ϕ

)
⇔ ϕ(x) = (λI − Â0)

−1(ψ)(x)

+ �(ε,α,λ)−1

[
β + η(ε,α)

+∞∫
0

γ (x)(λ − Â0)
−1(ψ)(x)dx

]
2 exp(σ−x)

1 + √
Λ

,

where

�(ε,α,λ) := 1 − 2η(ε,α)

1 + √
Λ

+∞∫
0

γ (x)eσ−x dx, (4.5)

where η(ε,α), Λ, and σ− are defined respectively in Eqs. (2.12), (2.4) and (2.5).

Remark 4.4. Since by definition of
√·, Re(

√
Λ) > 0, ∀λ ∈ Ω, we deduce that Re(1 + √

Λ) > 1.

Proof of Lemma 4.3. Since λ ∈ Ω, from Lemma 2.2, we know that (λI − A) is invertible. Then

λI − Bα is invertible ⇔ I − D H(v̄)(λI − A)−1 is invertible,

and

(λI − Bα)−1 = (λI − A)−1[
I − D H(v̄)(λI − A)−1]−1

.

We also know that [I − D H(v̄)(λI − A)−1]( β̂
) = ( β

ψ

)
is equivalent to ϕ = ψ and
ϕ
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β̂ − β̂η(ε,α)

+∞∫
0

γ (x)
2 exp(σ−x)

1 + √
Λ

dx = β + η(ε,α)

+∞∫
0

γ (x)(λ − Â0)
−1(ϕ)(x)dx.

We deduce that [I − D H(v̄)(λI − A)−1] is invertible if and only if �(ε,α,λ) �= 0. Moreover,

[
I − D H(v̄)(λI − A)−1]−1

(
β

ψ

)
=

(
β̂

ϕ

)
is equivalent to ϕ = ψ and

β̂ = �(ε,α,λ)−1

[
β + η(ε,α)

+∞∫
0

γ (x)(λ − Â0)
−1(ψ)(x)dx

]
.

Therefore,

(λI − Bα)−1
(

β

ψ

)
= (λI − A)−1[

I − D H(v̄)(λI − A)−1]−1
(

β

ψ

)
= (λI − A)−1

(
β̂

ϕ

)

= (λI − A)−1
(

�(ε,α,λ)−1[β + η(ε,α)
∫ +∞

0 γ (x)(λ − Â0)
−1(ψ)(x)dx]

ψ

)
.

Then by Lemma 2.2, the result follows. �
By using the above explicit formula for the resolvent of Bα we obtain the following lemma.

Lemma 4.5. If λ0 ∈ σ(Bα) ∩ Ω, then we deduce that λ0 is a simple eigenvalue of Bα if and only if

d�(ε,α,λ0)

dλ
�= 0.

Consider a linear operator (B̂α)0 : D((B̂α)0) ⊂ L1(0,+∞) → L1(0,+∞) defined by

(B̂α)0(ϕ) = ε2ϕ′′ − ϕ′ − μϕ

with

D
(
(B̂α)0

) =
{
ϕ ∈ W 2,1(

(0,+∞),R
)
: ε2ϕ′(0) − ϕ(0) + η(ε,α)

+∞∫
0

γ (x)ϕ(x)dx = 0

}
.

Then we have the following lemma.

Lemma 4.6. For each ϕ ∈ L1(0,+∞) and each t � 0, we have the following equality:

d

dt

+∞∫
0

T(B̂α)0
(t)(ϕ)(x)dx = −μ

+∞∫
0

T(B̂α)0
(t)(ϕ)(x)dx + η(ε,α)

+∞∫
0

γ (x)T(B̂α)0
(t)(ϕ)(x)dx.
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Lemma 4.7. Let Assumption 2.1 be satisfied. Then the linear operator Bα is a Hille–Yosida operator and its part
(Bα)0 in X0 satisfies

ω0,ess
(
(Bα)0

)
� −μ. (4.6)

Proof. Since D H(v̄) is a bounded linear operator and A is a Hille–Yosida operator, it follows that Bα

is also a Hille–Yosida operator. By Lemma 4.6 with η(ε,α) = 0, we have

∥∥T Â0
(t)ϕ

∥∥
L1(0,+∞)

= ∥∥∣∣T Â0
(t)ϕ

∣∣∥∥
L1(0,+∞)

�
∥∥T Â0

(t)|ϕ|∥∥L1(0,+∞)

=
∞∫

0

T Â0
(t)|ϕ|(x)dx =

∞∫
0

e−μt |ϕ|(x)dx = e−μt‖ϕ‖L1(0,+∞),

then

ω0,ess( Â0) � −μ.

By using the result in Thieme [44] or Ducrot, Liu and Magal [19, Theorem 1.2], we deduce that

ω0,ess
(
(B̂α)0

)
� ω0,ess( Â0) � −μ,

and the result follows. �
Lemma 4.8.

σ
(
(Bα)0

) ∩ Ω = σp
(
(Bα)0

) ∩ Ω = {
λ ∈ Ω: �(ε,α,λ) = 0

}
,

where

�(ε,α,λ) = 1 − 2η(ε,α)

1 + √
Λ

+∞∫
0

γ (x)eσ−x dx.

Proof. By Lemma 4.7, we have

σ
(
(Bα)0

) ∩ Ω = σp
(
(Bα)0

) ∩ Ω,

and by Lemma 4.3, the result follows. �
Later on, we will study the eigenvalues of the characteristic equation

1 = 2η(ε,α)

1 + √
Λ

+∞∫
0

γ (x)eσ−x dx with λ ∈ Ω, (4.7)

or equivalently, the following equation

−ε2σ− + 1 = η(ε,α)

+∞∫
γ (x)eσ−x dx, (4.8)
0
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where σ− is the solution of

ε2σ 2 − σ = λ + μ, λ ∈ Ω, (4.9)

with Re(σ−) < 0.

5. Local stability

This section is devoted to the local stability of the positive steady state v̄ . Recall that this positive
equilibrium exists and is unique if and only if R0 > 1.

Lemma 5.1. If R0 = 2αχ

1+√
Λ0

> 1, then λ = 0 is not a root of the characteristic equation �(ε,α,λ) = 0, where

�(ε,α,λ) is explicitly defined in (4.5).

Proof. We have

�(ε,α,0) = 1 − 2η(ε,α)

1 + √
Λ0

∞∫
0

γ (x)eσ−
0 x dx

= 1 − 2χ

1 + √
Λ0

η(ε,α)

= 1 − R0

α

(
α

R0
(1 − ln R0)

)
= ln R0.

Since R0 > 1, we obtain that

�(ε,α,0) > 0

and the result follows. �
Lemma 5.2. If λ is a root of the characteristic equation and Re(λ) � 0, then we have

Re(σ−) < σ−
0

and

Re(
√

Λ) >
√

Λ0 > 1.

Proof. Since σ− is the root of

ε2σ 2 − σ − (μ + λ) = 0

with

Re(σ−) < 0,

we have the following relationship between Re(σ−), Im(σ−), Re(λ), and Im(λ)
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ε2 Re(σ−)2 − Re(σ−) − μ = Re(λ) + ε2 Im(σ−)2, (5.1)

2ε2 Re(σ−) Im(σ−) − Im(σ−) = Im(λ). (5.2)

If Re(λ) = 0 and Im(σ−) = 0, then by using (5.2) we have Im(λ) = 0. So λ = 0, which is impossible
by Lemma 5.1. Thus if Re(λ) � 0, we have

Re(λ) + ε2 Im(σ−)2 > 0.

