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Abstract

In this article, we study the existence of travelling waves for a class

of epidemic model structured in space and with respect to the age of

infection. We obtain a necessary and sufficient condition for the exis-

tence of travelling waves for such a class of problems. As a consequence

of our main result, we also derive the existence of travelling waves of

class of functional partial derivative equation.

1 Introduction

This work is devoted to the existence of travelling wave solutions for a Ker-
mack and McKendrick’s model where both infectivity and recovery can de-
pend on the duration of infection and where individuals can diffuse in space.
As in the pioneer work of Kermack and McKendrick [9] (see also Anderson
[1] for a nice survey on Kermack-McKendrick models), we consider a popula-
tion which is divided into the three classes, the susceptible, the infected, and
the recovered. Here we assume that the total population is homogeneous in
space and constant in time. This means that the model do not take into ac-
count the vital dynamics of the population, that is neither natural birth rate
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nor natural death rate. Here the main novelty with respect to the existing
literature on the subject is that we introduce the age of infection. The age of
infection was used previously in epidemic model to describe the period of la-
tency which is necessary for an infected individuals to become infectious (see
D’Agata et al. [3], and Thieme and Chavez [18][19] and references therein
for a nice survey). In particular the age of infection allows us to follow the
history of infected individuals. The model is following

∂S

∂t
= ds∆xS − S(t, x)

∫ a†

0

β(a)i(t, a, x)da, x ∈ R, t ≥ 0,

∂i

∂t
+
∂i

∂a
= di∆xi− (µR(a) + µM(a)) i(t, a, x), a ∈ (0, a†) , x ∈ R, t ≥ 0,

i(t, 0, x) = S(t, x)

∫ a†

0

β(a)i(t, a, x)da, x ∈ R, t ≥ 0

∂R

∂t
= dr∆xR +

∫ a†

0

µR(a)i(t, a, x)da,

S(0, x) = S0(x), i(0, a, x) = i0(a, x) and R(0, x) = R0(x).

(1.1)

where a is the time since the infection, a† ∈ (0,+∞] is the maximum attain-
able age of infection. Here S(t, x), i(t, a, x) and R(t, x) denotes respectively
the density of susceptible,infected and recovered at time t and located at
x ∈ R and the age a for the density of infected. Parameter ds > 0 (re-
spectively di > 0, dr ≥ 0) is the diffusion coefficient of susceptible (respec-
tively infected, recovered) individuals. The function a → β(a) denotes the
transmission rate coefficient which is assumed to depend explicitly on the
duration of infection. The function a → µ(a) := µR(a) + µM(a) is the sum
of the recovery rate µR(a) and the death rate µM(a) in the class of infected
individuals. If the disease does not induce mortality the class R denotes the
class of individuals who have recovered and are immune to reinfection. Since
the function R is known as soon as the functions S and i are known, from
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here on we only focus on the partial differential equations

∂S

∂t
= ds∆xS − S(t, x)

∫ a†

0

β(a)i(t, a, x)da, x ∈ R, t ≥ 0,

∂i

∂t
+
∂i

∂a
= di∆xi− µ(a)i(t, a, x), a ∈ (0, a†) , x ∈ R, t ≥ 0,

i(t, 0, x) = S(t, x)

∫ a†

0

β(a)i(t, a, x)da, x ∈ R, t ≥ 0

S(0, x) = S0(x), and i(0, a, x) = i0(a, x).

(1.2)

This system without structuration in space was considered by Kermack and
McKendrick in [9]. They prove the existence of an epidemic threshold pa-
rameter

R0 =

∫ a†

0

β(a)e−
∫ a

0
µ(s)dsda,

such that the infectious epidemic can spread in the population if R0 > 1
while the infection die out when R0 < 1.

In order to understand the role of the infectiouness function β(a), one
may first observe that the solution of the system satisfies a Volterra integral
equation. So the role of the function β(a) is to describe the intensity of the
disease, the incubation period of the disease. When the incubation is exactly
equal to τ > 0, then the function β takes the following form

β(a) = β̂1[τ,+∞)(a),∀a ≥ 0.

Moreover if we assume in addition that a† = +∞, and that the function
µ(a) is constant and equal to µ̂, then the system (1.2) can be rewritten as
the following partial differential equation with delay (see section 2 for more
details)






dS

dt
= ds∆ZS(t) − β̂e−µ̂τS(t)Tdi∆Y

(τ)I(t− τ),

dI

dt
= di∆Y I(t) − µ̂I(t) + β̂e−µ̂τS(t)Tdi∆Y

(τ)I(t− τ),

S(θ) = S0 (θ) , I(θ) = I0 (θ) , ∀θ ∈ [−τ, 0] .

(1.3)

where

I(t) =

∫ +∞

0

i(t, a)da,
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and

Tdi∆Y
(τ) (ϕ) (x) =

1√
4πdiτ

∫

R

ϕ(x− y)e−|y|2/4diτdy.

So we obtain an integro-differential partial derivative equation with delay.
Recently such a spatially structured epidemic system with delay has been
extensively studied in the litterature (see Wang Li and Ruan [21] for a nice
survey). But as far as we know, the above system has not been considered.

System (1.2) was also extensively studied without infection age structure
(with corresponds to the case τ = 0 in system (1.3)). A particular interest has
been given to the study of long time behaviour of the system and to travelling
wave solutions. These questions have been partially solved by Kallen [7], and
Kallen et al. [8] who prove the existence of travelling wave solutions when
succeptible individuals cannot spread in space. This model has been used to
study rabies epizootic. The travelling wave solutions have been investigated
for the model with both diffusion of succeptibles and infected by Hosono and
Ilyas in [5].

In this work we focus on travelling wave solutions for problem (1.2).
The mathematical arguments of phase plane analysis used by Hosono et
al. [5] cannot be applied for system (1.2). Moreover the system does not
have any comparison principle and monotonic properties. As a consequence
the classical methods to study travelling fronts solutions cannot be applied
(see for instance [4, 6, 10, 11, 20, 21, 23, 24, 25] and references therein).
Nevertheless, each equation of the system admits separately some monotonic
properties. Following the idea proposed in [2], we will take into account
this particular form in order to construct some invariant convex set for some
suitable operator. The problem will then become a fixed point problem on
finite intervals. The main difficulty is to obtain some a priori estimations
which are independent of the length of the interval in order to apply a limit
procedure (see section 4 for more precision).

The plan of the paper is the following. In section 2, we describe the
evolution problem associated to system (1.2). In particular, we establish the
existence and uniqueness of mild solutions for this system. We also describe
the relationship between system (1.2) and the PDE systems with delay (1.3).
In section 3, we present the main result of this paper, and also derive a
corollary for a class of PDE with delay. More specifically we show that the
system of partial differential equation has positive travelling wave solutions
if and only if R0 > 1.
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2 Preliminary

In this section we consider system (1.2) as an evolution problem. We will
make the following assumption.

