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Abstract. In this article, we consider a model describing hospital ac-
quired infections. The model derived is a system of delay differential
equations. The state variable is formed by the patients and the health
care workers components. The system is a slow-fast system where the
fast equation corresponds to the health care workers equation. The ques-
tion addressed in this paper is the convergence to the so-called reduced
equations which is a single equation for patients. We investigate both
finite time convergence and infinite time convergence (uniformly for all
positive time) of the original system to the reduced equation.

1. Introduction

In this article, we consider a model describing bacterial nosocomial infec-
tions (i.e. hospital acquired infections). In such a problem the pathogens
(bacteria) are assumed to be transmitted from the patients to the Health
care Workers (HCW) and from the HCWs to the patients. A Susceptible
(S) patient may become newly Infected (I) patient by contact with a col-
onized HCW. Typically, the colonization of HCWs is of a superficial form
such as dirty hands that carry the pathogen. The HCWs are decomposed
into the Uncolonized (HU ) and the Colonized (HC). The fluxes of patients
and HCWs are summarized in Figure 1.

The time scales for the process of colonization for HCWs and the process
of infection for patients are fairly different. HCWs may recover from the
colonization due to hygiene or due to the turn over in the medical unit
(i.e. a shifts of 8 Hours). When a HCW becomes colonized, the HCW is
assumed to be immediately capable to transmit the pathogen to a patient.
The average time during which the HCW stays colonized is approximatively
one or two hours. For a patient the infection process is much longer, and a
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patient needs several days to be capable to transmit the pathogen to HCWs.
Therefore, when a patient become infected, the period of time necessary to
transmit the pathogen from patients to an HCW is much longer. In this
sense, there is (at least) one order of magnitude between the time scale for
HCWs and the time scale for patients.

In this article, we will consider a special version of a model presented in
Magal and McCluskey [20, Section 7]. By using the usual idea coming from
slow-fast systems, we will cancel out the HCWs component of the system.
Similar idea was already used in D’Agata et al. [11] (without mathematical
justification), and as [11] we will end up with a single equation for patients.
The model derived turn to be similar (but different) to the one introduced
in Webb et al. in [26]. A practical motivation for this study comes from the
fact that (usually) no data are available for the colonized HCWs. Therefore,
it also makes sense to try to get rid of the HCWs component in such a
problem.

Figure 1: The figure represents a diagram of the individual fluxes used to describe
hospital acquired infections. In this diagram, each solid arrow represents a flux
of individuals, while the dashed arrows represent the influence of either infected
patients or colonized HCWs on the pathogen acquisition.

Let S(t) be the number of susceptible patients at time t, and i(t, a) be the
density of infected patients who have been infected for duration a at time t.
This means that

∫ a+
a−

i(t, a)da, is the number of infected patients having an

age of infection (i.e., the time since infection) 0 ≤ a− ≤ a ≤ a+. The age of
infection is introduced in such a context to account for antibiotic treatment
in the model. Let HU (t) be the number of uncolonized HCWs, HC(t) be
the number of colonized HCWs. Assume that the number of patients and
HCWs is constant in the hospital (or the intensive care unit), therefore we
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must have

S(t) +

∫ +∞

0
i(t, a)da = NP and HU (t) +HC(t) = NH . (1.1)

Patient equation:

dS(t)

dt
= νRNP − νRS(t)− νV PI

NH
βV S(t)HC(t),

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −νRi(t, a),

i(t, 0) =
νV PI
NH

βV S(t)HC(t),

S(0) = S0 ≥ 0 , i(0, .) = i0 ∈ L1
+(0,+∞).

(1.2)

The rate νV at which contacts between staff and patients occur is taken to
be constant. The probability for a patient to have contact with a HCW
is βV := NH/Np and when a contact occurs the probability that is with a

contaminated HCW is the faction HC
NH

of HCWs that are colonized, where

NH is the total number of HCWs and Np is the total number of patients.
Finally, given a contact between a susceptible patient and a contaminated
HCW, the probability that the patient becomes infected is PI ∈ (0, 1]. Thus,
the rate at which incidence of new infections in the patient population is
νV PI
NH

βV SHC . All newly infected patients enter the infected population with

infection age 0.
Next, the system describing the HCWs colonization is the following :

HCW Equation:
dHU (t)

dt
= νHNH − νHHU (t)− νV PC

NP
HU (t)

∫ ∞
0

γ(a)i(t, a)da,

dHC(t)

dt
=
νV PC
NP

HU (t)

∫ ∞
0

γ(a)i(t, a)da− νHHC(t);

HU (0) = HU0 ≥ 0, HC(0) = HC0 ≥ 0.

