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Abstract

The article is devoted to the parameters identification in the SI model. We consider several
methods, starting with an exponential fit of the early cumulative data of Sars-CoV2 in mainland
China. The present methodology provides a way to compute the parameters at the early stage of the
epidemic. Next, we establish an identifiability result. Then we use the Bernoulli-Verhulst model as
a phenomenological model to fit the data and derive some results on the parameters identification.
The last part of the paper is devoted to some numerical algorithms to fit a daily piecewise constant
rate of transmission.

Keywords: Corona virus, reported and unreported cases, parameters identification, epidemic mathe-
matical model.

1 Introduction
Estimating the average transmission rate is one of the most crucial challenges in the epidemiology

of communicable diseases. This rate conditions the entry into the epidemic phase of the disease and its
return to the extinction phase, if it has diminished sufficiently. It is the combination of three factors, one,
the coefficient of virulence, linked to the infectious agent (in the case of infectious transmissible diseases),
the other, the coefficient of susceptibility, linked to the host (all summarized into the probability of
transmission), and also, the number of contact per unit of time between individuals (see Magal and
Ruan [1]). The coefficient of virulence may change over time due to mutation over the course of the
disease history. The second and third also, if mitigation measures have been taken. This was the case
in China from the start of the pandemic (see Qiu, Chen and Shi [2])). Monitoring the decrease in the
average transmission rate is an excellent way to monitor the effectiveness of these mitigation measures.
Estimating the rate is therefore a central problem in the fight against epidemics.

The goal of this article is to understand how to compare the SI model to the reported epidemic data
and therefore the model can be used to predict the future evolution of epidemic spread and to test various
possible scenarios of social mitigation measures. For t ≥ t0, the SI model is the following{

S′(t) = −τ(t)S(t)I(t),

I ′(t) = τ(t)S(t)I(t)− νI(t),
(1.1)

where S(t) is the number of susceptible and I(t) the number of infectious at time t. This system is
supplemented by initial data

S(t0) = S0 ≥ 0, I(t0) = I0 ≥ 0. (1.2)

In this model, the rate of transmission τ(t) combines the number of contacts per unit of time and the
probability of transmission. The transmission of the pathogen from the infectious to the susceptible
individuals is described by a mass action law τ(t)S(t) I(t) (which is also the flux of new infectious).
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The quantity 1/ν is the average duration of the infectious period and νI(t) is the flux of recovering
or dying individuals. At the end of the infectious period, we assume that a fraction f ∈ (0, 1] of the
infectious individuals is reported. Let CR(t) be the cumulative number of reported cases. We assume
that

CR(t) = CR0 + ν f CI(t), for t ≥ t0, (1.3)

where

CI(t) =

∫ t

t0

I(σ)dσ. (1.4)

Assumption 1.1 We assume that

• S0 > 0 the number of susceptible individuals at time t0 when we start to use the model;

•
1

ν
> 0 the average duration of infectious period;

• f > 0 the fraction of reported individuals;

are known parameters.

Throughout this paper, the parameter S0 = 1.4×109 will be the entire population of mainland China
(since COVID-19 is a newly emerging disease). The actual number of susceptibles S0 can be smaller
since some individuals can be partially (or totally) immunized by previous infections or other factors.
This is also true for Sars-CoV2, even if COVID-19 is a newly emerging disease. In fact, for COVID-19
the level of susceptibility may depend on blood group and genetic lineage. It is indeed suspected that
the blood group O is associated with a lower susceptibility to SARS-CoV2 while a gene cluster inherited
from Neanderthal has been identified as a risk factor for severe symptoms (see Zeberg et al. [3] and
Guillon et al. [4]).

At the early beginning of the epidemic, the average duration of the infectious period 1/ν is unknown,
since the virus has never been investigated in the past. Therefore, at the early beginning of the COVID-
19 epidemic, medical doctors and public health scientists used previously estimated average duration
of the infectious period to make some public health recommendations. Here we show that the average
infectious period is impossible to estimate by using only the time series of reported cases, and must
therefore be identified by other means. Actually, with the data of Sars-CoV2 in mainland China, we will
fit the cumulative number of the reported case almost perfectly for any non-negative value 1/ν < 3.3
days. In the literature, several estimations were obtained: 11 days in [6], 9.5 days in [7], 8 days in [8],
and 3.5 days in [9]. The recent survey by Byrne et al. [5] focuses on this subject.

Result

In Section 3, our analysis shows that

• It is hopeless to estimate the exact value of the duration of infectiousness by using SI models.
Several values of the average duration of the infectious period give the exact same fit to the
data.

• We can estimate an upper bound for the duration of infectiousness by using SI models. In
the case of Sars-CoV2 in mainland China, this upper bound is 3.3 days.

In [10], it is reported that transmission of COVID-19 infection may occur from an infectious individual
who is not yet symptomatic. In [11] it is reported that COVID-19 infected individuals generally develop
symptoms, including mild respiratory symptoms and fever, on average 5−6 days after the infection date
(with a confience of 95%, range 1−14 days). In [12] it is reported that the median time prior to symptom
onset is 3 days, the shortest 1 day, and the longest 24 days. It is evident that these time periods play
an important role in understanding COVID-19 transmission dynamics. Here the fraction of reported
individuals f is unknown as well.
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Result

In Section 3, our analysis shows that:

• It is hopeless to estimate the fraction of reported by using the SI models. Several values for
the fraction of reported give the exact same fit to the data.

