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Simple Summary: This article aims to study the times series provided by the daily number of
reported cases data for COVID-19. During the COVID-19 pandemic, most people viewed the
oscillations around the exponential growth at the beginning of an epidemic wave as the default
in reporting the data. The residual is probably partly due to the reporting data process (random
noise). Nevertheless, a significant remaining part of such oscillations could be connected to the
infection dynamic at the level of a single average patient. Eventually, the central question we try to
address here is: Is there some hidden information in the signal around the exponential tendency for
COVID-19 data?

Abstract: We start this article by deriving an autoregressive moving average model from a discrete-
time epidemic model involving the age of infection. The deterministic part of such a model is nothing
but a linear scalar delay difference equation. The article’s main idea is to use the spectrum (or part
of the spectrum) associated with this difference equation’s characteristic equation to describe the
data and the model. Next, we present some results of identification of the model’s parameters when
all the eigenvalues are known. We apply these results to the exponential growth phase for Japan’s
third epidemic wave of COVID-19. We start by considering ten days and extend our analysis to one
month. We identify the several shapes for daily reproduction numbers in both cases using only a few
eigenvalues to fit the data.

Keywords: Epidemic models, Time series, Spectral method, Spectral truncation method, Phenomeno-
logical models.

1. Introduction

In the present paper, we reconsider a day-by-day discrete time epidemic model
with age of infection presented in Demongeot et al. [9]. This model is a discrete time
version of the Volterra integral formulation of the Kermack-McKendrick model with age of
infection [21]. The variation of the number of susceptible individuals S(t) is given each
day t = t0, t0 + 1, . . ., by

S(t) = S0 −
t−1

∑
d=t0

N(d), ∀t ≥ t0, (1.1)

where S(t) is the number of susceptible individuals at time t, and N(t) is the daily number
of new infected at time t. Throughout the paper, we use the following convention for the
sum

m

∑
d=k

= 0, whenever m < k.

As a consequence, when t = t0 equation (1.1) gives

S(t0) = S0.
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We assume for simplicity that the epidemic starts from a single cohort of infected at time t0,
then the number of infectious individuals is given by

I(t) =

[
Γ(t− t0)I0 +

t−t0

∑
d=1

Γ(d)× N(t− d)

]
, (1.2)

where I0 is the number of infected individuals at time t0, and Γ(d) is the probability for an
infected to be infectious after d day of infection.

We assume that N(t) the number of new infected at time t is the product of the
transmission rate τ(t) with S(t) the number of susceptible individuals and I(t) the number
of infectious at time t. That is

N(t) = τ(t) S(t) I(t). (1.3)

By replacing I(t) by the right hand side of (1.2) in (1.3), we obtain

N(t) = τ(t)S(t)

[
Γ(t− t0)I0 +

t−t0

∑
d=1

Γ(d)× N(t− d)

]
. (1.4)

Now assuming that t→ τ(t) = τ0 and t→ S(t) = S0 are constant (over a short period of
time), then we define the daily reproduction numbers as

R0(d) = τ0 S0 Γ(d), ∀d ≥ 0.

The quantity R0(d) is the average number of secondary infected produced by a single
infected on the day d since infection (see [9] for more details). Therefore, the basic repro-
duction number is the following quantity

R0 =
n

∑
d=1

R0(d), (1.5)

where n is the maximal duration of the infection.

Moreover when t → τ(t) = τ0 and t → S(t) = S0 are constant, the equation (1.4)
becomes a linear discrete time Volterra integral equation

N(t) = R0(t− t0)× I0︸ ︷︷ ︸
(I)

+
t−t0

∑
d=1

R0(d)× N(t− d)︸ ︷︷ ︸
(II)

, ∀t ≥ t0, (1.6)

where (I) is the number of infected produced directly by the I0 infected individuals already
present on day t0, and (II) is the number of new infected individuals at time t produced by
the new infected individuals since day t0.

If we consider the first terms of the discrete time Volterra equation (1.6), we obtain

N(t0) = R0(0)× I0,

N(t0 + 1) = R0(1)× I0 + R0(1)× N(t0),

N(t0 + 2) = R0(2)× I0 + R0(2)× N(t0) + R0(1)× N(t0 + 1),

N(t0 + 3) = R0(3)× I0 + R0(3)× N(t0) + R0(2)× N(t0 + 1) + R0(1)× N0(t0 + 2),

...
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In practice, we can assume that R0(0) = 0 since infected individuals are not infectious
immediately after being infected. Under this additional assumption, we obtain the system

N(t0) = 0,

N(t0 + 1) = R0(1)× I0,

N(t0 + 2) = R0(2)× I0 + R0(1)× N(t0 + 1),

N(t0 + 3) = R0(3)× I0 + R0(2)× N(t0 + 1) + R0(1)× N0(t0 + 2),

...

Therefore, (1.6) can be rewritten as a scalar delay difference equation

N(t) = R0(1)N0(t− 1) + . . . + R0(t− t0 − 1)N0(t− (t− t0 − 1)) + R0(t− t0)I0, ∀t ≥ t0.
(1.7)

Assume that the infectious period is n days. That is

R0(a) = 0, ∀a ≥ n + 1.

Then by defining t1 = t0 + n + 1, the equation (1.6) becomes

N(t) =
n

∑
d=1

R0(d)× N(t− d), ∀t ≥ t1, (1.8)

with the initial values
N(t) = N0(t), ∀t ∈ [t1 − n, t1]. (1.9)

The goal of this article is to understand how to identify the daily reproduction numbers
d ∈ {1, . . . , n} → R0(d) in (1.8) knowing t ∈ [t1, t2] → N(t) on some finite time interval.
This problem is particularly important to derive the average dynamic of infection at the
level of a single patient.

The literature about parameters identification for epidemic models with age of infec-
tion can be divided in two groups of articles depending on the assumptions made. The
first group assumes that d → Γ(d) is a given function and estimate the time dependent
transmission rate t → τ(t). As a consequence, they obtain the instantaneous (daily or
effective) reproduction number, which is

R0(t) = τ(t)S(t)
n

∑
d=1

Γ(d).

We refer to [1], [2], [3], [8], [14], [15], [29],[30] (and references therein) for more results about
this subject.

The second group corresponds to the assumptions considered here. That is we assume
that t→ τ(t) = τ0 and t→ S(t) = S0 are constant functions (over a short period of time)
and estimate the daily reproduction number. That is the case for the discrete time model in
[46] and more recently for the continuous time model in [9]. The major default in [46] is
that the estimated d → R0(d) does not remain positive. We will have the same problem
is Section 3.1 when we will use the full spectrum. In Section 5, to solve this problem, we
introduce a method using the dominant and secondary eigenvalue only.