Assumption 2.1: ds > 0, di > 0, β ∈ L∞
+ ((0, a†) ,R) , and µ ∈ L1

Loc,+ ([0, a†) ,R) .

We denote by BUC (R) the space of bounded and uniformly continuous
map from R into itself, endowed with the supremum norm

‖ϕ‖∞ = sup
x∈R

|ϕ(x)| .

We denote by

BUC+ (R) = {ϕ ∈ BUC (R) : ϕ (s) ≥ 0,∀s ∈ R} .

We consider the Laplacian operator ∆ as a linear operator from

D(∆) =
{
ϕ ∈ BUC (R) ∩ C2 (R,R) : ϕ′′ ∈ BUC (R)

}
,

into BUC (R) . It is readily checked that (0,∞) ⊂ ρ (∆) the resolvent set of
∆, and

(λ− ∆)−1 (ϕ) (x) =
1

2
√
λ

∫ +∞

−∞
e−

√
λ|s|ϕ(s+ x)ds,∀λ > 0.

It is well known that ∆ is the infinitesimal generator of {T∆(t)}t≥0 a positive
analytic semigroup of contraction on BUC (R), and for t > 0,

T∆(t) (ϕ) (x) =
1√
4πt

∫

R

ϕ(x− y)e−|y|2/4tdy. (2.1)

It follows that for each d > 0, d∆ is the infinitesimal generator of {Td∆(t)}t≥0 ,
with Td∆(t) = T∆(dt),∀t ≥ 0. We set

Z :=

{
ϕ ∈ C (R,R) : lim

x→+∞
ϕ(x) and lim

x→−∞
ϕ(x) exist

}
, Z+ := BUC+ (R)∩Z,

and

Y :=

{
ϕ ∈ C (R,R) : lim

x→+∞
ϕ(x) = lim

x→−∞
ϕ(x) = 0

}
, and Y+ := BUC+ (R)∩Y.
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The subspace Z and Y are two closed subspaces of BUC (R) . So (Z, ‖.‖∞)
and (Y, ‖.‖∞) are two Banach spaces. We denote by ∆Y (resp. ∆Z) the part
of ∆ in Y (resp. Z) the linear operators defined for V = Y or Z by

∆V ϕ = ∆ϕ,∀ϕ ∈ D (∆V ) = {ϕ ∈ D(∆) ∩ V : ∆ϕ ∈ V } .

We observe that

(λ− ∆)−1 V ⊂ V,∀λ > 0,∀V = Y, Z.

So for each λ > 0, and V = Y, Z,

(0,∞) ⊂ ρ (∆V ) , D (∆V ) = (λ− ∆)−1 V, and (λ− ∆V )−1 = (λ− ∆)−1 |V .

It follows that for each d > 0, and V = Y, Z, d∆V is the infinitesimal gener-
ator of an analytic semigroup {Td∆V

(t)}t≥0 on V, with Td∆V
(t) = Td∆(t) |V

,∀t ≥ 0.
In the sequel, we consider S(t, .) the first component of system (1.2) as

an element of Z, and i(t, a, .) the second component of system (1.2) as an
element of Y. In order to express the second component of system (1.2)
as an abstract evolution equation we use the approach of Thieme [15] (see
also [16, 17, 13] and references therein for more detailed description of the
problem). We consider the Banach space

W := Y × L1 ((0,∞) , Y ) ,

endowed with the usual product norm. We consider

W+ = Y+ × L1 ((0,∞) , Y+) , W0 := {0Y } × L1 ((0,∞) , Y ) ,

and W0+ := W0 ∩W+.

Then the family of bounded linear operators {Rλ}λ>0 on W, defined by

Rλ

(
α
ψ

)
=

(
0
ϕ

)

⇔ϕ(a) = e−
∫ a

0
µ(l)+λdlTdi∆Y

(a)α+

∫ a

0

e−
∫ a

s
µ(l)+λdlTdi∆Y

(a− s)ψ(s)ds.

One may observe that {Rλ}λ>0 is a pseudo-resolvent on W, that is to say
that

Rλ −Rµ = (µ− λ)RλRµ,∀λ, µ > 0.
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Moreover we have

Rλx = 0, and x ∈W ⇒ x ∈ W0,

and
lim

λ→+∞
λRλx = x,∀x ∈W0.

By using similar arguments as in Pazy [14, p. 36-37], we deduce that there
exists a unique closed linear B : D(B) ⊂ W → W, with D (B) = W0, and
Rλ = (λI − B)−1 ,∀λ > 0. We set

X : = Z ×W, X0 := Z ×W0,

X+ : = Z+ ×W+, and X0+ = X+ ∩X0,

and we consider A : D(A) ⊂ X → X the linear operator defined by

A




ϕ(
0
ψ

)


 =




ds∆Zϕ

B
(

0
ψ

)


 with D(A) = D(∆Z) ×D(B).

We also define F : X0 → X

F




ϕ(
0
ψ

)


 =




−ηϕFβ (ψ)(
ηϕFβ (ψ)

0

)


 ,

with

Fγ (ϕ) (x) :=

∫ a†

0

γ(a)ϕ(a)da,∀γ ∈ L∞ ((0, a†) ,R) ,∀ϕ ∈ L1 ((0, a†) , Y ) .

Then the system can be re-written as the following abstract Cauchy problem

du

dt
= Au(t) + F (u(t)), t ≥ 0, with u(0) = x ∈ X0+. (2.2)

We note that F is Lipschitz on bounded sets of X0, and for each M > 0,
there exists λ > 0, such that

F (x) + λx ∈ X+,∀x ∈ X0+ ∩BX (0,M) .

By using the fact that A is a Hille-Yosida operator, and by using inte-
grated semigroup theory (see [15, 12] and references therein). We deduce the
following results.
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Theorem 2.1 Let Assumption 2.1 be satisfied. There exist {U(t)}t≥0 a C0-
semigroup of continuous nonlinear operator on X0+, such that for each x ∈
X0+, the map t→ U(t)x is the unique mild solution (2.2), that is to say that
satisfied ∫ t

0

U(s)xds ∈ D(A), ∀t ≥ 0,

and

U(t)x = x+ A
∫ t

0

U(s)xds+

∫ t

0

F (U(s)x)ds, ∀t ≥ 0.

Volterra Formulation:

But using Laplace’s transformed arguments, one may establish that the
mild solutions of (2.2) take the following form

U(s)x =




S(t, .)

0Y

i(t, ., .)



