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During an epidemic, the infectiousness of infected
individuals is known to depend on the time since
the individual was infected, that is called the age of
infection. Here we study the parameter identifiability
of the Kermack-McKendrick model with age of
infection which takes into account this dependency.
By considering a single cohort of individuals, we show
that the daily reproduction number can be obtained
by solving a Volterra integral equation that depends
on the flow of new infected individuals. We test the
consistency of the method by generating data from
deterministic and stochastic numerical simulations.
Finally we apply our method to a dataset from SARS-
CoV-1 with detailed information on a single cluster
of patients. We stress the necessity of taking into
account the initial data in the analysis to ensure the
identifiability of the problem.

1. Introduction
The existence of an individual infection (or contagiousness)
period of variable length and magnitude among infected
individuals is a proven fact in all contagious diseases.
The origin of this variability is multiple. It may be
due to (i) a variation in the symptomatic state of the
infected person due to variable immune defenses since
the beginning of his infection;
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(ii) a variation in the environmental conditions of transport and survival of the infectious agent
in the atmosphere, in a more or less favorable socio-sanitary environment presenting different
spreading characteristics; (iii) a variation in the state of defense of the final host; (iv) a variation in
the virulence of the infectious agent, which can mutate or possibly change of intermediary host;
(v) a modification of the site of virus replication in the infected host and, therefore, a variation
of the pathogen’s transmissibility. In this article we revisit the classical Kermack-McKendrick
epidemic model with age of infection which takes into account a variability in the contagiousness
of the hosts depending on the time lapse since the host was infected (case (i) above) and possibly
the environmental conditions (case (ii) above). We develop a method to identify the individual
transmissibility as a function of the age of infection.

(a) Continuous time model
Recall that the age of infection a is the time since individuals become infected. The major

difficulty in matching the data and the Kermack-McKendrick model with age of infection is to
identify: 1) the initial distribution of infected individuals with respect to the age of infection; 2)
the daily reproduction number R0(a) which is the reproduction number at the age of infection a
(i.e. the average number of secondary cases produced by a single infected individual at the age of
infection a). We can decompose the daily reproduction number as follows

R0(a) = τ0︸︷︷︸
(A)

× S0︸︷︷︸
(B)

× β(a)︸︷︷︸
(C)

× e−νa︸ ︷︷ ︸
(D)

,

where (A) τ0 is the transmission rate at time t0 (we assume the transmission rate to be constant
during the period where R0(a) is evaluated). (B) S0 is the average number of susceptible
individuals at time t0 with which an infected person may come into contact (we assume the
number of susceptible individuals to be constant during the period where R0(a) is evaluated).
(C) β(a) is the probability to be infectious (i.e. capable to transmit the pathogen) for an infected
individual with age of infection a days. (D) e−νa is the probability for an infected individual with
age of infection a days to remain infected.

Then the basic reproduction number (i.e. the number of secondary cases produced by a single
infected individual) is given by

R0 =

∫∞
0
R0(a)da.

Here we partly solve the problem of finding the initial distribution of infected by assuming
that we start the epidemic at time t0 with a single cohort of I0 new infected patients. That is, the
epidemic starts with I0 infected patients all with age of infection a= 0. The case of an epidemic
starting from a single infected patient (usually called the patient 0) corresponds to the case I0 = 1.
This is a common assumption in epidemiology. Note that the time t0 at which the first patient
becomes infected is also unknown for most epidemics.

Assume that the epidemic starts at time t0 with a cohort of I0 new infected patients (i.e., all
with age of infection a= 0). Then N(t) the flow of new infected at time t satisfies the model
starting from a single cohort of infected

N(t) =R0(t− t0)× I0︸ ︷︷ ︸
(I)

+

∫ t−t0
0

R0(s)×N(t− s)ds︸ ︷︷ ︸
(II)

, ∀t≥ t0, (1.1)

where (I) is the flow of infected individuals at time t produced directly by the I0 infected
individuals already present on day t0; and (II) is the flow of new infected individuals at time
t produced by the new infected individuals since day t0.
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The terminology ”flow of new infected individuals” means that the integral∫ t2
t1

N(σ)dσ

is the number of new infected individuals during the period of time [t1, t2].
The Kermack-McKendrick model with age of infection is well defined only for integrable initial

distribution.The equation (1.1) extends the Kermack-McKendrick model whenever the epidemic
starts with a single cohort of infected, which corresponds to a Dirac mass initial distribution. This
model remains valid as long as the transmission rate τ(t) and the number of susceptible hosts S(t)
remain constant with τ(t0) = τ0 and S(t0) = S0. So this model is valid when the epidemic starts.

Assume that I0 is fixed and the function a→R0(a) is given. Then the map t→N(t) can be
obtained by solving (1.1). The goal of the article is to consider the converse problem. That is,
assume that I0 is fixed and assume that t→N(t) is given from the data. Then the map a→R0(a)

can be obtained by solving the Volterra integral equation

R0(a) =
N(a+ t0)

I0
− 1

I0

∫a
0
R0(s)N(a− s+ t0)ds,∀a≥ 0. (1.2)

Therefore if the map t→N(t) is known, we can theoretically derive the average dynamics of
infection at the level of a single patient.

