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Institut de Mathématiques de Bordeaux, UMR CNRS 5251 - Case 36
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1 Introduction

In this work we investigate Hopf bifurcation for the following size-structured
population dynamic model:




∂jg(t, s)

∂t
= − ∂

∂s
(gjg(t, s))− σ+jg(t, s) + σ−jr(t, s)− (ς + µ) jg(t, s),

gjg(t, 0) = αh
(∫ +∞

0
γ(s)(jg(t, s) + jr(t, s) + a(t, s))ds

)
,

∂jr(t, s)

∂t
= −σ−jr(t, s) + σ+jg(t, s)− (ς + µ) jr(t, s),

∂a(t, s)

∂t
= ς (jg(t, s) + jr(t, s))− µa(t, s),

jg(0, .) = jg,0 ∈ L1
+((0,+∞) ,R),

jr(0, .) = jr,0 ∈ L1
+((0,+∞) ,R),

and
a(0, .) = a0 ∈ L1

+((0,+∞) ,R),
(1.1)

where g > 0, σ+ > 0, σ− > 0, ς > 0, µ > 0, α > 0, γ ∈ L∞
+ ((0,+∞) ,R) \ {0} ,

and the map h : [0,+∞) → [0,+∞) is defined by

h(x) = x exp (−ξx) , ∀x ≥ 0,

with ξ > 0.
Model (1.1) combines the growth process of individuals in size, the mortality

process and the reproduction of individuals. In this model, the total popula-
tion is decomposed into juveniles and adults. Here, juveniles and adults have
another meaning than the usual ones in ecology. Actually, juveniles are the
individuals that can grow in size, while the adults have reached the maturity
in size (i.e. definitively stopped growing in size). The resting phase, i.e. period
while individuals stop growing, is introduced to the class of juveniles, result-
ing in two subpopulations, namely growing juveniles and non-growing juveniles.
The population density jg(t, s), jr(t, s) and a(t, s) are respectively the density
of growing juveniles, non-growing juveniles and adults at time t with size s. For
each s2 > s1 ≥ 0 the quantity

∫ s2

s1

jg(t, s) ds,

∫ s2

s1

jr(t, s) ds,

∫ s2

s1

a(t, s) ds,

are respectively the total number of individuals of growing juveniles, non-growing
juveniles, adults, at time t in the size range (s1, s2).

In this model the newborns are assumed to be in the class of growing ju-
veniles with size zero. Moreover, the flux of newborns at time t is given by

αh
(∫ +∞

0
γ (s) (jg(t, s) + jr(t, s) + a(t, s))ds

)
, where α is the reproduction rate

of individuals, and the function γ(s) ∈ [0, 1] can be interpreted as the probabil-
ity for an individual with size s to reproduce. The function h(x) = x exp(−ξx)

2



is a Ricker [48, 49] type birth function. This type of birth function has been com-
monly used in the literature, which describes a limitation for the birth whenever
the population becomes large. We refer to Ducrot, Magal and Seydi [22] for a
mathematical justification of the Ricker function by using a singular perturba-
tion idea. For mathematical convenience, the mortality rate µ is supposed to
be independent of the size.

If we neglect the birth and the death process in model (1.1), then it becomes





∂jg(t, s)

∂t
= − ∂

∂s
(gjg(t, s))− σ+jg(t, s) + σ−jr(t, s)− ςjg(t, s),

gjg(t, 0) = 0,
∂jr(t, s)

∂t
= −σ−jr(t, s) + σ+jg(t, s)− ςjr(t, s),

∂a(t, s)

∂t
= ς (jg(t, s) + jr(t, s)) .

Here g > 0 is the growth rate of growing juveniles. σ+(respectively σ−) is the
turning rate of juveniles passing from the growing phase to the resting phase
(conversely from the resting phase to the growing phase). To be more precise,
the average time spent by a juvenile in the growing phase (respectively in the
resting phase) follows an exponential law with mean 1

σ+ (respectively 1
σ−

). ς > 0
is the transition rate from juvenile to adult stage.

Figure 1 summarizes model (1.1). For short, the new born individuals start
in the growing phase. The juveniles then alternate between the growing phase
and the resting phase, and this process stops when individuals become adults
(in size).

Figure 1: Diagram flux of model (1.1).
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As far as we know, the first attempt to model size structured population can
be attributed to Sinko and Streifer [46], Bell and Anderson [7]. Their model is
a single transport equation. Since then, transport equations have been widely
used and investigated size structured populations in the context of ecology and
cell population dynamics. We refer to Metz and Diekmann [42], Cushing [17],
Arino [2], Arino and Sanchez [3], Calsina and Saldana [10], Calsina and Sanchón
[11], Webb [56] (and references therein) for studies on size-structured models.

With a single transport equation, two individuals having the same size at
a given time keep the same size as long as they stay alive. However, it is
observed that a group of individuals having the same size (for example at birth)
exhibit distributed size after a period of time (see [6]). This phenomenon can
be regarded as a dispersion process with respect to size.

The dispersion of individuals during the development process was probably
introduced by Lee et al. [36] and modeled first by using a diffusion process
in Metz and Diekmann [42]. Recently, this kind of model was investigated by
Buffoni and Pasquali [9] with a linear boundary condition and by Chu, Ducrot,
Magal and Ruan [13] with a nonlinear boundary condition.

Another approach to model this phenomenon is by allowing growth rates to
vary for individuals with the same size. We refer to Huyer [30] and Banks et al.
[6] for models with multiple growth rates. More recently, Chu, Magal and Yuan
[14] modeled the size dispersion process by using a “random walk” like process
by alternating a positive and negative growth speed. In particular, when the
negative growth rate becomes null in the “random walk” model, one can derive
a model similar to the model used to describe the quiescence of cells. Models
with quiescence were first proposed by Gyllenberg and Webb [27] for tumor
cells. We refer to [4, 23, 28, 50, 51] for studies on age and/or size-structured
models with quiescence and results on this subject. We also refer to Bai and
Cui [5], Farkas and Hinow [25] for size-structured cell models with two kinds of
interchangeable but strictly positive growth rates.

From modeling point of view, the goal of model (1.1) is to describe this size
dispersion process. To the best of our knowledge, the model (1.1) has not been
considered in the context of size population dynamics.

From a mathematical point of view of (1.1), we can first consider some
special cases. For example, if γ (x) = 1, ∀x ∈ [0,+∞) , then the total number

of individuals U(t) :=
∫ +∞

0
u (t, s) ds satisfies the following ordinary differential

equation 



dU (t)

dt
= αh (U (t))− µU (t) , ∀t ≥ 0,

U (0) =
∫ +∞

0
(jg,0 + jr,0 + a0) (s) ds.

In this case, the positive equilibrium (when it exists) is globally asymptotically
stable. Consequently, there will be no oscillations.

If we assume ς = 0, then

a (t, s) = e−µta0 (s) → 0 as t→ +∞.

Hence, the dynamical properties of (1.1) with ς = 0 are captured by the following
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system





∂jg(t, s)

∂t
= − ∂

∂s
(gjg(t, s))− σ+jg(t, s) + σ−jr(t, s)− µjg(t, s),

gjg(t, 0) = αh
(∫ +∞

0
γ(s)(jg(t, s) + jr(t, s))ds

)
,

∂jr(t, s)

∂t
= −σ−jr(t, s) + σ+jg(t, s)− µjr(t, s),

jg(0, .) = jg,0 ∈ L1
+ (0,+∞) ,

jr(0, .) = jr,0 ∈ L1
+(0,+∞),

(1.2)

which is an extreme case of the model studied in Chu, Magal and Yuan [14].
In particular, if σ+ = 0 and ς = 0, then the system becomes





∂jg(t, s)

∂t
= − ∂

∂s
(gjg(t, s))− µjg(t, s),

gjg(t, 0) = αh
(∫ +∞

0
γ(s)(jg(t, s)ds

)
,

jg(0, .) = jg,0 ∈ L1
+ (0,+∞) .