 ,

where S(t) and i(t) satisfy the following Volterra formulation of the problem
(1.2)






S(t) = Tds∆Z
(t)S0 +

∫ t

0
Tds∆Z

(t− s)
[
−S(s)

∫ a†

0
β(a)i(s, a, .)da

]
ds

i(t, a) =

{
e−

∫ a

a−t
µ(l)dlTdi∆Y

(t)i0(a− t), if a ≥ t,

e−
∫ a

0
µ(l)dlTdi∆Y

(a)B(t− a), if t ≥ a,
(2.3)

and the map B(.) ∈ C ([0,+∞) , Y ) is the unique solution of the following
Volterra integral equation

B(t) = S(t)

[ ∫ a†

min(t,a†)
β(a)e−

∫ a

a−t
µ(l)dlTdi∆Y

(t)i0(a− t)da

+
∫ min(t,a†)

0
β(a)e−

∫ a

0
µ(l)dlTdi∆Y

(a)B(t− a)da

]
. (2.4)

In order to derive the PDE with delay, we will make the following as-
sumption.

Assumption 2.2: We assume that a† = +∞, and there exist β̂ ≥ 0, τ > 0,
and µ̂ > 0, such that

β(a) = β̂1[τ,+∞)(a), and µ(a) = µ̂,∀a ≥ 0.
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From here on we set

I(t) :=

∫ +∞

0

i(t, a)da.

Let Assumption 2.2 be satisfied. Then the system reduces to

S(t) = Tds∆Z
(t)S0 +

∫ t

0

Tds∆Z
(t− s)

[
−S(s)

∫ +∞

0

β(a)i(s, a, .)da

]
ds,

I(t) = Tdi∆Y −µI(t)I(0) +

∫ t

0

Tdi∆Y −µI(t− s)S(s)

∫ +∞

0

β(a)i(s, a, .)da,

and t→ B(t) satisfies

B(t) = S(t)

[
Tdi∆Y −µI(t)

∫ +∞

t

β(a)i0(a− t)da+

∫ t

0

β(a)Tdi∆Y −µI(a)B(t− a)da

]
.

It follows that for t ≥ τ,

B(t) = S(t)Tdi∆Y −µI(τ)I(t− τ).

So for t ≥ τ, S(t) and I(t) is a mild solution of the PDE with delay (see Wu
[22] for a nice survey on the subject)






dS

dt
= ds∆ZS(t) − β̂e−µ̂τS(t)Tdi∆Y

(τ)I(t− τ),

dI

dt
= di∆Y I(t) − µ̂I(t) + β̂e−µ̂τS(t)Tdi∆Y

(τ)I(t− τ),

S(θ) = S0 (θ) , I(θ) = I0 (θ) , ∀θ ∈ [−τ, 0] .

(2.5)

where Tdi∆Y
(τ) = T∆(diτ) and T∆(t) is given by formula (2.1).

3 Main results

In order to investigate the travelling wave of system (1.2), it is sufficient to
consider the following system






∂S

∂t
= d∆xS − S(t)Fγ (i(t)) ,

∂i

∂t
+
∂i

∂a
= ∆xi(t, a, x), a ∈ (0, a†) ,

i(t, 0, .) = S(t)Fγ (i(t)) ,
S(0) = S0 ∈ Z, and i(0, ., .) = i0 ∈ L1 ((0, a†) , Y ) ,

(3.1)
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where d = ds/di and

γ(a) = β(a)e−
∫ a

0
µ(s)ds for almost every a ∈ (0, a†) . (3.2)

We are looking for travelling wave solutions for the system (3.1), which are
positive solutions of the form

S(t, x) = S(x− ct), i(t, a, x) = i(a, x− ct). (3.3)

Such solutions satisfies the following system

dS ′′ + cS ′ − SFγ (i) = 0, (3.4)

∂ai = ∂2
xi+ c∂xi, (3.5)

i(0, x) = S(x)Fγ (i) (x). (3.6)

This system is posed on the whole real line x ∈ R, and is supplemented with
the following conditions at infinity

S(−∞) = S+, S(+∞) = 1,

i(a,−∞) = 0, i(a,+∞) = 0.

Here c > 0 and S+ ∈ [0, 1) are unknown numbers that should be found
together with the unknown functions i and S. The parameter c is the wave
speed while S+ describes the severity of the epidemic. It is the density of
susceptible individuals after the epidemic.

In the following we suppose that the following assumption holds:

Assumption 3.1: d > 0, a† ∈ (0,+∞] , γ ∈ L1
+([0, a†) ,R) ∩ L∞

+ ([0, a†) ,R).

From now on, we set

R0 :=

∫ a†

0

γ(s)ds. (3.7)

The main result of this paper is the following theorem.

Theorem 3.1 Let Assumption 3.1 be satisfied. Then the system (3.1) has a
positive travelling wave if and only if R0 > 1.
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Remark 3.2 When R0 > 1 we can easily prove by integrating equation (3.5)
over R that the limit of the travelling wave S+ = S(−∞) satisfies the inequal-
ity

0 ≤ S+ ≤ 1

R0

. (3.8)

We now turn to the existence of travelling wave for the system (2.5). We
look for travelling wave solutions of the following form

S(t, x) = S(x− ct), I(t, x) = I(x− ct).

with the following conditions at infinity

S (x) ∈ [0, 1] ,∀x ∈ R, S(−∞) = S+ ≥ 0, S(+∞) = 1, I(−∞) = I(+∞) = 0.

Combining the transformations of section 2 to derive the PDE with delay,
and Theorem 3.1 we obtain the existence of travelling wave for the PDE with
delay (2.5).

Corollary 3.3 Let Assumption 2.2 be satisfied. Then the system (2.5) has
a positive travelling wave if and only if

R0 =
β̂e−µ̂τ

µ̂
> 1.

Note that when R0 > 1 estimate 3.8 holds.

4 Proof of Theorem 3.1

It is well known that ∆ + c∂x : D (∆) ⊂ BUC (R) → BUC (R) generates a
positive analytic semigroup of contraction on BUC (R) . Moreover combined
with (2.1), we have the following explicit formula

T∆+c∂x
(t) (ϕ) (x) = Tc∂x

(t) (T∆(t) (ϕ)) (x) = T∆(t) (ϕ) (x+ ct).

As before we denote by (∆ + c∂x)Y the part of ∆ + c∂x in Y , which gen-
erates a positive analytic semigroup of contraction

{
T(∆+c∂x)Y

(t)
}

t≥0
and

T(∆+c∂x)Y
(t) = T(∆+c∂x)(t) |Y ,∀t ≥ 0.