In this paper, we consider the whole time evolution of (1.1) starting from time t= t0. That is
in opposition to what is generally used in the literature. Indeed, people usually neglect the early
beginning of the epidemic to consider the long term evolution and assume that

R0(a) = 0,∀a≥ a+, (1.3)

where a+ > 0 the maximal age of infectiousness for an infected patient. This leads to

N(t) =

∫a+
0

R0(s)×N(t− s)ds, for t≥ t0 + a+, (1.4)

from which a→R0(a) cannot be identified when t→N(t) is given. Indeed, assume for example
that N(t) =N0e

λt is a given function. We obtain from (1.4) and after simplifications a standard
characteristic equation

1 =

∫a+
0

R0(s)× e−λsds. (1.5)

The real number λ> 0 being given, if we consider a→ χ(a) any non-negative and non-null
continuous function satisfying

χ(a) = 0,∀a≥ a+.

Then
R0(a) =

χ(a)∫a+
0 χ(s)× e−λsds

satisfies (1.5). Therefore, neglecting the initial value (I) in the Volterra equation (1.1) leads to a non-
identifiable problem (in general). This shows the crucial role of the initial value in identifying the
function a→R0(a).

(b) Day by day model
The model (1.1) with a single cohort of infected becomes a discrete Volterra equation

N(t) =R0(t− t0)× I0︸ ︷︷ ︸
(I)

+

t−t0∑
d=1

R0(d)×N(t− d)︸ ︷︷ ︸
(II)

, ∀t≥ t0, (1.6)

where (I) is the number of infected produced directly by the I0 infected individuals already
present on day t0; and (II) is the number of new infected individuals at time t produced by the
new infected individuals since day t0.
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Next, by setting a= t− t0, we obtain the day by day equation for the daily reproduction
number

R0(a) =
N(t0 + a)

I0
− 1

I0

a∑
d=1

R0(d)×N(t0 + a− d),∀a≥ 0. (1.7)

In the above formula and throughout the paper, we use the following convention for the sum

m∑
d=k

= 0, whenever m<k.

In practice, we can assume that R0(0) = 0 since infected individuals are not infectious
immediately after being infected. Under this additional assumption, we obtain the system

N(t0) = 0,

N(t0 + 1) =R0(1)× I0,
N(t0 + 2) =R0(2)× I0 +R0(1)×N(t0 + 1),

N(t0 + 3) =R0(3)× I0 +R0(2)×N(t0 + 1) +R0(1)×N0(t0 + 2),
...

When reliable information is available on the first cluster(s), the best formula for calculating
daily basic reproduction numbers is equation (1.2) (or its discrete time version (1.7)). Based on
(1.4), some methods have been developed in the literature to cope with the lack of a precise
information.

For instance in [2,3], the authors following [30] propose an optimization algorithm for
estimating the daily basic reproduction numbers. Unlike in the present article, the focus in [2,3]
is on the variability with respect to time, not age of infection. In [5], D. Bernoulli mentions in
1760 the changes in the contagiousness parameters and places as a crucial challenge for the
prediction of the transition between endemic and epidemic peaks in a prophetic sentence: “Le
retour d’une épidémie longtemps suspendue fait un ravage plus terrible dans une seule année
qu’une endémie uniforme ne pourrait faire pendant un nombre d’années considérable” (The
return of a long-suspended epidemic wreaks more terrible havoc in a single year than a uniform
endemic could do for a considerable number of years). In [12], the authors use a deconvolution
algorithm for calculating the daily basic reproduction numbers. In each case, the problem of the
initial conditions is evoked at best only through the hypothesis of a unique “patient zero”. Despite
the considerable means of current investigation, in particular those of the WHO and the members
of the government of the WHO, it is rare that this patient is identified (this was the case for H1N1
in Mexico). The patient zero, also called index or primary case is the first patient identified in a
given population during an epidemiological investigation. It points out the source of the spread
of a disease in a given reservoir, but this search is in general very difficult as it was the case for
HIV in North America [35].

One of the main difficulties in estimating the R0(a) function is its non-identifiability in
general. Recent studies [10,11,17,18,28] developed methods to identify the various parameters
for the COVID-19 pandemic by using cumulative reported cases data and differential equations
models. Differential equations can be written in the form studied here by assuming that R0(a)

(or equivalently, β(a)) is independent of a. Suppose that we are restricted to a period when
the data is growing exponentially fast. If we take a fixed function β(a), then by adapting the
method developed in [28], we could identify a transmission rate τ so that the output of the
model stays very close to the data, for any function β(a). The same could be achieved with a
good phenomenological description of the data by using the method developed in [10,17,18] with
a time-dependent transmission rate. This means that the reported cases data is not sufficient to
determine accurately the function R0(a). Without a good description of the initial distribution,
it is hopeless to identify R0(a) by using reported cases only. We also refer to [9,20,26] for more
indentification results.
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In this article, we first extend the Kermack-McKendrick model to initial conditions that are
a linear combination of Dirac masses. The Kermack-McKendrick model can not be extended in
the space of measures (due to a lack of time continuity for the solutions). However, the Volterra
integral equation can be extended and still makes perfect sense whenever we use Dirac masses for
the initial condition. In many real examples, the initial distribution must be a linear combination
of Dirac masses since the data are discrete at the early stage of an epidemic (in a city, a country).
Indeed, at the early beginning of an epidemic, the epidemic starts from a few cases imported from
other places. Therefore Dirac masses make perfect sense. In practice, the early stage of an outbreak
is often undocumented and generally difficult to determine. But our study applies to data from
a finite collection of clusters that is easier to determine using contact tracing. By clusters, we
mean the descendants produced by direct or indirect contact from a finite number of infected
individuals (locally concentrated in space).