• We can estimate a lower bound for the fraction of unreported. We obtain 3.83×10−5 < f ≤
1. This lower bound is not significant. Therefore we can say anything about the fraction of
unreported from this class of models.

As a consequence, the parameters 1/ν and f have to be estimated by another method, for instance
by a direct survey methodology that should be employed on an appropriated sample in the population
in order to evaluate the two parameters.

The goal of this article is to focus on the estimation of the two remaining parameters. Namely,
knowing the above-mentioned parameters, we plan to identify

• I0 the initial number of infectious at time t0;

• τ(t) the rate of transmission at time t.

This problem has already been considered in several articles. In the early 70s, London and Yorke [13, 14]
already discussed the time dependent rate of transmission in the context of measles, chickenpox and
mumps. More recently, Wang and Ruan [15] the question of reconstructing the rate of transmission was
considered for the 2002-2004 SARS outbreak in China. In Chowell et al. [16] a specific form was chosen
for the rate of transmission and applied to the Ebola outbreak in Congo. Another approach was also
proposed in Smirnova et al. [17].

In Section 2, we will explain how to apply the method introduce in Liu et al. [19] to fit the early
cumulative data of Sars-CoV2 in China. This method provides a way to compute I0 and τ0 = τ(t0) at
the early stage of the epidemic. In Section 3, we establish an identifiability result in the spirit of Hadeler
[21].

In Section 4, we use the Bernoulli-Verhulst model as a phenomenological model to describe the data.
As it was observed in several articles, the data from mainland China (and other countries as well) can be
fitted very well by using this model. As a consequence, we will obtain an explicit formula for τ(t) and I0
expressed as a function of the parameters of the Bernoulli-Verhulst model and the remaining parameters
of the SI model. This approach gives a very good description of this set of data. The disadvantage of
this approach is that it requires an evaluation of the final size CR∞ from the early beginning (or at least
it requires an estimation of this quantity).

Therefore, in order to be predictive, we will explore in the remaining sections of the paper the
possibility of constructing a day by day rate of transmission. Here we should refer to Bakhta et al. [20]
where another novel forecasting method was proposed.

In Section 5, we will prove that the daily cumulative data can be approached perfectly by at most
one sequence of day by day piecewise constant transmission rates. In Section 6, we propose a numerical
methods to compute such a (piecewise constant) rate of transmission. Section 7 is devoted to the
discussion, and we will present some figures showing the daily basic reproduction number for the COVID-
19 outbreak in mainland China.

2 Estimating τ(t0) and I0 at the early stage of the epidemic
In this section, we apply the method presented in [18] to the SI model. At the early stage of the

epidemic, we can assume that S(t) is almost constant and equal to S0. We can also assume that τ(t)
remains constant equal to τ0 = τ(t0). Therefore, by replacing these parameters into the I-equation of
system (1.1) we obtain

I ′(t) = (τ0S0 − ν)I(t).

Therefore
I(t) = I0 exp (χ2 (t− t0)) ,

where
χ2 = τ0S0 − ν. (2.1)
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By using (1.3), we obtain

CR(t) = CR0 + ν f I0
eχ2(t−t0) − 1

χ2
. (2.2)

We obtain a first phenomenological model for the cumulative number of reported cases (valid only at
the early stage of the epidemic)

CR(t) = χ1e
χ2 t − χ3. (2.3)

In Figure 1, we compare the model to the COVID-19 data for mainland China. The data used in the
article are taken from [29, 30, 31] and reported in Section A. In order to estimate the parameter χ3, we
minimize the distance between CRData(t) + χ3 and the best exponential fit t→ χ1e

χ2 t (i.e. we use the
MATLAB function fit(t, data, ’exp1’)).

Figure 1: In this figure, we plot the best fit of the exponential model to the cumulative number of reported
cases of COVID-19 in mainland China between February 19 and March 1. We obtain χ1 = 3.7366,
χ2 = 0.2650 and χ3 = 615.41 with t0 = 19 Feb. The parameter χ3 is obtained by minimizing the error
between the best exponential fit and the data.

The estimated initial number of infected and transmission rate

By using (1.3) and (2.3) we obtain

I0 =
CR′(t0)

ν f
=
χ1 χ2e

χ2 t0

ν f
, (2.4)

and by using (2.1)

τ0 =
χ2 + ν

S0
. (2.5)

Remark 2.1 Fixing f = 0.5 and ν = 0.2, we obtain

I0 = 3.7366× 0.2650× exp(0.2650× 19)/(0.2× 0.5) = 1521,

and
τ0 =

0.2650 + 0.2

1.4× 109
= 3.3214× 10−10.

The influence of the errors made in the estimations (at the early stage of the epidemic) has been considered
in the recent article by Roda et al. [22]. To understand this problem, let us first consider the case of the
rate of transmission τ(t) = τ0 in the model (1.1). In that case (1.1) becomes{

S′(t) = −τ0S(t)I(t),

I ′(t) = τ0S(t)I(t)− νI(t).
(2.6)

By using the S-equation of model (2.6) we obtain

S(t) = S0 exp

(
−τ0

∫ t

t0

I(σ)dσ

)
= S0 exp (−τ0CI(t))

where CI(t) is the cumulated number of infectious individuals. Substituting S(t) by this formula in the
I-equation of (2.6) we obtain

I ′(t) = S0 exp (−τ0CI(t)) τ0CI′(t)− νI(t).
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Therefore, by integrating the above equation between t and t0 we obtain

CI′(t) = I0 + S0 [1− exp (−τ0CI(t))]− νCI(t). (2.7)

Remarkably, the equation (2.7) is monotone. We refer to Hal Smith [23] for a comprehensive presentation
on monotone systems. By applying a comparison principle to (2.7), we are in a position to confirm the
intuition about epidemics SI models. Notice that the monotone properties are only true for the cumulative
number of infectious (this is false for the number of infectious).

