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1 Introduction

The objective of this paper is to analyze a population dynamics model of a proliferating cell culture in
in vitro settings with respect to spatial movement, cell-cell interaction, cell cycle phase, and proliferative
status of individual cells in the culture. Specifically, we consider a monolayer of cells occupying a two-
dimensional geometry, proliferating over a time course from an initial seeding to confluence. We are
particularly focused on the formation of cell colonies, or clusters of a small number of cells, that arise
as a consequence of contact inhibition. We incorporate cell heterogeneity in the population by tracking
the size of individual cells, which is correlated to the cell cycle. We incorporate proliferative status by
tracking transition to and from quiescence of individual cells in the population.

Non-senescent replicative cells can be found in two fundamental conditions, a growing state when
they progress within the cell cycle to undergo a cell division, and a quiescent state when they undertake
specialized functions during periods separating consecutive mitosis. Transitions between growing and
quiescent states are under complex control by cell extrinsic and intrinsic signals, and among these signals,
contacts with surrounding boundaries play a central role. For decades, establishment of cell-to-cell
interactions has been known to constitute a strong anti-growth signal, called Contact Inhibition of Growth
(CIG) [21, 34]. This phenomenon is of first importance for organ size control during development and
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tissue regeneration after injury. Loss of this function is also recognized as a key step towards uncontrolled
cell proliferation in cancer [29].

Intracellular transductions pathways coupling neighbour cell sensing to cell cycle arrest have only
recently emerged [55]. It becomes therefore apparent that CIG is distinct from contact inhibition of lo-
comotion, a process by which a motile cell changes its direction of migration upon collision with another
cell [35]. CIG can be affected by the cell environment, as shown in the hormone-sensitive MCF-7 human
breast cancer cell line. In this cell model, nodules of postconfluent cellular overgrowth occur under es-
trogen stimulation [26]. By contrast, when grown in a culture medium deprived of estrogenic-activity,
MCF-7 form a regular monolayer containing only quiescent cells at confluence. MCF-7 can therefore be
viewed as tumoural contact-sensitive cell lines that proliferates under constraint of CIG-induced quies-
cence in culture. This behavior has been recently proposed to have severe consequences on interactions
between cells and on spatial organization of the monolayer population [39].

Figure 1: Confocal imaging of cell-to-cell interactions in the human breast cancer cell line, MCF-7.
MCF-7 were cytosol-tagged with the persistent probe CellTracker Green (green fluorescence, ctgMCF-7)
or membrane-tagged with a phycoerythrin-conjugate antibody directed against a specific surface protein
(red fluorescence, peMCF-7). A mixture of 50:50 of ctgMCF-7 and peMCF-7 was co-cultured over 6
days. Images were obtained by confocal laser scanning microscopy. Photos were taken at day 2 (D2)
(scale=45.15µm), day 4 (D4) (scale=75.0µm), and day 6 (D6) (scale=80.0µm). Note that cells become
organized into well-delimited islets over the 6-day time course.

In [39], MCF-7 cells acquired resistance to chemotherapeutic treatments by direct transfer of a protein
called P-glycoprotein (P-gp) from resistant to sensitive cells in vitro. Figure 1 shows the complexity of the
spatial distribution of these cells in co-culture. The red cells correspond to resistant cells, and the green
cells correspond to sensitive cells. From these experiments, it clear that cell movement is not a linear
diffusion process. Our future goal is to describe the acquired resistance of sensitive cells from resistant
cells by such cell-to-cell transfer, and other direct and indirect transfer processes. Recent experiments
[40] show that these transfer processes may occur at the frontiers of colonies (or islets). Therefore, in
order to model general cell transfer processes, we first develop in this paper models that provide a better
unstanding of colony formation.

We will derive the following model for the spatial density m(x, t) of cells in mono-lyayer culture by
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using a heuristic method to simplify the size structured - proliferative/quiescent state spatial model:

mt = κ divx (m∇xm) + b G

(∫

Ω

K(x, y)m(t, y)dy

)
m(t, x)− µ m(t, x)

with Neumann boundary conditions

−→ν (x).∇(m(t, x))2 = 0, for x ∈ ∂Ω, t > 0, Ω ⊂ R× R,

where κ > 0, b > 0, µ > 0, −→ν (x) is the outward pointing normal vector at x ∈ ∂Ω, G is a bounded
locally Lipschitz continuous scalar function, K ∈ L∞

+ (Ω× Ω) is a Boltzmann kernel, and where the initial
distribution is

m (0, .) = m0 ∈ L1
+ (Ω) .

