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1 A single cohort initial distribution for the Volterra integral equation

Recall that

Λ(t) = e−ν (t−t0)

∫ +∞

0

β (a+ (t− t0)) i0 (a) da,

so when i0(a) is replaced by I0 × κ× e−κa we obtain

Λκ(t) := I0e
−ν (t−t0)

∫ +∞

0

β (a+ (t− t0))× κ× e−κada.

In order to derive the Kermack-McKendrick model with Dirac mass initial distribution as limit, we first need the
following result.

Lemma 1.1. Let Assumption 2.1 be satisfied, and assume in addition that a→ β(a) is continuous. Then we have

lim
κ→∞

Λκ(t) = I0e
−ν (t−t0)β (t− t0) ,

where the limit is uniform in t ≥ t0. That is

lim
κ→+∞

sup
t≥t0
|Λκ(t)− I0e−ν (t−t0)β (t− t0) | = 0.

Proof. Let ε > 0. We observe that

Λκ(t)− I0e−ν (t−t0)β (t− t0) = I0 e
−ν (t−t0)

∫ +∞

0

[β (a+ (t− t0))− β (t− t0)]κ e−κada,

= I0 e
−ν (t−t0)

∫ η

0

[β (a+ (t− t0))− β (t− t0)]κ e−κada,

+I0 e
−ν (t−t0)

∫ +∞

η

[β (a+ (t− t0))− β (t− t0)]κ e−κada.
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Let t1 > t0 be such that
I0 e
−ν (t−t0) sup

a≥0
β(a) ≤ ε

4
,∀t ≥ t1.

Let η > 0 be such that
a ≤ η ⇒ |β (a+ t)− β (t) | ≤ ε

2
,∀t ∈ [t0, t1].

Then we have

|I0 e−ν (t−t0)

∫ η

0

[β (a+ (t− t0))− β (t− t0)]κ e−κada| ≤


I0 e
−ν (t−t0) 2 sup

a≥0
β(a), if t ≥ t1,

I0 e
−ν (t−t0)

∫ η
0

ε

2
κ e−κada, if t ∈ [t0, t1],

therefore

|Λκ(t)− I0 e−ν (t−t0)β (t− t0) | ≤ ε

2
+ |I0 e−ν (t−t0)

∫ +∞

η

[β (a+ (t− t0))− β (t− t0)]κ e−κada|.

The result from the fact that

|I0 e−ν (t−t0)

∫ +∞

η

[β (a+ (t− t0))− β (t− t0)]κ e−κada| ≤ 2 I0 sup
a≥0

β(a)

∫ +∞

η

κ e−κada,

hence

|I0e−ν (t−t0)

∫ +∞

η

[β (a+ (t− t0))− β (t− t0)]κ e−κada| ≤ 2 I0 sup
a≥0

β(a)e−κη → 0, as κ→∞.

2 Basic reproduction number

In this section, we assume that the transmission t→ τ(t) is constant equal to τ , and t→ S(t) is constant equal
to S0.

Define the daily reproduction numbers

R0(a) = τ × S0 × Γ(a) = τ × S0 × β (a)× e−ν a,∀a ≥ 0. (2.1)

Assuming that the number of susceptible individuals t→ S(t) is constant and equal S0 in the N -equation, then we
obtain

N(t) = I0 ×R0(t− t0) +

∫ t−t0

0

R0(a)N(t− a)da, ∀t ≥ t0. (2.2)

By using the change of variable s = t− t0,

N(s+ t0) = I0 ×R0(s) +

∫ s

0

R0(a)N(s+ t0 − a)da, ∀s ≥ 0.

Replacing the notation s by t, and define

Nt0(t) = N(t+ t0),∀t ≥ 0,

the equation (2.2) becomes

Nt0(t) =

[
I0 ×R0(t) +

∫ t

0

R0(a)Nt0(t− a)da

]
,∀t ≥ 0. (2.3)
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By replacing Nt0(t) by the right hand side of (2.3) in the integral term of (2.3) we obtain

Nt0(t) = I0 ×R0(t) +

∫ t

0

R0(a) I0 ×R0(t− a)da+

∫ t

0

R0(a0)

∫ t−a0

0

R0(a1)Nt0(t− a0 − a1)da1da0

and by induction

Nt0(t) = I0R0(t) + I0(R0 ∗R0)(t) + I0(R0 ∗R0 ∗R0)(t) + . . .+ I0 (R0 ∗R0 ∗ . . . ∗R0)︸ ︷︷ ︸
n times

(t) + . . .

where the convolution is defined by

(U ∗ V )(t) =

∫ t

0

U(a)V (t− a)da =

∫ t

0

U(t− a)V (a)da.