11



In order to prove Theorem 3.1, it is sufficient to investigate the following
system

dS ′′(x) + cS ′(x) − S(x)J(x) = 0, (4.1)

B(x) = S(x)J(x), (4.2)

with

J(x) :=

∫ a†

0

γ(a)T(∆+c∂x)Y
(a) (B) (x)da, (4.3)

and with the following constraint

S(x) ∈ [0, 1] ,∀x ∈ R, S(−∞) = S+, S(+∞) = 1,

B(−∞) = B(+∞) = 0.
(4.4)

Before starting the proof, we give some explanations on the different steps of
the proof. The fact that R0 > 1 is a necessary condition for the existence of
travelling waves is relatively easy to prove. The main difficulty here is to prove
that this condition is sufficient. To do so, we will use the following procedure.
We first construct some suitable sub and super-solutions for problem (3.4)-
(3.6) together with the corresponding limit behavior at infinity. Then we
consider a similar problem posed on a bounded domain. The boundedness
of the domain ensures the compactness for some operators and allows us to
use some classical fixed point arguments. Finally we let the length of the
bounded domain tending to infinity. This limit procedure requires to obtain
some estimates of the solutions that are independent of the length of the
bounded domain. Finally the sub and super-solutions allow us to avoid some
possible degeneracy during the limit procedure.

4.1 Non existence results: R0 ≤ 1

This section concerns the nonexistence results claimed in Theorem 3.1 and
in Corollary 3.3.

Proposition 4.1 Let Assumption 3.1 be satisfied. Assume that R0 ≤ 1.
Then for any c ≥ 0, the trivial solution (S ≡ 1, i ≡ 0) is the unique positive
solution of system (3.4)-(3.6).

Proof. Consider the equation

B(x) = S(x)

∫ a†

0

γ(a)T(∆+c∂x)Y
(a) (B) (x)da.
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Since B(x) is a bounded function tending to zero at infinity, we can consider
x0 ∈ R such that

B(x0) = sup
x∈R

|B(x)|,

and since
{
T∆+c ∂

∂x
(t)

}

t≥0
is a contraction semigroup, we obtain

B(x0) = S(x0)

∫ a†

0

γ(a)T(∆+c∂x)Y
(a) (B) (x0)da ≤ S(x0)R0||B||∞,

so
||B||∞ ≤ S(x0)R0||B||∞. (4.5)

Assume that B(x0) > 0. Since S(x) is a bounded solution of (4.1), we have

S ′(x) =
1

d

∫ x

−∞
e−

c
d
(x−l)B(l)dl,

and by integrating this formula between x and y, we obtain

S(x) − S(y) =
1

d

∫ +∞

0

e−
c
d
r

∫ x−r

y−r

B(l)dldr,

and it follows that S strictly increasing over [x0,+∞) . So S(x0) < 1. Now
by using (4.5) we obtain ||B||∞ = 0.

We can also prove a similar non existence result for system 2.5. More
precisely we have

Proposition 4.2 Let Assumption 2.2 be satisfied. Assume that R0 = β̂
µ̂
e−τµ̂ ≤

1. Then for any c ≥ 0, the trivial solution (S ≡ 1, i ≡ 0) is the unique posi-
tive travelling wave solution of system 2.5.

Proof. This proof uses similar arguments as in the proof of Proposition
4.1.

4.2 Building of sub and super-solutions

In this section we construct suitable sub and super-solutions that will be es-
sential to prove the sufficient condition in Theorem 3.1. Trought this section
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we suppose that R0 > 1, with R0 defined in (3.7). Then since R0 > 1 and
γ ∈ L1

+(0, a†), we can find α∗ > 0 satisfying of the following integral equation

∫ a†

0

γ(a)e−α∗ada = 1. (4.6)

Then we have the following lemma.

Lemma 4.3 Let Assumption 3.1 be satisfied, and assume that R0 > 1. For
each c > 2

√
α∗, we set

λ∗ =
c−

√
c2 − 4α∗

2
∈

(
0,
c

2

)
,

and
j̄+(a, x) := e−λ∗xe−α∗a = e−λ∗xe(λ∗2−cλ∗)a. (4.7)

Then j̄+ satisfies the following equation

∂aj = ∂2
xj + c∂xj, j(0, x) =

∫ a†

0

γ(a)j(a, x)da. (4.8)

Proof. The proof is trivial.
Next we have the following lemma.

Lemma 4.4 Under the same assumptions and notations of the Lemma 4.3.
For each γ∗ > 0 sufficiently small, and β > 1 a large enough, the map s+

defined by
s+(x) := 1 − βe−γ∗x, (4.9)

satisfies the following differential inequality

ds′′ + cs′ − e−λ∗xs ≥ 0, s(+∞) = 1. (4.10)

Proof. The inequality (4.10) is equivalent to

cγ∗β ≥ dβγ∗2 + e−λ∗x(eγ∗x − β).

When γ∗ ≤ λ∗ the function h(x) = e−λ∗x(eγ∗x − β) is non-increasing. So for
x ≥ 0, this inequality will be satisfied if

0 < γ∗ ≤ λ∗ and cγ∗β ≥ dβγ∗2 + (1 − β) ,
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so it is sufficient to verify

0 < γ∗ < min(λ∗,
c

d
), and β ≥ 1/(cγ∗ − dγ∗2).

When x < 0, then the inequality (4.10) holds if

βe−λ∗x + cγ∗β ≥ dβγ∗2 + e−(λ∗−γ∗)x

This last inequality holds true if β ≥ 1 and γ∗ < min(λ∗, c
d
).

Finally we have the following.

Lemma 4.5 Under the same assumptions and notations of the Lemmas 4.3
and 4.4. For each η > 0 sufficiently small and each k > 1 sufficiently large
the function j+ defined by

j+(a, x) := e−λ∗xe(λ∗2−cλ∗)a − ke−(λ∗+η)xe((λ
∗+η)2−c(λ∗+η))a, (4.11)

satisfies the following differential inequality

∂j

∂a
= j′′ + cj′, j(0, x) ≤ (1 − βe−γ∗x)+

∫ a†

0

γ(a)j(a, x)da. (4.12)

Proof. Let us first note that the PDE in (4.12) is satisfied for any η and
k. So it remains to verify the inequality in (4.12). Since (λ∗2 − cλ∗) = −α∗,
this inequality will be satisfied if and only if

e−λ∗x − ke−(λ∗+η)x ≤ (1 − βe−γ∗x)+
[
e−λ∗x − ke−(λ∗+η)xα(η)

]

where

α(η) =

∫ a†

0

γ(a)e((λ
∗+η)2−c(λ∗+η))ada.

So we must verify that

1 − ke−ηx ≤ (1 − βe−γ∗x)+
[
1 − ke−ηxα(η)

]
. (4.13)

We note that
α(0) = 1,

and

α′(η) = (2(λ∗ + η) − c)

∫ a†

0

aγ(a)e((λ
∗+η)2−c(λ∗+η))ada < 0,
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whenever
(λ∗ + η) <

c

2
.

Since λ∗ < c
2
, this last inequality is satisfied for each η > 0 sufficiently small.

So for each η > 0 small enough we have

0 < α(η) < 1 and η < γ∗.

Let x0 ∈ R be fixed such that

1 − β−γ∗x0 = 0.