As background references for our work here we mention that recent surveys of spatial models of
cancer cell population dynamics including [2, 5, 6, 7, 10, 11, 33, 42, 43]. Recent mathematical models
of contact inhibition include [1, 3, 4, 14, 18, 25, 38, 41, 45, 46, 48, 49, 50, 51]. Size structured cell
population models have been studied in [13, 16, 17, 36, 22, 30, 31], and size structured models with
quiescent compartments in [19, 27, 28, 44, 54]. Recent models of porous media equations related to our
work here include [9, 11, 23, 24, 37, 45, 47, 32, 53, 56].

The organization of this paper is as follows: In Section 2 we present a two compartment space and size
structured model consisting of proliferating and quiescent cell densities. An individual cell transitions
between these compartments by sensing the total cell-mass nearby. Cell motility is modeled by nonlinear
diffusion in each compartment. Individual cell growth is modeled by linear transport dependent on
cell size. In Section 3 we reduce the two compartment model to one compartment through a singular
pertubation of the two compartment model, under the assumption that the proliferation/quiescence
transition rates are relatively fast compared to the average cell cycle time. The resulting single equation
is of porous media type, but with a nonstandard nonlocal nonlinearity. In Sections 4 and 5 we provide
a mathematical analysis of the porous media equation of the reduced model, using the techniques of
nonlinear semigroup theory. In Section 6 we provide numerical simulations of the model applicable to in
vitro experiments involving the formation of cell islets. In Section 7 we give a summary and discussion
of our results.

2 The two compartment model

We define u(t, x, s), v(t, x, s) to be the density of proliferating (quiescent) cells at time t, spatial position
x, and cell size s, respectively. Cells are located in a spatial region Ω ⊂ R× R. Cell proliferation in the
proliferating compartment is modeled under the assumptions that cell mass is conserved during division
and each daughter cell inherits exactly half the size of the mother cell. We interpret Ω to be a micro-
subregion of the well, and impose Neumann boundary conditions on its boundary. We assume that there
is a finite range of division sizes (smin, smax), where smin > 0, and consequently, the minimum size of any
cell is smin/2. We assume that 2smin < smax(⇔ smin < 1

2smax). The equations of the model are
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ut = divx (u∇xp)︸ ︷︷ ︸
cell motility

− ∂s [g(s)u]︸ ︷︷ ︸
cell size growth

− βu (p(t, x), s)u︸ ︷︷ ︸
to quiescence

+ βv (p(t, x), s) v︸ ︷︷ ︸
from quiescence

+4b (2s)u(t, x, 2s)− (b(s) + µ(s))u(t, x, s)︸ ︷︷ ︸
birth and mortality

,

vt = divx (v∇xp)︸ ︷︷ ︸
cell motility

+ βu (p(t, x), s)u︸ ︷︷ ︸
from proliferation

− βv (p(t, x), s) v︸ ︷︷ ︸
to proliferation

− µ(s)v(t, x, s)︸ ︷︷ ︸
mortality

,

s ∈ (smin, smax) , x ∈ Ω, t > 0

(1)

with a non-flux boundary condition at the cell size-boundary s = 0,

u(t, x, s) = 0 for s = 0, t > 0, and x ∈ Ω,

and with Neumann boundary condition on ∂Ω,
{

u(t, x, s)−→ν (x) · ∇p(t, x, s) = 0,
v(t, x, s)−→ν (x) · ∇p(t, x, s) = 0,

for s ∈ (smin, smax) , x ∈ ∂Ω, t > 0,

where −→ν (x) is the outward pointing normal vector at x ∈ ∂Ω.
The size-dependent division function b satifies

b (s) =

{
0, if s ≥ smax and s ≤ 2smin

≥ 0, if 2smin ≤ s ≤ smax.

the size-dependent cell growth function g is a Lipschitz continuous function satisfying
{

g(s) > 0, if s ∈ [smin, smax) ,
g(s) = 0, if s = smax (whenever smax < +∞)

the density of cells at position x and time t is

m(t, x) =

∫ smax

smin

(u(t, x, s) + v(t, x, s)) ds,

the pressure on cell motility due to the density of cells at position x and time t is

p(t, x) = κm(t, x),

the pressure for contact inhibition of cells due to surrounding cells modulated by a nonlocal kernel function
K(x, y) is

p(t, x) =

∫

Ω

K(x, y)m(t, y)dy,

βu : [0,+∞)× [smin, smax] → [0,+∞) is a Lipschitz continuous nondecreasing function for transition from
proliferation to quiescence satisfying

βu(0, s) = 0,

and βv : [0,+∞)× [smin, smax] → [0,+∞) is a Lipschitz continuous nonincreasing function for transition
from quiescence to proliferation satisfying

{
βv(p, s) > 0, if p < p∗

βv(p, s) = 0, if p ≥ p∗.