By using (5.1) we deduce that

ε2 Re(σ−)2 − Re(σ−) − μ > 0.

Since Re(σ−) < 0, if follows that

Re(σ−) <
1 − √

1 + 4ε2μ

2ε2
= σ−

0 .

Now since σ− = 1−√
Λ

2ε2 and σ−
0 = 1−√

Λ0
2ε2 , we deduce that Re(

√
Λ) >

√
Λ0. �

Theorem 5.3. Let Assumption 2.1 be satisfied. If

1 < R0 � e2,

then the positive equilibrium v̄ of the system (2.1) is locally asymptotically stable.

Proof. We consider the characteristic equation

1 − ε2σ− = η(ε,α)

+∞∫
0

γ (x)eσ−x dx. (5.3)

By Lemma 5.2, if Re(λ) � 0, we must have

Re(σ−) < σ−
0 .

Then we derive from Eq. (5.3) that

∣∣ε2σ− − 1
∣∣ =

∣∣∣∣∣η(ε,α)

+∞∫
0

γ (x)eσ−x dx

∣∣∣∣∣
�

∣∣η(ε,α)
∣∣ +∞∫

0

γ (x)eRe(σ−)x dx

<
∣∣η(ε,α)

∣∣ +∞∫
0

γ (x)eσ−
0 x dx = ∣∣η(ε,α)

∣∣χ.
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On the other hand, if Re(λ) � 0, then by Lemma 5.2, we have

∣∣ε2σ− − 1
∣∣ =

∣∣∣∣1 + √
Λ

2

∣∣∣∣ > Re

(
1 + √

Λ

2

)
>

1 + √
Λ0

2
.

So if

∣∣η(ε,α)
∣∣χ � 1 + √

Λ0

2
, (5.4)

then there will be no roots of the characteristic equation with non-negative real part.
By (2.9) and (2.12), the above inequality is equivalent to

α

R0
|ln R0 − 1| � α

R0
,

and the result follows. �
Next let ε go to infinity, we study the characteristic equation

−ε2σ− + 1 = η(ε,α)

+∞∫
0

γ (x)eσ−x dx,

where

σ− = 1 − √
1 + 4ε2(λ + μ)

2ε2
∼ O

(
1

ε

)
as ε → +∞.

In order to obtain the limit characteristic equation when ε tends to infinity, we rewrite the character-
istic equation as

−εσ− + 1

ε
− η(ε,α)

ε

+∞∫
0

γ (x)eσ−x dx = 0. (5.5)

To simplify the notation, we set

�̃(ε,α,λ) = −ε2σ− + 1 − η(ε,α)

+∞∫
0

γ (x)eσ−x dx.

Then the rewritten equation (5.5) becomes

�̃(ε,α,λ)

ε
= 0.

Note that

χ =
+∞∫

γ (x)exp
(
σ−

0 x
)

dx
0
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and

σ−
0 = 1 − √

1 + 4ε2μ

2ε2
→ 0 as ε → +∞.

It is important to observe that to obtain a positive equilibrium, by Lemma 3.1 we must have

R0 > 1,

or equivalently,

α >
1 + √

Λ0

2χ
, where Λ0 = 1 + 4ε2μ. (5.6)

We make the following assumption.

Assumption 5.4. Assume that

γ (x) ∈ L1+(0,+∞), α = cε,

for some c > 0.

Under Assumption 5.4, we have

χ →
+∞∫
0

γ (x)dx,

√
Λ0

α
=

√
1 + 4ε2μ

cε
→ 2

√
μ

c
as ε → +∞,

so we obtain

R0 → c√
μ

+∞∫
0

γ (x)dx := R∞
0 as ε → +∞,

η(ε, cε)

ε
→

√
μ∫ +∞

0 γ (x)dx

(
1 − ln R∞

0

) := η∞ as ε → +∞.

Lemma 5.5. Let Assumptions 2.1 and 5.4 be satisfied. Then there exists ε̂ > 0 such that ∀ε > ε̂, if

λ ∈ Ω and �̃(ε,α,λ) = 0,

then

|λ| < μ + μ
(
1 − ln R∞

0

)2 + 1.
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Proof. If λ ∈ Ω, �̃(ε,α,λ) = 0, then

−ε2σ− + 1 = η(ε,α)

+∞∫
0

γ (x)eσ−x dx

with

Re(σ−) < 0.

So we have

∣∣ε2σ− − 1
∣∣ �

∣∣η(ε,α)
∣∣ +∞∫

0

γ (x)dx,

thus

|σ−| � |η(ε,α)|
ε2

+∞∫
0

γ (x)dx + 1

ε2
.

Observe that σ− satisfies

ε2(σ−)2 − σ− = λ + μ,

we have

|λ| � |σ−|∣∣ε2σ− − 1
∣∣ + μ �

(
|η(ε,α)|

ε

+∞∫
0

γ (x)dx

)2

+ |η(ε,α)| ∫ +∞
0 γ (x)dx

ε2
+ μ. (5.7)

Since when ε tends to infinity, the right-hand side of the inequality (5.7) goes to

μ + μ
(
1 − ln R∞

0

)2
,

and the result follows. �
Lemma 5.6 (Convergence). Let Assumptions 2.1 and 5.4 be satisfied. Then we have

lim
ε→+∞ lim

λ→λ̂

�̃(ε, cε,λ)

ε
= �̂(+∞, c, λ̂),

where

�̂(+∞, c, λ̂) :=
√

λ̂ + μ − √
μ

(
1 − ln R∞

0

)
.
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Proof. We have

lim
ε→+∞ lim

λ→λ̂

εσ− = lim
ε→+∞ lim

λ→λ̂

1 − √
1 + 4ε2(λ + μ)

2ε
= −

√
λ̂ + μ,

lim
ε→+∞ lim

λ→λ̂

σ− = lim
ε→+∞ lim

λ→λ̂

1 − √
1 + 4ε2(λ + μ)

2ε2
= 0,

and we deduce for λ = 0 that

lim
ε→+∞χ = lim

ε→+∞

+∞∫
0

γ (x)eσ−
0 x dx =

+∞∫
0

γ (x)dx.

Since

lim
ε→+∞

η(ε, cε)

ε
=

√
μ∫ +∞

0 γ (x)dx

(
1 − ln R∞

0

)
,

we have

lim
ε→+∞ lim

λ→λ̂

�̃(ε, cε,λ)

ε
= lim

ε→+∞ lim
λ→λ̂

(
−εσ− + 1

ε
− η(ε,α)

ε

+∞∫
0

γ (x)eσ−x dx

)

=
√

λ̂ + μ − √
μ

(
1 − ln R∞

0

)
.

This completes the proof of the lemma. �
Remark 5.7. From Lemma 5.6, the limit equation of the characteristic equation when ε tends to infin-
ity is

√
λ + μ = √

μ
(
1 − ln R∞

0

)
, λ ∈ Ω. (5.8)

Eq. (5.8) has at most one real negative solution. Indeed, if q := 1 − ln R∞
0 ∈ [0,1), then

√
λ + μ = √

μq,

i.e.,

λ = −μ
(
1 − q2)

< 0;

and if q := 1 − ln R∞
0 ∈ (−∞,0), then

√
λ + μ < 0. Since by construction we have Re(

√
λ + μ) � 0,

λ ∈ Ω, so there is no solution.