Theorem 2.2 Let t > t0 be fixed. The cumulative number of infectious CI(t) is strictly increasing with
respect to the following quantities

(i) I0 > 0 the initial number of infectious individuals;

(ii) S0 > 0 the initial number of susceptible individuals;

(iii) τ > 0 the transmission rate;

(iv) 1/ν > 0 the average duration of the infectiousness period.

Error in the estimated initial number of infected and transmission rate

Assume that the parameters χ1 and χ2 are estimated with a 95% confidence interval

χ−1,95% ≤ χ1 ≤ χ+
1,95%,

and
χ−2,95% ≤ χ2 ≤ χ+

2,95%.

We obtain

I−0,95% :=
χ−1,95% χ

−
2,95%e

χ−
2,95%

t0

ν f
≤ I0 ≤ I+0,95% :=

χ+
1,95% χ

+
2,95%e

χ+
2,95%

t0

ν f
, (2.8)

and

τ−0,95% :=
χ−2,95% + ν

S0
≤ τ0 ≤ τ+0,95% :=

χ+
2,95% + ν

S0
. (2.9)

Remark 2.3 By using the data for mainland China we obtain

χ−1,95% = 1.57, χ+
1,95% = 5.89, χ−2,95% = 0.24, χ+

2,95% = 0.28. (2.10)

In Figure 2, we plot the upper and lower solutions CR+(t) (obtained by using I0 = I+0,95% and τ0 = τ+0,95%)
and CR−(t) (obtained by using I0 = I−0,95% and τ0 = τ−0,95%) corresponding to the blue region and the
black curve corresponds to the best estimated value I0 = 1521 and τ0 = 3.3214× 10−10.

Recall that the final size of the epidemic corresponds to the positive equilibrium of (2.7)

0 = I0 + S0 [1− exp (−τ0CI∞)]− νCI∞. (2.11)

In Figure 2 the changes in the parameters I0 and τ0 (in (2.8)-(2.9)) do not affect significantly the final
size.
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Figure 2: In this figure, the black curve corresponds to the cumulative number of reported cases CR(t)
obtained from the model (2.6) with CR′(t) = νfI(t) by using the values I0 = 1521 and τ0 = 3.32× 10−10

obtained from our method and the early data from February 19 to March 1. The blue region corresponds
the 95% confidence interval when the rate of transmission τ(t) is constant and equal to the estimated
value τ0 = 3.32× 10−10.

3 Theoretical formula for τ(t)
By using the S-equation of model (1.1) we obtain

S(t) = S0 exp

(
−
∫ t

t0

τ(σ) I(σ)dσ

)
,

next by using the I-equation of model (1.1) we obtain

I ′(t) = S0 exp

(
−
∫ t

t0

τ(σ) I(σ)dσ

)
τ(t) I(t)− νI(t),

and by taking the integral between t and t0 we obtain a Volterra integral equation for the cumulative
number of infectious

CI′(t) = I0 + S0

[
1− exp

(
−
∫ t

t0

τ(σ) I(σ)dσ

)]
− νCI(t), (3.1)

which is equivalent to (by using (1.3))

CR′(t) = ν f

(
I0 + S0

[
1− exp

(
− 1

ν f

∫ t

t0

τ(σ) CR′(σ)dσ

)])
+ ν CR0 − νCR(t). (3.2)

The following result permits to obtain a perfect match between the SI model and the time-dependent
rate of transmission τ(t).

Theorem 3.1 Let S0, ν, f , I0 > 0 and CR0 ≥ 0 be given. Let t → I(t) be the second component of
system (1.1). Let ĈR : [t0,∞)→ R be a two times continuously differentiable function satisfying

ĈR(t0) = CR0, (3.3)

ĈR
′
(t0) = ν f I0, (3.4)

ĈR
′
(t) > 0,∀t ≥ t0, (3.5)

and
νf (I0 + S0)− ĈR

′
(t)− ν

(
ĈR(t)− CR0

)
> 0,∀t ≥ t0. (3.6)

Then

ĈR(t) = CR0 + νf

∫ t

t0

I (s) ds,∀t ≥ t0, (3.7)

if and only if

τ(t) =

νf

(
ĈR
′′
(t)

ĈR
′
(t)

+ ν

)
νf (I0 + S0)− ĈR

′
(t)− ν

(
ĈR(t)− CR0

) . (3.8)

6



Proof. Assume first (3.7) is satisfied. Then by using equation (3.1) we deduce that

S0 exp

(
−
∫ t

t0

τ(σ)I(σ)dσ

)
= I0 + S0 − I(t)− νCI(t).