We summarize the variables and parameters of the model in Table 1.
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Symbol Interpretation
x spatial position
s cell size
t time
g(s) growth rate of proliferating cells
b (s) division rate of proliferating cells
µ(s) mortality rate of proliferating and quiescent cells
βu (p, s) rate at which growing cells become quiescent cells
βv (p, s) rate at which quiescent cells become growing cells
u(t, x, s) spatial and size density of growing cells
v(t, x, s) spatial and size density of quiescent cells

m(t, x) =
∫ +∞

0
[u+ v] (t, x, s)ds spatial density of all cells

p(t, x) = κm(t, x) spatial density motility pressure∫ +∞

0
s [u+ v] (t, x, s)ds spatial density of total cell mass

p(t, x) =
∫
Ω
K(x− y)m(t, y)dy spatial density contact inhibition pressure

Table 1. List of parameters of the models

3 The one compartment porous media model

We now assume that the dynamics of transition to and from quiescence and proliferation are fast compared
to the other dynamics of the model. We can then rewrite the two compartment system equations (1) as
follows:





ut = divx (u∇xp)− ∂s [gu]− ε−1βu (p(t, x), s)u+ ε−1βv (p(t, x), s) v
+4b (2s)u(t, x, 2s)− (b(s) + µ(s))u(t, x, s)

vt = divx (v∇xp) + ε−1βu (p(t, x), s)u− ε−1βv (p(t, x), s) v − µ(s)v(t, x, s)
(2)

where 0 < ε << 1.

By taking a formal limit when ε ց 0 in the second equation of system (2), we obtain

βu (p(t, x), s)u− βv (p(t, x), s) v = 0 ⇔ u =
βv (p(t, x), s)

βu (p(t, x), s)
v,

and thus

u+ v =

(
1 +

βu (p(t, x), s)

βv (p(t, x), s)

)
u.

Therefore we formally obtain

u =
βv (p(t, x), s)

βu (p(t, x), s) + βv (p(t, x), s)
(u+ v) . (3)

Now set
n(t, x, s) := (u+ v) (t, x, s),
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and

G (p(t, x), s) :=
βv (p(t, x), s)

βu (p(t, x), s) + βv (p(t, x), s)
.

By using (3) we obtain
u(t, x, s) = G (p(t, x), s)n(t, x, s), (4)

and by summing the two equation of system (2) we obtain formally

nt = divx (n∇xp)− ∂s [gu] + 4b (2s)u(t, x, 2s)− bu− µn.

Thus, by using (4) we obtain

nt = divx (n∇xp)− ∂s [g(s)G (p(t, x), s)n(t, x, s)]
+4b (2s)G (p(t, x), 2s)n(t, x, 2s)− b(s)G (p(t, x), s)n(t, x, s)
−µ(s)n(t, x, s).

(5)

We observe that the function G : [0,+∞)× [smin,+∞) → [0,+∞)

G(p, s) =
βv (p, s)

βu (p, s) + βv (p, s)
∈ [0, 1] (6)

can be interpreted as the growth fraction of cells, that is, the ratio of proliferating to quiescent cells
in the culture. Thus, whenever the transfer rate from proliferation to non-proliferation is a relatively
fast process compared to the growth rate of cells, we can reduce the two compartment model to a one
compartment model.

In order to derive a porous media equation, we make the following simplifying assumptions:

Assumption 3.1 We assume that

smin = 0, and smax = +∞,

and we assume that
µ(s) = µ, b(s) = b,G (., s) = G(.)

are constant function of s ≥ 0.

Under the above assumption, we obtain

nt = divx (n∇xp)− ∂s [g(s)G (p(t, x))n(t, x, s)]
+4b G (p(t, x))n(t, x, 2s)− b G (p(t, x))n(t, x, s)
−µ n(t, x, s)

with the boundary condition
n(t, x, 0) = 0.

By integrating s → n(t, x, s) over (0,+∞) , we obtain

mt = κ divx (m∇xm) + b G

(∫

Ω

K(x, y)m(t, y)dy

)
m(t, x)− µ m(t, x)

with Neumann boundary conditions

−→ν (x).∇(m(t, x))2 = 0, for x ∈ ∂Ω and t > 0.
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4 Existence of global weak solutions

In this section,let Ω ⊂ R
N , a bounded and regular (at least C2) domain, and consider the following

problem:

pt −∆φ(p) = pF (p(t, x)) , t > 0, x ∈ Ω,
−→ν (x).∇φ(p) = 0 on ∂Ω,

p(0, .) = p0(.) ∈ L1
+(Ω) ≥ 0,

(7)

where we have set

φ(p) =
1

2
p2, and F (s) = G(s)− µ,

where µ > 0 is a given constant, and by using the same notation for K and K/κ we have

p(t, x) =

∫

Ω

K(x, y)p(t, y)dy

and
K ∈ L∞

+ (Ω× Ω).

We will assume that

Assumption 4.1 G : [0,∞) → [0,∞) is bounded and locally Lipschitz continuous.