Theorem 5.8. Let Assumptions 2.1 and 5.4 be satisfied, and assume that R∞
0 > 1. Then for each ε > 0 large

enough the positive equilibrium v̄ of system (2.1) is locally asymptotically stable.
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Proof. We claim that if Assumption 5.4 is satisfied, then for ε positive and large enough, there are no
roots of the characteristic equation with non-negative real part. Otherwise, we can find a sequence
εn → +∞, and a sequence λn such that

Re(λn) � 0, �̃(εn, cεn, λn) = 0.

By using Lemma 5.5, we know that λn is bounded for each ε positive and large enough. Thus we can
find a subsequence of λn which converges to λ̂. We also denote this subsequence by λn. Obviously,
we have

Re(λ̂) � 0, �̃(εn, cεn, λn) = 0. (5.9)

Let n tend to infinity in Eq. (5.9). Then by Lemma 5.6, we have

�̂(+∞, c, λ̂) = 0

with

Re(λ̂) � 0,

which leads to a contradiction with Remark 5.7, and the result follows. �
Remark 5.9. In order to show that, under Assumptions 2.1 and 5.4, Theorem 5.8 is more general than
Theorem 5.3, we observe that

R0 → R∞
0 = c√

μ

+∞∫
0

γ (x)dx, ε → +∞.

So when ε → +∞, the condition of Theorem 5.3 gives

1 < R∞
0 < e2.

6. Hopf bifurcation

In this section we will study the existence of Hopf bifurcation when α is regarded as the bifurca-
tion parameter of the system. By Theorem 5.3 we already knew that the positive equilibrium v̄ of the
system (2.1) is locally asymptotically stable if

1 < R0 � e2, R0 = 2αχ

1 + √
Λ0

,

which corresponds to α ∈ (α̂0, α̂1], where

α̂0 := 1 + √
Λ0

2χ
and α̂1 := 1 + √

Λ0

2χ
e2.

For a fixed value of ε > 0, we will study the existence of a bifurcation value α∗ > α̂1. Recall the
characteristic equation �(ε,α,λ) = 0, where
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�(ε,α,λ) = 1 − 2η(ε,α)

1 + √
Λ

+∞∫
0

γ (x)eσ−x dx

= 1 − η(ε,α)

1 − ε2σ−

+∞∫
0

γ (x)eσ−x dx,

in which

σ− = 1 − √
Λ

2ε2

and

η(ε,α) = α

R0
(1 − ln R0) < 0 for α > α̂1.

6.1. Existence of purely imaginary eigenvalues

We consider the characteristic equation of σ− ∈ C: Re(σ−) < 0,

ε2σ− − 1 = −η(ε,α)

+∞∫
0

γ (x)eσ−x dx, (6.1)

ε2(σ−)2 − σ− = λ + μ (6.2)

with

Re(λ) > −μ.

Set

σ− = −(a + ib).

Then a > 0, from Eq. (6.2) we obtain

ε2(
a2 − b2 + 2abi

) + a + ib = λ + μ,

i.e., {
ε2

(
a2 − b2

) + a = Re(λ) + μ,

2ε2ab + b = Im(λ).
(6.3)

It follows that

b = Im(λ)

2aε2 + 1
. (6.4)

Thus, if we look for purely imaginary roots λ = ωi with ω > 0, then from Eq. (6.4) we have b > 0.

Since a > 0, by the first equation in (6.3) we obtain
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a = −1 + √
1 + 4ε2(μ + ε2b2)

2ε2
,

and by the second equation in (6.3) we obtain

ω = b
(
2ε2a + 1

) = b
√

1 + 4ε2
(
μ + ε2b2

)
.

On the other hand, from Eq. (6.1), we have

ε2(a + ib) + 1 = η(ε,α)

+∞∫
0

γ (x)e−(a+ib)x dx.

The rest of this subsection is devoted to the existence of purely imaginary roots of the characteristic
equation when

γ (x) = (x − τ )ne−β(x−τ )1[τ ,+∞)(x)

with τ > 0, β � 0, and n ∈ N.

Since the function γ (x) must be bounded, we study the following two cases:

(a) β = 0 and n = 0.

(b) β > 0 and n � 0.

6.1.1. Case (a)
In this subsection, we will make the following assumption.

Assumption 6.1. Assume that ε > 0 and γ (x) = 1[τ ,+∞)(x) for some τ > 0.

As we described in the introduction, when γ (x) = 1[τ ,+∞)(x) the original system (1.1) can be
viewed as a stochastic perturbation (in the transport term) of a delay differential equation. So in this
section we investigate the bifurcation properties of this problem in terms of parameters α and ε.

Under Assumption 6.1, we have

+∞∫
0

γ (x)eσ−x dx = −eσ−τ

σ− ,

and the characteristic equation becomes

Re(σ−) < 0

and

ε2(σ−)2 − σ− = η(ε,α)eσ−τ ,

i.e.,

ε2[
a2 − b2 + 2abi

] + a + ib = η(ε,α)e−aτ [
cos(bτ ) − i sin(bτ )

]
.
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If we look at the curve λ = ωi with ω > 0 and set

a := −1 + √
1 + 4ε2(μ + ε2b2)

2ε2
,

ω := ε22ab + b = b
√

1 + 4ε2
(
μ + ε2b2

)
,

then

ε2(
a2 − b2) + a = μ and a > 0,

and we obtain

μ + iω = η(ε,α)e−aτ e−ibτ = η(ε,α)e−aτ [
cos(bτ ) − i sin(bτ )

]
.

Now we fix

η(ε,α) = −ceaτ = −ce
−1+

√
1+4ε2(μ+ε2b2)

2ε2 τ

for some constant c > 0. We obtain

μ + iω = ce−ibτ = −c
[
cos(bτ ) − i sin(bτ )

]
.

We must have

c =
√

μ2 + ω2 =
√

μ2 + (
2ε2ab + b

)2
,

tan(bτ ) = −ω

μ
= −ε22ab + b

μ
= −b

√
1 + 4ε2(μ + ε2b2)

μ
,

and impose that

sin(bτ ) = ω

c
> 0 and cos(bτ ) = −μ

c
< 0.

From the above computation we obtain the following proposition.

Proposition 6.2. Let ε > 0, τ > 0 and μ > 0 be fixed. Then the characteristic equation has a pair of purely
imaginary solutions ±iω with ω > 0 if and only if there exists b > 0 which is a solution of equation

tan(bτ ) = −b
√

1 + 4ε2(μ + ε2b2)

μ
(6.5)

with

sin(bτ ) > 0, (6.6)

and

ω = b
√

1 + 4ε2
(
μ + ε2b2

)
, η(ε,α) = η̂(ε,a,b),
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where

η̂(ε,a,b) := −ceaτ ,

c =
√

μ2 + (
2ε2ab + b

)2
, a = −1 + √

1 + 4ε2(μ + ε2b2)

2ε2
.

Moreover, for each k ∈ N, there exists a unique bk ∈ ((2k + 1
2 ) π

τ , (2k + 1) π
τ ) (which is a function of τ , μ

and ε) satisfying (6.5) and (6.6).