This article aims to investigate the shape of the distribution d→ R0(d) from the data
of COVID-19. In Figure 1 we illustrate the notion of U or M shape distribution.
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Figure 1. In this figure, we illustrate the notion of U shape distribution in (a) and M shape distribution in (b).
Recall that R0(d) represents the ability of patients to transmit the pathogen after d days since they got infected.
The U shape or M shape distribution means that patients can transmit the pathogen since the beginning of
their infection. Then they become less infectious in the middle of the infected period. Finally, they become
infectious again at the end of the infected period. The only difference between U and M shape distribution is to
include days 0 and 8 and R0(0) = R0(8) = 0 in the plot.

The U or M shape distribution are well known in the context of influenza [6] [19]. In
Figure 2, we present some figures reflecting patients’ viral load for COVID-19.

(a) (b)

Figure 2. Viral load in COVID-19 real patients [31]. In figure (a) the red curve corresponds to the throat swab
and the blue curve corresponds to the sputum. In figure (b) the curves correspond to several patients (A), (B),
and (C).

Such U shape has not yet systematically studied in COVID-19 data, but observations
of the evolution of the viral load have been done in some patients and show this U-shape.
The Figure 2 shows such a U shaped evolution for the viral load in real [31].

The present work is directly connected to the original work of Peter Whittle in 1951
[49] [50] who introduced the Auto Regressive Moving Average (ARMA) model, after the
seminal paper on time series by N. Wiener [48],

N(t) = K(1)N(t− 1) + K(2)N(t− 2) + . . . + K(n)N(t− n)︸ ︷︷ ︸
Auto regressive part

+ w(t)︸︷︷︸
Moving average part

, (1.10)

where N(t) is the size at time t of the population whose growth is forecasted, the kernel
d→ K(d) has real values, n is the regression order, and here w(t) stands for a noise. The
equation (1.10) has been extensively studied under the denomination of ARMA models by
many authors [5], [26], [34], [35], [36], [42] [43].

Here, we propose a new approach based on the spectral properties of the population
growth equation to capture information from data. Our goal is to estimate the shape of
the daily reproduction numbers d→ R0(d). Spectral methods are not new (see Priestley
[33],[34]). But it usually refers to Fourier transform with frequencies associated to various
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periods, corresponding to a fundamental period and its sub-multiples (harmonics). If we
consider the auto regressive part only, the spectrum of the delay difference equation is
determined by its characteristic equation

λn = K(1)λn−1 + K(2)λn−2 + . . . + K(n− 1)λ + K(n).

The main idea in this article is to use these eigenvalues λ1, λ2, . . . , λn ∈ C (i.e. the solution
of the characteristic equation) to identify the parameters K(1), K(2), . . . , K(n). The eigen-
values λ1, λ2, . . . , λn ∈ C are estimated by some separated method. In section 2 we will see
that when all the eigenvalues are non null and separated two by two then we can compute
the parameters K(1), K(2), . . . , K(n) by using the eigenvalues only.

The idea of using eigenvalues in population dynamics goes back to Malthus [28], who,
in 1798, first identified in a mixture of populations, the one that would impose itself on
the others, because having the exponential growth of exponent the largest, this leading
exponent having been called Malthusian parameter by Fisher [13]. The Malthusian growth
seeming unrealistic, the saturation logistic term, was introduced further by Lambert [24]
and then, extending the initial work by Euler [12], Lotka [27], Leslie [25] and Hahn [17]
gave the current matrix form of the discrete population growth equations.

But as far as we know estimating the subdominant eigenvalues to characterize the
system is new. So the key idea of this work is to use the dominant eigenvalue λ1 and also
the following pair of complex conjugated eigenvalues λ2, λ2 as an estimator to reconstruct
the kernel of the auto regressive part.

This work is motivated by the times series provided by the daily numbers of reported
cases data for COVID-19. During the COVID-19 pandemic, most people viewed the
oscillations around the exponential growth at the beginning of an epidemic wave as the
default in reporting the data. The residual is probably partly due to the reporting data
process (random noise). Nevertheless, a significant remaining part of such oscillations could
be connected to the infection dynamic at the level of a single average patient. Eventually,
the central question we try to address here is: Is there some hidden information in the
signal around the exponential tendency for COVID-19 data? So we consider the early stage
of an epidemic phase, and we try to exploit the oscillations around the tendency in order
to reconstruct the infection dynamic at the level of a single average patient.

We start by investigating the connection between a signal decomposed into a sum of
damped or amplified oscillations and a renewal equation. The prototype example we have
in mind is the following

N(t) = A1eα1t + eα2t[A2 cos(ω2t) + B2 sin(ω2t)] + C, ∀t ≥ t1 − n,

where A1, A2, A3 ∈ R, α1 > 0, α2 ∈ R, and ω2 > 0.

In Figure 3, we illustrate a growing function with damped oscillations (i.e., α2 < 0)
and amplified oscillations (i.e., α2 > 0). It is clear from Figure 3 that a periodic function can
not represent such a signal, and extending such a signal by periodicity would be artificial.
Indeed, the Fourier decomposition would only provide purely imaginary eigenvalues that
would exclude a continuation of the exponential growth (i.e., eigenvalues with non-zero
real parts). To apply wavelets theory (see, for example, in [4]), we need to extend the
data for negative times by symmetry with respect to the initial time t = 0, and we need a
decreasing function (α1 < 0 and α2 < 0).
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Figure 3. We plot an exponentially growing function with (a) damped oscillations, and (b) amplified oscilla-
tions.

Here, we are more interested in the model resulting from the data (i.e., R0(d) ≥ 0, ∀d =
1, . . . , n) than in the fit to the data. The major problem with the Fourier method is that
this method provides only eigenvalues with zero real parts (that is due to the periodicity
required for this method). Such eigenvalues are well adapted to a periodic signal, but
this does not suitable to describe for example an ever-growing function (as in Figure
3). Consequently, the Fourier method is not well adapted to derive a non-negative daily
reproduction numbers (i.e., R0(d) ≥ 0, ∀d = 1, . . . , n).

Previous analogous approaches can be found in the seismic data modeling and statis-
tical literature, like the Wiener-Levinson predictive deconvolution (Robinson [38], Peacock
and Treitel [32], Robinson and Treitel [39]) which intends to estimate the minimum phase
wavelet in the data, in particular in the case where the relatively weak sampling does not
make it possible to affirm the Gaussian character of the errors (Walden and Hosken, [47]).
If the Gaussian character of the errors can be proven, another similar approach is that of
the Geometric Brownian Motion (GBM) processes (Vinod et al. [45]) used for example in
the analysis of financial data (Ritschel et al., [37]), which are based on the model of the
solution of a stochastic differential equation, multiplied by a periodic component with a
Gaussian noise.