Therefore∫ t

t0

τ(σ)I(σ)dσ = ln

[
S0

I0 + S0 − I(t)− νCI(t)

]
= ln (S0)− ln [I0 + S0 − I(t)− νCI(t)]

therefore by taking the derivative on both side

τ(t)I(t) =
I ′(t) + νI(t)

I0 + S0 − I(t)− νCI(t)
⇔ τ(t) =

I ′(t)

I(t)
+ ν

I0 + S0 − I(t)− νCI(t)
(3.9)

and by using the fact that CR(t)− CR0 = νfCI(t) we obtain (3.8).
Conversely, assume that τ(t) is given by (3.8). Then if we define Ĩ(t) = ĈR

′
(t)/νf and C̃I(t) =(

ĈR(t)− CR0

)
/νf , by using (3.3) we deduce that

C̃I(t) =

∫ t

t0

Ĩ(σ)dσ,

and by using (3.4)
Ĩ(t0) = I0. (3.10)

Moreover from (3.8) we deduce that Ĩ(t) satisfies (3.9). By using (3.10) we deduce that t → C̃I(t) is
a solution of (3.1). By uniqueness of the solution of (3.1), we deduce that C̃I(t) = CI(t),∀t ≥ t0 or
equivalently CR(t) = CR0 + νf

∫ t
t0
I (s) ds,∀t ≥ t0. The proof is completed.

The formula (3.8) was already obtained by Hadeler [21, see Corollary 2].

4 Explicit formula for τ(t) and I0

Many phenomenological models have been compared to the data during the first phase of the COVID-
19 outbreak. We refer to the paper of Tsoularis and Wallace [24] for a nice survey on the generalized
logistic equations. Let us consider here for example, the Bernoulli-Verhulst equation

CR′(t) = χ2 CR(t)

(
1−

(
CR(t)

CR∞

)θ)
,∀t ≥ t0, (4.1)

supplemented with the initial data
CR(t0) = CR0 ≥ 0.

Let us recall the explicit formula for the solution of (4.1)

CR(t) =
eχ2(t−t0)CR0[

1 +
χ2θ

CRθ
∞

∫ t
t0

(
eχ2(σ−t0)CR0

)θ
dσ

]1/θ =
eχ2(t−t0)CR0[

1 +
CRθ

0

CRθ
∞

(
eχ2θ(t−t0) − 1

)]1/θ . (4.2)

Assumption 4.1 We assume that the cumulative numbers of reported cases CRData(ti) are known for
a sequence of times t0 < t1 < · · · < tn+1.
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Figure 3: In this figure, we plot the best fit of the Bernoulli-Verhulst model to the cumulative number of
reported cases of COVID-19 in China. We obtain χ2 = 0.66 and θ = 0.22. The black dots correspond to
data for the cumulative number of reported cases and the blue curve corresponds to the model.

Estimated initial number of infected

By combining (1.3) and the Bernoulli-Verhulst equation (4.1) for t→ CR(t), we deduce the initial
number of infected

I0 =
CR′(t0)

ν f
=

χ2 CR0

(
1−

(
CR0

CR∞

)θ)
ν f

. (4.3)

Remark 4.2 We fix f = 0.5, from the COVID-19 data in mainland China and formula (4.3) (with
CR0 = 198), we obtain

I0 = 1909 for ν = 0.1,

and
I0 = 954 for ν = 0.2.

By using (4.1) we deduce that

CR′′(t) = χ2 CR′(t)

(
1−

(
CR(t)

CR∞

)θ)
− χ2θ

CRθ
∞

CR(t) (CR(t))
θ−1

CR′(t)

= χ2 CR′(t)

(
1−

(
CR(t)

CR∞

)θ)
− χ2θ

CRθ
∞

(CR(t))
θ

CR′(t),

therefore

CR′′(t) = χ2 CR′(t)

(
1− (1 + θ)

(
CR(t)

CR∞

)θ)
. (4.4)

Estimated rate of transmission

By using the Bernoulli-Verhulst equation (4.1) and substituting (4.4) in (3.8), we obtain

τ(t) =

ν f

(
χ2

(
1− (1 + θ)

(
CR(t)

CR∞

)θ)
+ ν

)

ν f (I0 + S0) + νCR0 − CR(t)

(
χ2

(
1−

(
CR(t)

CR∞

)θ)
+ ν

) . (4.5)

This formula (4.5) combined with (4.2) gives an explicit formula for the rate of transmission.

Since CR(t) < CR∞, by considering the sign of the numerator and the denominator of (4.5), we
obtain the following proposition.

Proposition 4.3 The rate of transmission τ(t) given by (4.5) is non negative for all t ≥ t0 if

ν ≥ χ2 θ, (4.6)

and
f (I0 + S0) + νCR0 > CR∞ (χ2 + ν) . (4.7)
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Compatibility of the model SI with the COVID-19 data for mainland China

The model SI is compatible with the data only when τ(t) stays positive for all t ≥ t0. From
our estimation of the Chinese’s COVID-19 data we obtain χ2 θ = 0.14. Therefore from (4.6) we
deduce that model is compatible with the data only when

1/ν ≤ 1/0.14 = 3.3 days. (4.8)

This means that the average duration of infectious period 1/ν must be shorter than 3.3 days.

Similarly the condition (4.7) implies

f ≥ CR∞χ2 + (CR∞ − CR0) ν

S0 + I0
≥ CR∞χ2 + (CR∞ − CR0)χ2 θ

S0 + I0

and since we have CR0 = 198 and CR∞ = 67102, we obtain

f ≥ 67102× 0.66 + (67102− 198)× 0.14

1.4× 109
≥ 3.83× 10−5. (4.9)

So according to this estimation the fraction of unreported 0 < f ≤ 1 can be almost as small as
we want.