Proof. Set b̂ = bτ . Then Eq. (6.5) becomes

tan(b̂) = −
(

√
1 + 4ε2(μ + ( ε

τ )2b̂2) )b̂

μτ
. (6.7)

We observe that the right-hand side of Eq. (6.7) is a strictly monotone decreasing function of b̂,

and since the function tan(x) is increasing, we deduce that Eq. (6.7) has a unique solution bm ∈
((m − 1

2 )π,mπ) for each m � 1, m ∈ N. But since we need to impose sin(bmτ ) > 0, the result fol-
lows. �
6.1.2. Bifurcation diagrams for case (a)

We obtain a sequence bk ∈ ((2k + 1
2 ) π

τ , (2k + 1) π
τ ) satisfying (6.5) and (6.6). Moreover, we have

η(ε,αk) = η̂(ε,ak,bk),

where

η̂(ε,ak,bk) = −ckeakτ ,

ck =
√

μ2 + (
2ε2akbk + bk

)2
, ak =

−1 +
√

1 + 4ε2(μ + ε2b2
k )

2ε2
,

and obtain the following bifurcation curves

αk
1

R0

(
ln(R0) − 1

) = ckeakτ .

We can rewrite the bifurcation curves as

ln(R0) = R0

αk
ckeakτ + 1.

Thus

R0 = e
[1+ckeakτ R0

αk
]
.

But R0 = 2αkχ

1+√
Λ0

, so

αk = 1 + √
Λ0

2χ
exp

(
1 + ckeakτ

2χ√
)

,

1 + Λ0
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Fig. 6.1. A few bifurcation curves given by (6.5), (6.6) and (6.8) in the (ε,α)-plane for τ = 2 and μ = 1.

where

χ =
+∞∫
0

γ (x)eσ−
0 x dx = −eσ−

0 τ

σ−
0

,

σ−
0 = 1 − √

Λ0

2ε2
, Λ0 = 1 + 4ε2μ.

So

2χ

1 + √
Λ0

= 4ε2e
(

1−
√

1+4ε2μ

2ε2 )τ

Λ0 − 1
= e

(
1−

√
1+4ε2μ

2ε2 )τ

μ
.

Hence, we obtain bifurcation curves

αk = μe
−(

1−
√

1+4ε2μ

2ε2 )τ
exp

(
ckeakτ

e
1−

√
1+4ε2μ

2ε2 τ

μ
+ 1

)
. (6.8)

See Figs. 6.1 and 6.2.

Remark 6.3. Note that for any fixed ε > 0, α is a strictly increasing function of b, and as for each
k ∈ N, bk < bk+1, so the bifurcation curves cannot cross each other.

6.1.3. Special case ε = 0
In that case, we obtain a characteristic equation which corresponds to delay differential equations.

Then the characteristic equation becomes

−σ− = η(0,α)eσ−τ , (6.9)

where
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Fig. 6.2. A family of bifurcation curves given by (6.5), (6.6) and (6.8) in the (ε,α)-plane for τ = 2 and μ = 5.

η(0,α) = 1

χ0

(
1 − ln(αχ0)

)
with χ0 =

∞∫
0

γ (x)e−μx dx = e−μτ

μ
,

−σ− = λ + μ.

Corresponding to Proposition 6.2, we have the following proposition.

Proposition 6.4. Let τ > 0 and μ > 0 be fixed. Then the characteristic equation (6.9) has a pair of purely
imaginary solutions ±iω with ω > 0 if and only if

tan(ωτ) = −ω

μ
, (6.10)

sin(ωτ) > 0, (6.11)

and

η(0,α) = −
√

μ2 + ω2eμτ .

Moreover, for each k ∈ N, there exists a unique ωk ∈ ((2k + 1
2 ) π

τ , (2k + 1) π
τ ), which satisfies Eqs. (6.10)

and (6.11) (and is a function of τ and μ).

In this case, the bifurcation curves are given by

αk = μeμτ exp
(
1 +

√
μ2 + ω2

k μ−1)
,

where ωk is described in Proposition 6.4, k ∈ N.

6.1.4. Case (b)
In this subsection, we will make the following assumption.

Assumption 6.5. Assume that ε > 0 and

γ (x) = (x − τ )ne−β(x−τ )1[τ ,+∞)(x)

for some n � 0, τ > 0, and β > 0.



J. Chu et al. / J. Differential Equations 247 (2009) 956–1000 983
When ε = 0, this problem corresponds to the example treated in [35]. Nevertheless, the existence
of purely imaginary solutions was obtained implicitly in [35]. Here we extend this study to the case
when ε > 0 and we specify the bifurcation diagram when ε = 0. Under Assumption 6.5, we have

+∞∫
0

γ (x)eσ−x dx = eβτ

+∞∫
τ

(x − τ )ne(σ−−β)x dx

= eβτ

+∞∫
0

sne(σ−−β)(s+τ ) ds

= −eβτ e(σ−−β)τ

0∫
−∞

(
l

(σ− − β)

)n

el 1

(σ− − β)
dl

= −eσ−τ

(σ− − β)n+1

+∞∫
0

(−1)nxne−x dx

= (−1)n+1eσ−τ n!
(σ− − β)n+1

= n!eσ−τ

(β − σ−)n+1
.

So the characteristic equation becomes �(ε,α,λ) = 0, where

�(ε,α,λ) = 1 − η(ε,α)

1 − ε2σ−

+∞∫
0

γ (x)eσ−x dx = 1 − η(ε,α)n!eσ−τ

(1 − ε2σ−) × (−σ− + β)n+1
.

First we give the following lemma to show that under Assumption 6.5, for any given ε > 0 and α > 0,
there exists at most one pair of purely imaginary solutions of the characteristic equation.

Lemma 6.6. Let Assumptions 2.1 and 6.5 be satisfied. Then for each real number δ1, there exists at most one
δ2 ∈ (0,+∞) such that if

λ ∈ Ω, Re(λ) = δ1 and �(ε,α,λ) = 0,

then

Im(λ) = ±δ2.

Proof. Since �(ε,α,λ) = 0, we obtain

1 − η(ε,α)n!eσ−τ

(1 − ε2σ−) × (−σ− + β)n+1
= 0, (6.12)

where σ− is the solution of

ε2σ 2 − σ = λ + μ, λ ∈ Ω, (6.13)

with Re(σ−) < 0.
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From (6.13) we have

Im(σ−)2 = Re(σ−)2 − Re(σ−) + Re(λ) + μ

ε2
� 0, (6.14)

Im(λ) = 2ε2 Re(σ−)Im(σ−) − Im(σ−), (6.15)

and by (6.12) we have

∣∣1 − ε2σ−∣∣ × ∣∣(−σ− + β)n+1
∣∣ = ∣∣η(ε,α)n!eσ−τ

∣∣,
i.e.,

((
1 − ε2 Re(σ−)

)2 + (
ε2 Im(σ−)

)2) × ((−Re(σ−) + β
)2 + (

Im(σ−)
)2)n+1

= ∣∣η(ε,α)n!∣∣2
e2 Re(σ−)τ .

By using (6.15), we have((
1 − ε2 Re(σ−)

)2 + ε4
(

Re(σ−)2 − Re(σ−) + Re(λ) + μ

ε2

))

×
((−Re(σ−) + β

)2 + Re(σ−)2 − Re(σ−) + Re(λ) + μ

ε2

)n+1

= ∣∣η(ε,α)n!∣∣2
e2 Re(σ−)τ .