Consequently, for the single cohort model, we can reverse the problem, and by assuming that
the daily number of new infected is known, we can compute the daily reproduction number
by solving a Volterra integral equation. The daily basic reproduction number informs us about
the dynamics of infection at the level of a single patient. Therefore, knowing R0(a) should
help the medical doctors decide about quarantine measures. Reported case data for clusters
are particularly valuable for reconstructing the dynamics of infection at the level of a single
individual.

In this paper, we also provide an Individual-Based Model (IBM) (see supplementary material).
This IBM converges to the deterministic model whenever the initial number of infected increases.
We use this IBM to generate sample data to test our method and compute the daily basic
reproduction number. This will allow us to test the effects of the day-to-day discretization (on the
data) and the impact of stochastic perturbations on the daily reproduction numbers. We conclude
the paper by applying our approach to a cluster of SARS-CoV-1 in Singapore.

The plan of the paper is the following. In Section 2, we recall the Kermack-McKendrick model
with age of infection. We explain how to derive the Volterra formulation of the model, and we
compare it with the Kermack-McKendrick SI model with age of infection (ODE model). In Section
3, we explain how to connect the model with the data. In Section 4, we extend the Kermack-
McKendrick model with age of infection in the case where the epidemic starts from a single or
multiple cohorts of infected individuals. In Section 5 we derive an equation to compute the daily
reproduction number from the data. In Section 6 we consider a day by day discretized Kermack-
McKendrick model with age of infection. In Section 7, we run some numerical simulations, we
compare the deterministic model with a stochastic individual based simulation presented in
supplementary material. In Section 8, we compare the model with some data from SARS-CoV-1,
and we discuss the data from SARS-CoV-2.

2. Kermack-McKendrick model with age of infection

(a) Partial differential equation formulation of the model
The age of infection a is the time since individuals become infected. Let a→ i(t, a) be the
distribution of population of infected individuals at time t (with respect to a the age of infection).
The term distribution of population means that the integral∫a2

a1

i(t, a)da

is the number of infected at time t with infection age between a1 and a2. Therefore the total
number of infected individuals at time t is

I(t) =

∫+∞
0

i(t, a)da.
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Let β(a)∈ [0, 1] be the probability to be contagious or infectious (i.e. capable to transmit the
pathogen) at the age of infection a. The quantity β(a) can be interpreted as the fraction of
infected individuals with age of infection a that are infectious. Then the total number of contagious
individuals (or also called infectious individuals) (i.e., the individuals capable of transmitting the
pathogen) at time t is

C(t) =

∫+∞
0

β(a)i(t, a)da.

The model of Kermack-McKendrick [24] with age of infection is the following, for each t≥ t0

S′(t) =−τ(t)S(t)
∫+∞
0

β(a) i(t, a)da,

∂ti+ ∂ai=−ν i(t, a), for a≥ 0,

i(t, 0) = τ(t)S(t)

∫+∞
0

β(a) i(t, a)da,

(2.1)

this system is supplemented by initial data

S(t0) = S0 ≥ 0, and i(t0, a) = i0(a)∈L1
+(0,∞). (2.2)

where L1
+(0,∞) is the positive cone of non-negative integral function.

In the model, S(t) is the number of susceptible individuals at time t, and t→ τ(t) is the
transmission rate at time t, and ν ≥ 0 is the rate at which individuals die or recover. Here,
the parameter ν is assumed to be independent of the age of infection a. This is a simplifying
assumption to improve the readability of the paper. The parameter ν combines both the specific
fatality rate and the recovery rate.

The above equation can be understood first as follows

I ′(t) = τ(t)S(t)

∫+∞
0

β(a) i(t, a)da︸ ︷︷ ︸
(I)

−
∫+∞
0

ν i(t, a)da︸ ︷︷ ︸
(II)

,

where (I) is the flow of new infected, and (II) is the flow of individuals who die or recover.
We make the following assumption.

Assumption 2.1. We assume that

(i) The transmission rate t→ τ(t) is a bounded continuous map from [t0,+∞) in [0,+∞);
(ii) The probability to be infectious at the age of infection a→ β(a)∈L∞+ (0,+∞) is a non-negative

and measurable function of a which is bounded by 1;

(b) Volterra integral equation formulation of the model
In the model (2.1), the quantity

N(t) := τ(t)S(t)

∫+∞
0

β(a) i(t, a)da, (2.3)

is the flow of new infected individuals at time t.
By using the S-equation in system (2.1), we obtain

S(t) = S0 −
∫ t
t0

N(σ)dσ,∀t≥ t0. (2.4)

By integrating the second equation of system (2.1) along the characteristics, we obtain

i(t, a) =

 e−ν (t−t0) i0 (a− (t− t0)) , if a≥ t− t0,

e−ν aN(t− a), if t− t0 ≥ a.
(2.5)
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By using (2.5), we deduce that t→N(t) satisfies the following Volterra integral equation

N(t) = τ(t)S(t)

∫+∞
t−t0

β(a) e−ν (t−t0)i0 (a− (t− t0)) da︸ ︷︷ ︸
(I)

+ τ(t)S(t)

∫ t−t0
0

β(a)e−ν aN(t− a) da︸ ︷︷ ︸
(II)

(2.6)
where (I) is the flow of new infected individuals at time t produced by the infected individuals
already present on day t0; (II) is the flow of new infected individuals at time t produced by the
new infected individuals since day t0.