In the sequel, for each T > 0 consider the cylinder QT ⊂ R× R
N defined by

QT = [0, T ]× Ω.

Moreover for each 0 < τ < T we set Q(τ, T ) to be the cylinder defined by Q(τ, T ) = (τ, T )× Ω.

Definition 4.2 (Weak solution) A measurable function p : [0,∞)×Ω → R
+ is a global weak solution

of (7) if for each T > 0

(i) p ∈ L1(QT ) and w = φ(p) ∈ L1
(
0, T ;W 1,1(Ω)

)
,

(ii) u satisfies for each η ∈ C1
(
QT

)
such that η(T, .) ≡ 0

∫

QT

(∇w.∇η − pηt) dtdx =

∫

Ω

p0(x)η(0, x)dx+

∫

QT

ηpF (p) dtdx.

Definition 4.3 (weak energy solution) A global weak solution p of (7) is said to be a weak energy
solution if w = φ(p) satisfies

∇w ∈ L2((0, T )× Ω), ∀T > 0.

Theorem 4.4 For each p0 ∈ L3
+(Ω) there exists a unique global weak energy solution p ≡ p (t, x; p0) of

(7) such that
p ∈ L∞

loc

(
[0,∞);L3(Ω)

)
, p ∈ C

(
[0,∞);L1(Ω)

)
.

Moreover for each M > 0 and each T > 0 there exists δ = δ(T,M) > 0 such that for each p0, p1 ∈ L3
+(Ω),

if ‖p0‖L1 ≤ M and ‖p1‖L1 ≤ M , then

‖p (t, .; p0)− p (t, .; p1) ‖L1 ≤ δ(T,M)‖p0 − p1‖L1 , ∀t ∈ [0, T ]. (8)
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Corollary 4.5 There exists a unique continuous semiflow {U(t)}t≥0 acting from L1
+(Ω) into itself such

that for each p0 ∈ L3
+(Ω) the map t → U(t)p0 is the unique energy solution of (7).

The proof of this result follows directly from (8) by using a simple classical extension argument. The
solutions constructed above correspond to limit solutions constructed by Vásquez in [52].

Proof of Theorem 4.4. Let {p0,n} ⊂ D+(Ω) be a sequence such that

p0,n → p0 in L3(Ω).

For each k > 0, consider the sequence {pk0,n := min{p0,n, k}}n≥0 ⊂ C(Ω), so that

pk0,n → pk0 := min{p0, k} in L1(Ω),

sup
n≥0, k>0

∫

Ω

(
pk0,n

)3
(x)dx < ∞

For each k > 0 and each n ≥ 0, we consider the regularized problem:

pt −∆φn(p) = pF (p(t, x)) , t > 0, x ∈ Ω,

∂φn(p)

∂ν
= 0 on ∂Ω,

p(0, .) = pk0,n(.) ≥ 0,

(9)

where we have set for each n ≥ 1: φn(s) = φ
(
s+ 1

n

)
.

From standard results for non-degenerate quasilinear parabolic equation, (9) has a globally defined
classical solution, denoted by pkn, for each n ≥ 0 and each k > 0. We aim to pass to the limit first as
n → ∞ and then as k → ∞ to obtain a global weak energy solution of (7).

Let us first fix the value of k > 0, and notice that integrating (9) over Ω leads to
∫

Ω

pkn(t, x)dx ≤

∫

Ω

pk0,n(x)dxe
Mt. (10)

where M > 0 is such that
F (s) ≤ M, ∀s ∈ R.

On the other hand, from a standard comparison principle, one has

pkn(t, x) ≤ sup
x∈Ω

pk0,n(x) e
Mt. (11)

We will now omit explicitly writing the dependence with respect to k, that is, pn ≡ pkn.
Next, multiplying (9) by φn(pn) and integrating over Ω leads to

d

dt

∫

Ω

Ψn(pn)dx+

∫

Ω

|∇φn(pn)|
2dx =

∫

Ω

φn(pn)pnF (pn(t, x))) dx,

where we have set

Ψn(s) =

∫ s

0

φn(l)dl.
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Note now that for each n ≥ 1 and each s ≥ 0 we have

sφn(s) ≤
1

2

(
s+

1

n

)3

≤
1

2

(
6Ψn(s) +

1

n

)
.

Therefore we obtain

d

dt

∫

Ω

Ψn(pn)dx+

∫

Ω

|∇φn(pn)|
2dx ≤ 3M

∫

Ω

(
Ψn(pn) +

1

6n

)
dx.

This implies from Gronwall’s inequality that for each t ≥ 0 and each n ≥ 0:

∫

Ω

Ψn(pn(t, x))dx+
1

6n
≤

∫

Ω

Ψn(p0,n(x))dxe
3Mt, (12)

and therefore that for each t ≥ 0 and each n ≥ 0.