Now set

f
(
Re(σ−)

) =
((

1 − ε2 Re(σ−)
)2 + ε4

(
Re(σ−)2 − Re(σ−) + Re(λ) + μ

ε2

))

×
((−Re(σ−) + β

)2 + Re(σ−)2 − Re(σ−) + Re(λ) + μ

ε2

)n+1

− ∣∣η(ε,α)n!∣∣2
e2 Re(σ−)τ ,

then

df

d Re(σ−)

(
Re(σ−)

) = (−2ε2(
1 − ε2 Re(σ−)

) + 2ε4 Re(σ−) − ε2)
×

((−Re(σ−) + β
)2 + Re(σ−)2 − Re(σ−) + Re(λ) + μ

ε2

)n+1

+ (n + 1) ×
((

1 − ε2 Re(σ−)
)2 + ε4

(
Re(σ−)2 − Re(σ−) + Re(λ) + μ

ε2

))
×

((−Re(σ−) + β
)2 + Re(σ−)2 − Re(σ−) + Re(λ) + μ

ε2

)n

×
(

−2
(−Re(σ−) + β

) + 2 Re(σ−) − 1

ε2

)
− 2τ

∣∣η(ε,α)n!∣∣2
e2 Re(σ−)τ .
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By using (6.14) and the above equation we deduce that

Re(σ−) < 0 ⇒ df

d Re(σ−)

(
Re(σ−)

)
< 0.

Thus for any fixed Re(λ), we can find at most one Re(σ−) satisfying the characteristic equation (6.12).
Using (6.14) and (6.15), we obtain the result. �

Now we consider the characteristic equation as the system (6.1) and (6.2) with Re(λ) > −μ,

Re(σ−) < 0. Under Assumption 6.5, the characteristic equation (6.1) is equivalent to

(
ε2σ− − 1

) = −n!η(ε,α)
eσ−τ

(β − σ−)n+1
. (6.16)

We look for purely imaginary roots λ = ωi with ω > 0. As in the discussion of Section 6.1, we set

σ− := −a − ib, ω := 2ε2ab + b,

a := −1 + √
1 + 4ε2(μ + ε2b2)

2ε2

with b > 0, then Eq. (6.2) is satisfied. Now it remains to find b such that it satisfies Eq. (6.16), or
equivalently,

σ− × (
ε2σ− − 1

) = iω + μ = −σ− × n!η(ε,α)
eσ−τ

(β − σ−)n+1
.

Now we have

σ− = −a − ib =
√

a2 + b2eiθ ,

β − σ− = a + β + ib =
√

(a + β)2 + b2eiθ̂ ,

where

θ := arctan

(
b

a

)
+ π, θ̂ := arctan

(
b

a + β

)
.

Then we obtain

μ + iω = −η(ε,α)
n!√a2 + b2e−aτ

(
√

(a + β)2 + b2 )n+1
ei(θ−(n+1)θ̂−τb).

Now we fix

η(ε,α) = −c
(
√

(a + β)2 + b2 )n+1

n!√a2 + b2
eaτ

with c > 0, then we obtain

μ + iω = μ + i
(
2ε2ab + b

) = cei(θ−(n+1)θ̂−τb)
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and have

c =
√

μ2 + ω2 =
√

μ2 + (
2ε2ab + b

)2
,

(2ε2ab + b)

μ
= tan

(
θ − (n + 1)θ̂ − τb

)
.

We must impose that

sin
(
θ − (n + 1)θ̂ − τb

) = 2ε2ab + b

c
> 0.

From the above computation we obtain the following proposition.

Proposition 6.7. Let ε > 0, τ > 0, μ > 0, β > 0, and n ∈ N be fixed. Then the characteristic equation has
a pair of purely imaginary solutions ±iω with ω > 0 if and only if there exists b > 0 which is a solution of
equation

(2ε2ab + b)

μ
= − tan Θ(b) (6.17)

with

sin
(
Θ(b)

)
< 0, (6.18)

and we have

ω = b
√

1 + 4ε2
(
μ + ε2b2

)
, η(ε,α) = η̃(ε,a,b),

where

Θ(b) = −θ + (n + 1)θ̂ + τb, η̃(ε,a,b) := −c
(
√

(a + β)2 + b2 )n+1

n!√a2 + b2
eaτ ,

θ = arctan

(
b

a

)
+ π, θ̂ = arctan

(
b

a + β

)
,

c =
√

μ2 + (
2ε2ab + b

)2
, a = −1 + √

1 + 4ε2(μ + ε2b2)

2ε2
.

Moreover, there exists a sequence bk → +∞ as k → +∞, k ∈ N (which is a function of ε, τ , μ, β, and n)
satisfying (6.17) and (6.18). In particular, for each k large enough, there exists a unique bk ∈ (Θ−1(2kπ − π

2 ),

Θ−1(2kπ)) satisfying (6.17) and (6.18), where Θ−1 is the inverse function of Θ(b) on [b̂,+∞) for b̂ large
enough.

Proof. Note that for b > 0,

(2ε2ab + b)

μ
= − tan Θ(b) > 0,

we have

tan Θ(b) < 0,
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so

Θ(b) ∈
(

mπ − π

2
,mπ

)
, m ∈ Z.

Moreover, in order to ensure

sin Θ(b) < 0,

we must take m = 2k, k ∈ Z. Now since Θ(b) is a continuous function of b,

Θ(0) = −π, Θ(+∞) = +∞,

so for any k ∈ N, there exist b̂k1, b̂k2 > 0 such that Θ(bk1) = 2kπ − π
2 , Θ(bk2) = 2kπ. Observe that

the left-hand side of Eq. (6.17) is a strictly monotone increasing function of b, and since the function
tan(Θ(b)) can take any value from −∞ to +∞ when b ∈ (b̂k1, b̂k2) or b ∈ (b̂k2, b̂k1), we deduce that
Eq. (6.17) has a solution bk ∈ (b̂k1, b̂k2) or bk ∈ (b̂k2, b̂k1). Thus there exists a sequence of bk → +∞
satisfying (6.17) and (6.18). We denote the derivative of function f with respect to b by f ′. Then

Θ ′(b) : = d

db
Θ(b) = −

[
arctan

(
b

a

)
+ π

]′
+ (n + 1)

[
arctan

(
b

a + β

)]′
+ τ

= − ( b
a )′

1 + ( b
a )2

+ (n + 1)
( b

a+β
)′

1 + ( b
a+β

)2
+ τ

= −
a−ba′

a2

1 + ( b
a )2

+ (n + 1)

a+β−ba′
(a+β)2

1 + ( b
a+β

)2
+ τ

= −
a−ba′

b2

( a
b )2 + 1

+ (n + 1)

a+β−ba′
b2

(
a+β

b )2 + 1
+ τ ,

where

a′ := d

db

(−1 + √
1 + 4ε2(μ + ε2b2)

2ε2

)
= 2ε2b√

1 + 4ε2(μ + ε2b2)
.