By using equations (2.4) and (2.6), we can summarize the epidemic model (2.1), by saying that
t→N(t) is the unique continuous map satisfying

N(t) = τ(t)S(t)

[
Λ(t) +

∫ t−t0
0

β(a)e−ν aN(t− a) da
]
, ∀t≥ t0, (2.7)

where

S(t) = S0 −
∫ t
t0

N(σ)dσ,∀t≥ t0, (2.8)

and

Λ(t) := e−ν (t−t0)
∫+∞
t−t0

β(a) i0 (a− (t− t0)) da, ∀t≥ t0. (2.9)

The function Λ(t) is the number of infectious individuals (capable to transmit the pathogen) at
time t among the infected individuals already present at time t0.

The function t→Λ(t) plays a fundamental role in solving the Volterra equation. Indeed, the
quantity ∫ t2

t1

τ(σ)S(σ)Λ(σ)dσ,

is the number of infected produced between the instants t1 and t2 by the infected already present
at time t0. So, for example, if no new infected are produced by the infected already present at
time t0, that is if Λ(t) = 0, ∀t≥ t0, then there will be no new infected at all after the time t0,
that is N(t) = 0, ∀t≥ t0. The function t→Λ(t) can be regarded as the initial condition (or initial
distribution) for the Volterra integral equation (2.7).

Remark 2.1. In the case of the standard SI model, which is{
S′(t) =−τ(t)S(t)I(t),
I ′(t) = τ(t)S(t)I(t)− νI(t),

for t≥ t0.

by applying the variation of constant formula to I-equation, we obtain

I(t) = e−ν(t−t0)I0 +

∫ t
t0

e−ν(t−s)N(s)ds.

Therefore by replacing I(t) by the above formula in the equationN(t) = τ(t)S(t)I(t), we obtain a Volterra
integral equation for N

N(t) = τ(t)S(t) e−ν (t−t0)I0︸ ︷︷ ︸
(I)

+ τ(t)S(t)

∫ t−t0
0

e−ν aN(t− a) da︸ ︷︷ ︸
(II)

. (2.10)

We conclude that the above Volterra integral equation corresponds to (2.7) in the special case where β(a) =
1, for almost every a≥ 0. From (2.10), it becomes clear that τ(t)S(t)Λ(t) = τ(t)S(t) e−ν (t−t0)I0 is the
contribution to the flow of new infected individuals at time t produced by the I0 infected individuals already
present at time t0.
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3. Connecting the data and the model
The data are represented by the function t→CR(t) which is the cumulative number of reported
cases at time t. We propose as a model that the flow of reported cases is a fraction 0≤ f ≤ 1 of the
flow of recovering individuals, that is

CR′(t) = f ν

∫+∞
0

i(t, a)da. (3.1)

By using (2.5), we can compute the number of infected at time t. That is∫+∞
0

i(t, a)da= e−ν (t−t0)I0 +

∫ t−t0
0

e−ν aN(t− a) da, (3.2)

where

I0 =

∫+∞
0

i0(a)da

is the total number of infected at time t0.
By using equations (3.1) and (3.2), we obtain

CR′(t) = fν

[
e−ν (t−t0)I0 +

∫ t−t0
0

e−ν aN(t− a)da
]
,

or equivalently (by using the change of variable σ= t− a)

CR′(t) = fν

[
e−ν (t−t0)I0 +

∫ t
t0

e−ν (t−σ)N(σ)dσ

]
.

By choosing t= t0 we obtain

I0 =
CR′(t0)
fν

,

and ∫ t
t0

eνσN(σ)dσ=
eν tCR′(t)

fν
− eν t0I0,

and by differentiating both sides of the above equation, we obtain

eνtN(t) =
νeν tCR′(t) + eν tCR′′(t)

fν
.

Therefore we obtain the following connection between the data and the model.

Connection between the data and the model

Let t→CR(t) be the cumulative number of reported cases. Then the initial number of
infected is given by

I0 =
CR′(t0)
fν

, (3.3)

and the flow of new infected individuals N(t) at time t is given by

N(t) =
νCR′(t) + CR′′(t)

fν
, ∀t≥ t0. (3.4)

Remark 3.1. In practice it is possible but not easy to have a reliable evaluation of t→CR′(t) and
especially t→CR′′(t). This problem was considered by using some averaging (or phenomenological
models) procedure of the reported sanitary data [4,10,17,18].
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4. Kermack-McKendrick model starting from a single and
multiple cohorts of infected patients

The major difficulty to compare the model (2.4) with the data is to identify the functions a→
i0(a) and a→ β(a). To simplify the discussion, let us consider the model at the early stage of
the epidemic. When the epidemic just starts we can assume that the transmission rate t→ τ(t)

remains constant, and the number of susceptible individuals t→ S(t) is constant and equal to S0.
Under such a simplifying assumption the Volterra equation (2.4) becomes

N(t) = τ S0

[
Λ(t) +

∫ t−t0
0

β(a)e−ν aN(t− a) da
]
, ∀t≥ t0. (4.1)

(a) A single cohort initial distribution for the PDE model
In order to understand the mathematical concept of Dirac mass centered at 0, we first consider an
approximation by an exponential law

i0(a) = I0 κ e
−κa, (4.2)

with mean and standard deviation equal to 1/κ. Then a Dirac mass centered at age 0 can
be understood as the limit of such a distribution when κ goes to +∞. The limit needs some
explanations. Recall that ∫a2

a1

i0(a)da= I0

[
e−κa1 − e−κa2

]
,

is the initial number of infected individuals with infection age a in between a1 and a2 at time
t= 0. We deduce that

lim
κ→∞

∫a2
a1

i0(a)da=

{
0, if a2 >a1 > 0,

I0, if a2 >a1 = 0.