(1.3)

With a simple change of variable, we can assume g = 1, then (1.3) is exactly
the age-structured model considered in Magal and Ruan [40] and Chu, Ducrot,
Magal and Ruan [13].

From mathematical point of view, the goal of this article is to study the
existence of Hopf bifurcation for system (1.1). Our work is conducted by the
early fundamental work of Engel and Nagel [24] and Goldstein [26] on linear
semigroup theory. Some recent improvement about this theory allows to de-
rive a center manifold theorem for abstract non-densely defined Cauchy prob-
lems (see Magal and Ruan [40]) as well as a Hopf bifurcation theorem (see
Liu, Magal and Ruan [37]). These theorems have been successfully applied to
study the existence of Hopf bifurcation for some age/size-structured models, see
[40, 13, 14, 41]. We would like to point out that there are relatively few results
concerning the non-trivial periodic solutions for age/size-structured population
dynamical models. We refer to Cushing [18, 19], Prüss [43], Swart [47], Kostova
and Li [35], Bertoni [8] for results in such a context. It is commonly believed
that periodic solutions appeared in age/size-structured models are induced by
Hopf bifurcations (Castillo-Chavez et al [12], Inaba [31, 32], Zhang et al [57]).
Hopf bifurcation analysis has been considered for various classes of partial dif-
ferential equations in Amann [1], Crandall and Rabinowitz [15], Da Prato and
Lunardi [20], Guidotti and Merino [16], Koch and Antman [33], Sandstede and
Scheel [44], and Simonett [45]. However, since there is a nonlinear and nonlo-
cal boundary condition in our model (1.1), their results and techniques do not
apply to (1.1).

The paper is organized as follows. In section 2, system (1.1) is reformulated
as a non-densely defined Cauchy problem. In section 3, we study the existence
and uniqueness of the positive equilibrium. In section 4, we linearize system
(1.1) at the positive equilibrium, investigate the spectral properties of the lin-
earized equation, and give the characteristic equation. The local stability of the
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positive equilibrium is considered in section 5. In section 6, the existence of
Hopf bifurcation is studied whenα is considered as the bifurcation parameter.
Finally, in section 7 we summarize the results of the paper and present some
bifurcation diagrams as well as some numerical simulations of the model.

2 Preliminary

By making a simple change of variable (s̃ = s
g
), without loss of generality, we

will always assume that g = 1. From here on, we consider the system




∂jg(t, s)

∂t
= −∂jg(t, s)

∂s
− σ+jg(t, s) + σ−jr(t, s)− (ς + µ) jg(t, s),

jg(t, 0) = αh
(∫ +∞

0
γ(s)(jg(t, s) + jr(t, s) + a(t, s))ds

)
,

∂jr(t, s)

∂t
= −σ−jr(t, s) + σ+jg(t, s)− (ς + µ) jr(t, s),

∂a(t, s)

∂t
= ς (jg(t, s) + jr(t, s))− µa(t, s),

jg(0, .) = jg,0 ∈ L1
+ (0,+∞) ,

jr(0, .) = jr,0 ∈ L1
+(0,+∞),

a(0, .) = a0 ∈ L1
+(0,+∞),

(2.1)

where σ+ > 0, σ− > 0, ς > 0, µ > 0, α > 0, γ ∈ L∞
+ (0,+∞) \ {0} , and the map

h : R → R is defined by

h(x) = x exp (−ξx) , ∀x ∈ R,

with ξ > 0.
Let L : D(L) ⊂ X → X be a linear operator on a Banach space X. Denote

by ρ(L) the resolvent set of L. The spectrum of L is σ (L) = C\ρ (L) . The point
spectrum of L is the set

σP (L) := {λ ∈ C : N (λI − L) 6= {0}} .

Let Y be a subspace of X. Then we denote by LY : D(LY ) ⊂ Y → Y the part
of L in Y , which is defined by

LY x = Lx, ∀x ∈ D (LY ) := {x ∈ D(L) ∩ Y : Lx ∈ Y } .

In particular, we denote L0 the part of L in D(L).
Consider the Banach space

X := R× L1 (0,+∞)× L1 (0,+∞)× L1 (0,+∞)

endowed with the usual product norm
∥∥∥∥∥∥∥∥




α

ϕ1

ϕ2

ϕ3




∥∥∥∥∥∥∥∥
= |α|+ ‖ϕ1‖L1(0,+∞) + ‖ϕ2‖L1(0,+∞) + ‖ϕ3‖L1(0,+∞) .
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The positive cone of X is

X+ := R+ × L1
+ (0,+∞)× L1

+ (0,+∞)× L1
+ (0,+∞) .

Define the linear operator A : D(A) ⊂ X → X by

A




0
ϕ1

ϕ2

ϕ3


 =




−ϕ1 (0)
−ϕ′

1

0
0




with
D(A) := {0} ×W 1,1 (0,+∞)× L1 (0,+∞)× L1 (0,+∞) .

Then

X0 := D(A) = {0} × L1 (0,+∞)× L1 (0,+∞)× L1 (0,+∞) 6= X.

Let A0 : D(A0) ⊂ X0 → X0 be the part of A in X0, which is defined by

A0x = Ax, ∀x ∈ D(A0)

with
D(A0) = {x ∈ D(A), Ax ∈ X0} .

Define the linear operator L : X0 → X0 by

L




0
ϕ1

ϕ2

ϕ3


 =




0
− (σ+ + ς + µ)ϕ1 + σ−ϕ2

− (σ− + ς + µ)ϕ2 + σ+ϕ1

ς (ϕ1 + ϕ2)− µϕ3


 .

Define the map H : X0 → X by

H




0
ϕ1

ϕ2

ϕ3


 =




αh
(∫ +∞

0
γ (s) (ϕ1(s) + ϕ2(s) + ϕ3(s)) ds

)

0
0
0


 .

By identifying




jg(t, ·)
jr(t, ·)
a(t, ·)


 with v(t) =




0
jg(t, ·)
jr(t, ·)
a(t, ·)


, the partial differential

equation (2.1) can be rewritten as the following non-densely defined Cauchy
problem

dv(t)

dt
= Av(t)+Lv(t)+H (v(t)) , for t ≥ 0, and v(0) =




0
jg,0
jr,0
a0


 ∈ X0. (2.2)

First we have the following lemma about the resolvent of A.
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Lemma 2.1 We have (0,+∞) ⊂ ρ(A0) = ρ(A), and for each λ > 0 we obtain
the following explicit formula for the resolvent of A:

(λI −A)−1




c

ψ1

ψ2

ψ3


 =




0
ϕ1

ϕ2

ϕ3




⇔ 



ϕ1 (s) = ce−λs +
∫ s
0
e−λ(s−l)ψ1 (l) dl,

ϕ2 = ψ2

λ
,

ϕ3 = ψ3

λ
.

From the resolvent formula for A, we deduce that.

Lemma 2.2 The linear operator A is a Hille-Yosida operator on X. More
precisely, we have (0,+∞) ⊂ ρ (A) (the resolvent set of A), and

∥∥∥(λI −A)
−1
∥∥∥ ≤ 1

λ
, ∀λ > 0.

Set
Ω := {λ ∈ C : Re(λ) > −µ} .

Next we obtain the following result.