Since

a′ = 2ε2b√
1 + 4ε2(μ + ε2b2)

→ 1 as b → +∞,

a

b
= −1 + √

1 + 4ε2(μ + ε2b2)

2ε2b
→ 1 as b → +∞,

a + β

b
→ 1 as b → +∞,

we obtain

Θ ′(b) → τ as b → +∞.
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That is, when b is large enough, Θ(b) is a strictly monotone increasing function of b. Denote by
Θ−1 the inverse function of Θ(b) on [b̂,+∞) for b̂ large enough. So for k large enough we have
b̂k1 = Θ−1(2kπ − π

2 ), b̂k2 = Θ−1(2kπ), and the function tan(Θ(b)) is increasing when b ∈ (b̂k1, b̂k2).

Thus there exists a unique bk ∈ (Θ−1(2kπ − π
2 ),Θ−1(2kπ)) satisfying (6.17) and (6.18), and the result

follows. �
6.1.5. Bifurcation diagrams for case (b)

We find a sequence bk going to +∞ and satisfying (6.17) and (6.18). By using a similar procedure
as before, we can derive a bifurcation diagram. Using our construction, we have

η(ε,αk) = η̃(ε,ak,bk).

But

η(ε,α) = α
1

R0

(
1 − ln(R0)

)
,

so we obtain the bifurcation curves

αk
1

R0

(
1 − ln(R0)

) = η̃(ε,ak,bk).

Since

ln(R0) = 1 − R0

αk
η̃(ε,ak,bk),

it follows that

R0 = e
[1−η̃(ε,ak,bk)

R0
αk

]
.

Notice that we also have

R0 = 2αkχ

1 + √
Λ0

,

so

αk = 1 + √
Λ0

2χ
exp

(
1 − η̃(ε,ak,bk)

2χ

1 + √
Λ0

)
.

Now since

χ =
+∞∫
0

γ (x)eσ−
0 x dx = n!eσ−

0 τ

(β − σ−
0 )n+1

,

σ−
0 = 1 − √

Λ0

2ε2
, Λ0 = 1 + 4ε2μ,
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Fig. 6.3. A few bifurcation curves given by (6.17), (6.18), and (6.19), in the (ε,α)-plane for τ = 2, μ = 1, n = 1, and β = 0.1.

we obtain

2χ

1 + √
Λ0

= 2n!eσ−
0 τ

(1 + √
Λ0 )(β − σ−

0 )n+1
.

Thus we obtain the bifurcation curves

αk = (1 + √
Λ0 )(β − σ−

0 )n+1

2n!eσ−
0 τ

exp

(
1 − η̃(ε,ak,bk)

2n!eσ−
0 τ

(1 + √
Λ0 )(β − σ−

0 )n+1

)
, (6.19)

where

η̃(ε,ak,bk) = −ck

(

√
(ak + β)2 + b2

k )n+1

n!
√

a2
k + b2

k

eakτ ,

ck =
√

μ2 + (
2ε2akbk + bk

)2
, ak =

−1 +
√

1 + 4ε2(μ + ε2b2
k )

2ε2
.

See Figs. 6.3 and 6.4.

Remark 6.8. By Lemma 6.6, for any given ε > 0 and α > 0, we obtain at most one pair of purely imag-
inary solutions of the characteristic equation. So on the bifurcation diagram in Fig. 6.5, the crossing
point in fact corresponds to the point where two branches of eigenvalues coincide.

6.1.6. Special case for ε = 0
This special case corresponds to the characteristic equation studied in [35]. Here we improve the

description given in [35] by specifying the bifurcation curves. When ε = 0, the characteristic equation
becomes

1 = n!η(0,α)
eσ−τ

− n+1
(6.20)
(β − σ )
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Fig. 6.4. A family of bifurcation curves given by (6.17), (6.18), and (6.19), in the (ε,α)-plane for τ = 2, μ = 5, n = 1, and β = 0.1.

Fig. 6.5. A zoom on the region where the bifurcation curves are crossing each other in Fig. 6.4.

with

−σ− = λ + μ,

η(0,α) = 1

χ0

(
1 − ln(αχ0)

)
, χ0 =

∞∫
0

γ (x)e−μx dx = n!e−μτ

(β + μ)n+1
.

If we now look for λ = iω with ω > 0 and set σ− = −a − ib with a > 0, b > 0, then

a = μ, ω = b,

and b must satisfy

1 = n!η(0,α)
e(−μ−ib)τ

n+1
,

(β + μ + ib)
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i.e.,

1 = n!η(0,α)
e−μτ

(
√

(β + μ)2 + b2 )n+1
e−i(bτ+(n+1)arctan b

β+μ )
.

Since η(0,α) < 0 for α > α̂1, we have

η(0,α) = − (
√

(μ + β)2 + b2 )n+1

n! eμτ

and

−
(

bτ + (n + 1)arctan

(
b

β + μ

))
= π − 2kπ

for some k ∈ Z.

Proposition 6.9. Let τ > 0, μ > 0, β > 0, and n ∈ N be fixed. Then the characteristic equation (6.20) has a
pair of purely imaginary solutions ±iω with ω > 0 if and only if there exists k ∈ Z such that ω is a solution of
equation

−
(
ωτ + (n + 1)arctan

ω

β + μ

)
= π − 2kπ (6.21)

and

η(0,α) = η̃(0,μ,ω),

where

η̃(0,μ,ω) := − (
√

(μ + β)2 + ω2 )n+1

n! eμτ .

Moreover, for each k ∈ N
+ , there exists a unique ωk (which is a function of τ , μ, β , and n) satisfying Eq. (6.21).

In this case, the bifurcation curves are

αk = (β + μ)n+1

n!e−μτ
exp

(
1 − η̃(0,μ,ωk)

n!e−μτ

(β + μ)n+1

)
, k ∈ N

+,

where

η̃(0,μ,ωk) = −
(

√
(μ + β)2 + ω2

k )n+1

n! eμτ ,

and ωk is described in Proposition 6.9.
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6.2. Transversality condition

The aim of this section is to prove a transversality condition for the model with Assumption 6.1 or
Assumption 6.5. Since Assumption 6.1 is a special case of Assumption 6.5, we start to investigate the
transversality condition under Assumption 6.5.

Lemma 6.10. For fixed ε > 0, if α > α̂1, λ ∈ Ω and �(ε,α,λ) = 0, then

∂�(ε,α,λ)

∂α
< 0.

Proof. Since

�(ε,α,λ) = 1 − 2η(ε,α)

1 + √
Λ

+∞∫
0

γ (x)eσ−x dx,

∂�(ε,α,λ)

∂α
= −2 ∂η(ε,α)

∂α

1 + √
Λ

+∞∫
0

γ (x)eσ−x dx,

and

η(ε,α) = 1 + √
Λ0

2χ

(
1 − ln

(
α

2χ

1 + √
Λ0

))
,

where 1+√
Λ0

2χ is independent of α, we have

∂η(ε,α)

∂α
= −1 + √

Λ0

2αχ
.

But �(ε,α,λ) = 0, we obtain

∂�(ε,α,λ)

∂α
= −

∂η(ε,α)
∂α

η(ε,α)
= 1

α(1 − ln 2αχ

1+√
Λ0

)
.

Moreover, if α > α̂1, then ∂�(ε,α,λ)
∂α < 0. �

Lemma 6.11. Let Assumptions 2.1 and 6.5 be satisfied. For fixed ε > 0, if α > α̂1, λ ∈ Ω and �(ε,α,λ) = 0,

then

∂�(ε,α,λ)

∂λ
= 2ε2

√
Λ

(
1

1 + √
Λ

+ τ

2ε2
+ 1 + n

(2ε2β − 1) + √
Λ

)
�= 0.