Let us first consider the case x ≤ x0. Then the inequality (4.13) is equivalent
to

1 − ke−ηx ≤ 0,

which is true for each k sufficiently large. Next consider the case x ≥ x0.
Then the inequality (4.13) is equivalent to

1 − ke−ηx ≤ (1 − βe−γ∗x)
[
1 − ke−ηxα(η)

]

which is equivalent to

k (α(η) − 1) ≤ βe−γ∗x [kα(η) − eηx] (4.14)

On the other hand function g(x) := e−γ∗x(α(η)k−eηx) achieves its maximum
at a point xk on R and xk satisfies the following equation:

α(η)kγ∗

γ∗ − η
= eηxk .

We obtain that xk → +∞ as k → +∞. So let us choose k large enough to
have xk > x0, and we obtain that for any x ≥ x0, g(x) ≥ min(0, g(x0)). The
function g is increasing from −∞ to g(xk) on (−∞, xk), and decreasing from
g(xk) to 0 on [xk,+∞). Finally, since the right hand side of inequality (4.14)
is negative, it is sufficient to find k large enough and satisfying g(x0) ≥ 0.
That can be re-written as

α(η)k − eηx0 > 0,

this last inequality holds true for k sufficiently large. This completes the
proof.
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4.3 A similar problem on a bounded domain

In the sequel we suppose that R0 > 1 and we fix c > 2
√
α∗ with α∗ defined

in (4.6). We consider the following functions

j̄(a, x) = j̄+(a, x), j(a, x) = max(0, j+)(a, x),

S̄(x) = 1, S(x) = max(0, s+(x)),

where the functions j̄+, j+ and s+ are defined in Lemmas 4.3, 4.5 and 4.4.
Let X > 0 be given and consider the following problem posed in the

domain (−X,X):

∂i

∂a
= i′′ + ci′,

i(a,±X) = j(a,±X), i(0, x) = S(x)J(x),
(4.15)

dS ′′ + cS ′ = SJ(x), S(±X) = S(±X). (4.16)

where we have set J(x) =
∫ a†

0
γ(a)i(a, x)da. In equations (4.15)-(4.16) prime

denotes the derivative with respect to x.
First note that when X is sufficiently large j(a,−X) ≡ 0 and S(−X) = 0.

Therefore we introduce X0 > 0 such that for any X ≥ X0, j(a,−X) ≡ 0 and
S(−X) = 0. Then we will prove the following result:

Proposition 4.6 Let Assumptions 3.1 be satisfied. Assume in addition that
R0 > 1. Then for any X > X0, problem (4.15)-(4.16) has a classical solution
(i, S) satisfying

j(a, x) ≤ i(a, x) ≤ j̄(a, x), ∀(a, x) ∈ [0, a†) × (−X,X),

S(x) ≤ S(x) ≤ 1, ∀x ∈ (−X,X).
(4.17)

Moreover function S is increasing.

Proof. We start by investigating the existence of the solution. We first
re-formulate problem (4.15)-(4.16) as a fixed point problem. For that purpose
let us introduce the following parabolic initial data problem

∂i

∂a
= i′′ + ci′, i(a,±X) = j(a,±X), i(0, x) = i0. (4.18)
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Let us denote by i the solution of the above linear problem. Next we consider
S a solution of the linear elliptic problem:

dS ′′ + cS ′ = SJ(x), S(±X) = S(±X), (4.19)

where J(x) =
∫ a†

0
γ(a)i(a, x)da. Finally problem (4.15)-(4.16) is equivalent

to the following one:

i0(x) = S(x)

∫ a†

0

γ(a)i(a, x)da.

In order to solve this problem we introduce the following closed and convex
subset E of the continuous functions on the compact set [−X,X]:

E = {i0 ∈ C([−X,X]), j(0, x) ≤ i0(x) ≤ j̄(0, x)}.

Next we now consider this fixed point problem and we consider the operator

Φ : i0 ∈ E → S

∫ a†

0

γ(a)i(a, .)da,

where i is the solution of

∂i

∂a
= i′′ + ci′, i(a,±X) = j(a,±X), i(0, x) = i0(x)

and then S is the solution of

dS ′′ + cS ′ = S

∫ a†

0

γ(a)i(a, .)da, S(±X) = S(±X).

Let us first show that operator Φ is a compact operator fromE into C([−X,X]).
We first note function i can be re-written as

i(a, x) = T∆+c∂x
(a) (i0) + î(a)(j(.,±X))

where î(a, x) satisfies

∂i

∂a
= i′′ + ci′, i(a,±X) = j(a,±X), i(0, x) = 0,

and the last semigroup {T∆+c∂x
(t)}t≥0 is generated ∆ + c∂x with Dirichlet

boundary conditions. It follows
∫ a†

0

γ(a)i(a, .)da = lim
ε→0

∫ a†

ε

γ(a)T∆+c∂x
(a) (i0) da+

∫ a†

0

γ(a)̂i(a, .)da,
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and since γ ∈ L∞ the limit converges uniformly with respect to i0 in bounded
sets. But the linear operator

∫ a†

ε

γ(a)T∆+c∂x
(a) (i0) da = T∆+c∂x

(ε)

∫ a†

ε

γ(a)T∆+c∂x
(a− ε) (i0) da

is compact (since T∆+c∂x
(ε) is compact). It follows that the operator i0 →∫ a†

0
γ(a)i(a, .)da is compact from C([−X,X]) into itself. Moreover, from stan-

dard elliptic estimates, we also obtain that the operator J ∈ E → S is
bounded from C([−X,X]) into C1([−X,X]). Finally, we obtain that Φ is
completely continuous from E into C([−X,X]).

Next let us prove that Φ(E) ⊂ E. This result follows from successive
applications of the comparison principle. Indeed let i0 ∈ E be given. From
i0 ≥ 0 and i(a,±X) ≥ 0 we obtain from the comparison principle that
i(a, x) ≥ 0 for any (a, x). Therefore J(x) ≥ 0 and the maximum principle
applies to equation (4.19). Since 0 ≤ S(±X) ≤ 1, we obtain that 0 ≤ S(x) ≤
1 for any x ∈ [−X,X].

Then, since functions j̄+ satisfy equation (4.8), i0(x) = i(0, x) ≤ j̄+(0, x)
and i(a,±X) ≤ j̄+(a,±X) we obtain from the comparison principle that

i(a, x) ≤ j̄(a, x), for any (a, x) ∈ [0, a†) × [−X,X]. (4.20)

On the other hand, since function j+ satisfies (4.12), i0(x) = i(0, x) ≥
j+(0, x) and i(a,±X) ≥ j+(a,±X), we obtain that

i(a, x) ≥ j(a, x), for any (a, x) ∈ [0, a†) × [−X,X]. (4.21)

From inequality (4.21), we obtain that

J(x) =

∫ a†

0

γ(a)i(a, x)da

≤
∫ a†

0

γ(a)j̄+(a, x)da ≤ e−λ∗x.