The plan of the paper is the following. Section 2 is devoted to the material and
methods. We introduce some notions of matrices and spectra. We also present some
phenomenological models that will be compared to the data. Section 3 contains the results.
We fit the phenomenological models to the cumulative numbers of reported cases in Japan
over 10 days and 30 days. We use the eigenvalues derived from the phenomenological
model, and we identify the daily reproduction numbers by using: 1) all the spectrum
(see Appendix); 2) part of the spectrum. The last section of the paper is devoted to the
discussion and the conclusion. We present in the Appendices all the mathematical aspects
of the paper.

2. Materials and Methods
2.1. Identification of the model

The Leslie matrix associated to the difference equation (1.8) is

L =


R0(1) R0(2) R0(3) R0(n)

1 0 0 0
0 1 0 0

0 0 1 0

. (2.1)
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The characteristic equation of (2.1) is

λn =
n

∑
d=1

R0(d)λn−d, (2.2)

for λ ∈ C, which is equivalent to (whenever λ 6= 0)

1 =
n

∑
d=1

R0(d)λ−d.

The complex numbers satisfying the characteristic equation are called the eigenvalues of L.

In Appendix 5 and Appendix 6 we discuss the identification problem of the daily repro-
duction numbers R0(1), . . . , R0(n) by using the eigenvalues of L. The main identification
result of the Appendix 6 corresponds to the formula (6.3).

Definition 1. We will say that L is a Markovian Leslie matrix if all the values d ∈ [1, n] →
R0(d) are non negative, and

n

∑
d=1

R0(d) = 1.

2.2. Phenomenological model to fit the cumulative and the daily numbers of reported case data

Due to Lemma 11, we propose the following the phenomenological model to represent
the data

CR(t) = CR1eλ1t + CR2eλ2t + CR3eλ3t + . . . + CRmeλmt,

where CR1, . . . , CRm ∈ C are non null, λ1 = α1 + iω1, . . . , λm = αm + iωm ∈ C are two by
two separated, and m ≤ n.

Remark 2. In the above formula, we allow the constant terms whenever λn = 0.

Assuming that the unit of time is one day, we have the following relationship between
the cumulative number of cases CR(t) and the daily number of cases N(t)

CR(t) = CR(t0) +
∫ t

t0

N(σ)dσ.

We deduce that the daily number of of reported cases has the following form

N(t) = N1eλ1t + N2eλ2t + N3eλ3t + . . . + Nmeλmt,

where N1, . . . , Nm ∈ C are non null, and λ1, . . . , λm ∈ C are two by two separated, and
m ≤ n.

Since N(t) is obtained from CR(t) by computing the first derivative, we have the
following relationship

Nk = CRk × λk, ∀k = 1, . . . , m.

Remark 3. For the daily number of cases data t→ N(t) only a few eigenvalues will be tractable.
For example in Section 3.3, we will consider the following extension

N(t) = N1eλ1t + N2eλ2t + N3eλ3t + N3eλ3t + N4eλ4t + w(t)

where w(t) will contain N5eλ5t + . . . + Nmeλmt merged together with some random term.

Remark 4. The identification of the eigenvalues λ1, . . . , λm as parameters of the phenomenological
model is discussed in Appendix 3.3. So far, this problem for a finite time interval seems to be open.
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We will first approach the data with the following phenomenological model.

Phenomenological model for the cumulative numbers of reported cases with λ > 0

We start with a first eigenvalue λ = eα > 0, for some α ∈ R. The phenomenological model
used to fit the cumulative numbers of reported cases has the following form

CR(t) = Aeα(t−t0) + C, for t ∈ [t0,+∞), (2.3)

where A ∈ R, α ∈ R, and C ∈ R are real numbers.

For discrete times, that is also equivalent to say that

CR(n) = Aλn + C, for n = 0, 1, 2, . . . . (2.4)

By computing the first derivative of t→ CR(t), we obtain a model for the daily number of
cases of the following form

N(t) = A α eα(t−t0), for t ∈ [t0,+∞). (2.5)

Once obtained the best fit of the above phenomenological model to the data, we can
subtract this model to the data t→ CRData(t) , then we obtain a first residual

Residual(t) = CRData(t)−CR(t).

Next we will approach the residual with the following phenomenological model.

Phenomenological model for the cumulative numbers of reported cases with λ ∈ C

Assume that the eigenvalues are two conjugated complex numbers λ = eα±iω ∈ C, for some
α ∈ R and ω ≥ 0. The phenomenological model used to fit the cumulative numbers of
reported cases has the following form

CR(t) = eα(t−t0)[A cos(ω(t− t0)) + B sin(ω(t− t0))] + C, for t ∈ [t0,+∞), (2.6)

where α ∈ R, A ∈ R, B ∈ R, C ∈ R, and ω ≥ 0 are four real numbers.

For discrete times, that is also equivalent to say that

CR(n) =
A− iB

2
λn +

A + iB
2

λ
n
+ C, for n = 0, 1, 2, . . . . (2.7)

By computing the first derivative of t→ CR(t), we obtain a model for the daily number of
cases of the following form

N(t) = eα(t−t0)
[

Â cos(ω(t− t0)) + B̂ sin(ω(t− t0))
]
, for t ∈ [t0,+∞), (2.8)

where {
Â = αA + ωB
B̂ = −ωA + αB

⇔


A =

αÂ−ωB̂
ω2 + α2

B =
ωÂ + αB̂
ω2 + α2

. (2.9)

Remark 5. When ω = 0 in (2.6), we obtain the previous model (2.3).

2.3. Cumulative and daily number of reported cases for COVID-19 in Japan

Here we use cumulative numbers of reported cases for COVID-19 in Japan taken from
WHO [52]. The data shows a succession of epidemic waves (blue background color regions)
followed by endemic periods (yellow background color regions).
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Figure 4. In this figure, we plot the cumulative number of reported cases (left hand side) and daily number of
reported cases (right hand side) for COVID-19 in Japan. Black dots represent the data. The blue background
color regions correspond to epidemic phases, and the yellow background color region to endemic phases. The
region of interest to apply the method is between October 19 and October 29 2020. This region is marked with
light green vertical lines on the figure.

3. Results
3.1. Methods applied to ten days data

In this section, we will fit the phenomenological model (2.3) or (2.6) to the cumulative
numbers of reported cases presented in the previous subsection. We consider a period of
10 days since the beginning of the third epidemic wave of COVID-19 in Japan. The period
goes from October 19 to October 29 2020.

Step 1: In Figure 5, we fit an exponential function (2.3) to the cumulative number of
reported cases of COVID-19 in Japan between October 19 and October 29 2020.
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Oct 19 Oct 20 Oct 21 Oct 22 Oct 23 Oct 24 Oct 25 Oct 26 Oct 27 Oct 28 Oct 29

2020   

9.3

9.4
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9.7

9.8

10
4

A
1
  e 1

 t
+C

1

CR(t)

Figure 5. In this figure, the black dots correspond to the cumulative numbers of reported cases of COVID-19
in Japan between October 19 and October 29 2020 (black dots). The red curve corresponds to the best fit of
model (2.3) to the cumulative numbers of reported cases.