That is to say that, when κ tends to +∞, the initial distribution of population i0(a) is approaching
the case where all the infected individuals at time t0 have the same age of infection a= 0.

For short, we write
i0(a) = I0 δ0(a),

where δ0(a) is called the Dirac mass centered at age 0.

(b) A single cohort initial distribution for the Volterra integral equation
Recall that

Λ(t) = e−ν (t−t0)
∫+∞
0

β (a+ (t− t0)) i0 (a) da,

so when i0(a) is replaced by (4.2) (with an explicit dependency on κ) we obtain

Λκ(t) := I0 e
−ν (t−t0)

∫+∞
0

β (a+ (t− t0)) κ e−κada.

From now on, every function that depends on κ will be indexed by κ.
In order to derive the Kermack-McKendrick model with Dirac mass initial distribution as limit,

we first need the following result. The proof of the following can be found in the supplementary
material.

Lemma 4.1. Let Assumption 2.1 be satisfied, and assume in addition that a→ β(a) is continuous. Then
we have

lim
κ→∞

Λκ(t) = I0e
−ν (t−t0)β (t− t0) ,

where the limit is uniform in t≥ t0. That is

lim
κ→+∞

sup
t≥t0
|Λκ(t)− I0e−ν (t−t0)β (t− t0) |= 0.
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The initial condition of the Volterra integral equation (2.7) becomes at the limit Λ(t) =
I0e
−ν (t−t0)β (t− t0). One may observe that the above limit can be obtained for many types of

approximation of the Dirac mass at centered 0 (probability distribution on (0,+∞)). So formula
(4.2) can be replaced by another formula.

(c) A single cohort Volterra integral equation model
Define

Γ (a) = e−ν aβ (a) , ∀a≥ 0. (4.3)

Then by using (2.6), the Kermack-McKendrick model can be reformulated for t≥ t0, as the
following system

Nκ(t) = τ(t)Sκ(t)

[
Λκ(t) +

∫ t−t0
0

Γ (a)Nκ(t− a)da
]
,

where Λκ(t) is defined above, and

Sκ(t) = S0 −
∫ t
t0

Nκ(σ)dσ.

By taking first a formal limit when κ→+∞, we obtain the model starting from a single cohort of
infected.

Kermack-McKendrick model starting from a single cohort of infected

Assume that the initial distribution of infected only contains a single cohort composed
of I0 individuals all with age of infection a= 0 at time t0. Then the flow of new infected
t→N(t) is the unique continuous solution of the Volterra integral equation

N(t) = τ(t)S(t)

[
I0 × Γ (t− t0) +

∫ t−t0
0

Γ (a)N(t− a)da
]
,∀t≥ t0, (4.4)

where S(t) is obtained from (2.4).

The following theorem says that the model with a single cohort of infected extends the earlier
model of Kermack-McKendrick with initial distribution in L1. This theorem is a consequence of
Lemma 4.1 and of the continuity of the semiflow generated by the Volterra integral equation. We
refer to Ducrot and Magal [15] for more results on this topic.

Theorem 4.1. Let Assumption 2.1 be satisfied, and assume in addition that a→ β(a) is continuous. Then

lim
κ→∞

Nκ(t) =N(t),

where the limit is uniform in t on every closed and bounded interval of [t0,+∞), and the map t→N(t) is
the unique continuous solution of the Volterra integral equation (4.4)-(4.1).

Remark 4.1. When the initial distribution is a Dirac mass centered at a= 0, the total number of infected
individuals at time t is

C(t) = e−ν (t−t0)I0 +

∫ t−t0
0

e−ν aN(t− a)da,∀t≥ t0,

and the number of infectious individuals at time t is

I(t) = β (t− t0) e−ν (t−t0)I0 +

∫ t−t0
0

β(a)e−ν aN(t− a)da,∀t≥ t0.
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Kermack-McKendrick model starting from multiple cohorts of infected

Assume that the initial distribution of infected consists in n≥ 1 cohorts of infected with
age of infection a1 <a2 < . . . < an at time t0. That is

i0(a) = I10 δa1(a) + . . .+ In0 δan(a).

where Ij0 is the number of infected in the jth-cohort at time t0.
Then the flow of infected t→N(t) satisfies the following Volterra integral equation

N(t) = τ(t)S(t)

 n∑
j=1

Γ (t− t0 + aj)
Ij0

e−νaj
+

∫ t−t0
0

Γ (a)N(t− a)da

 ,
where S(t) is obtained from (2.4).

(d) Basic reproduction number
In this section, we assume that the transmission t→ τ(t) is constant equal to τ , and t→ S(t) is
constant equal to S0.

Define the daily reproduction numbers

R0(a) = τ × S0 × Γ (a) = τ × S0 × β (a)× e−ν a,∀a≥ 0. (4.5)

Basic reproduction number

The total number of the first generation of new infected produced by a single infected
patient with age of infection a= 0 at time t= t0 is called the basic reproduction number.
That is

R0 =

∫∞
0
R0(a) da.

The flow of the first generation of new infected produced by a single infected patient who
has been infected for a days is called the daily reproduction numbers. When the time
unit is one day, the function R0(a) is also the average daily number of case produced by
a single patient at the age of infection a.