As a consequence, function S satisfies the following differential inequality

dS ′′ + cS ′ − e−λ∗xS ≤ 0, S(±X) = S(±X),

Next recalling that function s+ defined in Lemma 4.4 satisfies inequality
(4.10), we obtain the following equation for w = S − s+:

dw′′ + cw′ − e−λ∗xw ≤ 0,

w(−X) = S(−X) − s+(−X) > 0, w(X) = S(X) − s+(X) = 0.
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We conclude from the maximum principle that w ≥ 0, that is S ≥ s+. Since
S ≥ 0, we obtain that S ≥ S.

Now we can easily conclude that operator Φ maps E into E. Indeed, from
(4.21) and S ≤ 1, we obtain that

Φ(i0)(x) = S(x)

∫ a†

0

γ(a)i(a, x)da ≤
∫ a†

0

γ(a)̄ı(a, x)da = j̄(0, x).

Next, from inequality (4.21) and S ≥ S we obtain that

Φ(i0)(x) = S(x)

∫ a†

0

γ(a)i(a, x)da ≥ S(x)

∫ a†

0

γ(a)j(a, x)da ≥ j(0, x).

This concludes the proof of Φ(E) ⊂ E. Now from Schauder theorem we
obtain the existence of a fixed point for the map Φ, that is i0 ∈ E satisfying
i0 = Φ(i0).

In order to obtain the regularity of the solution we use bootstrapping
arguments. From parabolic and elliptic regularity we obtain that functions
(i, S) defined by the resolution of (4.18) and (4.19) satisfy problem (4.15)-
(4.16). Let ε ∈ (0, a†) be fixed. Since i0 ∈ C([−X,X]), we obtain that i ∈
L2−η((0, ε),W 1,p(−X,X)) ∩ L∞((ε, a†),W

1,p(−X,X)) for any p ∈ (1,+∞)
and any η ∈ (0, 1). Since γ ∈ L1 ∩ L∞, and

J =

∫ a†

ε

γ(a)i(a, x)da+

∫ ε

0

γ(a)i(a, x)da,

we obtain J ∈W 1,p(−X,X) ↪→ Cα([−X,X]) for some α ∈ (0, 1) if p is suffi-
ciently large. From elliptic equation (4.19) we obtain that S ∈ C2+α([−X,X]).
Since i0 = SJ we deduce that i0 ∈ Cα([−X,X]) and the parabolic regular-
ity shows that i ∈ L2−η((0, ε), C1+α([−X,X])) ∩ L∞((ε, a†), C

1+α([−X,X]))
for any η ∈ (0, 1). This proves that i0 ∈ C1+α([−X,X]). Using the same
argument as above we can show that i0 ∈ C2+α([−X,X]) and therefore
i ∈ C1+α/2,2+α([0, a†)× [−X,X]) that proves that (i, S) is a classical solution
of problem (4.15)-(4.16).

It remains to prove that function S is increasing. From J ≥ 0 and S ≥ 0,
we obtain that

dS ′′ + cS ′ = SJ(x) ≥ 0.

Therefore function S satisfies (S ′(x)e
c
d
x)′ ≥ 0 and integrating this inequality

from −X to x we obtain

S ′(x)e
c
d
x ≥ S ′(−X)e−

c
d
X .
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Finally, recalling that X > X0 we have S(−X) = 0. Then since S ≥ 0 we
obtain that S ′(−X) ≥ 0 and S ′(x) ≥ 0 for any x ∈ [−X,X]. This proof is
completed.

4.4 Limit procedure X → +∞
In this section we complete the proof of Theorem 2.1. More precisely, for
any X > X0 we consider a solution (i, S) of problem (4.15)-(4.16) and we let
X → +∞ in order to obtain a solution of problem (3.4)-(3.6) together with
the associated limit behavior. Let (Xn)n≥0 be a given sequence of positive
number and tending to +∞ as n grows. We denote by (in, Sn) a solution of
problem (4.15)-(4.16) provided by Proposition 4.6 with X = Xn. Recall that
c > 2

√
α∗ is fixed. So (in, Sn) satisfies the following problem

∂in
∂a

= i′′n + ci′n,

in(a,−Xn) = 0, in(a,Xn) = j(a,Xn),

in(0, x) = Sn(x)Fγ(in)(x),

(4.22)

dS ′′
n + cS ′

n = SnFγ(in),

Sn(−Xn) = 0, Sn(Xn) = S(Xn),
(4.23)

with Fγ(in)(x) =

∫ a†

0

γ(a)in(a, x)da.

We also introduce the following notations

ωn = (−Xn, Xn) and Ωn = (0, a†) × (−Xn, Xn).

Before passing to the limit n → +∞ we will obtain some a priori estimates
independent of n for the solution (in, Sn). For convenience in the sequel we
denote byM a certain constant (which may change) but which is independent
of n.

Lemma 4.7 Let Assumption 3.1 be satisfied, and assume that R0 > 1.
There exist n0 ≥ 0 sufficiently large and some constant M > 0 such that
for any n ≥ n0 we have

∂in
∂x

(a,−Xn) ≥ 0, S ′
n(−Xn) ≥ 0,
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and
∫

ωn

in(a, x)dx+

∫ a†

0

∂in
∂x

(a′,−Xn)da′ + dS ′
n(−Xn) ≤M. (4.24)

Moreover we have for any x ∈ ωn

∫ a†

0

in(a, x)da ≤M. (4.25)

Proof. Let us introduce the quantity Jn(a, x) =
∫ a

0
in(a′, x)da′. Then Jn

satisfies the equation

∂2
xJn(a, x) + c∂xJn(a, x) + Sn(x)Fγ(in)(x) = in(a, x).

On the other hand function Sn satisfies dS ′′
n + cS ′

n − SnFγ(in) = 0 therefore
we deduce that

∂2
xJn + c∂xJn + dS ′′

n + cS ′
n = in(a, x). (4.26)

Integrating this equality over ωn provides that

∂xJn(a,Xn) + cJn(a,Xn) + dS ′
n(Xn) + cSn(Xn)

=

∫

ωn

in(a, x)dx+ ∂xJn(a,−Xn) + dS ′
n(−Xn).

If n is sufficiently large we have Jn(a,−Xn) = 0 and Sn(−Xn) = 0, and since
in ≥ 0 and in(a,−Xn) = 0 we obtain ∂xin(a,−Xn) ≥ 0. In addition we have
Sn ≥ 0 and Sn(−Xn) = 0 that allows us to conclude that

∂xin(a,−Xn) ≥ 0, S ′
n(−Xn) ≥ 0.

Now since Sn(Xn) = S(Xn) and Sn ≥ S we obtain that S ′
n(Xn) ≤ S ′(Xn).