In Figure 5, the best fit of model (2.3) is obtained for

A1 = 2.881× 104, C1 = 6.4173× 104, and α1 = 0.0185.

Hence
λ1 = exp(α1) = 1.0187.

Step 2: Next, we consider the residual left after the previous fit,

Residual1(t) = CR(t)−
[
A1eα1t + C1

]
.

In Figure 6, we fit the model (2.6) to the first residual function t→ Residual1(t).

Oct 19 Oct 20 Oct 21 Oct 22 Oct 23 Oct 24 Oct 25 Oct 26 Oct 27 Oct 28 Oct 29

2020   

-400

-200

0

200

400

600

800
e 2

 t
 (A

2
 cos(

2
 t)+ B

2
 sin(

2
 t))+C

2

Error
1
(t)

Figure 6. In this figure, the black dots correspond to the function t → Residual1(t) from October 19 and
October 29 2020 (black dots). The red curve corresponds to the best fit of model (2.6) to Residual1(t).

In Figure 6, the best fit of model (2.6) is obtained for

A2 = 138.1625, B2 = −127.3613, C2 = 11.8779, α2 = −0.0738, and ω2 = 0.9507.

The period associated to ω2 is equal to P2 =
2π

ω2
= 6.609 days. This periodic phenomenon

was observed in many countries (see for example [10]). Here

λ2 = exp(α2 + i ω2) = 0.5398 + 0.7560 i,
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λ3 = exp(α2 − i ω2) = 0.5398− 0.7560 i.

By using

M =

λ−1
1 λ−2

1 λ−3
1

λ−1
2 λ−2

2 λ−3
2

λ−1
3 λ−2

3 λ−3
3

,

and by (6.3) we obtain R0(1)
R0(2)
R0(3)

 =

 2.0982
−1.9625
0.8789

. (3.1)

Moreover, we obtain
det(M) = 1.7833 i,

therefore the components of M−1 are not too large, and the above result should not be
too sensitive to the stochastic errors. The main problem in (3.1) is the second component
−1.9625 which is not making sense in this context.

3.2. Spectral truncation method applied to ten days data

In the previous subsection, the first two fits make perfect sense. But adding more fits
would be questionable because the rest is becoming more and more random after a few
steps. We could alternatively continue to fit the rest by using our phenomenological model,
which would provide new eigenvalues.

The major problem in the previous section is that when we apply formula (6.3) with
all the eigenvalues, we obtain some R0(1), . . . , R0(n) with negative values. Instead here,
we increase the dimension n of L, and we use only the eigenvalues λ1, λ2, λ3.

3.2.1. Re-normalizing procedure

Assume that λ1 6= 1 then by

N(t) =
N(t)
λt

1
⇔ N(t) = λt

1 × N(t)

where t→ N(t) is a solution of (1.8), we obtain the following normalized equation

λt
1 × N(t) =

n

∑
d=1

R0(d)× λt−d
1 × N(t− d), ∀t ≥ t1,

and by dividing the above equation by λt
1 we obtain

N(t) =
n

∑
d=1

R0(d) N(t− d), ∀t ≥ t1.

where
R0(d) = R0(d)λd

1, ∀d = 1, . . . , n. (3.2)

By using the procedure, we can always fix the dominant eigenvalue of L to 1 by impos-
ing that L is Markovian. Then we use the following re-normalizing procedure for the
eigenvalues

λ?
1 = λ1/λ1 = 1, λ?

2 = λ2/λ1 = 0.5299 + 0.7421 i, and λ?
3 = 0.5299− 0.7421 i.

In Figure 7, we fit these eigenvalues λ?
2 and λ?

3 with the spectrum of Markovian Leslie
matrices L on a mesh. We observe that the fit improves when the dimension of L increases.



Biology 2022, 1, 0 12 of 30

(a) (b)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(c) (d)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 7. We plot the spectrum of the Markovian Leslie matrices L (red dots) when n = 3, 5, 6, 7, (respectively
in (a),(b),(c),(d)) giving the best match to the secondary eigenvalues λ?

2 and λ?
3 (green dots). We observe that

the best fit of the two secondary eigenvalues remain faraway from λ?
2 and λ?

3 for n = 3, then get closer for
n = 5, and are very close for n = 6 and n = 7.

In Figure 8, we observe that for n ∈ {3, 5, 6}, we deduce that there is a unique set
of eigenvalues λ1, λ2, λ3, . . . , λn of L (classified with decreasing real part) minimizing the
distance |λ?

2 − λ2| and |λ?
3 − λ3|. This is no longer true for n = 7.
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(c) (d)
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Figure 8. We plot the spectrum of the Leslie matrix L (red dots) when n = 3, 5, 6, 7, (respectively in
(a),(b),(c),(d)) giving the best match to the secondary eigenvalues λ?

2 and λ?
3 (green dots). The red dots

correspond to the spectrum of L for all the possible matrices L, having their second pair of eigenvalues close to
the minimal distance to λ?

2 and λ?
3 .
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3.2.2. Daily basic reproduction numbers

(a) (b) (c)

2 4 6
0

0.2

0.4

0.6

0.8

1
95% Confidence Interval

Standard Deviation

Average

2 4 6
0

0.5

1

Figure 9. In this figure, we use the distributions d→ R0(d) minimizing the distance |λ?
2 − λ2| and |λ?

3 − λ3|
whenever n = 7. In Figure (a), we plot the average distribution d→ R0(d) (red curve), standard deviation
(blue region), and 95% confidence interval (light blue region). In Figure (b) we plot the 24 distributions
d→ R0(d). In Figure (c) we give an histogram with the multiple values ofR0. We observe that some of the
d→ R0(d) are similar to the case n = 6, with a maximum on day d = 6. But on average the maximum value
in on day 7.

(a) (b)

1 2 3
0

0.5
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1 2 3 4 5
0
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(c) (d)

1 2 3 4 5 6
0
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1

1 2 3 4 5 6 7
0

0.5
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Figure 10. We plot the daily basic reproduction numbers R0(d) obtained for n = 3 in (a), n = 5 in (b), n = 6
in (c), and n = 7 in (d). The distribution for n = 7 corresponds to the red curve in Figure 9.

n 3 5 6 7
R0 1.0264 1.0469 1.0658 1.0780

Table 1: The above reproduction numbers are obtained by using the formula ∑n
d=1 R0(d).