∫ t

0

∫

Ω

|∇φn(pn(t, x))|
2dx ≤

∫

Ω

Ψn(p0,n(x))dx e3Mt. (13)

We will now obtain estimates of the time derivative. Consider a time cut-off function ζ ∈ D+(0,∞)
and the function wn = φn(pn). Multiplying (9) by ζ(t)wnt and integrating over Ω leads to

ζ(t)

∫

Ω

wntpnt +

∫

Ω

ζ(t)
d

dt
|∇wn|

2 = ζ(t)

∫

Ω

wntpnF (pn(t, x)) .

Integrating this last equality over (0,∞) leads to

∫ ∞

0

ζ(t)

∫

Ω

wntpnt −

∫ ∞

0

∫

Ω

ζ ′(t)|∇wn|
2 =

∫ ∞

0

∫

Ω

ζ(t)wntpnF (pn).

Recalling from (11) that for each T > 0 there exists some constant CT = CT (k) such that

pn(t, x) ≤ CT ∀t ∈ (0, T ], x ∈ Ω,

we have
wntpnt = φ′

n(pn)|pnt|
2, |wnt|

2 = |φ′
n(pn)pnt|

2.

Thus for each T > 0 there exists some constant MT such that

MT |wnt|
2 ≤ wntpnt t ∈ (0, T ].

Let τ ∈ (0, T ) are given and let ζ ∈ D+(0,∞) be given such that

ζ(t) =

{
1 if t ∈ (τ, T )

0 if t < τ/2 and t > 2T
.

Then we get

M2T

∫

Q

ζ(t)|wnt|
2dtdx ≤

∫

Q

ζ ′(t)|∇wn|
2 + C2TM

∫

Q

ζ(t)|wnt|.
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Recalling (13), there exists some constant M(τ, T ) > 0 such that for each n ≥ 1

∫

Q

ζ ′(t)|∇wn|
2dtdx ≤ M(τ, T ).

This leads us to
M2T

2

∫

Q

ζ(t)|wnt|
2dtdx ≤ M(τ, T ) +

M−1
2T C2

2TM
2

2

∫

Q

ζ(t)dtdx,

which implies that for 0 < τ < T , there exists M̂(τ, T ) = M̂k(τ, T ) such that for each n ≥ 1

∫ T

τ

∫

Ω

|wnt|
2 ≤ M̂(τ, T ).

Before passing to the limit as n → ∞ we mention the following L1−contraction principle that will be
used in the sequel: From the results in [52], Chapters 5 and 11, for each k, k′ > 0, each n ≥ 1 and each
t ≥ 0, one has

‖pkn(t)− pk
′

n (t)‖L1(Ω) ≤ ‖pkn0(.)− pk
′

n0(.)‖L1(Ω) +

∫ t

0

‖fk
n(t)− fk′

n (t)‖L1(Ω), (14)

where we have set for each k > 0 and n ≥ 1

fk
n(t, x) = pknF

(
pkn

)
.

Let k > 0 be given. The sequence {wn := φn(pn)} is bounded in L2(QT ) for each T > 0 and in
H1(Q(τ, T )) for each 0 < τ < T . Therefore, up to a subsequence, one may assume that

wn → w when n → ∞,

almost everywhere, for the strong topology of L2(Q(τ, T )) and weakly in H1(Q(τ, T )) for each 0 < τ < T .
As a consequence, pn converges almost everywhere to some function p and (since uniformly bounded)
strongly in Lp(QT ) for each T > 0 and each p ∈ [1,∞). As a consequence, we obtain

w = p2 a.e..

In addition, since K ∈ L∞(Ω× Ω) we have

pn → p in L∞(QT ) ∀T > 0,

and therefore
pnF (pn) → pF (p) in L1(QT ), ∀T > 0.

Let T > 0 be given and let η ∈ C1([0, T ]×Ω) such that η(T, .) = 0 be given. Then for each n ≥ 0 we
have ∫

QT

ηpk0,n −

∫

QT

ηtp
k
n +

∫

QT

∇η∇wk
n =

∫

QT

ηpkn F (pkn).
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Passing to the limit n → ∞ leads to
∫

QT

ηpk0 −

∫

QT

ηtp
k +

∫

QT

∇η∇wk =

∫

QT

ηF (pk)

wk =
(
pk
)2

.

Moreover from the L1−contraction principle (see (14)) one gets for each k, k′ > 0 and each t ≥ 0 that

‖pk(t)− pk
′

(t)‖L1(Ω) ≤ ‖pk0(.)− pk
′

0 (.)‖L1(Ω) +

∫ t

0

‖fk(t)− fk′

(t)‖L1(Ω).

where we have set
fk(t, x) = pkF

(
pk
)
.