Lemma 2.3 The linear operator A+L is a Hille-Yosida operator on X. More-
over

Ω ⊂ ρ(A+ L),

and for each λ ∈ Ω the resolvent of A+ L is defined by

(λI − (A+ L))−1




c

ψ1

ψ2

ψ3


 =




0
ϕ1

ϕ2

ϕ3




⇔




ϕ1 (s) = ce
−
(
λ+σ++ς+µ− σ−σ+

λ+σ−+ς+µ

)
s

+
∫ s
0
e
−
(
λ+σ++ς+µ− σ−σ+

λ+σ−+ς+µ

)
(s−l)

(
ψ1 (l) +

σ−

λ+σ−+ς+µψ2 (l)
)
dl,

ϕ2 (s) =
1

λ+σ−+ς+µ (ψ2 (s) + σ+ϕ1 (s)) ,

ϕ3 (s) =
1

λ+µ (ψ3 (s) + ς (ϕ1 (s) + ϕ2 (s))) .

Next since L + δI is a positive linear operator for δ > 0 large enough we
obtain the following result.

Lemma 2.4 We have (λI − (A+ L))−1X+ ⊂ X+ for λ > 0 large enough.
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Set
X0+ := X0 ∩X+.

By using the results in Thieme [52], Magal [38], and Magal and Ruan [39], we
can obtain the following theorem.

Theorem 2.5 (Existence) There exists a unique continuous semiflow {V (t)}t≥0

on X0+ such that ∀v (0) ∈ X0+, t → V (t)v (0) is the unique integrated solution
of system (2.2), or equivalently,

V (t)v (0) = v (0)+A

∫ t

0

V (l)v (0) dl+L

∫ t

0

V (l)v (0) dl+

∫ t

0

H (V (l)v (0)) dl, ∀t ≥ 0.

3 Equilibrium

The equilibrium solutions of equation (2.2) are obtained by solving the equation

A




0
jg
jr
a


+ L




0
jg
jr
a


+H




0
jg
jr
a


 =




0
0
0
0


 ,

and we obtain the following lemma.

Lemma 3.1 (Equilibrium) There exists a positive equilibrium of system (2.1)
(or system (2.2)) if and only if R0 (α) > 1, where

R0 (α) := α

(
1 +

ς

µ

)(
1 +

σ+

σ− + ς + µ

)∫ +∞

0

γ (x) e
−
(
σ++ς+µ− σ−σ+

σ−+ς+µ

)
s
ds.

(3.1)

Moreover, when it exists, it is unique and the positive equilibrium v̄ =




0
jg
jr
a




is given by the following formula:

jg (s) =
α lnR0 (α)

ξR0 (α)
e
−
(
σ++ς+µ− σ−σ+

σ−+ς+µ

)
s
,

jr (s) =
σ+

σ− + ς + µ
jg (s) ,

a (s) =
ς

µ

(
jg (s) + jr (s)

)
.

4 Linearized equation

From now on, we set

v̄ =




0
jg
jr
a


 ,
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where jg, jr, a are given by Lemma 3.1.
The linearized system of (2.2) around v̄ is

dv(t)

dt
= Av(t) + Lv(t) +DH(v̄)v(t) for t ≥ 0, (4.1)

where

DH(v̄)




0
ϕ1

ϕ2

ϕ3


 =




η(α)
∫ +∞

0
γ (s) (ϕ1(s) + ϕ2(s) + ϕ3(s)) ds

0
0
0




with

η (α) = αh′
(∫ +∞

0

γ(s)
(
jg(s) + jr(s) + a(s)

)
ds

)
.

Since
h′(x) = e−ξx(1− ξx),

and by Lemma 3.1 we have

∫ +∞

0

γ(s)
(
jg(s) + jr(s) + a(s)

)
ds

=

(
1 +

ς

µ

)(
1 +

σ+

σ− + ς + µ

)
α lnR0 (α)

ξR0 (α)

∫ +∞

0

γ(s)e
−
(
σ++ς+µ− σ−σ+

σ−+ς+µ

)
s
ds

=
lnR0 (α)

ξ
,

it can be deduced that

η (α) =
α

R0 (α)
(1− lnR0 (α)). (4.2)

The Cauchy problem (4.1) corresponds to the following linearized system:





∂jg(t, s)

∂t
= −∂jg(t, s)

∂s
− σ+jg(t, s) + σ−jr(t, s)− (ς + µ) jg(t, s),

jg(t, 0) = η (α)
∫ +∞

0
γ(s)(jg(t, s) + jr(t, s) + a(t, s))ds,

∂jr(t, s)

∂t
= −σ−jr(t, s) + σ+jg(t, s)− (ς + µ) jr(t, s),

∂a(t, s)

∂t
= ς (jg(t, s) + jr(t, s))− µa(t, s),

jg(0, .) = jg,0 ∈ L1
+ (0,+∞) ,

jr(0, .) = jr,0 ∈ L1
+(0,+∞),

a(0, .) = a0 ∈ L1
+(0,+∞).

Next we study the spectral properties of the linearized equation (4.1).
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Definition 4.1 Let L : D(L) ⊂ X → X be the infinitesimal generator of
a linear C0-semigroup {TL(t)}t≥0 on a Banach space X. We define ω0 (L) ∈
[−∞,+∞) the growth bound of L by

ω0 (L) := lim
t→+∞

ln
(
‖TL(t)‖L(X)

)

t
.

The essential growth bound ω0,ess (L) ∈ [−∞,+∞) of L is defined by

ω0,ess (L) := lim
t→+∞

ln (‖TL(t)‖ess)
t

,

where ‖TL(t)‖ess is the essential norm of TL(t) defined by

‖TL(t)‖ess = κ (TL(t)BX (0, 1)) ,

here BX (0, 1) = {x ∈ X : ‖x‖X ≤ 1} , and for each bounded set B ⊂ X,

κ (B) = inf {ε > 0 : B can be covered by a finite number of balls of radius ≤ ε}

is the Kuratovsky measure of non-compactness.

For the following result, the existence of the projector was first proved by
Webb [54, 55] and the fact that there is a finite number of points of the spectrum
is proved by Engel and Nagel [24].

Theorem 4.2 Let L : D(L) ⊂ X → X be the infinitesimal generator of a linear
C0-semigroup {TL(t)} on a Banach space X. Then

ω0 (L) = max

(
ω0,ess (L) , max

λ∈σ(L)\σess(L)
Re (λ)

)
.

Assume in addition that ω0,ess (L) < ω0 (L) . Then for each γ ∈ (ω0,ess (L) , ω0 (L)] ,
{λ ∈ σ (L) : Re (λ) ≥ γ} ⊂ σp(L) is non empty, finite and contains only poles of
the resolvent of L. Moreover, there exists a finite rank bounded linear operator
of projection Π : X → X satisfying the following properties:

(a) Π(λ− L)
−1

= (λ− L)
−1

Π, ∀λ ∈ ρ (L) ;

(b) σ
(
LΠ(X)

)
= {λ ∈ σ (L) : Re (λ) ≥ γ} ;

(c) σ
(
L(I−Π)(X)

)
= σ (L) \ σ

(
LΠ(X)

)
.

To simplify the notation, we define Bα : D(Bα) ⊂ X → X as

Bαx = Ax+ Lx+DH(v̄)x with D(Bα) = D(A),

and denote by (Bα)0 the part of Bα in X0.
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Lemma 4.3 For each λ ∈ Ω, we have

λ ∈ ρ (Bα) ⇔ ∆(α, λ) 6= 0,

where

∆(α, λ) = 1− η(α)(1 +
ς

λ+ µ
)(1 +

σ+

λ+ σ− + ς + µ
)

×
∫ +∞

0

γ (s) e
−
(
λ+σ++ς+µ− σ−σ+

λ+σ−+ς+µ

)
s
ds.

