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Abstract. In this note we analyze a spatially structured SI epidemic model
with vertical transmission, a logistic effect on vital dynamics and a density

dependent incidence. For a bounded spatial domain we show global stability

of the endemic state when it is feasible. Then we look at the existence of
travelling wave solutions connecting the endemic and the disease free states.

1. Introduction. We consider a generic S-I epidemic model for the spread of an
epidemic disease within a spatially structured theoretical population of density
P (x, t), x ∈ Rn and t > 0, split into susceptible, S(x, t), and infective individu-
als, I(x, t), that is P = S + I. Assume both subpopulation fluxes follow a Fick’s
law, −dS ∇S for susceptibles and −dI ∇I for infectives, with constant diffusivities,
dS > 0 and dI > 0. Let b(P ), bI(P ) and m(p) be the respective birth rate for
susceptibles, birth rate for infectives, and mortality rate. Let θ, 0 ≤ θ ≤ 1, be the
proportion of offspring born from an infective individual that is susceptible at birth,
and let 1/α > 0 be the average time spent in the infectious class. Last let σ(S, I)
be the incidence function, that is the recruitment of infectives into the suscepti-
ble class by direct contact (horizontal transmission). A generic Reaction-Diffusion
(RD) system modelling the spatial spread of the epidemic disease at hand reads,

∂tS − dS 4 S = −σ(S, I) + b(P )S + θbI(P )I −m(P )S, x ∈ Rn, t > 0,

∂tI − dI 4 I = +σ(S, I)− αI + (1− θ)bI(P )I −m(P )I, x ∈ Rn, t > 0,
(1)

supplemented by a set of nonnegative and bounded initial conditions,

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, x ∈ Rn. (2)
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When the spatial domain is a bounded domain Ω ⊂ Rn instead of Rn no-flux
boundary conditions are to be supplemented along the boundary ∂Ω of Ω. We
assume that the population is isolated and we impose no-flux boundary conditions,

dS∇S(x, t) · η(x) = dI∇I(x, t) · η(x) = 0, x ∈ ∂Ω, t > 0,

where η(x) is the unit outer normal vector at x ∈ ∂Ω.
In this study the incidence function will take a density dependent form,

σ(S, I) = σSI, for some σ > 0.

Here we refer to [1, 3, 4, 5, 7, 20] for a nice overview on epidemic models. We
also refer to the book of [16], and the recent survey papers [17, 18] for a nice survey
on travelling waves in this context.

In Section 2 we collect basic results for the underlying Ordinary Differential
Equation (ODE) system, including the emergence of a boundary endemic equilib-
rium that becomes stable, eventually. In Section 3 we analyze the RD system posed
on a bounded open domain Ω of Rn and prove the Global Asymptotic Stability
(GAS) of the endemic state when it exists; the case without vertical transmission
was studied in [9]. In Section 4 we look for travelling wave solutions connecting the
endemic and Disease Free Equilibrium (DFE). Technical results are supplied in an
Appendix.

2. The underlying ODE model with logistic effect. Let us assume,

Assumption 1. Coefficients b, bI ,m, k, α and σ are nonnegative constants and
satisfy 0 ≤ bI ≤ b, 0 < m < b, 0 ≤ θ ≤ 1, k > 0 and σ > 0.

One wants to handle the ODE system,

S′ = −σSI + bS + θbII − (m+ kP )S,

I ′ = +σSI − αI + (1− θ)bII − (m+ kP )I,
(3)

with initial conditions, S(0) = S0 > 0, I(0) = I0 > 0. The existence and uniqueness
of a componentwise positive and globally bounded solution is granted.
Qualitative properties are summarized in the following three statements. Set,

T dd0 =
σK

b+ α− (1− θ)bI
, K =

b−m
k

.

Lemma 2.1. When T dd0 < 1 the DFE, (K, 0), is GAS with respect to initial data
(S0, I0) ∈ (0,+∞)2. It is unstable when T dd0 > 1.

Lemma 2.2. Assume either θ > 0 or θ = 0 and bI −m − α ≤ 0. When T dd0 > 1
there exists a unique endemic state, (S∗, I∗) with 0 < S∗, I∗ < P ∗ = S∗ + I∗ < K,
that is GAS with respect to initial data (S0, I0) ∈ (0,+∞)2.

Lemma 2.3. Assume θ = 0 and bI−m−α > 0. Set K∗∗ = bI−m−α
k ∈ (0,K). There

is a unique “boundary” endemic state (0, I∗∗), with I∗∗ = K∗∗. When T dd0 > 1 and
σK∗∗ < b + α − bI there exists a unique endemic state, (S∗, I∗) with 0 < S∗, I∗ <
P ∗ < K, that is GAS for initial data (S0, I0) ∈ (0,+∞)2. When T dd0 > 1 and
σK∗∗ > b+ α− bI (0, I∗∗) is GAS with respect to initial data (S0, I0) ∈ (0,+∞)2.

Proof. Existence and uniqueness proofs for admissible (S∗, I∗) and (0, I∗∗) are ob-
tained through a detailed graphical analysis, see the Appendix. GAS analysis are
similar to that for the RD model supplied below.
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Note that T dd0 < 1 yields σK∗∗ < σK < b + α − bI , while (0, I∗∗) is GAS for
boundary initial data (S0, I0) ∈ {0} × (0,+∞) as long as bI −m− α > 0.

3. The RD system with logistic effect in a bounded domain. Let us assume,

Assumption 3.1. Ω is a bounded open subset of Rn with a smooth (at least C2+γ

for some γ ∈ (0, 1)) boundary ∂Ω so that locally Ω lies on one side of ∂Ω; η is a
normal vector to Ω along ∂Ω.

Diffusivities, dS and dI , are positive.