Proof. Under Assumption 6.5 we have

�(ε,α,λ) = 1 − η(ε,α)n!eσ−τ

(1 − ε2σ−) × (−σ− + β)n+1

and
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∂�(ε,α,λ)

∂λ
= ∂�(ε,α,λ)

∂σ−
∂σ−

∂λ
= −η(ε,α)n! ∂

∂σ−

(
eσ−τ

(1 − ε2σ−) × (−σ− + β)n+1

)
∂σ−

∂λ

= − η(ε,α)n!eσ−τ

(1 − ε2σ−) × (−σ− + β)n+1

(
τ + ε2

1 − ε2σ− + n + 1

−σ− + β

)
∂σ−

∂λ

= (
�(ε,α,λ) − 1

) ×
(
τ + 2ε2

1 + √
Λ

+ n + 1

−σ− + β

)
∂σ−

∂λ
.

Since

∂σ−

∂λ
= ∂

∂λ

(
1 − √

1 + 4ε2(λ + μ)

2ε2

)
= − 1√

1 + 4ε2(λ + μ)
= − 1√

Λ
,

we obtain

∂�(ε,α,λ)

∂λ
= −�(ε,α,λ) − 1√

Λ

(
2ε2

1 + √
Λ

+ τ + n + 1

−σ− + β

)
.

So if �(ε,α,λ) = 0, then

∂�(ε,α,λ)

∂λ
= 2ε2

√
Λ

(
1

1 + √
Λ

+ τ

2ε2
+ 1 + n

(2ε2β − 1) + √
Λ

)
. (6.22)

Now note that ∂�(ε,α,λ)
∂λ

= 0 if and only if

τ

2ε2
Λ + (2 + n + τβ)

√
Λ + τ

2ε2

(
2ε2β − 1

) + n + 2ε2β = 0. (6.23)

As η(ε,α) < 0 for α > α̂1, we have for λ ∈ R and λ > −μ that

�(ε,α,λ) = 1 − η(ε,α)n!eσ−τ

(1 − ε2σ−) × (−σ− + β)n+1
> 0.

So the solutions of the characteristic equation in Ω cannot be real numbers. When λ ∈ C\R, we have√
Λ = √

1 + 4ε2(λ + μ) ∈ C \ R with Re(
√

Λ) > 0. By noting that the sign of the imaginary part of Λ

is the same as the sign of the imaginary part of
√

Λ and by noticing that τ
2ε2 > 0 and 2 +n + τβ > 0,

we deduce that Eq. (6.23) cannot be satisfied. �
Theorem 6.12. Let Assumptions 2.1 and 6.5 be satisfied and let ε > 0 be given. For each k � 0 large enough, let
λk = iωk be the purely imaginary root of the characteristic equation associated to αk > 0 (defined in Proposi-
tion 6.7), then there exists ρk > 0 (small enough) and a C1-map λ̂k : (αk − ρk,αk + ρk) → C such that

λ̂k(αk) = iωk, �
(
ε,α, λ̂k(α)

) = 0, ∀α ∈ (αk − ρk,αk + ρk),

satisfying the transversality condition

Re

(
dλ̂k(αk)

dα

)
> 0.
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Proof. By Lemma 6.11 we can use the implicit function theorem around each (αk, iωk) provided by
Proposition 6.7, and obtain that there exists ρk > 0 and a C1-map λ̂k : (αk − ρk,αk + ρk) → C such
that

λ̂k(αk) = iωk, �
(
ε,α, λ̂k(α)

) = 0, ∀α ∈ (αk − ρk,αk + ρk).

Moreover, we have

∂�(ε,α, λ̂k(α))

∂α
+ ∂�(ε,α, λ̂k(α))

∂λ

dλ̂k(α)

dα
= 0, ∀α ∈ (αk − ρk,αk + ρk).

So

dλ̂k(α)

dα
= − 1

∂�(ε,α,λ̂k(α))
∂λ

∂�(ε,α, λ̂k(α))

∂α
, ∀α ∈ (αk − ρk,αk + ρk).

By using Lemma 6.10, we deduce ∀α ∈ (αk − ρk,αk + ρk) that

Re

(
d

dα
λ̂k(α)

)
> 0 ⇔ Re

(
∂�(ε,α, λ̂k(α))

∂λ

)
> 0.

In particular, we have

Re

(
d

dα
λ̂k(αk)

)
> 0 ⇔ Re

(
∂�(ε,αk, iωk)

∂λ

)
> 0.

Using the notation of Proposition 6.7, we have

√
Λ = 1 − 2ε2σ− = 1 + 2ε2(ak + ibk) := γk + iδk,

where γk and δk are positive and γ 2
k − δ2

k = 1 + 4ε2μ.
Therefore, we get

∂�(ε,αk, iωk)

∂λ
= 2ε2

√
Λ

(
1

1 + √
Λ

+ τ

2ε2
+ 1 + n

(2ε2β − 1) + √
Λ

)
= 2ε2

γk + iδk

(
1 + γk − iδk

(1 + γk)
2 + δ2

k

+ τ

2ε2
+ (n + 1)

2ε2β − 1 + γk − iδk

(2ε2β − 1 + γk)
2 + δ2

k

)
= 2ε2

γ 2
k + δ2

k

(γk − iδk)

(
1 + γk − iδk

(1 + γk)
2 + δ2

k

+ τ

2ε2
+ (n + 1)

2ε2β − 1 + γk − iδk

(2ε2β − 1 + γk)
2 + δ2

k

)
and

Re

(
∂�(ε,αk, iωk)

∂λ

)
= 2ε2

γ 2
k + δ2

k

(
γk(1 + γk) − δ2

k

(1 + γk)
2 + δ2

k

+ γkτ

2ε2
+ (n + 1)

γk(2ε2β − 1 + γk) − δ2
k

(2ε2β − 1 + γk)
2 + δ2

k

)
= 2ε2

γ 2
k + δ2

k

(
γk + γ 2

k − δ2
k

(1 + γk)
2 + δ2

k

+ γkτ

2ε2
+ (n + 1)

γk(2ε2β − 1) + γ 2
k − δ2

k

(2ε2β − 1 + γk)
2 + δ2

k

)
= 2ε2

γ 2 + δ2
Ak,
k k
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where

Ak =
(

γk + 1 + 4ε2μ

(1 + γk)
2 + δ2

k

+ γkτ

2ε2
+ (n + 1)

γk(2ε2β − 1) + 1 + 4ε2μ

(2ε2β − 1 + γk)
2 + δ2

k

)
.

By Proposition 6.7 we have

ak =
−1 +

√
1 + 4ε2(μ + ε2b2

k )

2ε2
, bk → +∞ as k → +∞.

Then we obtain

γk = 1 + 2ε2ak =
√

1 + 4ε2
(
μ + ε2b2

k

) → +∞ as k → +∞,

δk = 2ε2bk → +∞ as k → +∞,

and

lim
k→+∞

Ak

γk
= lim

k→+∞

( 1 + 1+4ε2μ
γk

(1 + γk)
2 + δ2

k

+ τ

2ε2
+ (n + 1)

(2ε2β − 1) + 1+4ε2μ
γk

(2ε2β − 1 + γk)
2 + δ2

k

)
= τ

2ε2
> 0.