Remark 4.2. The total number of cases produced by the nth generation of infected resulting from a single
infected patient is

∫∞
0

(
R
∗(n)
0

)
(t)dt= (R0)

n .

5. Computing the age dependent reproduction number Γ (a)
from the data

By using (4.4), we obtain the following result.
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Computing Γ (a) from the data

Assume in addition that the parameters t0, S0 > 0, I0, ν > 0, and the function t→ τ(t)

are known. Then the function t→ Γ (t) can be obtained from the flow of new infected
t→N(t), as the unique solution of the Volterra integral equation

Γ (t− t0) =
1

I0

(
N(t)

τ(t)S(t)
−

∫ t−t0
0

Γ (a)N(t− a)da
)
,∀t≥ t0, (5.1)

where S(t) is obtained by using (2.4).

Remark 5.1. Assume that patients can not transmit the pathogen when the age of infection is above
a+ > 0. That is

Γ (a) = 0,∀a≥ a+.

Then the equation (5.1) becomes for all t≥ t0 + a+,

N(t)

τ(t)S(t)
=

∫a+
0

Γ (a)N(t− a)da⇔N(t) = τ(t)S(t)

∫a+
0

Γ (a)N(t− a)da.

6. Day by day Kermack-McKendrick model with age of infection
The variation of the number of susceptible individuals S(t) is given each day t= t0, t0 + 1, . . ., by

S(t) = S0 −
t−1∑
d=t0

N(d), (6.1)

where S0 is the number of susceptible on day 0, S(t) is the number of susceptible on day t and
N(d) is the daily number of new infected individuals on day d. By analogy with the equation
(2.6), the daily number of new infected individuals satisfies the following discrete time Volterra
integral equation for all ∀t= t0, t0 + 1, t0 + 2, . . . ,

N(t) = τ(t)S(t)

+∞∑
d=t−t0

Γ (d)
I0(d− (t− t0))
e−ν (d−(t−t0))

+ τ(t)S(t)

t−t0∑
d=1

Γ (d)×N(t− d), (6.2)

where

Γ (d) := β(d) e−ν d, ∀d= 0, 1, 2, . . . ,

and τ(t) is the transmission rate, β(d) is the probability to be infectious (i.e. capable to transmit
the pathogen) after d days of infection and e−ν d is the probability to stay infected after d days of
infection (i.e. the probability to not recover nor die after d days of infection). The quantity I0(d) is
the number of infected on day 0 which have being infected d days ago.

The model (4.4) with a single cohort of infected becomes

N(t) = τ(t)S(t)

[
Γ (t− t0)I0(0) +

t−t0∑
d=1

Γ (d)×N(t− d)

]
. (6.3)
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Day by day single cohort model and daily basic reproduction number

Assume that t→ τ(t) equal τ0, and t→ S(t) is constant equal to S0. Assume that the
epidemic starts at time t0 with a cohort of I0 new infected patients (i.e. with age of
infection a= 0). The model with a single cohort of infected becomes a discrete Volterra
equation

N(t) =

[
R0(t− t0)× I0 +

t−t0∑
d=1

R0(d)×N(t− d)

]
,∀t≥ t0. (6.4)

We obtain the day by day equation for the daily reproduction number

R0(a) =
N(t0 + a)

I0
− 1

I0

a∑
d=1

R0(d)×N(t0 + a− d),∀a≥ 0. (6.5)

7. Numerical simulations
In the simulations, the unit of time is one day, and we fix

S0 = 107 = 10 000 000, 1/ν = 9 days, and R0 = 1.1.

For each function β(a) described below, the parameter τ is obtained numerically by using the
following formula

τ =
R0

S0
∫∞
0 β(a)e−νada

,

where the integral is computed by using the Simpson integration method.

In the following, we use the numerical scheme described in supplementary material to run the
simulation of the Volterra integral equation (4.4)-(4.1).

Stochastic simulations: Individual Based Model (IBM)
In order to estimate the uncertainty expected in real datasets, we use stochastic simulations
that reproduce the first stages of the epidemic in finite populations. We consider a population
composed of a finite numberN = S0 + I0 of individuals. We start the simulation a time t= 0 with
S0 ∈N susceptible individuals and I0 ∈N infected individuals all with age of infection a= 0. For
each infected individuals we also compute the time spent in the I-compartment which follows an
exponential law with parameters 1/ν. The principles of the simulations are as follows:

(i) Individuals meet at random at rate τ > 0. In other words, each pair of individual in the
population has a contact which occurs at a time following an exponential law of average
1/τ .

(ii) When a contact occurs between an infected individual of age a and a susceptible
individual, the contact results in a newly infected individual of age 0 with probability
β(a). When the infection occurs, the newly infected individual is assigned a duration of
infection which follows an exponential law of rate ν. Therefore individuals stay infected
on average for a duration of 1/ν.

(iii) The age of all individuals is updated at fixed intervals of time of size ∆t. Simultaneously
the life-span of each infected invidual is decreased by∆t and individuals whose life-span
has become negative are removed from the system.

The MATLAB code of the IBM is available online at: https://github.com/romainvieme/
2022-kermack-mckendrick-single-cohort.

https://github.com/romainvieme/2022-kermack-mckendrick-single-cohort
https://github.com/romainvieme/2022-kermack-mckendrick-single-cohort
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Convergence of the IBM to the deterministic model
In this section, we illustrate the convergence of the IBM to the deterministic model whenever I0
increases.