We look at the RD model posed on a bounded domain Ω,

∂tS − dS 4 S = −σSI + bS + θbII − (m+ kP )S, x ∈ Ω, t > 0

∂tI − dI 4 I = +σSI − αI + (1− θ)bII − (m+ kP )I, x ∈ Ω, t > 0
(4)

wherein P = S + I, supplemented by no-flux boundary conditions along ∂Ω,

dS∇S(x, t) · η(x) = dI∇I(x, t) · η(x) = 0, x ∈ ∂Ω, t > 0, (5)

and a set of nonnegative and bounded initial conditions at t = 0,

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, x ∈ Ω. (6)

Lemma 3.2. Let Assumptions 1 and 2 be satisfied. Assume (S0, I0) are nonnega-
tive elements of Cγ(Ω) for some γ ∈ (0, 1). There exists a unique componentwise
nonnegative and globally bounded classical solution to (4)-(5)-(6) whose semi-orbits
{(S(·, t), I(·, t)), t > 0)} are relatively compact in [C0(Ω̄)]2.

Proof. This follows from a general methodology, cf. [9, 10, 11, 15, 19].

3.1. Stability analysis: disease persistence. Let us assume,

Assumption 3.3. Concerning the parameter set one shall assume one of the fol-
lowing three conditions holds: either θ > 0, or θ = 0 and bI −m− α ≤ 0, or θ = 0
and bI −m− α > 0 and σK∗∗ < b+ α− bI , see Lemma 2.3 for K∗∗.

Theorem 3.4. Let Assumptions 1, 2, and 3 be satisfied. When T dd0 > 1 the unique
endemic state, (S∗, I∗) with 0 < S∗, I∗, P ∗ = S∗ + I∗ < K, of the ODE system (3)
is GAS for (4)-(5)-(6) with respect to initial conditions (S0, I0) that are nonnegative
elements of Cγ(Ω), I0 6= 0 and S0 6= 0, for some γ ∈ (0, 1).

Proof. From the minimum principle applied to the parabolic equation for I in (4),
I0 nonnegative and I0 6= 0 it follows I(x, t) > 0 for x ∈ Ω and t > 0. When S0 6= 0
from the parabolic equation for S in (4) one also gets S(x, t) > 0, x ∈ Ω and t > 0.
For any positive elements u and v in C0(Ω̄) and positive numbers νS and νI set,

L(u, v) = νS

∫
Ω

(
u(x)−S∗−S∗ ln

u(x)

S∗

)
dx+νI

∫
Ω

(
v(x)−I∗−I∗ ln

v(x)

I∗

)
dx, (7)
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(S∗, I∗) being the componentwise positive endemic state of the ODE system (3),
see [12]. Rather straightforward calculations yield,

d

dt
L(S(·, t), I(·, t)) =− νSdS

∫
Ω

|∇S|2

S2
(x, t)dx− νIdI

∫
Ω

|∇I|2

I2
(x, t)dx

− νSθbI
∫

Ω

I(x, t)
(S(x, t)− S∗)2

S∗S(x, t)
dx

− νSk
∫

Ω

(S(x, t)− S∗)2dx− νIk
∫

Ω

(I(x, t)− I∗)2dx

+$

∫
Ω

(S(x, t)− S∗)(I(x, t)− I∗)dx,

(8)

wherein,

$ = −νS
σS∗ + kS∗ − θbI

S∗
+ νI(σ − k). (9)

Using the ODE for S in (3) at equilibrium one has,

σS∗ + kS∗ − θbI = (b− [m+ kS∗])
S∗

I∗
> 0 because 0 < S∗ < K.

As a first consequence, when σ > k there exists a couple of positive parameters
(νS , νI) so that $ = 0 that implies d

dtL(S(·, t), I(·, t)) ≤ 0.

The quadratic form on [C0(Ω̄)]2 featuring in the last two lines of (8) is nonneg-
ative provided a matrix M(νS , νI) be positive, with,

M(νS , νI) =

(
2νSk −$
−$ 2νIk

)
.

We follow a methodology from [4, 5] and split M(νS , νI) = WA+A>W , wherein,

W =

(
2νS 0
0 2νI

)
, A =

(
k k − σ

k + σ − θbI
S∗ k

)
.

When σ ≤ k matrix M(νS , νI) is positive for some set of positive parameters (νS , νI)
because matrix A has positive diagonal elements and a positive determinant,

det(A) = σ2 + (k − σ)
θbI
S∗

> 0, cf. Lemma 5.1. (10)

As a consequence, when σ ≤ k there exists a couple of positive parameters
(νS , νI) so that d

dtL(S(·, t), I(·, t)) ≤ 0.
Hence given any positive σ and k there exists a couple of positive parameters

(νS , νI) so that L is a Lyapunov functional. From the LaSalle invariance principle,
cf. [13], L is constant on the largest invariant subset of the ω-limit set of (4)-(5)-(6)
in [C0(Ω̄)]2and this ω-limit set reduces to (S∗, I∗).

3.2. Stability analysis: disease extinction.

3.2.1. Case σ ≤ k. This is the simple case.

Theorem 3.5. Let Assumptions 1 and 2 be satisfied. Assume σ ≤ k. When
T dd0 < 1 the DFE, (K, 0), is GAS for (4)-(5)-(6) with respect to initial conditions
(S0, I0) that are nonnegative elements of Cγ(Ω), I0 6= 0 and S0 6= 0, for some
γ ∈ (0, 1).
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Proof. We build a Lyapunov functionnal similar to (7), cf. [12]. For any positive
elements u and v in C0(Ω̄) and any positive νS and νI set,

L(u, v) = νS

∫
Ω

(
u(x)−K −K ln

u(x)

K

)
dx+ νI

∫
Ω

v(x)dx.

Rather straightforward calculations yield,

d

dt
L(S(·, t), I(·, t)) =− νSdS

∫
Ω

|∇S|2

S2
(x, t)dx− νSθbI

∫
Ω

I(x, t)
(S(x, t)−K)2

KS(x, t)
dx

− νI
1− T dd0

b+ α− (1− θ)bI

∫
Ω

I(x, t)dx

− νSk
∫

Ω

(S(x, t)−K)2dx− νIk
∫

Ω

I2(x, t)dx

+$

∫
Ω

(S(x, t)−K) I(x, t)dx,

wherein,

$ = −νS
σK + kK − θbI

K
+ νI(σ − k). (11)

Proceeding as in the second part of the proof of Theorem 3.4 one gets that there
exists a couple of positive (νS , νI) so that d

dtL(S(·, t), I(·, t)) ≤ 0 provided,

σ2 + (k − σ)
θbI
K

> 0, compare to (10). (12)

This completes the proof of Theorem 3.5 because σ ≤ k.