Moreover, we deduce the following explicit formula:

(λI −Bα)
−1




c

ψ1

ψ2

ψ3


 =




0

ψ̂1

ψ̂2

ψ̂3




⇔




ψ̂1 (s) = ĉe
−
(
λ+σ++ς+µ− σ−σ+

λ+σ−+ς+µ

)
s

+
∫ s
0
e
−
(
λ+σ++ς+µ− σ−σ+

λ+σ−+ς+µ

)
(s−l)

(
ψ1 (l) +

σ−

λ+σ−+ς+µψ2 (l)
)
dl,

ψ̂2(s) =
1

λ+σ−+ς+µ (ψ2 (s) + σ+ψ1 (s)) ,

ψ̂3 (s) =
1

λ+µ (ψ3 (s) + ς (ψ1 (s) + ψ2 (s))) ,

where

ĉ = ∆(α, λ)−1{c+ η(α)
∫ +∞

0
γ (s) [ 1

λ+µψ3 (s) +
(
1 + ς

λ+µ

)
1

λ+σ−+ς+µψ2 (s)

+
(
1 + ς

λ+µ

)(
1 + σ+

λ+σ−+ς+µ

)

×
(∫ s

0
e
−
(
λ+σ++ς+µ− σ−σ+

λ+σ−+ς+µ

)
(s−l)

(
ψ1 (l) +

σ−

λ+σ−+ς+µψ2 (l)
)
dl

)
]ds},

with η(α) defined in (4.2).

Proof. Since λ ∈ Ω, it follows from Lemma 2.3 that (λI − (A+ L)) is invertible.
Then

λI −Bα is invertible ⇔ I −DH(v̄) (λI − (A+ L))
−1

is invertible,

and

(λI −Bα)
−1

= (λI − (A+ L))
−1
[
I −DH(v̄) (λI − (A+ L))

−1
]−1

.

The result follows by solving

[
I −DH(v̄) (λI − (A+ L))

−1
]



ĉ

ϕ̂1

ϕ̂2

ϕ̂3


 =




c

ψ1

ψ2

ψ3


 . (4.3)

By using the above explicit formula for the resolvent of Bα we obtain the
following lemma.
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Lemma 4.4 If λ0 ∈ σ(Bα) ∩ Ω, then λ0 is a simple eigenvalue of Bα if and
only if

d∆(α, λ0)

dλ
6= 0.

Since DH(v̄) is a bounded linear operator and A + L is a Hille-Yosida op-
erator, it follows that the linear operator Bα is also a Hille-Yosida operator.
Consequently (Bα)0 generates a strongly continuous semigroup

{
T(Bα)0 (t)

}
on

X0. Moreover by using a perturbation result we obtain the following estimation.

Lemma 4.5 The essential growth bound of (Bα)0 satisfies the following esti-
mation:

ω0,ess ((Bα)0) ≤ −µ.

Proof. We have
∥∥T(A+L)

0
(t)ϕ

∥∥
L1(0,+∞)

=
∥∥∣∣T(A+L)

0
(t)ϕ

∣∣∥∥
L1(0,+∞)

≤
∥∥T(A+L)

0
(t) |ϕ|

∥∥
L1(0,+∞)

=

∫ ∞

0

T(A+L)
0
(t) |ϕ(x)| dx =

∫ ∞

0

e−µt |ϕ(x)| dx

= e−µt ‖ϕ‖L1(0,+∞) .

It follows that
ω0,ess ((A+ L)0) ≤ −µ.

Since DH(v̄) is compact, and ω0,ess ((A+ L)0) ≤ ω0 ((A+ L)0) ≤ −µ, by using
the result in Thieme [53] or Ducrot, Liu and Magal [21, Theorem 1.2], we deduce
that

ω0,ess ((Bα)0) ≤ ω0,ess ((A+ L)0) ≤ −µ.

Lemma 4.6 We have

σ((Bα)0) ∩ Ω = σp((Bα)0) ∩ Ω = {λ ∈ Ω : ∆(α, λ) = 0} .

Proof. This Lemma follows directly from Lemma 4.5, Theorem 4.2 and Lemma
4.3.

5 Local stability

This section is devoted to study the local stability of the positive steady state v.
Recall that this positive equilibrium exists and is unique if and only if R0 (α) >
1. Since the essential growth bound ω0,ess ((Bα)0) ≤ −µ < 0, by the local
stability result proved in Thieme [52] or in Magal and Ruan [39], it is sufficient
to consider

σ((Bα)0) ∩ Ω = {λ ∈ Ω : ∆(α, λ) = 0} ,
and to show that all the eigenvalues of the characteristic equation have negative
real part.
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Lemma 5.1 If R0 (α) > 1, then ∆(α, 0) 6= 0.

Proof. After a simple of computation, we can deduce that

∆ (α, 0) = lnR0 (α) ,

and the result follows.

Theorem 5.2 If
1 < R0 ≤ e2,

then the positive equilibrium v̄ of system (2.2) is locally asymptotically stable.

Proof. Consider the characteristic equation

1 = η(α)

(
1 +

ς

λ+ µ

)(
1 +

σ+

λ+ σ− + ς + µ

)∫ +∞

0

γ (s) e
−
(
λ+σ++ς+µ− σ−σ+

λ+σ−+ς+µ

)
s
ds,

where
η (α) =

α

R0 (α)
(1− lnR0 (α))

with

R0 (α) = α

(
1 +

ς

µ

)(
1 +

σ+

σ− + ς + µ

)∫ +∞

0

γ (x) e
−
(
σ++ς+µ− σ−σ+

σ−+ς+µ

)
s
ds.

Thanks to Lemma 5.1, 0 is not an eigenvalue. It is easy to check that if Re(λ) ≥
0, then

∣∣∣∣1 +
ς

λ+ µ

∣∣∣∣ < 1 +
ς

µ
,

∣∣∣∣1 +
σ+

λ+ σ− + ς + µ

∣∣∣∣ < 1 +
σ+

σ− + ς + µ
,

Re

(
λ+ σ+ + ς + µ− σ−σ+

λ+ σ− + ς + µ

)
> σ+ + ς + µ− σ−σ+

σ− + ς + µ
.

Hence we can derive from the characteristic equation that

1 =

∣∣∣∣η(α)
(
1 +

ς

λ+ µ

)(
1 +

σ+

λ+ σ− + ς + µ

)∫ +∞

0

γ (s) e
−
(
λ+σ++ς+µ− σ−σ+

λ+σ−+ς+µ

)
s
ds

∣∣∣∣

< |η(α)|
(
1 +

ς

µ

)(
1 +

σ+

σ− + ς + µ

)∫ +∞

0

γ (s) e
−Re

(
λ+σ++ς+µ− σ−σ+

λ+σ−+ς+µ

)
s
ds

< |η(α)|
(
1 +

ς

µ

)(
1 +

σ+

σ− + ς + µ

)∫ +∞

0

γ (s) e
−
(
σ++ς+µ− σ−σ+

σ−+ς+µ

)
s
ds

= |1− lnR0 (α)| .
So if

|1− lnR0 (α)| ≤ 1,

i.e.
0 ≤ lnR0 (α) ≤ 2,

then there will be no roots of the characteristic equation with non-negative real
part, and the result follows.
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6 Hopf bifurcation

In this section we will study the existence of Hopf bifurcation around the positive
equilibrium v when α is regarded as the bifurcation parameter of the system.
Recall that by Theorem 5.2 we already know that the positive equilibrium v̄ of
system (2.1) is locally asymptotically stable if

1 < R0 (α) ≤ e2,

where

R0 (α) := α

(
1 +

ς

µ

)(
1 +

σ+

σ− + ς + µ

)∫ +∞

0

γ (x) e
−
(
σ++ς+µ− σ−σ+

σ−+ς+µ

)
s
ds.