Next we get that for each k > 0 and each t ≥ 0:
∫

Ω

(
pk
)3

(t, x)dx ≤

∫

Ω

(
pk0
)3

(x)dxe3Mt,

∫ t

0

∫

Ω

|∇wk|2dx ≤

∫

Ω

(
pk0
)3

(x)dxe3Mt.

(15)

Therefore for T > 0 given, since K is bounded and F is locally Lipschitz continuous, there exists some
constant MT such that for each k, k′ > 0

‖fk(t)− fk′

(t)‖L1(Ω) ≤ MT ‖p
k(t, .)− pk

′

(t, .)‖L1(Ω).

Then, due to Gronwall’s inequality, we obtain for each T > 0 that

‖pk(t)− pk
′

(t)‖L1 ≤ ‖pk0(.)− pk
′

0 (.)‖L1(Ω)e
MT t.

Since pk0 → p0 in L1, for each T > 0, the family {pk} satisfies the Cauchy criteria in L∞(0, T, L1(Ω)) and
thus converges to some function p. Moreover due to (15) and Fatou lemma we get that p ∈ L∞(0, T, L3(Ω))

while ∇wk converges weakly in L2(QT ) to some function W . Recalling that wk =
(
pk
)2

→ p2 a.e., we
obtain that

∇p2 ∈ L2(QT ) and W = ∇p2 a.e..

Then one can pass to the limit as k → ∞ into the weak formulation in order to obtain the existence of a
global weak energy solution.

The uniqueness claim follows from the L1−contraction principle for energy solutions of the porous
medium equation. If we consider two solutions p and q corresponding to the same initial data p0 ∈ L3

+(Ω)
then p and q are weak energy solution of the problems

pt = ∆
p2

2
+ fp(t, x),

qt = ∆
q2

2
+ fq(t, x),

ν(x) · ∇p(t, x)2 = ν(x) · ∇q(t, x)2 = 0,

p(0, .) = q(0, .) = p0,

11



where we have set
fp(t, x) = p(t, x)F (p(t, x)) , fq(t, x) = q(t, x)F (q(t, x)) ,

which belong to L1(QT ) for each T > 0. Then the L1−contraction principle implies that p ≡ q and
the uniqueness follows. Moreover, using once again the regularity results given in [52], we obtain that
p ∈ C

(
[0,∞);L1(Ω)

)
. Finally, using the same argument, coupled together with Lipschitz continuity of

F , the estimate (8) follows, and the proof of Theorem 4.4 is complete.

Remark 4.6 (Finite time propagation and free boundary) We observe that the local vanishing
property of the solutions of (7) holds true for weak energy solutions. Indeed, it is easily checked, us-
ing the comparison principle, that for each p0 ∈ L1

+(Ω) we have

0 ≤ U(t)p0 ≤ S(t)p0, ∀t ≥ 0, (16)

where {S(t)}t≥0 is the semiflow associated with the following problem:

pt −∆φ(p) = p (‖G‖∞ − µ) , t > 0, x ∈ Ω,

∂φ(p)

∂ν
= 0 on ∂Ω,

p(0, .) = p0(.) ∈ L1
+(Ω) ≥ 0.

On the other hand, if p0 ∈ L3
+(Ω) satisfies the condition that there exists x0 ∈ Ω, ρ0 ∈ (0, dist (x0, ∂Ω), p0(x) =

0, a.e. x ∈ B(x0, ρ0), then from Theorem 3.1 in [15], there exists T ∗ > 0 and a mapping ρ : [0, T ∗] →
[0, ρ0] such that p(t, x) = S(t)p0 satisfies

p(t, x) = 0 t ∈ [0, T ∗], x ∈ B (x0, ρ(t)) .

Thus, the finite time propagation of energy solutions for (7) holds true due to (16). This leads to the
propagation of a free boundary {x ∈ Ω : (U(t)p0) (x) = 0}, at least for weak energy solutions.

5 Dissipation for the one dimensional case

In this section, we prove the L1−boundedness property of the solutions of equation (7) in the one
dimensional setting. More precisely we consider the following problem





∂p
∂t

= d∂2p2

∂x2 + p (G (p)− µ) , t > 0, x ∈ (0, 1),
∂p2(t,x)

∂x
= 0, t > 0, x = 0, 1,

p(0, .) = p0(.) ∈ L1
+(0, 1),

(17)

where d > 0 is some given constant taking into account a possible rescaling due to the choice of the
interval (0, 1). We assume that

Assumption 5.1 K ∈ L∞
+

(
(−1, 1)2

)
and there exist m > 0 and c ∈

(
1
2 , 1

)
such that

K(x, y) ≥ m 1(−c,c)(x− y), ∀(x, y) ∈ (0, 1)2.