3.2.2. Case σ > k. This is less simple than the previous one. When T dd0 < 1 the
DFE (K, 0) is linearly stable for (4)-(5)-(6) for any positive (σ, k).

Remark 1. When σ > k the functional used in the proof of Theorem 3.5 remains
a Lyapunov functional, yielding the DFE (K, 0) is GAS, as long as either σK +
kK − θbI = σK + b − m − θbI > 0 (see (11)) or inequality (12) still hold. This
requires additional constraints on (b, bI , θ,m, k, σ), not on α.

For identical diffusivities a new Lyapunov function is built for infectives, relying
on an a priori estimate for the total population not known for distinct diffusivities.

Theorem 3.6. Let Assumptions 1 and 2 be satisfied. Assume σ > k and identical
diffusivities, dS = dI = d > 0. When T dd0 < 1 the DFE, (K, 0), is GAS for (4)-
(5)-(6) with respect to initial conditions (S0, I0) that are nonnegative elements of
Cγ(Ω), I0 6= 0 and S0 6= 0, for some γ ∈ (0, 1).

Proof. Identical diffusivities yield the total population, P = S + I, is a solution to,

∂tP − d4 P =
(
b−m− kP

)
P −

(
α+ b− bI

)
I ≤

(
b−m− kP

)
P,

that together with (5)-(6) and a comparison result for parabolic equations give,

0 ≤ P (x, t) ≤ y(t), x ∈ Ω, t < 0,

y being a solution to the ODE y′ = (b−m− ky)y with y(0) = ‖P0‖∞,Ω. It follows,

∃ϕ ∈ L1(0,+∞), ϕ(t) ≥ 0, 0 ≤ P (t) ≤ K + ϕ(t), t ≥ 0.

It is unclear whether this estimate holds true for distinct diffusivities.
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As a consequence one gets, (σ − k)SI ≤ (σ − k) [K + ϕ(t)] I, and

∂tI − d4 I ≤ [σK − kK − (m+ α− (1− θ)bI)] I − kI2 + (σ − k)ϕ(t)I,

≤ − 1− T dd0

b+ α− (1− θ)bI
I − kI2 + (σ − k)ϕ(t)I.

because kK = b−m. Integrating over Ω one finds I ∈ Lp(Ω× (0,∞)), p = 1, 2.
Now, (S, I) being uniformly bounded over Ω × (0,∞) and I ∈ L1(Ω × (0,∞)) a
further integration of the equation for I in (4) supplies the existence of a I∗ ≥ 0 so
that

∫
Ω
I(x, t)dx → I∗ as t → +∞. One may conclude I∗ = 0. Hence, the ω-limit

set in [C0(Ω̄)]2 of the nonnegative semi-orbits {(S(·, t), I(·, t)), t > 0)} is (K, 0).

3.3. Stability analysis: boundary equilibrium. We go back to the general case
of distinct diffusivities.

Theorem 3.7. Let Assumptions 1 and 2 be satisfied. Assume θ = 0 and bI−m−α >
0. When σK∗∗ > b+ α− bI the boundary equilibrium from Lemma 2.3, (0, I∗∗), is
GAS for (4)-(5)-(6) with respect to initial conditions (S0, I0) that are nonnegative
elements of Cγ(Ω), I0 6= 0 and S0 6= 0, for some γ ∈ (0, 1).

Proof. We build a further Lyapunov functionnal similar to (7). For any positive
elements u and v in C0(Ω̄) and any positive νS and νI set,

L(u, v) = νS

∫
Ω

u(x)dx+ νI

∫
Ω

(
v(x)− I∗∗ − I∗∗ ln

v(x)

I∗∗

)
dx.

The proof follows the lines of the proofs from Theorem 3.4 and Theorem 3.5 with
the simplification θ = 0.

4. Travelling waves solutions to the RD system. Let us assume,

Assumption 4.1. . We assume θbI > 0 and T dd0 > 1.

In this section we come back to (1) posed on the whole space Rn. The dy-
namical properties of such reaction-diffusion system posed on unbounded domains
generally leads to more complicated dynamics than model posed on some bounded
domain. Indeed, since the pioneering works of Fisher [8] and Kolmogov, Petrovskii
and Piskunov in [14], it is well known that reaction-diffusion problems posed on the
whole space may admit some special complete (in time) solution, the so-called trav-
elling wave solutions. In the context of epidemic models, such particular solutions
show the ability of reaction-diffusion problems to propagate the infection. We shall
deal with (1) together with logistic growth as well as Assumption 1.

Note that, in view of Lemma 2.2, Assumption 3 ensures the existence of a unique
endemic steady state (S∗, I∗) ∈ (0,∞)2 with S∗+I∗ < K of the ordinary differential
equations (3). We now consider the reaction-diffusion system

∂S

∂t
− dS∆S = −σSI + bS + θbII − (m+ kP )S, t > 0, x ∈ Rn

∂I

∂t
− dI∆I = σSI − αI + (1− θ)bII − (m+ kP )I, t > 0, x ∈ Rn

(13)

In order to give some hints about the dynamics of this problem, we shall look for
one-dimensional travelling wave solutions, that are particular solutions of system
(13) of the form

S(t, x) = u(e.x− ct), I(t, x) = v(e.x− ct),
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where the unit vector e belongs to Rn. According to Assumption 3, we shall sup-
plement this travelling wave problem together with the following conditions

u(z) > 0, v(z) > 0 ∀z ∈ R

lim
z→−∞

(
u(z)
v(z)

)
=

(
S∗

I∗

)
, lim
z→∞

(
u(z)
v(z)

)
=

(
K
0

)
.