We can notice that following [53], the effective R0 is between 1.06 and 1.14 on October
19, 2020, in Japan.
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3.2.3. Applying the model to daily number of reported cases

The model used to run the simulations is the following

N(t) =
6

∑
d=1

R0(d)N(t− d), ∀t ≥ t0 + 6, (3.3)

and according to the formula (2.5) and (2.8), with the initial condition

N(t) = A1 ln(λ1)λ
t
1 + eα2t[Â2 cos(ω2t) + B̂2 sin(ω2t)], ∀t = t0, t0 + 1, . . . , t0 + 5, (3.4)

with
Â2 = α2 A2 + ω2B2 and B̂2 = −ω2 A2 + α2B2. (3.5)

In (3.3)-(3.5) we use the parameter values estimated in Section 3.1.

Oct 19 Nov 02 Nov 16

2020   

500

1000

1500

2000 Data

Model

Figure 11. In this figure we plot the daily number of reported cases data from October 19 and November 19
2020 (black dots) and from model (3.3)-(3.4) with the values of R0(d) obtained in Figure (10)-(c) (red dots).

3.3. Extension of the spectral truncation method over one month

In Figures 12 we apply respectively the autocorrelation function (ACF) and partial
autocorrelation function (PACF) to the daily number of cases for Japan from October 19
and November 19 2020. It does not look like any standard cases. In the (ACF), we observe
the correlation is significant until 7 days, while in the (PACF) it is until 16 days.
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Figure 12. Autocorrelation Function (ACF) (left hand side) and Partial Autocorrelation Function (PACF)
(right hand side) applied to the daily number of cases for Japan between October 19 and November 19 2020.

Step 1: In Figure 13, we fit the model

φ1(t) = A1eα1(t−t0) + C1, (3.6)

with the cumulative number of reported cases data between October 19 and November 19
2020.

x
Oct 19 Oct 26 Nov 02 Nov 09 Nov 16

2020   

0.95

1

1.05

1.1

1.15

1.2

1.25
10

5

A
1
  e 1

 t
+C

1

CR(t)

Figure 13. In this figure, we plot the cumulative number of reported cases data between October 19 and
November 19 2020 (black dots). We plot the best fit of the model (3.6) to the cumulative data (red curve).

We obtain the following parameter values for the best fit

A1 = 7.9290× 103, C1 = 8.5508× 104, and α1 = 0.0501. (3.7)
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Step 2: Next we define as before the first residual

Residual1(t) = CR(t)− A1eα1(t−t0) + C1, (3.8)

and we fit the Residual1(t) with the model

φ2(t) = eα2(t−t0)[A2 cos(ω2(t− t0)) + B2 sin(ω2(t− t0))]

+eα3(t−t0)[A3 cos(ω3(t− t0)) + B3 sin(ω3(t− t0))] + C2.
(3.9)

Oct 19 Oct 26 Nov 02 Nov 09 Nov 16

2020   

-600
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-200

0

200
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800  e 2
 t
 (A

2
 cos(

2
 t)+ B

2
 sin(

2
 t))+e 3

 t
 (A

3
 cos(

3
 t)+ B

3
 sin(

3
 t))+C

2

Error
1
(t)

Figure 14. In this figure, we plot the cumulative number of reported cases data between October 19 and
November 19 2020 (black dots). We plot the best fit of the model (3.9) to the cumulative data (red curve).

The parameters of the phenomenological model φ2(t) obtained for the best fit are the
following

A2 = 55.2075, B2 = −84.4842, A3 = −391.5688, B3 = 88.7878, C2 = 7.6835, (3.10)

and
α2 = 0.0501, ω2 = 0.9080, α3 = −0.0198, ω3 = 0.2958. (3.11)

The periods associated to ω2 and ω3 are

P2 =
2π

ω2
= 6.9198 days, and P3 =

2π

ω3
= 21.2425 days.

These periods are close multiples of 7 days.

Remark 6. It is important to note that the period P3 of 21 days is difficult to explain mechanically,
but this value is the smallest value giving the best fit to the data. We tried to impose some upper
bounds smaller than 21 days. In such a case P3 is always replaced by the upper bound. This is
true for all constraints less that 21 days, and for each constraint larger than 22 days, we obtain
P3 = 21.24 days.

Remark 7. It is important to note that α1 = α2. That is because during the fit we impose that
α2 ≤ α1 and α3 ≤ α1. That is the condition coming from the Perron Frobenius theorem, in order to
obtain

|λ2| ≤ |λ1| and |λ3| ≤ |λ1|.

This condition is coming from the fact that λ1 must be the spectral radius of L and λ2, λ3 belong to
the circle centered at 0 and with the radius equal to the spectral radius of L (i.e. with a modulus less
or equal to λ1).
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Eigenvalues associated to the model φ1(t) and φ2(t): The first eigenvalue is

λ1 = eα1 = 1.0514.

The second pair of complex conjugated eigenvalues is

λ2 = eα2 [cos(ω2) + i sin(ω2)] = 0.6470 + 0.8288 i,

and the modulus of λ2 is

|λ2| = eα2 = eα1 = λ1 = 1.0514.

The fourth eigenvalue is

λ4 = eα3 [cos(ω3) + i sin(ω3)] = 0.9386 + 0.2865 i.

and its modulus us
|λ4| = eα3 = 0.9804 < 1.0514.

Using λ2 and λ4 as an estimator: Next we consider all the matrices L in which the
component R0(d) is replaced by R0(d), and we assume that

n

∑
d=1

R0(d) = 1.

The dominant eigenvalue of L is 1, and we look for matrices such that the second eigenvalue
of L is close to

λ?
2 = λ2/λ1,

and the fourth eigenvalue of L is close to

λ?
4 = λ4/λ1.

For realizing this approach, we minimize the

χ(L) = max(d(λ?
2 , σ(L)), d(λ?

4 , σ(L)))

where
d(λ?

2 , σ(L)) = min
λ∈σ(L)

|λ?
2 − λ|, and d(λ?

4 , σ(L)) = min
λ∈σ(L)

|λ?
4 − λ|,

where σ(L) is the set of all eigenvalues of L.

In the Figure 15 we consider the d → R0(d) such that the corresponding maximum
satisfies

χ
(

L(R0)
)
≤ inf

R0≥0:∑ R0(d)=1
χ
(

L(R0)
)
+ 10−2.
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Figure 15. In this figure, we consider the case n = 25. We plot the distributions of daily basic reproduction
numbers d → R0(d) corresponding to the distributions having some secondary eigenvalues and fourth
eigenvalues at a distance less than 10−2 to the best match. The red curve is the average distribution d→ R0(d).
The blue region corresponds to the standard deviation around the mean distribution. The light blue region
corresponds to the 95% confidence interval.

We define
R0(d) = R0(d)λd

1, ∀d = 1, . . . , n. (3.12)

In Figure 16, we obtain a good description of the dynamic of infection at the individual
level that confirms the one obtained over shorter periods. As expected, the average patient
first looses its ability to transmit the pathogen, and after decreasing by day 1 to day 4, R0(d)
increases between day 4 and day 7. Day 7 is a maximum. After the day 7, R0(d) decays
until day 9. Then a second peak arises, with a maximum on the day 14. We could explain
this second peak by supposing that an important transmission of pathogen still exists from
day 12 to day 16. We also obtain a third from day 19 to 23 with a maximum value on day
21.