We deduce that Ak > 0 for k large enough and Re(
∂�(ε,αk,iωk)

∂λ
) > 0. So Re( dλ̂k(αk)

dα ) > 0 and the result
follows. �

In the case (a) we have a full description of the problem in terms of transversality condition and
the following result.

Theorem 6.13. Let Assumptions 2.1 and 6.1 be satisfied and let ε > 0 be given. For each k � 0, let λk = iωk be
the purely imaginary root of the characteristic equation associated to αk > 0 (defined in Proposition 6.2), then
there exists ρk > 0 (small enough) and a C1-map λ̂k : (αk − ρk,αk + ρk) → C such that

λ̂k(αk) = iωk, �
(
ε,α, λ̂k(α)

) = 0, ∀α ∈ (αk − ρk,αk + ρk),

satisfying the transversality condition

Re

(
dλ̂k(αk)

dα

)
> 0.

Proof. According to the proof of Theorem 6.12, we have

Re

(
d

dα
λ̂k(αk)

)
> 0 ⇔ Re

(
∂�(ε,αk, iωk)

∂λ

)
> 0.

Taking n = 0, β = 0 in (6.22), we have for each k � 0 that
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∂�(ε,αk, iωk)

∂λ
= 2ε2

√
Λ

(
1

1 + √
Λ

+ τ

2ε2
+ 1

−1 + √
Λ

)

= 2ε2

√
Λ

(
2
√

Λ

4ε2(λ + μ)
+ τ

2ε2

)
= 1

iωk + μ
+ τ√

Λ
.

Since

Re(
√

Λ) > 0,

we obtain for each k � 0 that

Re

(
∂�(ε,αk, iωk)

∂λ

)
> 0,

so the result follows. �
6.3. Hopf bifurcations

By combining the results on the essential growth rate of the linearized equations (Eq. (4.6)), the
simplicity of the imaginary eigenvalues (Lemmas 4.5 and 6.11), the existence of purely imaginary
eigenvalues (Proposition 6.7 or Proposition 6.2), and the transversality condition (Theorem 6.12 or
Theorem 6.13), we are in a position to apply the center manifold Theorem 4.21 and Proposition 4.22
in Magal and Ruan [35]. Applying the Hopf bifurcation theorem proved in Hassard et al. [23] to the
reduced system, we have the following Hopf bifurcation results.

In the case (a), we obtain the following result.

Theorem 6.14 (Hopf bifurcation). Let Assumptions 2.1 and 6.1 be satisfied. Then for any given ε > 0 and any
k ∈ N, the number αk (defined in Proposition 6.2) is a Hopf bifurcation point for system (1.2) parametrized
by α, and around the positive equilibrium point v̄ given in (3.2).

For the case (b), the result is only partial with respect to k.

Theorem 6.15 (Hopf bifurcation). Let Assumptions 2.1 and 6.5 be satisfied. Then for any given ε > 0, there
exists k0 ∈ N (large enough) such that for each k � k0 , the number αk (defined in Proposition 6.7) is a Hopf
bifurcation point for system (1.2) parametrized by α, around the equilibrium point v̄ given in (3.2).

7. Discussion and numerical simulations

We first summarize the main results of this study. They are essentially divided into three parts:
(a) the existence of a positive equilibrium; (b) the local stability of this equilibrium; and (c) the Hopf
bifurcation at this equilibrium. To be more precise we obtain the following results:

(a) There exists a unique positive equilibrium if and only if

R0 := 2αχ

1 + √
Λ0

> 1.

(b) The positive equilibrium is locally asymptotic stable:
(b1) if 1 < R0 � e2, or

(b2) if ε > 0 is large enough when we fix α = cε with γ ∈ L1+(0,+∞), and c >
√

μ∫ +∞
0 γ (x)dx

.
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Fig. 7.1. Graph of the evolution of the L1-norm of the solution in function of time. Here we fix α = 10 and ε varies in {1.5,2,3}.

(c) Consider the following special case for γ (x):

γ (x) =
{

(x − τ )n exp(−β(x − τ )), if x � τ ,

0, if 0 � x < τ,
(7.1)

for some integer n � 0, τ > 0, and β > 0. There is a Hopf bifurcation around the positive equilib-
rium for any fixed ε > 0. For each ε > 0 there exists an infinity of bifurcating branches ε → αk(ε).

The result in (b1) is not really surprising since after the first bifurcation (i.e. the bifurcation of the
null equilibrium) one may apply the result in Magal [32] to prove the global asymptotic stability of
this equilibrium. Nevertheless the result allows to specify a set of the parameters for which the local
stability holds.

The local stability result (b2) along the line α = cε is more surprising since there is no more
local effect (with respect to the parameters), and this result can be summarized by saying that the
diffusion part gains when ε > 0 is large enough and α is proportional to ε. So in order to obtain a
Hopf bifurcation the parameter α needs to increase faster than any linear map of ε.

Concerning the existence of Hopf bifurcation, the case ε > 0 small corresponds to a small pertur-
bation of an age-structured model which has been studied in Magal and Ruan [35]. Here we have
obtained a more precise result by showing the existence of an infinite number of Hopf bifurcating
branches. The case ε > 0 is new and was not expected at first.

We now provide some numerical simulations in order to illustrate the Hopf bifurcation for sys-
tem (1.1). These numerical simulations are fulfilled with the following parameters:

β = 0.5, μ = 0.05 and γ (x) = 1[7,20](x). (7.2)

Here we observe that increasing the diffusion coefficient ε2 with a fixed α tends to stabilize the
positive equilibrium (see Fig. 7.1). On the other hand, when ε is fixed, increasing α tends to destabilize
the positive equilibrium and leads to undamped oscillating solutions (see Fig. 7.2).

In Figs. 7.3 and 7.4, we look at the surface solutions for a fixed value of α and for different values
of ε. We observe that the diffusion in the size variable disperses through the size variable. When
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Fig. 7.2. Graph of the evolution of the L1-norm of the solution in function of time. We fix ε = 2 and α varies in {2,4,10}.

Fig. 7.3. Surface solution for α = 15 and ε2 = 2.

we increase the diffusion coefficient, we also increase the dispersion process. This dispersion, when
it becomes sufficiently high, is responsible for the breaking of the self-sustained oscillations of the
solutions. As a consequence, the diffusion will reduce the temporal oscillations and then will stabilize
the positive equilibrium.

Note that our results depend on the assumption on the function h(x): when h is monotone de-
creasing near the positive equilibrium and the slope decreases, then Hopf bifurcation occurs at the
positive equilibrium. The periodic solutions induced by the Hopf bifurcation indicate that the popula-
tion density exhibits temporal oscillatory patterns. We expect that the results can be generalized to
different and more general types of functions.

As a conclusion, we can say that the effect of the stochastic fluctuations in the size-structured
model (1.1), modelled by a simple diffusion term, acts in favor of the stabilization of the populations.
Small fluctuations remain in a small perturbation of the classical case ε = 0, but by increasing the
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Fig. 7.4. Surface solution for α = 15 and ε2 = 2.5.

value of α the positive steady state can be destabilized. When the stochastic fluctuations are large
(i.e. ε is large), then it turns to be very difficult to destabilize the positive equilibrium, because the
threshold value of α increases exponentially with respect to ε.
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