(14)

Now this travelling wave problem re-writes in the moving frame coordinates as
the following problem

dSu
′′(z) + cu′(z) + F (u(z), v(z)) = 0, z ∈ R,

dIv
′′(z) + cv′(z) +G(u(z), v(z)) = 0,

(15)

wherein we have set F : R2 → R and G : R2 → R defined by

F (S, I) = bS + θbII − σSI − (m+ kS + kI)S

G(S, I) = (1− θ)bII + σSI − αI − (m+ kS + kI)I.
(16)

Recall that Problem (15) is supplemented together with (14). In this problem, the
parameter c > 0 denotes the wave speed. It is an unknown real parameter that
should be found together with the unknown functions u and v.

The main results of this section are the following:

Proposition 4.2. Let Assumptions 1 and 4 be satisfied. Let dS > 0 and dI > 0 be
given. If system (14)-(15) has solution (u, v) for some value c > 0 then

c ≥ c∗ := 2
√
dI
√

(1− θ)bI −m− α+ (σ − k)K. (17)

Note that the positivity of the quantity (1− θ)bI −m−α+ (σ− k)K is ensured
by Assumption 4, namely T dd0 > 1.

Theorem 4.3. Let Assumptions 1 and 4 be satisfied. Let dS > 0 and dI > 0 be
given. Then the following holds true

(i) If σ−k < 0 then for each c ≥ c∗ where c∗ is defined in (17), system (14)-(15)
has a solution (u, v) such that u is increasing and v is decreasing.

(ii) If σ− k ≥ 0 and dS = dI then for each c > c∗ system (14)-(15) has a positive
solution (u, v).

Remark 2. Proposition 4.2 provides a lower bound for the wave speed. On the
other hand, Theorem 4.3 shows that the value c∗ is actually the minimal wave speed
for Problem (13).

Let us now prove these two results.

Proof of Proposition 4.2. Let us consider a sequence of real number {xn}n≥0 such
that xn → ∞ when n → ∞ and consider the map vn(x) = v(x + xn). It satisfies
the equation

dIv
′′
n + cv′n + a(x+ xn)vn = 0, x ∈ R,

wherein we have set

a(x) = (1− θ)bI + σu(x)− α− (m+ ku(x) + kv(x)).

Due to Harnack inequality, for each r > 0 there exists some constant Mr > 0 such
that

v(x+ xn) ≤Mrv(xn), ∀x ∈ [−r, r], ∀n ≥ 0.
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As a consequence, we deduce that v(xn) 6= 0 for each n ≥ 0 and the map wn(x) =
v(x+xn)
v(xn) satisfies the equation

dIw
′′
n + cw′n + a(x+ xn)wn = 0

wn(0) = 1, 0 < wn(x) ≤Mr, ∀x ∈ [−r, r], ∀r > 0.

As a consequence, by considering eventually a subsequence, one may assume that the
sequence {wn} converges locally uniformly towards some function w that satisfies

dIw
′′ + cw′ + ((1− θ)bI + (σ − k)K − α−m)w = 0

w(x) ≥ 0, w(0) = 1.

As a consequence, there exists λ ∈ R such that

dIλ
2 + cλ+ ((1− θ)bI + (σ − k)K − α−m) = 0,

and the result follows.

It remains to Prove Theorem 4.3. The proof of this result is split into several
steps. We first prove (i). To do that we first need the following lemma

Lemma 4.4. Let Assumptions 1 and 4 be satisfied. Then we have

S∗ >
θbI
σ + k

.

Proof. Let us first show that S∗ 6= θbI
σ+k . To do so we shall argue by contradiction

by assuming that these two quantities equal. Recall that

bS∗ + θbII
∗ − σS∗I∗ − (m+ kP ∗)S∗ = 0

Then we obtain that

b
θbI
σ + k

+ θbII
∗ − σI∗ θbI

σ + k
− (m+ kP ∗)

θbI
σ + k

= 0

Since θbT > 0, this leads us to

b+ kI∗ − (m+ kP ∗) = 0

thus S∗ = K a contradiction.
The proof of Lemma 4.4 will follow a continuation argument with respect to the

parameter θ. To do so we explicitely write down the dependence of the different
quantities with respect to θ ∈ [0, 1]. Let us recall that

T dd0 (θ) =
σK

b+ α− (1− θ)bI
,

so that the map θ → T dd0 (θ) is decreasing. Let us assume that T dd0 (θ0) > 1 for
some θ0 ∈ (0, 1). Then we obtain T dd0 (θ) > 1 for all θ ∈ [0, θ0]. Next we consider a
continuous branch of endemic equilibria {(S∗(θ), I∗(θ)), θ ∈ [0, θ0]}, that I∗(θ) > 0
for all θ ∈ [0, θ0]. We introduce the map f(θ) = S∗(θ) − θbI

σ+k then this map is

continuous on [0, θ0]. Moreover it does not vanish on (0, θ0]. We now split split the
argument into two parts according to S∗(0) > 0 or S∗(0) = 0. If S∗(0) > 0 then
f(0) = S∗(0) > 0. As a consequence we obtain that S∗(θ) > θbI

σ+k for each θ ∈ [0, θ0]

and the result follows. If S∗(0) = 0 then it is easily checked that

S∗(θ) ∼ θbII
∗(0)

m− b+ (k + σ)I∗(0)
.
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Since S∗(θ) > 0 for all θ > 0 we obtain that

I∗(0)

m− b+ (k + σ)I∗(0)
> 0.

Thus we obtain that

lim
θ→0+

f(θ)

θbI
=

I∗(0)

m− b+ (k + σ)I∗(0)
− 1

σ + k
.

Now since m− b < 0 we obtain that this last quantity is nonnegative and the result
follows. This completes the proof of the result.

Proof of Theorem 4.3 (i). We re-write system (14)-(15) with the independent vari-
ables (u, J = I∗ − v) and we get

dSu
′′ + cu′ + F1(u, J) = 0,

dIJ
′′ + cJ ′ + F2(u, J) = 0,

lim
x→−∞

(u, J)(x) = (S∗, 0), lim
x→∞

(u, I)(x) = (K, I∗).