12



Assumption 5.2 G : [0,∞) → [0,∞) is locally Lipschitz continuous and bounded with infs∈[0,∞) G(s) <

µ. For each 0 < s̃ < ŝ large enough, there exists Ĝ : [0,∞) → R decreasing and concave such that

G(s) ≤ Ĝ(s) ∀s ∈ [0, ŝ],

Ĝ (s̃) = µ.

Remark 5.3 We observe that G defined in (6) satisfies the above assumption.

Theorem 5.4 Let Assumption 5.1 and 5.2 be satisfied. For each p0 ∈ L1
+(0, 1), there exists some

constant κ > 0 such that the global solution p of (17) satisfies

∫ 1

0

p(t, x)dx ≤ κ, ∀t ≥ 0.

We note that a similar result has been obtained by Perthame and Génieys [24] for a nonlocal Fisher
equation. Here we prove such a result for a general nonlinear function G.

Proof. Consider some constant M > 0 such that

(
a2 + b2

) 1
2 ≥ M (|a|+ |b|) , ∀(a, b) ∈ R

2. (18)

Consider the map N(t) =
∫ 1

0
p(t, x)dx defined for t ≥ 0. Let s1 > 0 be given such that

N(0) < max(‖K‖∞, 1)
s1

mM
.

Let s2 := max(1, ‖K‖∞) s1
mM

and, according to Assumption 5.2, consider a map Ĝ : [0,∞) → R decreasing
and concave such that

G(s) ≤ Ĝ(s) ∀s ∈ [0, s2],

Ĝ(s1) = µ.

Then we aim to show that for each t ≥ 0

N(t) <
s1

mM
, ∀t ≥ 0. (19)

To do so, we shall argue by contradiction by assuming that there exists T > 0 such that

N(t) <
s1

mM
, ∀t ∈ [0, T ),

N(T ) =
s1

mM
.

Next for all t ∈ [0, T ] we have

∫ 1

0

K(x, y)p(t, y)dy ≤ ‖K‖∞
s1

mM
≤ s2.
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Therefore we obtain that for all t ∈ [0, T ]

N ′(t) = −µN(t) +

∫ 1

0

p(t, x)G

(∫ 1

0

K(x, y)p(t, y)dy

)
dx

≤ −µN(t) +

∫ 1

0

p(t, x)Ĝ

(∫ 1

0

K(x, y)p(t, y)dy

)
dx.

Then since Ĝ is decreasing we obtain that

N ′(t) ≤ −µN(t) +

∫ 1

0

p(t, x)Ĝ

(
m

∫ 1

0

1[−c,c](x− y)p(t, y)dy

)
dx.

Now let us notice that for each function f ∈ L1
+(0, 1), from Jensen inequality for concave maps, we

have
∫ 1

0

f(x)Ĝ

(
m

∫ 1

0

1[−c,c](x− y)f(y)dy

)
dx ≤ I(f)Ĝ

(
m

I(f)

∫ 1

0

f(x)

∫ 1

0

1[−c,c](x− y)f(y)dydx

)
,

where we have set I(f) =
∫ 1

0
f(s)ds. On the other hand we have

∫ 1

0

f(x)

∫ 1

0

1[−c,c](x− y)f(y)dydx =

∫ 1

0

f(x)

∫ (x+c)∧1

(x−c)+
f(y)dydx

≥

∫ c

0

f(x)

∫ (x+c)∧1

0

f(y)dydx+

∫ 1

1−c

f(x)

∫ 1

(x−c)

f(y)dydx

≥

(∫ c

0

f(x)dx

)2

+

(∫ 1

1−c

f(x)dx

)2

.

Due to the definition of M given in (18) we get

(∫ c

0

f(x)dx

)2

+

(∫ 1

1−c

f(x)dx

)2

≥ M

(∫ c

0

f(x)dx+

∫ 1

1−c

f(x)dx

)2

and recalling that c ∈
(
1
2 , 1

)
leads to

(∫ c

0

f(x)dx

)2

+

(∫ 1

1−c

f(x)dx

)2

≥ M

(∫ 1

0

f(x)dx

)2

Therefore one obtains that for each f ∈ L1
+(0, 1) that

∫ 1

0

f(x)

∫ 1

0

1[−c,c](x− y)f(y)dydx ≥ M

(∫ 1

0

f(x)dx

)2

,

As a consequence , since Ĝ is decreasing, we obtain that

∫ 1

0

f(x)Ĝ(

∫ 1

0

K(x, y)f(y)dy) ≤ I(f)Ĝ (mMI(f)) .

14



Finally we obtain that for each t ∈ [0, T ]

N ′(t) ≤ N(t)
(
Ĝ (mMN(t))− µ

)
,

together with N(0) < s1. From the comparison principle we obtain that

N(t) < s1 ∀t ∈ [0, T ],

a contradiction, and the proof of Theorem 5.4 is complete.