In the same way in(a,Xn) = j(a,Xn) and in ≥ j therefore we have for n
sufficiently large

∂xin(a,Xn) ≤ ∂xj(a,Xn) ≤ 0 S ′
n(Xn) ≤ S ′(Xn).

We conclude that we have the following estimate
∫

ωn

in(a, x)dx+∂xJn(a,−Xn)+dS ′
n(−Xn) ≤ c

∫ a

0

j(a′, Xn)da′+dS′(Xn)+cS(Xn).

22



Finally we conclude that there exists some constant M > 0 such that for
each n ≥ 0 large enough, and for each a ∈ (0, a†),

∫

ωn

in(a, x)dx+

∫ a†

0

∂xin(a′, Xn)da′ + dS ′
n(−Xn) ≤M.

It remains to prove estimate (4.25). We first note that such an estimate is
obvious for x ≥ 0 (because of the inequality in ≤ j̄). By integrating (4.26)
over (−Xn, x) for some x ≤ 0, we obtain

∂xJn(a, x) + cJn(a, x) = − dS ′
n(x) − cSn(x) +

∫ x

−Xn

in(a, x′)dx′

+ ∂xJn(a,−Xn) + dS ′
n(−Xn).

Since Sn is increasing and positive, we obtain using (4.24) that for any x ≤ 0,

∂xJn(a, x) + cJn(a, x) ≤M.

Integrating this differential inequality provides that

Jn(a, x) ≤M,

that completes the proof of estimate (4.25).

Lemma 4.8 Let Assumption 3.1 be satisfied, and assume that R0 > 1. Then
there exist an integer n1 ≥ 0 and some constant M > 0 such that for any
n ≥ n1 we have

in(a, x) ≤ ||γ||∞M, for any (a, x) ∈ [0, a†) × (−Xn, Xn). (4.27)

Moreover we have the following estimates

Fγ(in)(x) ≤M, ∀x ∈ ωn,

∫

ωn

Fγ(in)(x)dx ≤M. (4.28)

Proof. From (4.25) we have for any x ∈ (−Xn, Xn),

Sn(x)

∫ a†

0

γ(a)in(a, x)dx ≤ ||γ||∞M.

Since j(a,Xn) converges towards 0 when n tends to infinity uniformly with
respect to a ∈ [0, a†), we can find n1 ≥ 0 such that j(a,Xn) ≤ ||γ||∞ for any
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a ∈ [0, a†) and n ≥ n1. Therefore from the comparison principle applied to
equation (4.15), and we obtain that for each n ≥ n1, and each (a, x) ∈ Ωn,

in(a, x) ≤ ||γ||∞M,

which completes the proof of (4.27). The first estimate in (4.28) easily follows
from (4.27), and from the fact that γ ∈ L1(0, a†). Next due to (4.24), we
obtain that

∫

ωn

Fγ(in)(x)dx =

∫∫

Ωn

γ(a)in(a, x)dadx ≤M

∫ a†

0

γ(a)da = R0M.

This completes the proof of Lemma 4.8.
Next we prove the following estimate.

Lemma 4.9 Let Assumption 3.1 be satisfied, and assume that R0 > 1. Then
there exists some constant M > 0 such that for any n ≥ n2 := max(n0, n1),
we have

0 ≤ S ′
n(x) ≤M,

∫ a†

0

∂xin(a,Xn)da ≥ −M. (4.29)

Furthermore we have |S ′′
n(x)| ≤M for any x ∈ (−Xn, Xn).

Proof. The estimates for the derivatives of function Sn easily follows
from equation (4.16) together with the uniform bound (4.28).

Lemma 4.10 Let Assumption 3.1 be satisfied, and assume that R0 > 1.
There exists some constant M > 0 such that for any n ≥ n2 we have

∫

ωn

in(a, x)2 + (∂xin)2(a, x)dx ≤M, ∀a ∈ (0, a†), (4.30)

∫∫

Ωn

(∂xin)2(a, x) + (∂ain)2(a, x)dadx ≤M, (4.31)

∫∫

Ωn

(∂2
xin)2(a, x)dadx ≤M. (4.32)

Proof. These estimates follow from classical energy estimates. We mul-
tiply equation (4.22) by in and integrate over ωn. We obtain

1

2

d

da

∫

ωn

in(a, x)2dx+

∫

ωn

(∂xin)2(a, x)dx ≤ 1

2
∂x(j

2)(a,Xn) +
c

2
(j2)(a,Xn).

(4.33)
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Moreover due to (4.28), and Sn ∈ [0, 1], we have
∫

ωn

in(0, x)2dx =

∫

ωn

(
Sn(x)Fγ(in)(x)

)2

dx

≤M

∫

ωn

Fγ(in)(x)dx

≤M.

Therefore integrating (4.33) over (0, a) provides that

1

2

∫

ωn

in(a, x)2dx+

∫ a

0

∫

ωn

(∂xin)2(a′, x)dxda′ ≤M. (4.34)

Next we multiply (4.22) by ∂ain and integrate over (0, a) × ωn. We obtain
that
∫∫

(0,a)×ωn

(∂ain)2(a′, x)da′dx+
1

2

∫

ωn

(∂xin)2(a, x)dx =
1

2

∫

ωn

(∂xin)2(0, x)dx

+

∫ a

0

∂aj(a
′, Xn)∂ain(a′, Xn)da′ + c

∫∫

(0,a)×ωn

∂ain(a′, x)∂xin(a′, x)da′dx.

(4.35)

On the one hand we have
∫ a

0

∂aj(a
′, Xn)∂ain(a′, Xn)da′ =

∫ a

0

(∂aj(a
′, Xn))2da′

≤
∫ a†

0

(∂aj(a
′, Xn))2da′.

Therefore there exists some constant M > 0 such that for any n we have
∫ a

0

∂aj(a
′, Xn)∂ain(a′, Xn)da′ ≤M.

On the other hand we have

∂xin(0, x) = S ′
n(x)Fγ(in)(x) + Sn(x)Fγ(∂xin).

Therefore using (4.29), we obtain

||∂xin(0, .)||2 ≤M ||Fγ(in)||2 +

∫ a†

0

γ(a)||∂xin(a, .)||2da. (4.36)
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The first term in the right hand side in (4.36) can be estimated using (4.28)

||Fγ(in)||2 ≤ ||Fγ(in)||∞||Fγ(in)||1.

The second term in the right hand side of (4.36) can be majorized by using
the Cauchy-Scharwz’s inequality

∫ a†

0

γ(a)||∂xin(a, .)||2da ≤ ||γ||L2(0,a†)||∂xin||L2(Ωn).