So in order the study Hopf bifurcation, we should consider the parameter α in
the region

{
x ∈ R : R0 (α) > e2

}
, i.e.

α > e2
((

1 +
ς

µ

)(
1 +

σ+

σ− + ς + µ

)∫ +∞

0

γ (x) e
−
(
σ++ς+µ− σ−σ+

σ−+ς+µ

)
s
ds

)−1

.

In this section, we will assume that

γ (x) = (x− τ)
n
e−β(x−τ)1[τ,+∞)(x)

with τ > 0, β ≥ 0, n ∈ N, and

1[τ,+∞)(x) =

{
1, if x ≥ τ,

0, if x ∈ [0, τ) .

We assume before that γ (x) ∈ L∞
+ (0,+∞) \ {0}, so the parameters in function

γ(·) satisfy either τ > 0, β > 0, n ∈ N or τ > 0, β = 0, n = 0. Therefore, we
make the following assumption for function γ(·).

Assumption 6.1

γ (x) = (x− τ)
n
e−β(x−τ)1[τ,+∞)(x)

with τ > 0, β > 0, n ∈ N or τ > 0, β = 0, n = 0.

Lemma 6.2 Let Assumption 6.1 be satisfied. Then the characteristic equation
becomes

1 = η (α)

(
1 +

ς

λ+ µ

)(
1 +

σ+

λ+ ς + µ+ σ−

)

× n! exp

(
−
(
λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)
τ

)

×
(
β + λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)−(n+1)
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for Re(λ) > −µ, where

η (α) =
α

R0 (α)
(1− lnR0 (α)) =

1

χ
(1− ln (αχ))

with
R0 (α) = αχ,

χ :=

(
1 +

ς

µ

)(
1 +

σ+

σ− + ς + µ

)

× n! exp

(
−
(
σ+ + ς + µ− σ+σ−

ς + µ+ σ−

)
τ

)

×
(
β + σ+ + ς + µ− σ+σ−

ς + µ+ σ−

)−(n+1)

.

Proof. We have

∫ +∞

0

γ(s) exp

(
−
(
λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)
s

)
ds

=

∫ +∞

τ

(s− τ)
n
e−β(s−τ) exp

(
−
(
λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)
s

)
ds

= eβτ
∫ +∞

τ

(s− τ)
n
exp

(
−
(
β + λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)
s

)
ds

= n! exp

(
−
(
λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)
τ

)

×
(
β + λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)−(n+1)

.

In particular, taking λ = 0 in the above formula, we have

∫ +∞

0

γ (x) e
−
(
σ++ς+µ− σ−σ+

σ−+ς+µ

)
s
ds = n! exp

(
−
(
σ+ + ς + µ− σ+σ−

ς + µ+ σ−

)
τ

)

×
(
β + σ+ + ς + µ− σ+σ−

ς + µ+ σ−

)−(n+1)

.

Then the result follows by putting the above formulas into ∆(α, λ) = 0.

6.0.1 Existence of purely imaginary eigenvalues

Now we are in the position to look for purely imaginary roots λ = ±iω with
ω > 0.

Proposition 6.3 Let Assumption 6.1 be satisfied, and ς > 0, σ+ > 0, σ− > 0,
µ > 0, τ > 0, β ≥ 0, n ∈ N be fixed. Then the characteristic equation has a pair
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of purely imaginary solutions ±iω with ω > 0 if and only if ω is a solution of
equation

−θ1 (ω) + arctan

(
ω

µ

)
+ b (ω) τ + (n+ 1) θ2 (ω) = π + 2kπ, k ∈ Z, (6.1)

and

α =
1

χ
exp

(
1 + χ

√
ω2 + µ2 exp (a (ω) τ)

r2 (ω)
(n+1)

r1 (ω)× n!

)
,

where

a (ω) := ς + µ+
σ+
[
(ς + µ) (ς + µ+ σ−) + ω2

]

ω2 + (ς + µ+ σ−)
2 , b (ω) := ω

(
1 +

σ+σ−

ω2 + (ς + µ+ σ−)
2

)
,

r1 (ω) :=

√
(a (ω))

2
+ (b (ω))

2
, r2 (ω) :=

√
(β + a (ω))

2
+ (b (ω))

2
,

θ1 (ω) := arctan

(
b (ω)

a (ω)

)
, θ2 (ω) := arctan

(
b (ω)

β + a (ω)

)
.

Moreover, for each k ∈ N, there exists at least one solution ωk of equation (6.1),
and for each

α = αk :=
1

χ
exp

(
1 + χ

√
ω2
k + µ2 exp (a (ωk) τ)

r2 (ωk)
(n+1)

r1 (ωk)× n!

)
,

the characteristic equation has at least one pair of purely imaginary eigenvalues
±iωk with ωk > 0. Furthermore

ωk → +∞ and αk → +∞, as k → +∞.

Proof. Under Assumption 6.1 if the characteristic equation admits a pair of
purely imaginary solutions ±iω with ω > 0, then by Lemma 6.5, we have

1 = η (α)

(
1 +

ς

iω + µ

)(
1 +

σ+

iω + ς + µ+ σ−

)

× n! exp

(
−
(
iω + σ+ + ς + µ− σ+σ−

iω + ς + µ+ σ−

)
τ

)

×
(
β + iω + σ+ + ς + µ− σ+σ−

iω + ς + µ+ σ−

)−(n+1)

.
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Note that

iω + σ+ + ς + µ− σ+σ−

iω + ς + µ+ σ−

= iω + ς + µ+
σ+ (iω + ς + µ)

iω + ς + µ+ σ−

= ς + µ+
σ+
[
(ς + µ) (ς + µ+ σ−) + ω2

]

ω2 + (ς + µ+ σ−)
2

+ iω

(
1 +

σ+σ−

ω2 + (ς + µ+ σ−)
2

)
.

Now set

a (ω) := ς + µ+
σ+
[
(ς + µ) (ς + µ+ σ−) + ω2

]

ω2 + (ς + µ+ σ−)
2 ,

b (ω) := ω

(
1 +

σ+σ−

ω2 + (ς + µ+ σ−)
2

)
.

Then

iω + σ+ + ς + µ− σ+σ−

iω + ς + µ+ σ−
= a (ω) + ib (ω) := r1 (ω) e

iθ1(ω),

(
1 +

ς

iω + µ

)(
1 +

σ+

iω + ς + µ+ σ−

)

=
iω + µ+ ς

iω + µ
× iω + ς + µ+ σ− + σ+

iω + ς + µ+ σ−

=
1

iω + µ
×
(
iω + σ+ + ς + µ− σ+σ−

iω + ς + µ+ σ−

)

=
a (ω) + ib (ω)

iω + µ
=
r1 (ω) e

iθ1(ω)

iω + µ
,

β + iω + σ+ + ς + µ− σ+σ−

iω + ς + µ+ σ−
= β + a (ω) + ib (ω) := r2 (ω) e

iθ2(ω),

where

r1 (ω) :=

√
(a (ω))

2
+ (b (ω))

2
,

r2 (ω) :=

√
(β + a (ω))

2
+ (b (ω))

2
,

θ1 (ω) := arctan

(
b (ω)

a (ω)

)
,

θ2 (ω) := arctan

(
b (ω)

β + a (ω)

)
.
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So

1 = η (α)

(
1 +

ς

iω + µ

)(
1 +

σ+

iω + ς + µ+ σ−

)

× n! exp

(
−
(
iω + σ+ + ς + µ− σ+σ−

iω + ς + µ+ σ−

)
τ

)

×
(
β + iω + σ+ + ς + µ− σ+σ−

iω + ς + µ+ σ−

)−(n+1)

,

⇔

1 = η (α)
r1 (ω) e

iθ1(ω)

√
ω2 + µ2ei arctan(

ω
µ )

×n! exp (− (a (ω) + ib (ω)) τ)×
(
r2 (ω) e

iθ2(ω)
)−(n+1)

.