5 10 15 20 25
0

0.5

1

1.5
95% Confidence Interval

Standard Deviation

Average

Figure 16. In this figure, we consider the case n = 25. We plot the distributions of daily basic reproduction
numbers d→ R0(d) = R0(d)λd

1, where R0(d) is the red curve in Figure 15.
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Figure 17. In this figure, we consider the case n = 25. We plot the spectrum of the Leslie matrix L (red dots)
when n = 25 and d→ R0(d) corresponds to the average distribution (i.e. the red curve in Figure 15).

The basic reproduction number is obtained by summing the

R0 =
n

∑
d=1

R0(d).

We obtain the sum of the daily reproduction numbers (red curve in the Figure 16)

R0 = 2.1316.

Figure 18. In this figure, we consider the case n = 25, and we plot a histogram for the values of the basic
reproduction number obtained by summing the distributions d→ R0(d) from Figure 16.

Next we consider

N(t) =
25

∑
d=1

R0(d)N(t− d), ∀t ≥ t0 + 25, (3.13)

and accordingly to the formula (2.5) and (2.8), with the initial condition for t = t0, t0 +
1, . . . , t0 + 25, we have

N(t) = A1 ln(λ1)λ
t
1 + eα2t[Â2 cos(ω2t) + B̂2 sin(ω2t)] + eα3t[Â3 cos(ω3t) + B̂3 sin(ω3t)],

(3.14)
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with

Â2 = α2 A2 + ω2B2, B̂2 = −ω2 A2 + α2B2, Â3 = α3 A3 + ω3B3 and B̂3 = −ω3 A3 + α3B3.
(3.15)

In (3.3)-(3.5) we use the parameter values estimated in Section 3.1.

In Figure 19, we see the mean distribution d→ R0(d) permits to produce oscillations
around the tendency for the daily number of cases. It is important to note that without the
third peak in Figure 16 we do not obtain such a good correspondence between the model
and the data.
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Figure 19. In this figure we plot the daily number of reported cases data between October 19 and November 19
2020 (black dots). The red curve corresponds to φ′1 + φ′2, and the green dots correspond (3.13)-(3.14) whenever
R0(d) comes from the is the average distribution (i.e. the red curve in Figure 15). We observe a very good
match between the green dots and the red curve (the phenomenological model).

4. Discussion

In this article, we start by investigating the connection between a signal decomposed
into a sum of damped or amplified oscillations and a renewal equation. Namely, we
connect the daily number of reported cases written as

N(t) = N1eα1t[cos(ω1t) + i sin(ω1t)] + . . . + Nneαnt[cos(ωnt) + i sin(ωnt)], ∀t ≥ t1 − n,

with the renewal equation

N(t) =
n

∑
d=1

R0(d)× N(t− d), ∀t ≥ t1.

In the context of epidemic time series, a spectral method usually refers to the Fourier
decomposition of a periodic signal. In the present paper, the data are not periodic and are
composed of an exponential function (Malthusian growth) perturbed with some damped
oscillating functions. So we use complex numbers with non-null real parts. We refer to
Cazelles et al. [4] for more results about time series.

4.1. Data over ten days

We can notice on Figure 9, Figure 10, and Table 1 that the daily reproduction number
as well as the instantaneous reproduction number are estimated. Concerning the instanta-
neous (or effective) reproduction number Re(t) [7],[40] estimated by [53], which equals 1.1
at the 19th of October 2020, the best fit corresponds to n = 7 days (see (c) in Figure 9). This
value of the duration of the contagiousness period is close to the values 6 or 7 days and are
close to the values estimated from the virulence measured in [22] [31] [20]. In Figure 10, we
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always obtain a U-shape distribution for the curve of daily reproduction numbers. This
corresponds to the biphasic form of the virulence already observed in respiratory viroses,
such as influenza as recalled in the Introduction.

This temporal behavior of the contagiousness can correspond to the evolution of
contagious symptoms like cough or spitting, which diminish during the innate immune
response, followed by a comeback of the symptoms before the adaptive immune response
(whenever the innate defense has been overcome by the virus). If the innate cellular
immunity has been not sufficient for eliminating the virus, the viral load anew increases
causing a reappearance of the symptoms before the adaptive immunity (cellular and
humoral) occurs, which results in a transient decrease in contagiousness between the
two immunologic phases. The medical recommendations are, in case of U-shape of the
contagiousness, never to take a transient improvement for a permanent disappearance of
the symptoms and to stay at home to avoid a bacterial secondary infection possibly fatal.

The estimation of the daily reproduction numbers in COVID-19 outbreak constitutes
an important issue. At the public health level, to publish only the sum of the daily
reproduction numbers, that is to say the basic reproduction number R0 or the effective
reproduction number Re, could suffice for controlling and managing the behavior of a
whole population with mitigation or vaccination measures. At the individual level, it is
important to know the existence of a minimum of the daily reproduction numbers, which
generally corresponds to a temporary clinical improvement, after a partial success of the
innate immune defense: this makes it possible to advice the patient to continue to respect
his own isolation, prevention and therapy choices (depending on his vaccination state)
even if this transient clinical improvement has occurred. The present methodology allows
also to estimate both the individual contagiousness duration in a dedicated age class and
also its seasonal variations, which is crucial for optimizing the benefit-risk decisions of the
public and individual health policies.

4.2. Data over one month

Over one month, we obtain a daily reproduction number with three peaks. Each
peak is centered respectively on 7 days, 14 days, and 21 days. These quantities coincide
with the period of 7 days and 21 days obtained in Figure 14 in fitting the first residual
when we subtract the exponential growth first fit to the cumulative data. As far as we
understand the problem, that is the period of 21 days in the data, which induces the third
peak. This third peak is very suspicious. Nevertheless, the data lead us to such a shape for
the daily reproductive number. We also tried to run Figure 19 without the third peak, and
we obtained a really bad fit to the data, while with this third peak, the fit is really good.
One may also note that the 21 day period is insignificant for the ACF and the PACF in
Figures 12.

Several possibilities exist to explain this strange shape for the daily reproduction
number using the data over one month. One possible explanation is that the Japanese
population should be subdivided into several groups having very different infection
dynamics (at the level of a single patient). Here we have in mind the patient with a short
infection period but high transmissibility (super spreaders) versus the patient with a long
infection period with mild symptoms.