As a consequence, due to (4.34) there exists some constant M > 0 that is
independent of n such that

||∂xin(0, .)||L2(0,a†) ≤M. (4.37)

Now by using (4.35), Cauchy-Scharwz’s inequality, (4.34), and (4.37), we
obtain that there exists some constant M > 0 such that

∫∫

(0,a)×ωn

(∂ain)2(a′, x)da′dx+

∫

ωn

(∂xin)2(a, x)dx ≤M. (4.38)

Combining (4.35) and (4.38) provides (4.30) and (4.31). Finally (4.32) follows
from (4.22) together with (4.30) and (4.31). This completes the proof of
Lemma 4.10.

We can now pass to the limit n → +∞. From Lemmas 4.7-4.10 there
exists some constant M > 0 such that for any n sufficiently large we have

∫

ωn

in(a, x)dx ≤M,

∫ a†

0

in(a, x)da ≤M, in(a, x) ≤M, (4.39)

||in||H1((Ωn) + ||in||L2((0,a†),H2(ωn)) ≤M, (4.40)

||Sn||W 2,∞(ωn) ≤M. (4.41)

We set Ω = (0, a†) × R and we can extract from the sequence (in, Sn) a
subsequence, still denoted (in, Sn), tending towards a function (i, S) for the
following topologies

in → i in L2
loc(Ω), almost everywhere,

in H1
loc(Ω) weakly and in L2

loc((0, a†), H
2
loc(R)) weakly

Sn → S in C1
loc(R).

(4.42)
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Moreover from estimates (4.39) and Fatou’s Lemma function i satisfies

∫

R

i(a, x)dx ≤M,

∫ a†

0

i(a, x)da ≤M, i(a, x) ≤M, a.e.. (4.43)

Next from the weak convergence and estimates (4.40) we obtain that

i ∈ H1(Ω) ∩ L2((0, a†), H
2(R)). (4.44)

while function S satisfies

0 ≤ S ≤ 1, S ′ ∈ L∞(R). (4.45)

First of all, since γ ∈ L1(0, a†) and in is uniformly bounded, from Lebesgue’s
dominated convergence theorem, we have

Fγ(in)(x) =

∫ a†

0

γ(a)in(a, x)da→ Fγ(i)(x) for x ∈ R a.e.

Then function S satisfies the equation

dS ′′ + cS ′ − SFγ(i) = 0.

Finally due to (4.43) and (4.45) we obtain that S ′′ ∈ L∞(R).
Now let φ ∈ D([0, a†) × R) be given. Then for n sufficiently large such

that supp (φ) ⊂ [0, a†) × (−Xn, Xn) function in satisfies the equality

∫∫

Ω

φ(0, x)γ(a)Sn(x)in(a, x)dadx =

∫∫

Ω

in(a, x)∂aφ(a, x)dadx

−
∫∫

Ω

∂xin∂xφdadx+ c

∫∫

Ω

∂xinφdadx.

Therefore due to (4.42) we obtain that function i satisfies the equation
∫∫

Ω

φ(0, x)γ(a)S(x)i(a, x)dadx =

∫∫

Ω

i(a, x)∂aφ(a, x)dadx

−
∫∫

Ω

∂xi∂xφdadx+ c

∫∫

Ω

∂xiφdadx,

for any φ ∈ D([0, a†) × R). Then we conclude that i satisfies the following
equation

∂ai = ∂2
xi+ c∂xi in D′((0, a†) × R).
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Note that due to (4.44) each term in this equality belongs to L2(Ω). From
(4.44) we obtain that i(0, x) = S(x)Fγ(i)(x) almost everywhere. Moreover
from (4.43) this equality holds in Lp(R) for any p ≥ 1. Therefore we can
write the function i under the following integral formulation

i(a) = T∆+c∂x
(a)(B), with B(x) = S(x)Fγ(i)(x).

Here T∆+c∂x
(a) is the C0 analytic semigroup generated by the operator ∆ +

c∂x in L2(R). ¿From S ∈ W 2,∞(R), and (4.44) we see that B ∈ W 2,2(R).
Therefore using a similar bootstrap argument as those used in Proposition
4.1 we easily show that (i, S) is a classical solution of problem (4.15)-(4.16)
and that i belongs to C1([0, a†) × R).

Next from the estimates j ≤ in ≤ j̄ and S ≤ S ≤ 1 we conclude that

j ≤ i ≤ j̄, S ≤ S ≤ 1.

This estimate first shows that i is a nonzeros function. Then this implies
that

lim
x→+∞

S(x) = 1, lim
x→+∞

i(a, x) = 0, uniformly with respect to a ∈ [0, a†).

It remains to study the limit when x→ −∞.
Since Sn is an increasing and bounded function for any n ≥ 0 we conclude

that function S is also increasing and bounded. Thus there exists some
constant S+ ∈ [0, 1] such that S(−∞) = S+. It remains to prove that i(., x)
tends to zeros as x → −∞ in the topology of C0

loc([0, a†)). For that purpose
we set ω = (−1, 0) and we consider a sequence (tn) tending to −∞. We
consider the sequence jn(a, x) = i(a, x + tn). From i of the class C1 on
[0, a†) × R we obtain that the sequence jn is bounded in C1([0, a†) × ω).
Therefore from the sequence (tn) we can extract a subsequence still denoted
by (tn) such that (tn) is decreasing, for any n we have tn − tn+1 > 1 and jn
converges towards a function j for the topology of C0

loc([0, a†) × ω). Finally
we have for any a ∈ [0, a†)

+∞∑

n=0

∫

(tn+1,tn)

i(a, x)dx ≤
∫

R

i(a, x)dx. (4.46)

Finally since tn − tn+1 > 1 we obtain that
∫

(tn+1,tn)

i(a, x)dx ≥
∫

ω

jn(a, x)dx. (4.47)
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From (4.43), the serie in the left hand side in (4.46) is convergent we obtain
from (4.47) that

∫

ω

jn(a, x)dx→ 0, for any a ∈ [0, a†) when n→ +∞.

On the other hand we have
∫

ω

jn(a, x)dx→
∫

ω

j(a, x)dx, for any a ∈ [0, a†) when n→ +∞.

Therefore since function j is continuous and positive we conclude that j ≡ 0
and we have that function i tends to zeros when x → −∞ for the topology
of C0

loc([0, a†)).
Finally let us notice that the limit S+ = S(−∞) belongs to [0, 1). Indeed

if S+ = 1 then, since function S is increasing, we obtain S ≡ 1. Therefore
function i is an integrable and positive solution of the equation

∂ai = ∂2
xi+ c∂xi, i(0, x) =

∫ a†

0

γ(a)i(a, x)da.

Since R0 =
∫ a†

0
γ(a)da > 1 we obtain i ≡ 0, in contradiction with the

inequality i ≥ j. This completes the proof of Theorem 3.1.

Remark 4.11 We can notice that we have proved that when R0 > 1, system
(4.15)-(4.16) has a solution for any wave speed c > 2

√
α∗ with α∗ defined in

(4.6). We expect that c∗ = 2
√
α∗ corresponds to the minimal wave speed but

this problem remains for the moment an open question.
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