By Theorem 5.2, in order to obtain pure imaginary eigenvalues for the charac-
teristic equation, we must have R0 (α) > e2. Then by the definition of η (α) in
equation (4.2) we have η (α) < 0. Hence, the above equation is equivalent to

1 = −η (α) r1 (ω)√
ω2 + µ2

× n! exp (−a (ω) τ)× r2 (ω)
−(n+1)

, (6.2)

−θ1 (ω) + arctan

(
ω

µ

)
+ b (ω) τ + (n+ 1) θ2 (ω) = π + 2kπ, k ∈ Z. (6.3)

Denote by f(ω) := −θ1 (ω) + arctan
(
ω
µ

)
+ b (ω) τ + (n+ 1) θ2 (ω). Note that

b(ω) → +∞, as ω → +∞,

θ1(ω) →
π

2
, arctan

(
ω

µ

)
→ π

2
, θ2 (ω) →

π

2
, as ω → +∞,

it follows that
lim

ω→+∞
f(ω) = +∞.

Moreover, since f(ω) is a continuous function with respect to ω and f(0) = 0,
it can be obtained that equation (6.3) has at least one solution ωk > 0 for each
k ∈ N. Furthermore, we have

ωk → +∞, as k → +∞.

Remember that

η (α) =
1

χ
(1− ln (αχ)).

Then it follows from (6.2) that

1

χ
(1− ln (αχ)) = −

√
ω2 + µ2 exp (a (ω) τ)

(r2 (ω))
(n+1)

r1 (ω)× n!
,
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i.e.,

α =
1

χ
exp

(
1 + χ

√
ω2 + µ2 exp (a (ω) τ)

(r2 (ω))
(n+1)

r1 (ω)× n!

)
.

Next we give the following lemma to show that for any given α > 0 large
enough, there exists at most one pair of purely imaginary solutions of the char-
acteristic equation.

Lemma 6.4 Let Assumption 6.1 be satisfied, and ξ > 0, ς > 0, σ+ > 0, σ− > 0,
µ > 0, τ > 0, β ≥ 0, n ∈ N be fixed. Then there exists δ > 0 large enough, such
that for each α > δ, if

∆(α, iω1) = ∆(α, iω2) = 0, ω1, ω2 > 0,

then
ω1 = ω2.

In particular, if β = n = 0, then ∆(α, iω1) = ∆(α, iω2) = 0, ω1, ω2 > 0 implies
ω1 = ω2 for each α > 0.

Proof. By Proposition 6.3, we know that if ∆(α, iω) = 0, then

α =
1

χ
exp

(
1 + χ

√
ω2 + µ2 exp (a (ω) τ)

r2 (ω)
(n+1)

r1 (ω)× n!

)
,

In order to prove this lemma, we will first prove that dα
dω

> 0 for ω large enough,
i.e.

d

dω

(
√
ω2 + µ2 exp (a (ω) τ)

r2 (ω)
(n+1)

r1 (ω)

)
> 0, for ω large enough. (6.4)
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In fact, we have

d

dω

(
√
ω2 + µ2 exp (a (ω) τ)

r2 (ω)
(n+1)

r1 (ω)

)

= ω
(
ω2 + µ2

)− 1
2 exp (a (ω) τ)

r2 (ω)
(n+1)

r1 (ω)

+
√
ω2 + µ2 exp (a (ω) τ)

r2 (ω)
(n+1)

r1 (ω)
× d

dω
(a (ω)) τ

+
√
ω2 + µ2 exp (a (ω) τ)

d

dω

(
r2 (ω)

(n+1)

r1 (ω)

)

= exp (a (ω) τ)
r2 (ω)

(n+1)

r1 (ω)

×
{
ω
(
ω2 + µ2

)− 1
2 +

√
ω2 + µ2 × d

dω
(a (ω)) τ

+
√
ω2 + µ2

(
(n+ 1) d

dω
(r2 (ω))× r1 (ω)− r2 (ω)

d
dω

(r1 (ω))

r1 (ω) r2 (ω)

)}

= exp (a (ω) τ)
r2 (ω)

(n+1)

r1 (ω)
× Φ(ω) ,

where

Φ (ω) := ω
(
ω2 + µ2

)− 1
2 +

√
ω2 + µ2 × d

dω
(a (ω)) τ

+
√
ω2 + µ2

(
(n+ 1) d

dω
(r2 (ω))× r1 (ω)− r2 (ω)

d
dω

(r1 (ω))

r1 (ω) r2 (ω)

)

= ω
(
ω2 + µ2

)− 1
2 +

√
ω2 + µ2 × d

dω
(a (ω)) τ

+ (n+ 1)

√
ω2 + µ2 d

dω
(r2 (ω))

r2 (ω)
−
√
ω2 + µ2 d

dω
(r1 (ω))

r1 (ω)
.

So in order to prove equation (6.4), it is sufficient to show

lim
ω→+∞

Φ(ω) > 0.

Since

a (ω) = ς + µ+
σ+
[
(ς + µ) (ς + µ+ σ−) + ω2

]

ω2 + (ς + µ+ σ−)
2 ,

b (ω) = ω

(
1 +

σ+σ−

ω2 + (ς + µ+ σ−)
2

)
,
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r1 (ω) =

√
(a (ω))

2
+ (b (ω))

2
,

r2 (ω) =

√
(β + a (ω))

2
+ (b (ω))

2
,

we have
da (ω)

dω
=

2ωσ+σ− (ς + µ+ σ−)
(
ω2 + (ς + µ+ σ−)

2
)2 ,

db (ω)

dω
= 1 +

σ+σ−

ω2 + (ς + µ+ σ−)
2 − 2ω2σ+σ−

(
ω2 + (ς + µ+ σ−)

2
)2

=
ω4 + ω2

(
2 (ς + µ+ σ−)

2 − σ+σ−
)
+ (ς + µ+ σ−)

4
+ σ+σ− (ς + µ+ σ−)

2

(
ω2 + (ς + µ+ σ−)

2
)2 ,

dr1 (ω)

dω
=

1√
(a (ω))

2
+ (b (ω))

2

(
a (ω)

d

dω
(a (ω)) + b (ω)

d

dω
(b (ω))

)
,

dr2 (ω)

dω
=

1√
(β + a (ω))

2
+ (b (ω))

2

(
(β + a (ω))

d

dω
(a (ω)) + b (ω)

d

dω
(b (ω))

)
.

Then we obtain
lim

ω→+∞
a (ω) = σ+,

lim
ω→+∞

√
ω2 + µ2

d

dω
(a (ω)) = 0,

lim
ω→+∞

ω
(
ω2 + µ2

)− 1
2 = 1,

lim
ω→+∞

da (ω)

dω
= 0, lim

ω→+∞

db (ω)

dω
= 1,

lim
ω→+∞

√
ω2 + µ2

r1 (ω)
= lim
ω→+∞

√
ω2 + µ2

r2 (ω)
= 1,

lim
ω→+∞

b (ω)√
(a (ω))

2
+ (b (ω))

2
= lim
ω→+∞

b (ω)√
(β + a (ω))

2
+ (b (ω))

2
= 1,

and it follows that

lim
ω→+∞

dr1 (ω)

dω
= lim
ω→+∞

dr2 (ω)

dω
= 1.