Figure 4 illustrates the Proposition 4.3. We observe that the formula for the rate of transmission
(4.5) becomes negative whenever ν < χ2θ.

(a) (b)
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Figure 4: In this figure, we plot the rate of transmission obtained from formula (4.5) with f = 0.5,
χ2 θ = 0.14 < ν = 0.2 (in Figure (a)) and ν = 0.1 < χ2 θ = 0.14 (in Figure (b)), χ2 = 0.66 and θ = 0.22
and CR∞ = 67102 which is the latest value obtained from the cumulative number of reported cases for
China.

In Figure 5 we plot the numerical simulation obtained from (1.1)-(1.3) when t→ τ(t) is replaced by the
explicit formula (4.5). It is surprising that we can reproduce perfectly to the original Bernoulli-Verhulst
even when τ(t) becomes negative. This was not guaranteed at first, since the I-class of individuals is
losing some individuals which are recovering.
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Figure 5: In this figure, we plot the number of reported cases by using model (1.1) and (1.3), and the rate
of transmission is obtained in (4.5). The parameters values are f = 0.5, ν = 0.1 or ν = 0.2, χ2 = 0.66
and θ = 0.22 and CR∞ = 67102 is the latest value obtained from the cumulative number of reported cases
for China. Furthermore, we use S0 = 1.4× 109 for the total population of China and I0 = 954 which is
obtained from formula (4.3). The black dots correspond to data for the cumulative number of reported
cases observed and the blue curve corresponds to the model.

5 Computing numerically a day by day piecewise constant rate
of transmission

Assumption 5.1 We assume that the rate of transmission τ(t) is piecewise constant and for each i =
0, . . . , n,

τ(t) = τi, whenever ti ≤ t < ti+1. (5.1)

For t ∈ [ti−1, ti], we deduce by using Assumption 5.1 that∫ t

t0

τ(σ) CR′(σ)dσ =

i−2∑
j=0

∫ tj+1

tj

τj CR′(σ)dσ +

∫ t

ti−1

τi−1 CR′(σ)dσ.

Therefore by using (3.2), for t ∈ [ti−1, ti], we obtain

CR′(t) = ν f

(
I0 + S0

[
1−Πi−1 exp

(
−τi−1
ν f

[CR(t)− CR(ti−1)]

)])
+ ν CR0 − νCR(t), (5.2)

where

Πi−1 = exp

− i−2∑
j=0

τj
ν f

[CR(tj+1)− CR(tj)]

 . (5.3)

By fixing τi−1 = 0 on the right hand side of (5.2) we get

CR′(t) ≥ ν f (I0 + S0 [1−Πi−1]) + ν CR0 − νCR(t),

and when τi−1 →∞ we obtain

CR′(t) ≤ ν f (I0 + S0) + ν CR0 − νCR(t).

By using the theory of monotone ordinary differential equations (see Smith [23]) we deduce that the map
τi → CR(ti) is monotone increasing, and we get the following result.

Theorem 5.2 Let assumptions 1.1, 4.1 and 5.1 be satisfied. Let I0 be fixed. Then we can find a unique
sequence τ0, τ1, . . . , τn of non negative numbers such that t→ CR(t) the solution of (3.2) fits exactly the
data at any time ti, that is to say that

CR(ti) = CRData(ti),∀i = 1, . . . , n+ 1,

if and only if the two following two conditions are satisfied for each i = 0, 1, . . . , n+ 1,

CRData(ti) ≥ e−ν(ti−ti1 )CRData(ti−1) +

∫ ti

ti−1

νe−ν(ti−σ)dσ
(
f
(
I0 + S0

[
1−ΠData

i−1
])

+ CR0

)
, (5.4)
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where

ΠData
i−1 = exp

− i−2∑
j=0

τj
ν f

[CRData(tj+1)− CRData(tj)]

 , (5.5)

and

CRData(ti) ≤ e−ν(ti−ti1 )CRData(ti−1) +

∫ ti

ti−1

νe−ν(ti−σ)dσ (f (I0 + S0) + CR0) . (5.6)

Remark 5.3 The above theorem means that the data are identifiable for this model SI if and only if
the conditions (5.4) and (5.6) are satisfied. Moreover, in that case, we can find a unique sequence of
transmission rates τi ≥ 0 which gives a perfect fit to the data.

6 Numerical simulations
In this section, we propose a numerical method to fit the day by day rate of transmission. The

goal is to take advantage of the monotone property of CR(t) with respect to τi on the time interval
[ti, ti+1]. Recently more sophisticated methods were proposed by Bakha et al. [20] by using several types
of approximation methods for the rate of transmission.

We start with the simplest Algorithm 1 in order to show the difficulties to identify the rate of
transmission.

Algorithm 1
Step 1: We fix S0 = 1.4× 109, ν = 0.1 or ν = 0.2 and f = 0.5. We consider the system

S′(t) = −τS(t)I(t),

I ′(t) = τS(t)I(t)− νI(t),

CR′(t) = νfI(t),

(6.1)

on the interval of time t ∈ [t0, t1]. This system is supplemented by initial values S(t0) = S0 and I(t0) = I0
is given by formula (2.4) (if we consider the data only at the early stage) or formula (4.3) (if we consider
all the data) and CR(t0) = CRData(t0) is obtained from the data.