We define (
U∗(2)

)
(t) = (U ∗ U)(t),

and for each integer n ≥ 3,(
U∗(n)

)
(t) =

(
U∗(n−1) ∗ U

)
(t) =

(
U ∗ U∗(n−1)

)
(t) = (U ∗ U ∗ . . . ∗ U)︸ ︷︷ ︸

n times

(t).

We can interpret the N -equation (2.2) concretely as follows

Nt0(t) = I0R0(t)︸ ︷︷ ︸
Flow of infected produced at time t by the first I0 infected individuals

+ I0

(
R
∗(2)
0

)
(t)︸ ︷︷ ︸

Flow of infected produced at time t by the second generation of infected individuals

+ I0

(
R
∗(3)
0

)
(t)︸ ︷︷ ︸

Flow of infected produced at time t by the third generation of infected individuals

+
...
+ I0

(
R
∗(n)
0

)
(t)︸ ︷︷ ︸

Flow of infected produced at time t by the nth generation of infected individuals

+
...

Basic reproduction number

The total number of the first generation of new infected produced by a single infected patient with age of
infection a = 0 at time t = t0 is called the basic reproduction number. That is

R0 =

∫ ∞
0

R0(a) da.

The flow of the first generation of new infected produced by a single infected patient who has been infected
for a days is called the daily reproduction numbers. When the time scale is one day, the function R0(a)
is also the average daily number of case produced by a single patient at the age of infection a.
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Proposition 2.1. The total number of cases produced by the nth generation of infected resulting from a single
infected patient is ∫ ∞

0

(
R
∗(n)
0

)
(t)dt = (R0)

n
.

Proof. By using Fubini’s theorem we have∫ ∞
0

(R0 ∗ V )(t) dt =

∫ ∞
0

∫ t

0

R0(t− a)V (a) da dt =

∫ ∞
0

∫ +∞

a

R0(t− a) dt V (a) da

and by making the change of variable l = t− a we obtain∫ ∞
0

(R0 ∗ V ) (t) dt =

∫ +∞

0

R0(l) dl ×
∫ +∞

0

V (a) da.

Replacing V (t) by (R
∗(n−1)
0 )(t) in the above equation we obtain∫ ∞

0

(
R
∗(n)
0

)
(t)dt =

∫ +∞

0

R0(l) dl

∫ ∞
0

(
R
∗(n−1)
0

)
(t)dt,

and the result follows by induction.

3 Some explicit examples of a→ R0(a)

We assume that the transmission t→ τ(t) is constant equal to τ , and t→ S(t) is constant equal to S0. Then

R0(a) = τ × S0 × Γ(t− t0),

and by setting a = t− t0, we obtain

R0(a) =
N(a+ t0)

I0
− 1

I0

∫ a

0

R0(σ)N(a− σ + t0)dσ, ∀a ≥ 0. (3.1)

3.1 Exponential decay
Assume that

N(t) = χ1 I0 e
−χ2(t−t0).

Then we obtain
R0(a) = χ1 e

−χ2a −
∫ a

0

R0(σ)χ1 e
−χ2(a−σ)dσ, ∀a ≥ 0.

Therefore
R′0(a) = − (χ1 + χ2)R0(t),∀a ≥ 0, and R0(0) = χ1,

and we obtain
R0(a) = χ1e

−(χ1+χ2)a,∀a ≥ 0. (3.2)

3.2 Exponential decay with latency
Let t1 > t0. Assume that

N(t) =

{
I0 χ1 e

−χ2(t−t0), if t ≥ t1,

0, if t0 ≤ t < t1.
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Then we obtain
R0(a) = 0,∀a ∈ [0, t1 − t0] ,

and
R0(a) = χ1 e

−χ2a −
∫ a

t1−t0
R0(σ)χ1 e

−χ2(a−σ) dσ, ∀t ≥ t1.