Here we have set

F1(u, J) = bu+ θbI(I
∗ − J)− (m+ ku+ kI∗ − kJ)u− σu(I∗ − J)

F2(u, J) =−(1−θ)bI(I∗−J)−σu(I∗−J)+α(I∗−J)+(m+ku+kI∗−kJ)(I∗−J).

Next due to Lemma 4.4, one has

(σ + k)u− θbI > 0, ∀u ≥ S∗.
Then one has

∂F1(u, J)

∂J
= (σ + k)u− θbI > 0 ∀(u, J) ∈ (S∗,K)× (0, I∗)

∂F2(u, J)

∂u
= (k − σ)(I∗ − J) > 0.

Thus this case enters the monotone framework that has been extensively studied
in the litterature and we get the existence of monotone travelling wave (see for
instance the monograph of Volpert et al. [21] and the references cited therein).
This completes the proof of the result.

We shall now prove Theorem 4.3 (ii). Let us first notice that since dS = dI , up
to change z by

√
dSz, without loss of generality, we shall assume that dS = dI = 1.

Therefore, in the sequel, we shall consider the following system

u′′(z) + cu′(z) + F (u(z), v(z)) = 0, z ∈ R,
v′′(z) + cv′(z) +G(u(z), v(z)) = 0,

(u, v)(−∞) = (S∗, I∗), (u, v)(∞) = (K, 0).

(18)

We first deals with some preliminary lemmas

Lemma 4.5. Let c > c∗ be given and fixed. Let λ > 0 be defined by

λ =
c−
√
c2 − c∗2
2

.

Then the following properties hold true

(i) The map u(x) = e−λx satisfies the equation

u′′ + cu′ + ((1− θ)bI −m− α+Kσ − kK)u = 0.



106 ARNAUD DUCROT, MICHEL LANGLAIS AND PIERRE MAGAL

(ii) Let γ > 0 be defined by

(b− bI + α) = γ
c∗2

4
.

Then the map v(x) = K − γe−λx satisfies

(b− bI + α) e−λx ≤ v′′ + cv′.

(iii) There exists ε ∈ (0, λ) such that

(λ+ ε)2 − c(λ+ ε) + (1− θ)bI − α−m+ σK > 0

(λ+ ε)2 − c(λ+ ε) +
c∗2

4
< 0.

For such a value of ε > 0 there exists κ > 0 sufficiently large such that the
map w(x) = e−λx − κe−(λ+ε)x satisfies the differential inequality

w′′ + cw′ + ((1− θ)bI − α−m+ σK)w ≤ k
(
K − γe−λx

)+
w.

Proof. The proof of (i) is obvious.
The proof of (ii). The differential inequality is equivalent to

(b− bI + α) ≤ γ(cλ− λ2).

Due to the definition of λ we obtain that

(b− bI + α) ≤ γ c
∗2

4
.

Proof of (iii). Let us notice that λ is the smallest root of the equation

λ2 + cλ+
c∗2

4
= 0.

Therefore for each x ∈ (λ, λ+), where λ+ is defined by

λ+ =
c+
√
c2 − c∗2
2

,

we have x2 + cx+ c∗2

4 < 0. Thus for each ε ∈ (0, λ+ − λ) we obtain that

(λ+ ε)2 − c(λ+ ε) +
c∗2

4
< 0.

Finally let us notice that

λ2 − cλ+ (1− θ)bI − α−m+ σK

= −(1− θ)bI +m+ α− (σ − k)K + (1− θ)bI − α−m+ σK = kK > 0.

Thus when ε > 0 is small enough we get that

(λ+ ε)2 − c(λ+ ε) + (1− θ)bI − α−m+ σK > 0.

Next let us set µ = (1− θ)bI −α−m+σK. Then the differential inequality in (iii)
may be re-written for any x ∈ R(

λ2 − cλ+ µ
)
− κe−εx

(
(λ+ ε)2 − c(λ+ ε) + µ

)
≤ k

(
K − γe−λx

)+ (
1− κe−εx

)
.

Due to the definition of λ we obtain

kK − κe−εx
(
(λ+ ε)2 − c(λ+ ε) + µ

)
≤ k

(
K − γe−λx

)+ (
1− κe−εx

)
, x ∈ R.

(19)
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We split this inequality into two parts, x ≤ x0 and x ≥ x0 where x0 is the solution
of

K − γe−λx0 = 0.

We set Φ(ε) = (λ+ ε)2 − c(λ+ ε) + µ and (19) re-writes as{
kK ≤ κe−εxΦ(ε), ∀x ≤ x0

−κΦ(ε) ≤ −kKκ− kγe(ε−λ)x + kγκe−λx, ∀x ≥ x0.

This re-writes as{
kK ≤ κe−εx0Φ(ε)

−κ (Φ(ε)− kK) ≤ kγ
(
κe−λx − e(ε−λ)x

)
, x ≥ x0.

Due to the definition of ε we have Φ(ε) > 0 while Φ(ε) − kK < 0. Since the

map x→ kγe−λx

kK−Φ(ε)+kγe(η−λ)x
is continuous and bounded on the interval [x0,∞) it is

sufficient to choose κ > 0 large enough such that
κ ≥ kK

Φ(ε)
eεx0

κ ≥ supx∈[x0,∞)

kγe−λx

kK − Φ(ε) + kγe(ε−λ)x
.

This completets the proof of the lemma.

Our second preliminary result is the following

Lemma 4.6. Let c > c∗ be given and fixed. Let a > 0, η1 > 0, η2 > 0 be given
such that

η2 ≤ η1

I∗ ≤ u(−a), η2 ≤ u(−a)

I∗ ≥ w(−a), η2 ≥ w(a)

P ∗ ≥ v(−a), K − η1 + η2 ≥ v(a).

Then there exists a solution (u, v) of the elliptic boundary value problem:

u′′ + cu′ + F (u, v) = 0, x ∈ (−a, a)

v′′ + cv′ +G(u, v) = 0, x ∈ (−a, a)

(u, v)(−a) = (S∗, I∗), (u, v)(a) = (K − η1, η2).