It is common to see biphasic flu clinically: after incubation of one day, there is a high fever,
then a drop in temperature before rising again, hence the term "V" fever [8]. Such a biphasic
contagiousness is also observed in COVID-19. The viral load in throat swab and sputum has been
measured for COVID-19 patients, which leads to biphasic contagiousness [12,31]. To cover these
type of infectious diseases, we introduce the following form for the probability to be infectious

β(a) = 0.5× 4q {(a− a0) (1− q(a− a0))}+ + 4q {(a− pa0) (1− q(a− pa0))}+ , (7.1)

with a0 = 3 days, p= 2.5, and q= 0.3.
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Figure 1: On the left-hand side, we plot the function a→ β(a). On the right-hand side, we plot the function
a→R0(a) = τ0 × S0 × β(a)× e−νa.

First generation of secondary cases produced by a single infected: In the Figures 2 we use the
IBM to investigate some properties of the clusters obtained from the stochastic simulations. We
compare such a stochastic sample with the original a→R0(a).
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Figure 2: In these figures, we present sets of 500 samples of secondary cases produced by a single infected
individual in a population of S = 107 susceptible hosts. Theses samples are produced by using the IBM. (a)
Statistical summary: the blue curve represents the average number of cases at age of infection a; the dark
blue area is the 95% confidence interval of this average obtained by fitting a Gaussian distribution to the
data; the light blue area corresponds to the standard deviation; the orange curve is the deterministic daily
basic reproductive number at age a. (b) Bar graph of the average number of secondary cases as a function
of the age since infection. (c) Histogram of the total number of secondary cases produced during the whole
infection. This estimates the probability of a single infected to generate n secondary cases (with n in the
abscissa).

Figures 3 to 6 clearly show the influence of the distribution of daily reproduction numbers
throughout the period of contagiousness, distribution assumed to be identical for all infected
individuals. When it is biphasic, our method makes it possible to estimate it with good precision
using the IBM stochastic model (Figure 2). As this IBM model converges towards the deterministic
model when we increase the size of the simulated sample (Figures 3), we can anticipate that the
biphasic estimate remains precise for the deterministic version of the model, which is observed
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on Figure 3. The large fluctuations observed in the IBM simulations of the daily reproduction
numbers (Figure 3) are indeed considerably attenuated if we consider the average curves
corresponding to different samples of 500 IBM runs.
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Figure 3: On the left-hand side, we plot the function t→N(t) solution of (4.4) with (2.4). On the right-
hand side, we plot the function t→

∫t
t−1N(s)ds (for t= 1, 2, . . .) which corresponds to the daily number

of cases obtained by solving (4.4) with (2.4), and we compare it with the daily number of cases obtained from
500 runs of the IBM. The top two figures correspond to I0 = 10, and the bottom two figures to I0 = 1000.

In Figure 4, we focus on the reconstruction of the daily reproduction number from
deterministic simulations. In Figure 4, we observe the effect of the day-by-day discretization
(which corresponds to the daily reported data). In Figures 5-6, we focus on the reconstruction
of the daily reproduction number from stochastic simulations. In Figures 5-6, we observe the
stochastic effect of the IBM.
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Figure 4: On the left hand side, we plot the daily number of t→
∫t
t−1N(s)ds (for t= 0, 1, 2, . . .) by using

the continuous model (1.1) for I0 = 10 (top) and I0 = 1000 (bottom). On the right-hand side, we apply
formula (6.5) to the flow of new infected obtained from the deterministic model. In the top two figures we
vary I0 = 6, 10, 14. In the bottom two figures we vary I0 = 600, 1000, 1400. In both cases, the yellow
curve gives the best visual fit, and the R0(a) becomes negative whenever I0 becomes too small.
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It can be noted in Figure 4 that the variations in the daily reproduction numbers of an
individual are identical for a set of I0 equal to 6, 10, 14 and for a set equal to 600, 1000, 1400.
The reason for this similarity is related to the normalization of the simulated daily reproduction
numbers by the size of the set of initial infected individuals, in order to reduce them to an
individual. On Figure 4 occurs also an important negativity in late daily reproduction numbers,
when the duration of the period of contagiousness is high and the initial number of infected is
small. This phenomenon is very attenuated in the stochastic model, if we take the average of very
many simulations of the IBM model, even in the case where the initial number of infected is small
(Figures 5 and 6).
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Figure 5: On the left-hand side, we plot the daily number of cases t→N(t) (for t= 0, 1, 2, . . .) obtained
on the top from a single run of the IBM, and the bottom by summing the daily number of cases for 500 IMB
runs. On the right-hand side, we apply formula (6.5) (with I0 = 10) to the daily number of cases obtained
from the IBM. The top two figures correspond to I0 = 10, and the bottom two figures to I0 = 500× 10.
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Figure 6: On the left-hand side, we plot the daily number of cases t→N(t) (for t= 0, 1, 2, . . .) obtained
on the top from a single run of the IBM, and the bottom by summing the daily number of cases for 500

IMB runs. On the right-hand side, we apply formula (6.5) (with I0 = 1000) to the daily number of cases
obtained from the IBM. The top two figures correspond to I0 = 1000, and the bottom two figures to I0 =
500× 1 000.
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8. Application to SARS-CoV-1
In practice, the Kermack-McKendrick model starting from a Dirac mass means that the epidemic
starts from a single patient at time t0 (whenever I0 = 1) or from a group of I0 infected patients
all with the same age of infection a= 0 at time t0. This assumption corresponds to the standard
conception of a cluster in epidemiology. An example of such a cluster is obtained [37] for the
SARS-CoV-1 epidemic in Singapore in 2003. This cluster is represented by a network of contacts
between individuals in Figure 7.