By setting a1 = t1 − t0, we obtain
R0(a) = 0,∀a ∈ [0, a1) ,

R0(a) = χ1 e
−χ2a −

∫ a

a1

R0(σ)χ1 e
−χ2(a−σ)dσ, ∀a ≥ a1,

hence by setting a = â+ a1,

R0(â+ a1) = χ1 e
−χ2(â+a1) −

∫ â+a1

a1

χ1 e
−χ2(â+a1−σ)R0(σ)dσ, ∀â ≥ 0,

and by setting â = a− a1, and R̂0(â) = R0(â+ a1), we obtain

R̂0(â) = C1e
−χ2â −

∫ â

0

χ1 e
−χ2(â−σ) R̂0(σ)dσ, ∀â ≥ 0,

where
C1 = χ1 e

−χ2 a1 .

Thus
R̂0(â) = C1e

−(χ1+χ2)â,∀â ≥ 0.

We conclude that

R0(a) =

{
0, if 0 ≤ a ≤ a1,

χ3e
−(χ1+χ2) a, if a > a1,

(3.3)

where
χ3 = χ1 e

χ1 a1 , and a1 = t1 − t0.

4 Numerical simulations

4.1 Comparison of deterministic and stochastic simulations
In the simulations, the unit of time is one day, and we fix

S0 = 107 = 10 000 000, 1/ν = 9 days, and R0 = 1.1.

For each function β(a) described below, the parameter τ is obtained numerically by using the following formula

τ =
R0

S0

∫∞
0
β(a)e−νada

,

where the integral is computed by using the Simpson integration method.

In the following, we use the numerical scheme described in section 6 to run the simulation of the Volterra integral
equation. We use the Individual Based Model (IBM) described in section 7 to run the stochastic simulations of the
model. In the following, we illustrate the convergence of the IBM to the deterministic model whenever I0 increases.

We assume that the probability to be infectious is a shifted gamma like distribution. That is

β(a) = β0(a− a0)+e−β1(a−a0)+ , (4.1)
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with
a0 = 3 days, β0 = e/2 = 1.3591, and β1 = 1/2 = 0.5.
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Figure 1: On the left-hand side, we plot the function a → β(a). On the right-hand side, we plot the function
a→ R0(a) = τ0 × S0 × β(a)× e−νa.

First generation of secondary cases produced by a single infected: In the Figures 2 we use the IBM to
investigate some properties of the clusters obtained from the stochastic simulations. We compare such a stochastic
sample with the original a→ R0(a).
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Figure 2: In these figures, we present sets of 500 samples of secondary cases produced by a single infected individual
in a population of S = 107 susceptible hosts. These samples are produced by using the IBM. (a) Statistical summary:
the blue curve represents the average number of cases at age of infection a; the dark blue area is the 95% confidence
interval of this average obtained by fitting a Gaussian distribution to the data; the light blue area corresponds to the
standard deviation; the orange curve is the deterministic daily basic reproductive number at age a. (b) Bar graph of
the average number of secondary cases as a function of the age since infection. (c) Histogram of the total number of
secondary cases produced during the whole infection. This estimates the probability of a single infected to generate
n secondary cases (with n in the abscissa).

Convergence of the IMB to the deterministic model: By comparing Figures 3 and 4 we observe the conver-
gence of the IBM to the deterministic model.
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Figure 3: On the left-hand side, we plot the function t→ N(t) solution of (4.3) with (2.4). On the right-hand side,
we plot the function t →

∫ t
t−1

N(s)ds (for t = 1, 2, . . .) which corresponds to the daily number of cases obtained by
solving (4.3) with (2.4), and we compare it with the daily number of cases obtained from 500 runs of the IBM. The
top two figures correspond to I0 = 10, and the bottom two figures to I0 = 1 000.
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Figure 4: On the left-hand side, we plot the function t →
∫ t

0
N(s)ds (for t = 0, 1, 2, . . .) which corresponds to the

cumulative number of cases obtained by solving (4.3) with (2.4), and we compare it with the cumulative number
of cases obtained from 500 runs of the IBM. On the right-hand side, we plot the average values of the 500 runs
obtained from the IBM as well as the quantiles (10%− 90% (light blue) and 25%− 75% (blue)). The top two figures
correspond to I0 = 10, and the bottom two figures to I0 = 1 000.