Moreover (u, v) satisfies

u ≥ 0, v ≥ 0, max(0, w) ≤ v ≤ u, max(0, v) ≤ u+ v ≤ K.

Proof. Let λ0 > b be given and fixed such that for all (S0, I0, P0) ∈ [0,K]3

λ0 − (−b+ σI0 +m+ kP0) > 0

λ0 + (1− θ)bI + σS0 − (m+ kP0)− α > 0

λ0 + b−m− 2kK ≥ 0.

Next let us consider the Banach space E = C([−a, a]) × C([−a, a)), the closed
convex set

C = {(P, S) ∈ E : S ≥ 0, max(0, v) ≤ P ≤ K,max(0, w) ≤ P − S ≤ u(x)},
as well as the map Φ : C → E defined by

Φ(S0, P0) = (S, P ),
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where (S, P ) is the solution of the linear boundary value problem

− S′′ − cS′ + λ0S = λ0S0 + F (S0, P0 − S0)

− P ′′ − cP ′ + λ0P = (λ0 + b−m− kP0)P0 − (α+ b− bI)(P0 − S0)

S(−a) = S∗, S(a) = K − η1

P (−a) = P ∗ := S∗ + I∗, P (a) = K − η1 + η2.

(20)

We claim that

Claim 4.7. Φ(C) ⊂ C.

Before proving this claim, we complete the proof of the lemma by applying
Schauder fixed point theorem. Indeed, due to elliptic regularity, the map Φ is
completely continuous. It remains to complete the proof of Claim 4.7. Let (P0, I0) ∈
C be given and (P, S) = Φ(P0, S0). Set also I = P − S, that satisfies the equation

− I ′′ − cI ′ + λ0I = (λ0 + (1− θ)bI + σS0 − (m+ kP0)− α) I0

I(−a) = I∗, I(a) = η2.

Next due to the maximum principle we have S ≥ 0, I ≥ 0.
If P has a maximum in x0 ∈ (−a, a) then P ′′(x0) ≤ 0 and P ′(x0) = 0. Thus

λP (x0) ≤ (λ+ b−m− kP0(x0))P0(x0) ≤ λK

because the map s→ (λ+ b−m−ks)s is increasing on [0,K]. As a consequence we
get P (x) ≤ max(K,P (a)) ≤ K. Next, let us show that I ≤ u. Because σ − k ≥ 0,
one has

−I ′′ − cI ′ + λ0I = (λ0 + (1− θ)bI + (σ − k)S0 −m− α− kI0) I0

≤ (λ0 + (1− θ)bI + (σ − k)K −m− α)u

≤ −u′′ − cu′ + λ0u

Since I(−a) = I∗ ≤ u(−a) and I(a) = η2 ≤ u(−a) we obtain that I(x) ≤ u(x) for
each x ∈ [−a, a].

Next let us show that P ≥ v. Indeed we have

−P ′′ − cP ′ + λ0P = (λ0 + b−m− kP0)P0 − (α+ b− bI)I0
≥ λ0P0 − (α+ b− bI)u
≥ λ0v − (α+ b− bI)u
≥ −v′′ − cv′ + λ0v.

Since P (−a) = P ∗ ≥ v(−a) and P (a) = K − η1 + η2 ≥ v(a) we obtain that
P (x) ≥ v(x) for all x ∈ [−a, a].

It remains to show that I ≥ w. To do so let us notice that

−I ′′ − cI ′ + λ0I = (λ0 + (1− θ)bI + σS0 −m− α− kP0) I0

≤ (λ0 + (1− θ)bI + σK −m− α)w − kwmax(0, v)

− w′′ − cw′ + λ0w.

Since I(−a) = I∗ ≥ w(−a) and I(a) = η2 ≥ w(a) we obtain that I(x) ≥ w(x) for
all x ∈ [−a, a]. This completes the proof of Claim 4.7.

We now prove Theorem 4.3 (ii).
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Proof of Theorem 4.3 (ii). Let c > c∗ be given. Let {an}n≥0 be a sequence of
positive numbers tending to infinity. Then there exists n0 ≥ 0 such that for each
n ≥ n0

I∗ ≤ u(−an), I∗ ≥ w(−an),

P ∗ ≥ v(−an), K ≥ v(an).

Then according to Lemma 4.6 for each n ≥ n0 we choose η1 = η2 = w(an) > 0 and
we obtain a solution (un, vn) of the problem

u′′n + cu′n + F (un, vn) = 0, x ∈ (−an, an)

v′′n + cv′n +G(un, vn) = 0, x ∈ (−an, an),

(un, vn)(−an) = (S∗, I∗), (un, vn)(an) = (K − w(an), w(an)).

and such that for each x ∈ [−an, an]

un(x) ≥ 0, max(0, w(x)) ≤ vn(x) ≤ u(x), max(0, v(x)) ≤ un(x) + vn(x) ≤ K.
Next due to elliptic regularity, up to a subsequence, one may assume that the
sequences {un} and {vn} converge locally uniformly towards some functions (u, v)
solution of the problem

u′′ + cu′ + F (u, v) = 0, x ∈ R
v′′ + cv′ +G(u, v) = 0, x ∈ R,

(21)

and such that for each x ∈ R

u(x) ≥ 0, max(0, w(x)) ≤ v(x) ≤ u(x), max(0, v(x)) ≤ u(x) + v(x) ≤ K.
Due to this bound, we know that (u, v) does not indentically equal to (K, 0) and
that

lim
x→∞

(u(x), v(x)) = (K, 0).

It remains to show that the expected behaviour at x = −∞ holds. To do so, let us
re-write (21) under the following form:(

u
v

)′′
+ c

(
u
v

)′
+

(
c11(x) θbI
c21(x) c22(x)

)(
u
v

)
= 0, x ∈ R, (22)

wherein we have set

c11(x) = b− σv(x)− (m+ ku(x) + kv(x))

c22(x) = (1− θ)bI − α− (m+ ku(x) + kv(x))

c21(x) = σv(x).