6 Numerical simulations

Numerical simulations are given for the following simplified model of cell contact inhibition:

pt = divx (p∇xp) +

[
bG

(∫

Ω

Kr(x− y)p(t, y)dy

)
− µ

]
p(t, x)

with periodic boundary conditions, and with

Kr(x) =

{
1 if |x| < r,
0 otherwise.

Here we fix Ω = (0, L)2, L = 20, µ = 5, b = 15, and we use r as a sensitivity parameter for the radius
of contact inhibition pressure. We use periodic boundary conditions as approximations for Neumann
boundary conditions for numerical simplicity, taking advantage of symmetry in the x and y directions.
We employ the nonlinear Chernoff formula to discretize in time (see Berger et al. [8]). Moreover, we use

βu(x) = x, βv(x) = 1− erf(10x),

G(x) =
1− erf(10x)

x+ 1− erf(10x)
.

In the figures below, we use green to plot p(t, x), and we use red to plot m(t, x). The figures demonstrate
the importance of the radius r of contact inhibition pressure. In Fig. 2 (r = 0.5) the initial seeding does
not result in the formation of colonies, but instead yields a mostly uniform spatial distribution to final
confluence. In Fig. 3 (r = 1) colonies begin to develop on the edges of the spatial regions growing from
the initial seeding, but do not maintain as the population becomes confluent. In Fig. 4 (r = 2.0) colonies
develop throughout the spatial regions spreading from the initial seeding. The development of colonies in
the simulations in Fig. 4 agree very well with the experimental data in Fig. 1, particularly at days 2,4,6.
The importance of the sensing radius of contact inhibition pressure is clearly demonstrated. Movies of the
numerical simulations are available at http://www.math.u-bordeaux1.fr/∼pmagal/cancer/cancer.htm .
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t = 0. t = 2. t = 4.

t = 6. t = 8. t = 10.

Figure 2: r = 0.5. No colonies are formed over the 10-day time course of the simulation.
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t = 0. t = 2. t = 4.

t = 6. t = 8. t = 10.

Figure 3: r = 1.0. We observe the formation of damped oscillations at the moving boundaries, but
colonies are not maintained over the 10-day time course of the simulation.
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t = 0. t = 2. t = 4.

t = 6. t = 8. t = 10.

Figure 4: r = 2.0. Colonies form abundantly throughout the region after day 2 of the simulation (compare
to Fig. 1).

7 Discussion

In this article we have developed a mathematical model describing the growth, proliferation, and spatial
movement of an in vitro cell population using a nonlinear diffusion process (namely, the porous media
term divx (p∇xp)). The growth of individual cells is constrained in the model via a nonlinear and
spatially nonlocal cell proliferation process (namely, the Boltzmann term bG(

∫
Ω
Kr(x − y)p(t, y)dy)).

Porous media equations have been used extensively in the context of cells population dynamics. The
main originality of the model presented here is that we formally derive our model as a limiting case of
a model incorporating quiescence and individual cell size, which are important considerations in models
of cell population dynamics. Thus, we bridge more complex nonlinear models with quiescence and cell
size terms to simpler models without these elements, but still including technically difficult nonlinear
diffusion terms.

The main feature of the model is that due to the presence of nonlinear diffusion, we can produce
spatial colonies or islets of cells with finite time propagation and free boundaries by controlling the radius
contact inhibition pressure of the nonlocal proliferation term (see remark 4.6 for a theoretical explanation
of this phenomenon). The formation of these clusters is demonstrated in our numerical simulations (Fig.
2, 3, 4), and compare well with what is observed in laboratory experiments (Fig. 1). In models with
linear diffusion the initial data is instantaneously propagated to infinity in space, so that true clusters
with compact support do not form from initial data with compact support. Another important technical
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element of our analysis is that we derive the boundedness of solutions in the one dimensional case, at
least in certain parameter regimes. The boundedness of solutions remains open in more general cases. As
mentioned in this introduction, two types of inhibition are identified in proliferating cells lines - contact
inhibition of cell motility and contact inhibition of cell growth and division. In this article we neglected the
contact inhibition of locomotion, which will be considered in future work. The main challenge to cell model
development is to derive models which contain the complex phenomena present in the cell biology, but are
simple enough to be theoretically analyzed. An issue for future work concerns the nonlinear motility term,
which should be a function of the density of mass m(t, x) =

∫ smax

smin
s (u(t, x, s) + v(t, x, s)) ds, and not the

density of individuals. Here our choice for the population pressure on motility is motivated in the reduced
model by choosing m(t, x) =

∫ smax

smin
(u(t, x, s) + v(t, x, s)) ds. Also left for future work is generalization of

the model to describe colony formation with two classes of co-cultured cells - cells resistant to treatment
and cells sensitive to treatment - a topic of major importance in optimizing cancer chemotherapy.
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