Therefore, we deduce

lim
ω→+∞

Φ(ω) = lim
ω→+∞

(
1 + (n+ 1)

dr2 (ω)

dω
− dr1 (ω)

dω

)
= n+ 1 > 0,
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and (6.4) is satisfied. Moreover, it is clear that

α→ +∞, as ω → +∞.

So we deduce that dα
dω

> 0 for α large enough.
In particular, if β = n = 0, then by Proposition 6.3, we know that if

∆(α, iω) = 0, then

α = µ exp




1 +
(
σ+ + ς + µ− σ−σ+

σ−+ς+µ

)
τ

+

√
ω2+µ2

µ
exp

(
ω2σ−σ+τ

(ω2+(ς+µ+σ−)2)(σ−+ς+µ)

)

 .

Obviously,

dα

dω
= exp




1 +
(
σ+ + ς + µ− σ−σ+

σ−+ς+µ

)
τ

+

√
ω2+µ2

µ
exp

(
ω2σ−σ+τ

(ω2+(ς+µ+σ−)2)(σ−+ς+µ)

)

×

d

dω


√ω2 + µ2 exp


 ω2σ−σ+τ(

ω2 + (ς + µ+ σ−)
2
)
(σ− + ς + µ)




 ,

After some computations, we arrive at

d

dω


√ω2 + µ2 exp


 ω2σ−σ+τ(

ω2 + (ς + µ+ σ−)
2
)
(σ− + ς + µ)






= ω
(
ω2 + µ2

)− 1
2 exp


 ω2σ−σ+τ(

ω2 + (ς + µ+ σ−)
2
)
(σ− + ς + µ)




+
√
ω2 + µ2 exp


 ω2σ−σ+τ(

ω2 + (ς + µ+ σ−)
2
)
(σ− + ς + µ)




× 2ω (ς + µ+ σ−)σ−σ+τ
(
ω2 + (ς + µ+ σ−)

2
)2

> 0.

Thus, in this case, we have dα
dω

> 0 for each α satisfying ∆(α, iω) = 0, and the
result follows.

6.0.2 Transversality condition

The aim of this section is to prove a transversality condition for the model.

Lemma 6.5 If R0 (α) > 1, Re (λ) > −µ and ∆(α, λ) = 0, then

∂∆(α, λ)

∂α
< 0.
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Proof. We have

∆(α, λ) = 1− η (α)

(
1 +

ς

λ+ µ

)(
1 +

σ+

λ+ ς + µ+ σ−

)

×
∫ +∞

0

γ(s) exp

(
−
(
λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

))
ds,

and

∂∆(α, λ)

∂α
= −dη (α)

dα

(
1 +

ς

λ+ µ

)(
1 +

σ+

λ+ ς + µ+ σ−

)

×
∫ +∞

0

γ(s) exp

(
−
(
λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

))
ds

=
1

R0 (α)

(
1 +

ς

λ+ µ

)(
1 +

σ+

λ+ ς + µ+ σ−

)

×
∫ +∞

0

γ(s) exp

(
−
(
λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

))
ds.

Thus if ∆(α, λ) = 0, we deduce that

∂∆(α, λ)

∂α
=

1

R0 (α)
× 1

η (α)

=
1

R0 (α)
× 1

α
R0(α)

(1− lnR0 (α))

=
1

α (1− lnR0 (α))
,

and the result follows.

Lemma 6.6 Let Assumption 6.1 be satisfied, and ξ > 0, ς > 0, σ+ > 0, σ− > 0,
µ > 0, τ > 0, β ≥ 0, n ∈ N be fixed. For each k ≥ 0 large enough, let λk = iωk,

ωk > 0 be the purely imaginary root of the characteristic equation associated to
αk > 0 (defined in Proposition 6.3), then we have

Re
∂∆(αk, iωk)

∂λ
> 0.

Proof. Let Assumption 6.1 be satisfied, then the characteristic equation is

∆ (α, λ) = 0, where

∆ (α, λ) = 1− η (α)

(
1 +

ς

λ+ µ

)(
1 +

σ+

λ+ ς + µ+ σ−

)

× n! exp

(
−
(
λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)
τ

)

×
(
β + λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)−(n+1)

.

24



After some computations, we deduce that

∂∆(α, λ)

∂λ
= η (α)

(
ς

(λ+ µ)
2

(
1 +

σ+

λ+ ς + µ+ σ−

)
+

(
1 +

ς

λ+ µ

)
σ+

(λ+ ς + µ+ σ−)
2

)

× n! exp

(
−
(
λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)
τ

)

×
(
β + λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)−(n+1)

+ η (α)

(
1 +

ς

λ+ µ

)(
1 +

σ+

λ+ ς + µ+ σ−

)

× n! exp

(
−
(
λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)
τ

)

×
(
1 +

σ+σ−

(λ+ ς + µ+ σ−)
2

)
τ

×
(
β + λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)−(n+1)

+ η (α)

(
1 +

ς

λ+ µ

)(
1 +

σ+

λ+ ς + µ+ σ−

)

× n! exp

(
−
(
λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)
τ

)

× (n+ 1)

(
β + λ+ σ+ + ς + µ− σ+σ−

λ+ ς + µ+ σ−

)−(n+2)

×
(
1 +

σ+σ−

(λ+ ς + µ+ σ−)
2

)
.

Then if ∆(αk, iωk) = 0, we have

1 = η (αk)

(
1 +

ς

iωk + µ

)(
1 +

σ+

iωk + ς + µ+ σ−

)

× n! exp

(
−
(
iωk + σ+ + ς + µ− σ+σ−

iωk + ς + µ+ σ−

)
τ

)

×
(
β + iωk + σ+ + ς + µ− σ+σ−

iωk + ς + µ+ σ−

)−(n+1)

.
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It follows that

∂∆(αk, iωk)

∂λ
=

ς

(iωk + µ)
2
+ ς (iωk + µ)

+
σ+

(iωk + ς + µ+ σ−)
2
+ σ+ (iωk + ς + µ+ σ−)

+

(
1 +

σ+σ−

(iωk + ς + µ+ σ−)
2

)
τ

+ (n+ 1)

(
β + iωk + σ+ + ς + µ− σ+σ−

iωk + ς + µ+ σ−

)−1

×
(
1 +

σ+σ−

(iωk + ς + µ+ σ−)
2

)
.

Since ωk → +∞ as k → +∞,

lim
k→+∞

Re

(
∂∆(αk, iωk)

∂λ

)
= τ > 0,

and the result follows.

Theorem 6.7 Let Assumption 6.1 be satisfied, and ξ > 0, ς > 0, σ+ > 0,
σ− > 0, µ > 0, τ > 0, β ≥ 0, n ∈ N be fixed. For each k ≥ 0 large enough,
let λk = iωk, ωk > 0 be the purely imaginary root of the characteristic equation
associated to αk > 0 (defined in Proposition 6.3), then there exists ρk > 0 (small

enough) and a C1-map λ̂k : (αk − ρk, αk + ρk) → C such that

λ̂k(αk) = iωk, ∆(α, λ̂k(α)) = 0, ∀α ∈ (ak − ρk, αk + ρk)

satisfying the transversality condition

Re

(
dλ̂k(αk)

dα

)
> 0.

Proof. By Lemma 6.6 we can use the implicit function theorem around each
(αk, iωk) provided by Proposition 6.3, and obtain that there exists ρk > 0 and

a C1-map λ̂k : (αk − ρk, αk + ρk) → C such that

λ̂k(αk) = iωk, ∆(α, λ̂k(α)) = 0, ∀α ∈ (ak − ρk, αk + ρk).

Moreover, we have

∂∆
(
α, λ̂k(α)

)

∂α
+
∂∆

(
α, λ̂k(α)

)

∂λ

dλ̂k(α)

dα
= 0, ∀α ∈ (αk − ρk, αk + ρk) .