The map τ → CR(t1) being monotone increasing, we can apply a bisection method to find the unique
value τ0 solving

CR(t1) = CRData(t1).

Then we proceed by induction.
Step i: For each integer i = 1, . . . , n we consider the system

S′(t) = −τS(t)I(t),

I ′(t) = τS(t)I(t)− νI(t),

CR′(t) = νfI(t),

(6.2)

on the interval of time t ∈ [ti, ti+1]. This system is supplemented by initial values S(ti) and I(ti) obtained
from the previous iteration and with CR(ti) = CRData(ti) obtained from the data.

The map τ → CR(ti) being monotone increasing, we can apply a bisection method to find the unique
value τi solving

CR(ti) = CRData(ti).

In Figure 6, we plot an example of such a perfect fit, which is the same for ν = 0.1 and ν = 0.2. In
Figure 7 we plot the rate of transmission obtained numerically for ν = 0.2 in (a) and ν = 0.1 in (b).
This is an example of a negative rate of transmission. Figure 7 should be compared to Figure 4 which
gives similar result.

11



(a)

Feb 19 Feb 26 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01 Apr 08 Apr 15

2020   

0

1

2

3

4

5

6

7
10

4

Figure 6: In this figure, we plot the perfect fit of the cumulative number of reported cases of COVID-19
in China. We fix the parameters f = 0.5 and ν = 0.2 or ν = 0.1 and we apply our algorithm 1 to obtain
the perfect fit. The black dots correspond to data for the cumulative number of reported cases and the
blue curve corresponds to the model.

In Figures 8-10 we use Algorithm 1 and we plot the rate of transmission obtained by using the
reported cases of COVID-19 in China where the parameters are fixed as f = 0.5 and ν = 0.2. In Figures
8-10, we observe an oscillating rate of transmission which is alternatively positive and negative back and
forth. These oscillations are due to the amplification of the error in the numerical method itself. In
Figure 8, we run the same simulation than in Figure 9 but during a shorter period. In Figure 8, we can
see that the slope of CR(t) at the t = ti between two days (the black dots) is amplified one day to the
next.
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Figure 7: In this figure, we plot the rate of transmission obtained for the reported cases of COVID-19
in China with the parameters f = 0.5 and ν = 0.2 in figure (a) and ν = 0.1 in figure (b). This rate of
transmission corresponds to the perfect fit obtained in Figure 6.
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Figure 8: In figure (a), we plot the cumulative number of reported cases obtained from the data (black
dots) and the model (blue curve). In figure (b), we plot the daily rate of transmission obtained by using
Algorithm 1. We see that we can fit the data perfectly. But the method is very unstable. We obtain a
rate of transmission that oscillates from positive to negative values back and forth.
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Figure 9: In figure (a), we plot the cumulative number of reported cases obtained from the data (black
dots) and the model (blue curve). In figure (b), we plot the daily rate of transmission obtained by using
Algorithm 1. We see that we can fit the data perfectly. But the method is very unstable. We obtain a
rate of transmission that oscillates from positive to negative values back and forth.
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Figure 10: We apply Algorithm 1 to the regularized data. In figure (a), we plot the regularized cumulative
number of reported cases obtained from the data (black dots) and the model (blue curve). In figure (b),
we plot the daily rate of transmission obtained by using Algorithm 1. We see that we can fit the data
perfectly. But the method is very unstable. We obtain a rate of transmission that oscillates from positive
to negative values back and forth.

In Figure 10, we first smooth the original cumulative data by using the MATLAB function CRData =
smoothdata(CRData,

′gaussian′, 50) to regularize the data and we apply Algorithm 1. Unfortunately,
smoothing the data does not help to solve the instability problem in Figure 10.

We need to introduce a correction when choosing the next initial value I(ti). In Algorithm 1 the
errors are due to the following relationship which is not respected

CR′(t) = νfI(t)

at the points t = ti which should be reflected by the algorithm.
In Figure 11, we smooth the data first by using the MATLAB function CRData= smoothdata(CRData,

′gaussian′, 50),
and we apply Algorithm 2 by approximating equation (6.6) by

Ii = [CRData(ti)− CRData(ti−1)]/(ν × f). (6.3)

In Figure 11 we no longer observe the oscillations of the rate of transmission.
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Figure 11: In this figure, we plot the rate of transmission obtained by using the reported cases of COVID-
19 in China with the parameters f = 0.5 and ν = 0.2. We first regularize the data by applying the
MATLAB function CRData = smoothdata(CRData,

′gaussian′, 50). Then we apply Algorithm 2 to the
regularized data. In figure (a), we plot the regularized cumulative number of reported cases obtained after
smoothing (black dots) and the model (blue curve). In figure (b), we plot the daily rate of transmission
obtained by using the Algorithm 2. We see that we can fit the data perfectly and this time the rate of
transmission is becoming reasonable.

Algorithm 2
We fix S0 = 1.4 × 109, ν = 0.1 or ν = 0.2 and f = 0.5. Then we fit the data by using the method
described in Section 2 to estimate the parameters χ1, χ2 and χ3 from day 1 to 10. Then we use

S0 = 1.40005× 109,
I0 = χ2 χ1 [exp(χ2 (t0 − 1))]/(f ν),
CR0 = χ1 exp(χ2 t0)− χ3.