We suspect that such a shape for the daily reproduction number could be attributed
to the time since infection to report a case. The daily number of reported cases would be
obtained from N(t) the daily number of new infected cases by using the following model

D(t) = f
q

∑
d=1

K(d)N(t− d),
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where f ∈ [0, 1] is the fraction reported, and K(d) ≥ 0 is the probability to report a case
after d days. Therefore we must have

q

∑
d=1

K(d) = 1.

4.3. Perspectives and conclusion

In the present paper, we only consider the Japanese data in the exponential phase of
the third epidemic wave.

The case of Japan seems emblematic to us, as it corresponds to a wave of well-identified
new cases following a clearly characterized endemic phase. The exponential growth
phenomenon being transitory, this explains the relatively limited duration of the sampling,
which corresponds to a period in days during which the epidemiological parameters (such
as the transmission rate) can be considered as constant. It is in such circumstances, where
the Gaussian nature of the errors is difficult to prove, due to the small sampling, that similar
methods based on wavelets have been proposed (Walden and Hosken [47]).

The method of the present paper should be applied to several countries for each
epidemic wave to obtain a more systematic study. For the moment, over one month, we
got a shape for the daily reproduction number that follows the data very well. But we
are suspicious about the third peak. We suspect that the default of our analysis is coming
from the model itself. Such a question has been recently studied by Ioannidis and his
collaborators in [18], and we believe that we are facing such modeling difficulties.
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Appendix

5. Non identifiability result

From the above formula, we deduce that (2.2) has exactly one positive eigenvalue. By
the Perron-Frobenius theorem applied to the Leslie matrix L, we know that (by considering
the norm of linear operator)

r(L) := lim
n→+∞

‖Ln‖1/n
L(R) > 0,

the spectral radius of L is the unique positive solution of (2.2). Moreover all the remaining
eigenvalues have a modulus smaller or equal to r(L). We refer to [11, Chapter 4] for more
results about this subject.

Non identifiability result: Let λ? > 0 and N? 6= 0. Then

N(t) = N?λt−t1
? , ∀t ≥ t1,

is a known solution of (1.8) if and only if λ? is a solution of the characteristic equation.
Assume that d ∈ [1, n]→ R?(d) ≥ 0 is given, and satisfies

n

∑
d=1

R?(d) > 0.

Then if we define

R0(a) =
R?(a)

∑n
d=1 R?(d)λ−d

?

, ∀a = 1, . . . , n,

we deduce that the equation (2.2) is satisfied for λ = λ?, and N(t) = N?λt−t1
? is a solution

of (1.8). We conclude that a single function N(t) = N?λt−t1
? is not enough to identify

R0(1), R0(2), R0(3), . . . , R0(n).

6. Identifiability result

Assumption 8. Assume that λ1, . . . , λn ∈ C are nonzero complex numbers, and are separated
two by two. That is

λi 6= 0, ∀i = 1, . . . , n.

and
λi 6= λj, whenever i 6= j.

Remark 9. Since the coefficients of the characteristic equation (2.2) are all real, we could also
impose that the conjugate of each eigenvalue belongs to the spectrum. That is

λi ∈ {λ1, . . . , λn}, ∀i = 1, . . . , n.

But that is not necessary in this subsection.

Remark 10. When all the eigenvalues are real, the above assumption will be satisfied if and only if
λ1, . . . , λn ∈ R are nonzero real numbers which are separated two by two. Up to a permutation,
that is

λi 6= 0, ∀i = 1, . . . , n,

and
λ1 < λ2 < . . . < λn.
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Lemma 11. Let Assumption 8 be satisfied. Assume that each λi satisfies the characteristic equa-
tion (2.2). Then the Leslie matrix L defined by (2.1) is diagonalizable and invertible, for each
U1, U2, . . . , Un ∈ C,

U(t) = U1λt
1 + U2λt

2 + . . . + Unλt
n, ∀t ≥ t1 − n,

is a solution of (1.8). That is to say

U(t) =
n

∑
d=1

R0(d)×U(t− d), ∀t ≥ t1.

Identification of the components Ui from the values of t → N(t): Assume that the
values of N(t) are given for t = t1, . . . , t1 + n − 1. We claim that we can compute
U1, U2, U3, . . . , Un ∈ C. Indeed

N(t1) = U1λt1
1 +U2λt1

2 + . . . + Unλt1
n ,

N(t1 + 1) = U1λt1+1
1 +U2λt1+1

2 + . . . + Unλt1+1
n ,

...
N(t1 + n− 1) = U1λt1+n−1

1 +U2λt1+n−1
2 + . . . + Unλt1+n−1

n ,

can be rewritten as the system
N(t1)

N(t1 + 1)

N(t1 + n− 1)

 =


λt1

1 λt1
2 λt1

n

λt1+1
1 λt1+1

2 λt1+1
n

λt1+n−1
1 λt1+n−1

2 λt1+n−1
n




U1
U2

Un

. (6.1)

The determinant of the above Vandermonde like matrix

det


λt1

1 λt1
2 λt1

n

λt1+1
1 λt1+1

2 λt1+1
n

λt1+n−1
1 λt1+n−1

2 λt1+n−1
n

 = λt1
1 λt2

2 . . . λtn
n ∏

1≤i<j≤n

(
λi − λj

)
.

Therefore under Assumption 8 this determinant is non null, and we obtain the following
result.

Proposition 12. Let Assumption 8 be satisfied. Then we can compute the components U1, . . . , Un
in function of the given elements of the trajectory N(t1), . . . , N(t1 + n− 1) by solving the linear
system (6.1), and

U1
U2

Un

 =


λt1

1 λt1
2 λt1

n
−1

λt1+1
1 λt1+1

2 λt1+1
n

λt1+n−1
1 λt1+n−1

2 λt1+n−1
n




N(t1)
N(t1 + 1)

N(t1 + n− 1)

.
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Identification of the component R0(d) from the λi: By assuming that each λi is a solution
of the characteristic equation (2.2), we obtain

1 = R0(1)λ−1
1 + R0(2)λ−2

1 + . . . + R0(n)λ−n
1 ,

1 = R0(1)λ−1
2 + R0(2)λ−2

2 + . . . + R0(n)λ−n
2 ,

...
1 = R0(1)λ−1

n + R0(2)λ−2
n + . . . + R0(n)λ−n

n ,

(6.2)

which rewrites in the matrix form as
1
1

1

 =


λ−1

1 λ−2
1 λ−n

1
λ−1

2 λ−2
2 λ−n

2

λ−1
n λ−2

n λ−n
n




R0(1)
R0(2)

R0(n)

.