In Figure 5, we focus on the reconstruction of the daily reproduction number from deterministic simulations.
In Figure 5, we observe the effect of the day-by-day discretization (which corresponds to the daily reported data).
In Figures 6-7, we focus on the reconstruction of the daily reproduction number from stochastic simulations. In
Figures 6-7, we observe the stochastic effect of the IBM.
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Figure 5: On the left hand side, we plot the daily number of t →
∫ t
t−1

N(s)ds (for t = 0, 1, 2, . . .) by using the
continuous model (1.1) for I0 = 10 (top) and I0 = 1 000 (bottom). On the right-hand side, we apply formula (6.5)
to the flow of new infected obtained from the deterministic model. In the top two figures we vary I0 = 6, 10, 14. In
the bottom two figures we vary I0 = 600, 1000, 1400. In both cases, the yellow curve gives the best visual fit, and the
R0(a) becomes negative whenever I0 becomes too small.
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Figure 6: On the left-hand side, we plot the daily number of cases t→ N(t) (for t = 0, 1, 2, . . .) obtained on the top
from a single run of the IBM, and the bottom by summing the daily number of cases for 500 runs. On the right-hand
side, we apply formula (6.5) (with I0 = 10) to the daily number of cases obtained from the IBM. The top two figures
correspond to I0 = 10, and the bottom two figures to I0 = 500× 10.
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Figure 7: On the left-hand side, we plot the daily number of cases t→ N(t) (for t = 0, 1, 2, . . .) obtained on the top
from a single run of the IBM, and the bottom by summing the daily number of cases for 500 runs. On the right-hand
side, we apply formula (6.5) (with I0 = 1 000) to the daily number of cases obtained from the IBM. The top two
figures correspond to I0 = 1 000, and the bottom two figures to I0 = 500× 1 000.

The comments on the Figures of the supplementary material are the same as those on the Figures of the main
body of the article. The difference is only related to the shape of the distribution of the daily reproduction numbers:
it is biphasic in the article, and monophasic in the supplementary material.

Figures 1 to 7 show the influence of the distribution of daily reproduction numbers throughout the period
of contagiousness, distribution assumed to be identical for all infected individuals. If it is monophasic, the IBM
stochastic approach still allows estimating the daily reproduction numbers with a good precision (Figure 2). This
IBM approach coincides with the deterministic one when the size of the simulated sample increases (Figures 3 and
4). The large fluctuations observed in the IBM simulations of the daily reproduction numbers (Figure 3) and of the
cumulative cases (Figure 4) are considerably attenuated if we consider the average curves corresponding to different
samples of 500 IBM runs.

It can always be noted in Figure 5 that the variations in the daily reproduction numbers of an individual are
identical for sets of I0 equal to 6, 1014 and to 600, 1000, 1400. There is also still a phenomenon of negativity in late
daily reproduction numbers, when the duration of the period of contagiousness is high and the initial number of
infected is small. This phenomenon is very attenuated in the stochastic model, if we take the average of very many
simulations of the IBM model, even in the case where initial number of infected is small (Figures 6 and 7).

Eventually, in the application to the SARS-CoV-1, we see anew the existence of important fluctuations with
negative values for the daily reproduction number, especially for late days of the contagiousness period and for
small values of I0 (Figures 9 to 11)

5 Application to SARS-CoV-1

In practice, the Kermack-McKendrick model starting from a Dirac mass means that the epidemic starts from a
single patient at time t0 (whenever I0 = 1) or from a group of I0 infected patients all with the same age of infection
a = 0 at time t0. This assumption corresponds to the standard conception of a cluster in epidemiology. An example
of such a cluster is obtained [33] for the SARS-CoV-1 epidemic in Singapore in 2003. The cluster is represented by
a network of contact between individuals in Figure 8.
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Figure 8: (a) We plot the contact network of the five super spreader cases in the SARS epidemic in Singapore in
2003 [33]. The super spreaders are patient 1, patient 6, patient 35, patient 130 and patient 127. (b) Daily reported
cases from Singapore for the epidemic of SARS in 2003. Case 1 generated 21 cases and 3 suspected cases, case
2 generated 23 cases and 5 suspected cases, case 3 generated 23 cases and 18 suspected cases, case 4 generated 40
cases and 22 suspected cases, case 5 generated 15 cases and 0 suspected cases [33]. The cases 1,2,3,4,5 correspond
respectively to the patients 1, 6, 35, 130 and 127. (c) Regularizations of the daily cases data from the SARS-CoV-1
outbreak in Singapore [33]. The blue curve corresponds to a step function, the orange curve to a Gaussian weekly
average, and the gray curve to a rolling weekly average. The applications in Figure 9 are done with the “Rolling
Weekly” regularization.