Let us first notice that since v is positive and not indentically zero, Harnack inequal-
ity for the equation for v implies that v(x) > 0 for all x ∈ R. Thus c21(x) > 0 for
all x ∈ R. Since these maps are bounded and since θbI > 0 one can apply Harnack
inequality for system (22) (see [6, 2]) to get that there exists some constant M > 0
such that for any x ∈ R

max

(
max

(x−1,x+1)
u, max

(x−1,x+1)
v

)
≤M min

(
min

(x−1,x+1)
u, min

(x−1,x+1)
v

)
.

As a consequence, we deduce that u > 0 and that there exists some constant M̂ > 0
such that ∣∣∣∣u′(x)

u(x)

∣∣∣∣+

∣∣∣∣v′(x)

v(x)

∣∣∣∣ ≤ M̂, ∀x ∈ R. (23)
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We complete the proof of the result by introducing the map

V(x) = cV1(x) + V2(x).

where we have set

V1(x) = νSg

(
u(x)

S∗

)
+ νIg

(
v(x)

I∗

)
V2(x) = νSg

′
(
u(x)

S∗

)
u′(x)

S∗
+ νIg

′
(
v(x)

I∗

)
v′(x)

I∗
,

and wherein

g(s) = s− 1− ln s.

Here we choose νS > 0 and νI > 0 such that

−νS(m+ α+ θbI) + I∗νIσ = 0.

With such a choice we obtain that

dV(x)

dx
= νSg

′
(
u(x)

S∗

)
u′′(x) + cu′(x)

S∗
+ νSg

′′
(
u(x)

S∗

)(
u′(x)

S∗

)2

+ νIg
′
(
v(x)

I∗

)
v′′(x) + cv′(x)

I∗
+ νIg

′′
(
v(x)

I∗

)(
v′(x)

I∗

)2

= νS

(
S∗

u(x)
−1

)
F (u, v)+νI

(
I∗

v(x)
−1

)
G(u, v)+νS

(
u′(x)

u(x)

)2

+νI

(
v′(x)

v(x)

)2

.

On the other hand, one has

νS

(
S∗

u(x)
− 1

)
F (u, v) + νI

(
I∗

v(x)
− 1

)
G(u, v)

= νSθbIv(x)
(u(x)− S∗)2

u(x)
+ ω(v(x)− I∗)(u(x)− S∗),

where

ω = νS(θbI − σS∗) + I∗νIσ.

Due to the choice of νS and νI , one has ω = 0 and therefore

dV(x)

dx
= νSθbIv(x)

(u(x)− S∗)2

u(x)
+ νS

(
u′(x)

u(x)

)2

+ νI

(
v′(x)

v(x)

)2

.

As a consequence, the map x → V (x) is increasing. Let us also notice that due to
(23), the map x→ V2(x) is bounded. This yields,

0 < V1(x) ≤ V(0) + sup
s∈R
V2(s), ∀x ≤ 0.

Therefore we get

lim inf
x→−∞

u(x) > 0, lim inf
x→−∞

v(x) > 0. (24)

Let us now consider a nonincreasing sequence of real numbers {xn}n≥0 such that
xn → −∞ when n → ∞ and consider the sequences {un(x) = u(x + xn)}n≥0 and
{vn(x) = v(x + xn)}n≥0. Next, due to elliptic regularity, up to a subsequence,
one may assume that un and vn converges towards some nonnegative functions u∞
and v∞, solution of (18). Next due to (24) we know that u∞ and v∞ are positive
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functions and due to the monotonicity of the map x→ V(x), these maps satisfy for
any x ∈ R

νSθbIv∞(x)
(u∞(x)− S∗)2

u∞(x)
+ νS

(
u′∞(x)

u∞(x)

)2

+ νI

(
v′∞(x)

v∞(x)

)2

= 0.

We deduce that u∞(x) ≡ S∗, u′∞(x) ≡ 0 and v′∞(x) ≡ 0. Due to (24), v∞ is a
positive constant. Since u∞ ≡ S∗ and v∞ are also solution of system (18), we
conclude that u∞ ≡ S∗ and v∞ ≡ I∗. Finally, since the sequence {xn} is arbitrary,
this leads us to

lim
x→−∞

(u(x), v(x)) = (S∗, I∗).

This completes the proof of the Theorem 4.3 (ii).

5. Appendix.

5.1. Endemic states for (3). Using (P, I) as state variables system (3) reads,

P ′ =
(
b−m− kP

)
P −

(
α+ b− bI

)
I,

I ′ = (σ − k)PI −
(
σI +m+ α− (1− θ)bI

)
I.

Looking for admissible stationary states, 0 < S∗, I∗ < P ∗ = S∗ + I∗ < K, one
finds I∗ = ϕ(P ∗) = ψ(P ∗) wherein,

ϕ(p) =
(b−m− kp)p
α+ b− bI

, ψ(p) =
(σ − k)p−

(
m+ α− (1− θ)bI

)
σ

, p ≥ 0.

Note that ϕ(p) is a concave and positive function in the range 0 < p < K vanishing
at p = 0 and p = K, while ψ is affine with,

ψ(0) =
(1− θ)bI −m− α

σ
, ψ(K) = (T dd0 − 1)

b+ α− (1− θ)bI
σ

.

5.1.1. The weak vertical transmission case, (1− θ)bI −m−α ≤ 0. Thus, ψ(0) ≤ 0.
When T dd0 < 1 then ψ remains nonpositive in the range 0 < p < K and there is no
admissible stationary solutions.

When T dd0 > 1 then ψ is increasing in the range 0 < p < K with a slope
0 < σ−k

σ < 1; it follows there is a unique admissible stationary solution (0 <
S∗, I∗ < P ∗ < K).

5.1.2. The strong vertical transmission case, (1− θ)bI −m−α > 0. Thus ψ(0) > 0.
Function ϕ crosses the first bissectrix χ(p) = p at p = pϕ while function ψ crosses
the first bissectrix at p = K∗∗ with 0 < pψ ≤ K∗∗ < K, wherein,

pψ =
(1− θ)bI −m− α

k
; K∗∗ =

bI −m− α
k

(see Lemma 2.3).