(6.4)

For each integer i = 0, . . . , n, we consider the system
S′(t) = −τS(t)I(t),

I ′(t) = τS(t)I(t)− νI(t),

CR′(t) = νfI(t),

(6.5)

for t ∈ [ti, ti+1]. Then the map τ → CR(ti+1) being monotone increasing, we can apply a bisection
method to find the unique τi solving

CR(ti+1) = CRData(ti+1).

The key idea of this new algorithm is the following correction on the I-component of the system. We
start a new step by using the value S(ti) obtained from the previous iteration and

Ii = CR′Data(ti)/(ν f), (6.6)

and
CRi = CRData(ti). (6.7)

In Figure 12 we plot several types of regularized cumulative data in figure (a) and several types of
regularized daily data in figure (b). Among the different regularization methods, an important one is
the Bernoulli-Verhulst best fit approximation.
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Figure 12: In this figure, we plot the cumulative number of reported cases (left) and the daily number
of reported cases (right). The black curves are obtained by applying the cubic spline matlab function
"spline(Days,DATA)" to the cumulative data. The left-hand side is obtained by using the cubic spline
function and right-hand side is obtained by using the derivative of the cubic spline interpolation. The blue
curves are obtained by using cubic spline function to the day by day values of cumulative number of cases
obtained from the best fit of the Bernoulli-Verhulst model. The orange curves are obtained by computing
the rolling weekly daily number of cases (we use the matlab function "smoothdata(DAILY,’movmean’,7)")
and then by applying the cubic spline function the corresponding cumulative number of cases. The yellow
curves are obtained by Gaussian the rolling weekly to the daily number of cases (we use the matlab function
"smoothdata(DAILY,’gaussian’,7)") and then by applying the cubic spline function to the corresponding
cumulative number of cases.

In Figure 13 we plot the rate of transmission t→ τ(t) obtained by using Algorithm 2. We can see that
the original data gives a negative transmission rate while at the other extreme the Bernoulli-Verhulst
seems to give the most regularized transmission rate. In Figure 13-(a) we observe that we now recover
almost perfectly the theoretical transmission rate obtained in Section 4. In Figure 13-(b) the rolling
weekly average regularization and in Figure 13-(c) the Gaussian weekly average regularization still vary
a lot and in both cases the transmission rate becomes negative after some time. In Figure 13-(c) the
original data gives a transmission rate that is negative from the beginning. We conclude that it is crucial
to find a "good" regularization of the daily number of case. So far the best regularization method is
obtained by using the best fit of the Bernoulli-Verhulst model.
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Figure 13: In this figure we plot the transmission rates t → τ(t) obtained by using Algorithm 2 with
the parameters f = 0.5 and ν = 0.2. In figure (a) we use the cumulative data obtained by using the
Bernoulli-Verhulst regularization. In figure (b) we use the cumulative data obtained by using the rolling
weekly average regularization. In figure (c) we use the cumulative data obtained by using the Gaussian
weekly average regularization. In figure (d) we use the original cumulative data.
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Remark 6.1 For each simulation Figure 13-(b) and Figure 13-(c), it is possible to obtain a transmission
t → τ(t) that is non negative for all time t by increasing sufficiently the parameter ν. Nevertheless, we
do not present these simulations here because the corresponding values of ν to obtain a non negative τ(t)
are unrealistic.

In Figure 14 (a) (b) (c) and (d) (respectively) we plot the daily basic reproduction number corresponding
to the Figure 13 (a) (b) (c) and (d) (respectively). The red line corresponds to R0 = 1. We see some
complex behavior for the Figure 14 (b) (c) and the figure (d) is again unrealistic.
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Figure 14: In this figure we plot the daily basic reproduction number t → R0(t) = τ(t)S(t)/ν obtained
by using Algorithm 2 with the parameters f = 0.5 and ν = 0.2. In figure (a) we use the cumulative data
obtained by using the Bernoulli-Verhulst regularization. In figure (b) we use the cumulative data obtained
by using the rolling weekly average regularization. In figure (c) we use the cumulative data obtained by
using the Gaussian weekly average regularization. In figure (d) we use the original cumulative data.

7 Discussion
Estimating the parameters of an epidemiological model is always difficult and generally requires strong

assumptions about their value and their consistency and constancy over time. Despite this, it is often
shown that many sets of parameter values are compatible with a good fit of the observed data. The
new approach developed in this article consists first of all in postulating a phenomenological model of
growth of infectious, based on the very classic model of Verhulst, proposed in demography in 1838 [28].
Then, obtaining explicit formulas for important parameter values such as the transmission rate or the
initial number of infected (or for lower and/or upper limits of these values), gives an estimate allowing
an almost perfect reconstruction of the observed dynamics.

The uses of phenomenological models can also be regarded as a way a of smoothing the data. Indeed,
the errors concerning the observations of new infected cases are numerous:

• the census is rarely regular and many countries report late cases that occurred during the weekend
and at varying times over-add data from specific counts, such as those from homes for the elderly;

• the number of cases observed is still underestimated and the calculation of cases not reported new
cases of infected is always a difficult problem [18];

• the raw data are sometimes reduced for medical reasons of poor diagnosis or lack of detection tools,
or for reasons of domestic policy of states.