(a) (b)

Feb 28 Mar 05 Mar 10 Mar 15 Mar 20 Mar 25 Mar 30 Apr 04 Apr 09 Apr 14 Apr 19 Apr 24 Apr 29

2003   

0

2

4

6

8

10

12

14
case 1

case 2

case 3

case 4

case 5

other

(c)

Mar 0
1

Mar 0
8

Mar 1
5

Mar 2
2

Mar 2
9

Apr 0
5

Apr 1
2

Apr 1
9

Apr 2
6

2003   

0

2

4

6

8

10

12 Daily Reported

Gaussian Weekly Average

Rolling Weekly Average

Figure 7: (a) We plot the contact network of the five super spreader cases in the SARS epidemic in Singapore
in 2003 [37]. The super spreaders are patient 1, patient 6, patient 35, patient 130 and patient 127. (b) Daily
reported cases from Singapore for the epidemic of SARS in 2003. Case 1 generated 21 cases and 3 suspected
cases, case 2 generated 23 cases and 5 suspected cases, case 3 generated 23 cases and 18 suspected cases,
case 4 generated 40 cases and 22 suspected cases, case 5 generated 15 cases and 0 suspected cases [37].
The cases 1,2,3,4,5 correspond respectively to the patients 1, 6, 35, 130 and 127. (c) Regularizations of the
daily cases data from the SARS-CoV-1 outbreak in Singapore [37]. The blue curve corresponds to a step
function, the orange curve to a Gaussian weekly average, and the gray curve to a rolling weekly average.
The applications in Figure 8 are done with the “Rolling Weekly” regularization.
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Figure 8: Left: Regularized data of the SARS-CoV-1 outbreak in Singapore in 2003 [37] (black line) and the
numerical solution of the model (1.1) with I0 = 30 and R0(a) computed by (1.6) (blue line). The solutions
N(t) of the model (1.1) with I0 = 50 and I0 = 100 are exactly the same when we use the corresponding
R0(a), therefore they are not represented here. Right: numerical solution of the R0(a) function computed
by using the continuous model (1.4) with I0 = 30, I0 = 50 and I0 = 100.

Figures 7 (a) and (b) present the time series of reported cases by source of infection and
date of fever onset and (c) presents three representations of these data in continuous time:
as a step function, regularized by Gaussian average and rolling weekly average. In Figure 8
we apply the continuous-time model to the rolling weekly regularization of the data. Similar
to the reconstruction of R0(a) presented in Figures 4-6, the basic reproduction number R0(a)

becomes negative after a given age. Our interpretation is that the data are far from perfect and
involves sampling errors and probably a large number of undetected cases. The fact that the
transmission rate is subject to variations in time could also explain this negativity. In Figure 8, we
apply the discrete model (1.6) to the original data for different values of I0. In Figure 10 in the



18

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

supplementary material, we transform the data by taking advantage of the information on the
source of infection given in [37]. We fix an incubation period of 5 days, which corresponds to the
average incubation period reported in [37]. Then we shift all secondary cases produced by the
six sources identified in the article [37] to the same origin, as if all cases had been produced by
the same cluster of six individuals. We present the data on the left-hand side of Figure 11 of the
supplementary material, and apply the method to obtain R0(a) for parameters I0 = 30, I0 = 50,
I0 = 100.

9. Discussion

We see from the numerical simulations in Section 7 that the initial number of infected I0 has
a very significant influence on the value of the basic daily reproduction numbers R0(d): these
decrease sharply with I0, until they become negative and their fluctuations increase in stochastic
simulations. This tendency to negativity for small I0 and these fluctuations in the stochastic case
are only corrected when the results are averaged for a large number of stochastic simulations
(500). It can also be noted that the stochastic simulations lead to a behavior of the hyper
exponential type in the coefficient of variation of the secondary cases produced by an infectious
individual, that is to say that it is relatively constant and much greater than 1. This phenomenon
is to be related to the exponential character of the gamma distribution used in the simulations.

In stochastic simulations, we observe the same behavior for the different curves related to the
R0(a) curves sample, but the expectation of this curves sample considerably attenuates these
fluctuations and the coefficient of variation of the curves remains approximately constant, while
being greater than 1, as in the case of hyperexponential distributions, in agreement with the
exponential character of the part D of the equation (1.7) defining R0(a).

Concerning the clusters, from observations made during investigations of the start of the
outbreak in some countries [1,6,7,13,16,19,21–23,27,32–34,36], it is possible to get spatial and
temporal information on the start of the epidemic, but these studies rarely allow the estimation of
the parameters S0 and τ in the concerned population and worse, they give no indication of how
long they remain constant. Here we assumed that they remained constant only during the period
of exponential growth of new cases observed.

Our work provides a method to reconstruct the daily basic reproduction number R0(a) from
the daily reported cases data, as long as we consider a cluster starting from a single infected. This
is a strong assumption which is usually neglected. It is extremely hard to find in the literature a
dataset which satisfies this assumption. For COVID-19, we did not find any publication including
suitable data. While not published yet, we believe that this kind of data could be gathered by a
detailed contact-tracing and – duly anonymized – could be made available by request. That would
allow the future development of more realistic and accurate methods for the analysis and forecast
of epidemics.
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