Case θ > 0. This implies 0 < pψ < K∗∗ < K.
When T dd0 > 1 a concavity argument yields two solutions P ∗ ∈ (0,K) to ϕ(P ∗) =

ψ(P ∗). First one has ψ(0) > ϕ(0) = 0 and ϕ(pψ) > pψ = ψ(pψ) supplying a
non admissible solution P ∗1 ∈ (0, pψ) because I∗1 = ϕ(P ∗1 ) = ψ(P ∗1 ) > P ∗1 . Next
K∗∗ = ϕ(K∗∗) > ψ(pϕ) and ψ(K) > ϕ(K) = 0 supply an admissible solution
P ∗2 ∈ (K∗∗,K) because I∗2 = ϕ(P ∗2 ) = ψ(P ∗2 ) < P ∗2 .

Likewise when T dd0 < 1 a concavity argument yields a unique but non admissible
solution P ∗1 ∈ (0,K) to ϕ(P ∗) = ψ(P ∗) with P ∗1 ∈ (0, pψ) and I∗1 > P ∗1 .

Case θ = 0. This implies 0 < pψ = K∗∗ < K.
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(0,K∗∗) is a boundary equilibrium, see Lemma 2.3. One has,

ϕ(p)− ψ(p) =
k

σ
(p−K∗∗)

(
1− σp

α+ b− bI

)
.

When T dd0 < 1 equation ϕ(p) = ψ(p) has a unique root in (0,K), P ∗ = K∗∗.
When T dd0 > 1 equation ϕ(p) = ψ(p) has two roots in (0,K), P ∗∗ = K∗∗ and

P ∗ = α+b−bI
σ ; one may check that P ∗ is admissible, that is 0 < I∗ = ϕ(P ∗) =

ψ(P ∗) < P ∗, if and only if σK∗∗ < α+ b− bI .

5.2. An auxiliary lemma for subsection 3.1.

Lemma 5.1. Let W =

(
w1 0
0 w2

)
, A =

(
a11 a12

a21 a22

)
, for some w1 > 0,

w2 > 0, a11 > 0, a22 > 0 and assume det(A) > 0. Set M(w1, w2) = WA+A>W .
Then there exists a set of positive parameters (w1, w2) such that M(w1, w2) is

symmetric positive definite.

Proof. M(w1, w2) is symmetric. Its characteristic polynomial reads,

det
(
λId −M(w1, w2)

)
= λ2 − 2(a11w1 + a22w2)λ+ det(M(w1, w2)).

Suppose a12 6= 0 and set w1 = ρw2 for some positive ρ. One finds,

1

w2
1

det(M(w1, w2)) = 4a11a22ρ− (a12ρ+ a21)2 = Φ(ρ).

Then Φ is a concave and quadratic function, achieving its maximal value at ρ∗ > 0,
with a2

12 ρ
∗ = a11a22+det(A). Elementary algebraic manipulations yield Φ(ρ∗) > 0,

a2
12 Φ(ρ∗) = 4a11a22 det(A).

As a consequence, for ρ close to ρ∗ > 0 the determinant of M(w1, w2) is positive.
Because its trace is also positive, we may conclude that the real roots M(w1, w2)
are positive.

REFERENCES

[1] R. M. Anderson and R. M. May, “Infectious Diseases of Humans: Dynamics and Control,”

Oxford Univ. Press, Oxford, U.K., 1991.
[2] A. Arapostathis, M. K. Ghosh and S. I. Marcus, Harnack’s inequality for cooperative weakly

coupled elliptic systems, Comm. Part. Diff. Eq., 24 (1999), 1555–1571.

[3] F. Brauer and C. Castillo-Chavez, “Mathematical Models in Population Biology and Epi-
demiology,” Springer, New York, 2000.

[4] S. Busenberg and K. C. Cooke, “Vertically Transmitted Diseases,” Biomathematics volume

23, Springer-Verlag, New York, 1993.
[5] V. Capasso, “Mathematical Structures of Epidemic Systems,” Lecture Notes in Biomathe-

matics volume 97, Springer-Verlag, Berlin, 1993.

[6] Z. Q. Chen and Z. Zhao, Harnack principle for weakly coupled elliptic system, J. Diff. Eq.,
139 (1997), 261–282.

[7] O. Diekmann and J. A. P. Heesterbeek, “Mathematical Epidemiology of Infectious Diseases:

Model Building, Analysis and Interpretation,” Wiley, Chichester, U.K., 2000.
[8] R. A. Fisher, The wave of advance of advantageous genes, Ann. of Eugenics, 7 (1937), 355–

369.

[9] W. E. Fitzgibbon and M. Langlais, A diffusive S.I.S. model describing the propagation of
F.I.V., Communications of Applied Analysis, 7 (2003), 387–4038.

[10] W. E. Fitzgibbon and M. Langlais, Simple models for the transmission of microparasites

between host populations living on non coincident spatial domains, p. 115–164, Lecture Notes
in Mathematics (Mathematical Biosciences Subseries) volume 1936, P. Magal and S. Ruan

eds, Springer-Verlag, New York, 2008.

http://www.ams.org/mathscinet-getitem?mr=MR1708101&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1822695&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1206227&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1224446&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1472349&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1882991&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1986246&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2433576&return=pdf


QUALITATIVE ANALYSIS FOR SI MODEL 113

[11] W. E. Fitzgibbon, M. Langlais and J. J. Morgan, A mathematical model of the spread of
Feline Leukemia Virus (FeLV) through a highly heterogeneous spatial domain, SIAM J. Math.

Analysis, 33 (2001), p. 570–588.

[12] B. S. Goh, Global stability in a class of predator-prey models, Bull. Math. Biol., 40 (1978),
p. 525–533.

[13] J. Hale, “Asymptotic Behavior of Dissipation Systems,” American Mathematical Society,
Providence, Rhode Island, 1988.

[14] A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l’équation de la diffusion
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