Figures 8 (a) and (b) present the time series of reported cases by source of infection and date of fever onset
and (c) presents three representations of these data in continuous time: as a step function, regularized by Gaus-
sian average and rolling weekly average. In Figure 9 we apply the continuous-time model to the rolling weekly
regularization of the data. Similar to the reconstruction of R0(a) presented in Figures 5-7 and Figures 9-11, the
basic reproduction number R0(a) becomes negative after a given age. Our interpretation is that the data are far
from perfect and involves sampling errors and probably a large number of undetected cases. The fact that the
transmission rate is subject to variations in time could also explain this negativity. In Figure 10 we apply the
discrete model (??) to the original data for different values of I0. Finally, in Figure 11, we transform the data by
taking advantage of the information on the source of infection given in [33]. We fix an incubation period of 5 days,
which corresponds to the average incubation period reported in [33]. Then we shift all secondary cases produced
by the six sources identified in the article [33] to the same origin, as if all cases had been produced by the same
cluster of six individuals. We present the data on the left-hand side of Figure 11 and apply the method to obtain
R0(a) for parameters I0 = 30, I0 = 50, I0 = 100.
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Figure 9: Left: Regularized data of the SARS-CoV-1 outbreak in Singapore in 2003 [33] (black line) and the
numerical solution of the model (1.1) with I0 = 30 and R0(a) computed by (1.6) (blue line). The solutions N(t)
of the model (1.1) with I0 = 50 and I0 = 100 are exactly the same when we use the corresponding R0(a), therefore
they are not represented here. Right: numerical solution of the R0(a) function computed by using the continuous
model (1.4) with I0 = 30, I0 = 50 and I0 = 100.
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Figure 10: Left: Original daily reported cases data of the SARS-CoV-1 outbreak in Singapore in 2003 [33] (blue
line). Right: Numerical solution of the R0(a) function computed by using the discrete model (1.6) with I0 = 30,
I0 = 50 and I0 = 100.
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Figure 11: Left: Daily reported cases of a theoretical cluster based on the data from the SARS-CoV-1 outbreak in
Singapore in 2003 [33] (blue line). The secondary cases produced by the six patients identified in [33] are shifted to
the same initial infection date of the infector, as if all were produced by the same cluster starting at t = 0. We also
use an incubation period of 5 days, as indicated in [33]. Right: Numerical solution of the R0(a) function computed
by using the discrete model (1.6) with I0 = 30, I0 = 50 and I0 = 100.

6 Euler approximation for the Volterra integral equation

We use a numerical scheme for the Volterra integral equation given by

N(t) = τ S (max (t−∆t, t0))

[
I0 × Γ (t− t0) +

∫ max(t−∆t−t0,0)

0

Γ(a)N(t− a)da

]
, (6.1)

with

S(t) = S0 −
∫ t

t0

N(σ)dσ, (6.2)

and we use the Simpson’s rule to compute the integrals.

7 Stochastic simulations: Individual Based Model

In order to estimate the uncertainty expected in real datasets, we use stochastic simulations that reproduce
the first stages of the epidemic in finite populations. We consider a population composed of a finite number
N = S0 + I0 of individuals. We start the simulation a time t = 0 with S0 ∈ N susceptible individuals and I0 ∈ N
infected individuals all with age of infection a = 0. For each infected individuals we also compute the time spent
in the I-compartment which follows an exponential law with parameters 1/ν. The principles of the simulations are
as follows:

1. Individuals meet at random at rate τ > 0. In other words, each pair of individual in the population has a
contact which occurs at a time following an exponential law of average 1/τ .
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2. When a contact occurs between an infected individual of age a and a susceptible individual, the contact results
in a newly infected individual of age 0 with probability β(a). When the infection occurs, the newly infected
individual is assigned a duration of infection which follows an exponential law of rate ν. Therefore individuals
stay infected on average for a duration of 1/ν.

3. The age of all individuals is updated at fixed intervals of time of size ∆t. Simultaneously the life-span of each
infected invidual is decreased by ∆t and individuals whose life-span has become negative are removed from
the system.

The MATLAB code of the IBM is available online at:
https://github.com/romainvieme/2022-kermack-mckendrick-single-cohort.
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