For all these causes of error, it is important to choose the appropriate smoothing method (moving average,
spline, Gaussian kernel, auto-regression, generalized linear model, etc.). In this article, several methods
were used and the one which allowed the model to perfectly match the smoothed data was retained.
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In this article, we developed several methods to understand how to reconstruct the rate of transmission
from the data. In Section 2, we reconsidered the method presented in [18] based on an exponential fit
of the early data. The approach gives a first estimation of I0 and τ0. In Section 3, we prove a result
to connect the time dependent cumulative reported data and the transmission rate. In Section 4, we
compare the data to the Bernoulli-Verhulst model and we use this model as a phenomenological model.
The Bernoulli-Verhulst model fits the data for mainland China very well. Next by replacing the data
by the solution of the Bernoulli-Verhulst model, we obtain an explicit formula for the transmission
rate. So we derive some conditions on the parameters for the applicability of the SI model to the data
for mainland China. In Section 5, we discretized the rate of transmission and we observed that given
some daily cumulative data, we can get at most one perfect fit the data. Therefore, in Section 6, we
provide two algorithms to compute numerically the daily rates of transmission. Such numerical questions
turn out to be a delicate problem. This problem was previously considered by another French group
Bakhta, Boiveau, Maday and Mula [20]. Here we use some simple ideas to approach the derivative of
the cumulative reported cases combined with some smoothing method applied to the data.

To conclude this article we plot the daily basic reproduction number

R0(t) =
τ(t)S(t)

ν

as a function of the time t and the parameters f or ν. The above simple formula for R0 is not the real
basic reproductive number in the sense of the number of newly infected produced by a single infectious.
But this is a simple formula which gives a tendency about the growth or decay of the number of infectious.
In Figure 14-(a), the daily basic reproduction number is almost independent of f , while in Figure 14-(b),
R0(t) is depending on ν mostly for the small value of ν. The red curve on each surfaces in Figure 14
corresponds to the turning point (i.e. time t ≥ t0 for which R0(t) = 1). We also see that turning point
is not depending much on these parameters.

(a) (b)

Figure 15: In this figure plot R0(t) =
τ(t)S(t)

ν
the daily basic reproduction number and we vary the

parameter f (left) and ν (right).

Concerning contagious diseases, public health physicians are constantly facing four challenges. The
first concerns the estimation of the average transmission rate. Until now, no explicit formula had been
obtained in the case of the SIR model, according to the observed data of the epidemic, that is to say the
number of reported cases of infected patients. Here, from realistic simplifying assumptions, a formula
is provided (formula (4.5)), making it possible to accurately reconstruct theoretically the curve of the
observed cumulative cases. The second challenge concerns the estimation of the mean duration of the
infectious period for infected patients. As for the transmission rate, the same realistic assumptions make
it possible to obtain an upper limit to this duration (inequality (4.8)), which makes it possible to better
guide the individual quarantine measures decided by the authorities in charge of public health. This upper
bound also makes it possible to obtain a lower bound for the percentage of unreported infected patients
(inequality (4.8)), which gives an idea of the quality of the census of cases of infected patients, which is
the third challenge faced by epidemiologists, specialists of contagious diseases. The fourth challenge is
the estimation of the average transmission rate for each day of the infectious period (dependent on the
distribution of the transmission over the "ages" of infectivity), which will be the subject of further work
and which poses formidable problems, in particular those related to the age (biological age or civil age)
class of the patients concerned. Another interesting prospect is the extension of methods developed in
the present paper to the contagious non-infectious diseases (i.e., without causal infectious agent), such
as social contagious diseases, the best example being that of the pandemic linked to obesity [25, 26, 27],
for which many concepts and modeling methods remain available.
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A Supplementary tables
We use cumulative reported data from the National Health Commission of the People’s Republic of

China and the Chinese CDC for mainland China. Before February 11, the data was based on confirmed
testing. From February 11 to February 15, the data included cases that were not tested for the virus, but
were clinically diagnosed based on medical imaging showing signs of pneumonia. There were 17,409such
cases from February 10 to February 15. The data from February 10 to February 15 specified both types
of reported cases. From February 16, the data did not separate the two types of reporting, but reported
the sum of both types. We subtracted 17,409 cases from the cumulative reported cases after February
15 to obtain the cumulative reported cases based only on confirmed testing after February 15.The data
is given in Table 2 with this adjustment.

January
19 20 21 22 23 24 25
198 291 440 571 830 1287 1975
26 27 28 29 30 31
2744 4515 5974 7711 9692 11791

February
1 2 3 4 5 6 7
14380 17205 20438 24324 28018 31161 34546
8 9 10 11 12 13 14
37198 40171 42638 44653 46472 48467 49970
15 16 17 18 19 20 21
51091 70548− 17409 72436− 17409 74185− 17409 75002− 17409 75891− 17409 76288− 17409
22 23 24 25 26 27 28
76936− 17409 77150− 17409 77658− 17409 78064− 17409 78497− 17409 78824− 17409 79251− 17409
29
79824− 17409

March
1 2 3 4 5 6 7
79824− 17409 79824− 17409 79824− 17409 80409− 17409 80552− 17409 80651− 17409 80695− 17409
8 9 10 11 12 13 14
80735− 17409 80754− 17409 80778− 17409 80793− 17409 80813− 17409 80824− 17409 80844− 17409
15 16 17 18
80860− 17409 80881− 17409 80894− 17409 80928− 17409

Table 1: Cumulative data describing confirmed cases in mainland China from January 20, 2020 to March
18, 2020. The data are taken from [29, 30, 31].
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