So

dλ̂k(α)

dα
= − 1

∂∆(α,λ̂k(α))
∂λ

∂∆
(
α, λ̂k(α)

)

∂α
, ∀α ∈ (αk − ρk, αk + ρk) .
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By using Lemma 6.5, we deduce that ∀α ∈ (αk − ρk, αk + ρk)

Re

(
d

dα
λ̂k(α)

)
> 0 ⇔ Re



∂∆

(
α, λ̂k (α)

)

∂λ


 > 0.

In particular, we have

Re

(
d

dα
λ̂k(αk)

)
> 0 ⇔ Re

(
∂∆(αk, iωk)

∂λ

)
> 0.

By Lemma 6.6, the result follows.

6.1 Hopf bifurcations

ω0,ess ((Bα)0) < 0 has been obtained in Lemma 4.5. The existence of a unique
pair of pure imaginary eigenvalues of Bα has been obtained by Proposition 6.3
and Lemma 6.4. The simplicity of these pure imaginary eigenvalues follows
directly from Lemmas 4.4 and 6.6. Moreover, the transversality condition is
proved in Theorem 6.7. Hence by using the Hopf bifurcation Theorem proved
in [37, Theorem 2.4], we obtain the following Hopf bifurcation result.

Theorem 6.8 (Hopf Bifurcation) Let Assumptions 6.1 be satisfied. Then
there exists k0 ∈ N (large enough) such that for each k ≥ k0, the number αk (de-
fined in Proposition 6.3 is a Hopf Bifurcation point for system (2.1) parametrized
by α, around the positive equilibrium v̄ given in Lemma 3.1.

7 Summary and numerical simulations

We first summarize the main results of this study. They are essentially divided
into three parts: (a) the existence of a positive equilibrium; (b) the local stability
of this equilibrium; and (c) the Hopf bifurcation for this equilibrium. To be more
precise, we obtain the following results.

(i) There exists a positive equilibrium if and only if

R0 > 1,

where

R0 (α) := α

(
1 +

ς

µ

)(
1 +

σ+

σ− + ς + µ

)∫ +∞

0

γ (x) e
−
(
σ++ς+µ− σ−σ+

σ−+ς+µ

)
s
ds.

Moreover, when it exists, it must be unique.
(ii) The positive equilibrium is locally asymptotic stable if 1 < R0 ≤ e2.
(iii) To show the Hopf bifurcation we consider the following function γ(x):

γ (x) = (x− τ)
n
e−β(x−τ)1[τ,+∞)(x)
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for β > 0, n ∈ N, τ > 0, or β = 0, n = 0, τ > 0.
Then regarding α as a parameter we obtain an infinity of Hopf bifurcating

branches around the positive equilibrium. To be more precise, they are

αk =
1

χ
exp

(
1 + χ

√
ω2
k + µ2 exp (a (ωk) τ)

r2 (ωk)
(n+1)

r1 (ωk)× n!

)
(7.1)

for k large enough, where ωk is a solution of

−θ1 (ω) + arctan

(
ω

µ

)
+ b (ω) τ + (n+ 1) θ2 (ω) = π + 2kπ,

a (ωk) = ς + µ+
σ+
[
(ς + µ) (ς + µ+ σ−) + ω2

k

]

ω2
k + (ς + µ+ σ−)

2 ,

b (ωk) = ωk

(
1 +

σ+σ−

ω2
k + (ς + µ+ σ−)

2

)
,

r1 (ωk) =

√
(a (ωk))

2
+ (b (ωk))

2
,

r2 (ωk) =

√
(β + a (ωk))

2
+ (b (ωk))

2
.

By using Proposition 6.3, we can investigate numerically the bifurcations in the
space of parameters. Figures 2, 3, 4 and 5 are drawn to show the influence of
σ+, σ− and ς on the bifurcation diagram.
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Figure 2: In this figure, we plot curves given by (7.1) in the (σ+, α)-plane for
σ− = 1, ς = 1, µ = 1, n = 0, β = 0 and τ = 2.
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Figure 3: In this figure, we plot curves given by (7.1) in the (σ−, α)-plane for
σ+ = 1, ς = 1, µ = 2, n = 1, β = 1 and τ = 3.
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Figure 4: In this figure, we plot curves given by (7.1) in the (ς, α)-plane for
σ+ = 1, σ− = 1, µ = 2, n = 1, β = 1 and τ = 3.
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Figure 5: In this figure, assuming that σ+ = σ−, we plot curves given by (7.1)
in the (σ+, α)-plane for ς = 1, µ = 1, n = 1, β = 2 and τ = 5.

Next we provide some numerical simulations in order to illustrate the stabil-
ity of the positive equilibrium and the Hopf bifurcation for system (2.1) when
taking α as the bifurcation parameter. In the following figures, we choose the
following parameters γ(x) = 1[5,20](x), σ

+ = 0.01, σ− = 0.05, ς = 0.01, µ = 0.1
and ξ = 0.5.

In Figure 6, we plot the total number of individuals in the stage of adults,
growing juveniles and non-growing juveniles, i.e. L1-norm of a(t, ·), jg(t, ·) and
jr(t, ·), respectively. Moreover, we plot the surface solutions of j(t, s) for various
values of α, see Figures 7, 8 and 9.
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Figure 6: Figures (a), (b) and (c) describe the evolution of the L1 norm re-
spectively of a(t, ·), jg(t, ·) and jr(t, ·) as a function of time.
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Figure 7: Surface solution of jg(t, s) when α = 5.

31



0
5

10
15

20

0

50

100
0

1

2

3

4

5

sizetime

j g(t
,s

)

Figure 8: Surface solution of jg(t, s) when α = 10.
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Figure 9: Surface solution of jg(t, s) when α = 25.

It can be observed from the above figures that when α is relatively small, the
positive equilibrium is locally asymptotically stable; when α is relatively large,
the positive equilibrium becomes unstable. We conclude that increasing α from
5 to 25 tends to destabilize the positive equilibrium and leads to undamped
oscillating solutions.
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Next we choose parameter α carefully in order to observe the Hopf bifur-
cating periodic solution. In fact, if γ(x) = 1[5,+∞)(x), σ

+ = 0.01, σ− = 0.05,
ς = 0.01, µ = 0.1 and ξ = 0.5, then by Proposition 6.3 and Lemma 6.4, the char-
acteristic equation admits a unique pair of purely imaginary solution ±0.3663i
at α = α0 = 22.8509. Moreover, when γ(x) = 1[5,+∞)(x) and if ∆(α, iω) = 0,
following the lines of Lemma 6.6, we can arrive at

Re

(
∂∆(α, iω)

∂λ

)
=

µ

ω2 + µ2
+


1 +

σ+σ−
(
(ς + µ+ σ−)

2 − ω2
)

(
(ς + µ+ σ−)

2
+ ω2

)2


 τ.

In particular, under the chosen parameters, it can be derived that

Re

(
∂∆(α0, 0.3663i)

∂λ

)
= 5.6919 > 0.

Consequently, the simplicity of eigenvalues ±0.3663i follows. Moreover, accord-
ing to the proof of Theorem 6.7, the transversality condition is also satisfied.
From the above analysis, we can conclude that the number α = α0 = 22.8509
should be a Hopf bifurcation point. Therefore, we choose α = 23 > α0, and
depict the following figures:
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Figure 10: Figures (a), (b) and (c)describe the evolution of L1-norm of respec-
tively jg(t, ·), jr(t, ·) and a(t, ·) in function of time when α = 23.
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The above figures 6-10 indicate the existence of periodic solutions, which
support our analysis.
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