Under Assumption 1.8 the Vandermonde like matrix
λ−1

1 λ−2
1 λ−n

1
λ−1

2 λ−2
2 λ−n

2

λ−1
n λ−2

n λ−n
n


is invertible, because

det


λ−1

1 λ−2
1 λ−n

1
λ−1

2 λ−2
2 λ−n

2

λ−1
n λ−2

n λ−n
n

 = λ−1
1 λ−1

2 . . . λ−1
n det


1 λ−1

1 λ
−(n−1)
1

1 λ−1
2 λ

−(n−1)
2

1 λ−1
n λ

−(n−1)
n


hence

det


λ−1

1 λ−2
1 λ−n

1
λ−1

2 λ−2
2 λ−n

2

λ−1
n λ−2

n λ−n
n

 = λ−1
1 λ−1

2 . . . λ−1
n ∏

1≤i<j≤n

(
λ−1

i − λ−1
j

)
6= 0.

Therefore, we can compute the component of the map d ∈ [1, n] → R0(d) by solving a
linear system involving the eigenvalues of the characteristic equation.

Theorem 13. Let Assumption 8 be satisfied. Then the following properties are equivalent

(i) The set {λ1, . . . , λn} is the spectrum of the Leslie matrix L defined in (2.1).
(ii) Each element of {λ1, . . . , λn} satisfies (6.2).
(iii) The elements {λ1, . . . , λn} satisfy

λ−1
1 λ−2

1 λ−n
1

−1

λ−1
2 λ−2

2 λ−n
2

λ−1
n λ−2

n λ−n
n




1
1

1

 =


R0(1)
R0(2)

R0(n)

. (6.3)

In Figure 20, we plot all the spectrum’s location for Markovian Leslie matrices on a
mesh. We can observe the changes of location of the spectrum depending of the dimension



Biology 2022, 1, 0 26 of 30

n. It seems that the spectrum is fielding more and more the unit circle in C when the
dimension increases. We refer to Kirkland [23] for more results going an that direction.

(a) (b)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(c) (d)

Figure 20. We plot all the spectrum’s location for Markovian Leslie matrices on a mesh whenever n = 3 in (a),
n = 4 in (b), n = 5 in (c), and n = 7 in (d). Here the dominant eigenvalue is always 1, and we can see the
corresponding isolated blue dot. The blue region corresponds to the spectrum of Markovian Leslie matrices
whenever R0(n) = 0. The red region corresponds to the spectrum of Markovian Leslie matrices whenever
R0(n) > 0.

Continuous dependency of the component R0(d) with respect to the λi: Define the set
Ω ⊂ Cn of all the elements Λ =

{
λ?

1 , . . . , λ?
n
}
∈ Cn satisfying Assumption 8. For each

Λ =
{

λ?
1 , . . . , λ?

n
}
∈ Ω, we define

M(Λ) =


λ−1

1 λ−2
1 λ−n

1
λ−1

2 λ−2
2 λ−n

2

λ−1
n λ−2

n λ−n
n

, ∀Λ = {λ1, . . . , λn} ∈ Ω.

Theorem 14. Consider a sequence
{

Λm =
{

λm
1 , . . . , λm

n
}}

m≥0 ⊂ Ω, and a point Λ? =
{

λ?
1 , . . . , λ?

n
}
∈

Ω (i.e. all satisfying Assumption 8). Assume that

lim
m→+∞

Λm = Λ?,

then
lim

m→+∞
Rm

0 (d) = R?
0(d), ∀d = 1, . . . , n,

where

Rm
0 = M(Λm)−1


1
1

1

, ∀m ∈ N, and R?
0 = M(Λ?)−1


1
1

1

.
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Proof. We have 
1
1

1

 = M(Λm)Rm
0 , ∀n ∈ N, and


1
1

1

 = M(Λ?)R?
0 .

Subtracting the two above quantities, we obtain

0 = M(Λm)Rm
0 −M(Λ?)R?

0 , (6.4)

which is also equivalent to

0 = M(Λm)Rm
0 −M(Λ?)[R?

0 − Rm
0 ]−M(Λ?)Rm

0 ,

hence
R?

0 − Rm
0 = M(Λ?)−1[M(Λm)−M(Λ?)]Rm

0 .

Setting
Lm = M(Λ?)−1[M(Λm)−M(Λ?)]

we obtain
R?

0 − Rm
0 = LmR?

0 − Lm[R?
0 − Rm

0 ],

and since
lim

m→+∞
Lm = 0Mn(C)

we deduce that

‖R?
0 − Rm

0 ‖ ≤ ‖Lm‖L(Cn)‖R?
0‖+ ‖Lm‖L(Cn)‖R?

0 − Rm
0 ‖.

Hence for all m ≥ 1 large enough (i.e. satisfying ‖Lm‖L(Cn) < 1)

‖R?
0 − Rm

0 ‖ ≤
‖Lm‖L(Cn)

1− ‖Lm‖L(Cn)
‖R?

0‖,

and the proof is completed.

7. Identification of the phenomenological model

Here we assume that the daily number of reported cases has the following form

N(t) = N1eλ1t + N2eλ2 + N3eλ3t + . . . + Nmeλmt, (7.1)

where N1, . . . , Nn ∈ C are non null, and λ1, . . . , λn ∈ C are two by two separated.

If we assume that we know t → N(t) for all positive integer values t = 0, 1, 2, . . . ,
then we can compute the Laplace transform

L(N)(λ) =
∞

∑
t=0

e−λtN(t),

which is well defined for all λ ∈ C such that

Re(λ) > max
i=1,...,n

Re(λi).
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By using the formula (7.1), we obtain

L(N)(λ) =
m

∑
p=1

Np

1− eλp−λ
,

whenever Re(λ) > max
i=1,...,n

Re(λi).

Let k ∈ {1, . . . , m} be an integer such that

Re(λk) = max
i=1,...,n

Re(λi),

we obtain
lim

λ→λk

Re(λ)>Re(λk)

|L(N)(λ)| = +∞.

The Laplace transform could be used to identify the unknown parameters λk. Then by
combining this idea with linear regression of t→ eλkt, we could identify the parameters
Nk, the step by step compute all the parameters of N(t) in (7.1).

In practice, we only know t→ N(t) on a finite time interval t = 0, 1, 2, . . . , L. In that
case we can define the Laplace transform has

L(N)(λ) =
L

∑
t=0

e−λtN(t)

and we have

L(N)(λ) =
m

∑
p=1

Np
1− e(λp−λ)(L+1)

1− e(λp−λ)
.

The Laplace transform does not permit to detect the eigenvalues λk (we tested without
success some examples with values of complex numbers coming from the present article).
Identification of the eigenvalues λk, whenever t → N(t) is known only on a finite time
interval seems to be an open intriguing question.

8. About Residual2(t) in Section 3.3

In Figure 21 we observe that average of Residual2(t) = Residual1(t)− φ2(t) is close
to 0, but its histogram does not have the shape of a normal distribution. So, there might be
some residual information in Residual2(t).

Oct 19 Oct 26 Nov 02 Nov 09 Nov 16

2020   

-600

-400

-200

0

200

400

Error
2
(t)

Average

Figure 21. In this figure we plot Residual2(t).
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