(1.3)

As in the patient equations, contacts occur at rate νV . Let PC ∈ (0, 1] be
the maximum probability that a contact between an infected patient and an
uncontaminated HCW leads to a new contamination. The relative infectivity
of patients of infection age a is γ(a) and the density of contacts with patients

of infection age a is i(t,a)
NP

, where NP is the total number of patients. Thus,

the incidence of new contaminations in the HCW population is

νV PC
NP

HU

∫ +∞

0
γ(a)i(t, a)da.
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The decontamination rate for HCWs is νH .
The meaning of the parameters, as well as the values used in simulations,

are listed in Table 1.

Symbol Interpretation Value Units
NP total number of patients 400∗ -
NH total number of HCWs 100∗ -
TH = 1

νH
average time during which an HCW stays 1∗ hours

colonized
TV = 1

νV
average duration of visit to a patient by 1.58∗∗∗ hours

a HCW plus time to the next visit
TR = 1

νR
average time spent in the hospital for an 28∗ days

infected patient
PI probability for a patient to be infected by 0.06∗∗ -

a HCW per visit
PC probability for a HCW to be colonized by 0.4∗∗ -

a patient per visit
γ(a) relative infectivity of patients of infection age a
τ time necessary to become infectious 9.86 days

Table 1: The parameter values are taken from [11], and are used in numerical

simulations. Values marked with * were estimated for Beth Israel Deaconess Medical

Center, Boston. Values marked with ** were estimated for Cook County Hospital,

Chicago. The parameter value τ is estimated in this work.

By using (1.1), system (1.2)-(1.3) can be reduced to the following system
of equations

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −νRi(t, a),

i(t, 0) =
νV PIβV
NH

(
NP −

∫ +∞

0
i(t, a)da

)
HC(t),

dHC(t)

dt
=
νV PC
NP

(
NH −HC(t)

)∫ ∞
0

γ(a)i(t, a)da− νHHC(t),

i(0, .) = i0 ∈ L1
+(0,+∞), HC(0) = HC0 ≥ 0.

(1.4)

Assuming for simplicity that

γ(a) =

{
1, if a ∈ [τ,+∞),

0, otherwise,
(1.5)

and by setting

I(t) :=

∫ +∞

0
i(t, a)da, (1.6)
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system (1.4) can be rewritten for t ≥ τ as
dI(t)

dt
=
νV PIβV
NH

(NP − I(t))HC(t)− νRI(t),

dHC(t)

dt
=
νV PC
NP

(NH −HC(t))e−νRτI(t− τ)− νHHC(t),

I(t, .) = I0(t) ≥ 0, ∀t ∈ [−τ, 0] , HC(0) = HC0 ≥ 0.

(1.7)

The global asymptotic behavior of system (1.2)-(1.3) has been studied in
[20]. For example the basic reproductive number for system (1.7) is given by

R0 =

√
ν2V
νHνR

PIβV PCe−νRτ . (1.8)

The above formula suggests that the parameters τ play a crucial role for the
persistence (or the invasion) of resistant pathogens. Clearly, these param-
eters are related to antibiotic treatments (see D’Agata et al. [11]). At the
level of single patient, antibiotic treatment provides an in-host environment
that selects in favor of the resistant strain. As a consequence, due to an-
tibiotic treatments, patients may become more likely to transmit resistant
pathogens. But the effects of treatments for a single patient are a fairly
complex system. Some mechanisms involved in such problems have been
described in [12, 1] (see also references therein).

As far as we know, no singular perturbation results are known for such age
structured systems. Moreover, relatively few examples has been considered
in the literature. We refer to Arino et al. [4] and Ducrot et al. [15] for
two examples of singularly perturbed age structured systems. One may
also observe that for functional differential equations (1.7) (as far as we
know) the usual theory does not apply (see Hale and Verduyn Lunel [17]
Diekmann et al. [14], Arino et al. [3], and Smith [25]). We also refer to
Magalhães [21, 22] and Artstein and Slemrod [5] for more results on singular
perturbation analysis in the context of delay differential equations.

In order to introduce the singularly perturbed system, a discussion of the
processes is of order. First, the goal of the model is to describe the spread
of the hospital epidemic over several months. We observe that on the scale
of one month or year, a HCW visit of an average period 1

νV
≈ 1.5 hours is

very short. Thus, we should use the idea of slow-fast system which as been
successfully used for several classes of bio-medical problems (see Auger et
al. [6], Hek [18]). The fast process corresponds here to HCW visit during
which that contamination may happen while the slow process corresponds
to patient infection, admission, and exit. Here, we set 1

νV
= ε << 1. In
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order to re-scale (1.7) with respect to ε, let us first notice that parameter
1
νH

, the average time during which an HCW stays colonized is also related to

ε. Indeed the larger a visit is, the larger is the bacterial load and therefore
the larger is the time during which an HCW stays colonized. Here we shall
assume a simple proportional law, that is,

νH = γHνV = γH
ε .

Let us also mention that the probability PI for a patient to become infected
during a HCW visit also depends on 1

νV
. Indeed since patients are motion-

less, the contamination process arises due to manipulation of the material,
the patients themselves. As a consequence, the probability PI can be de-

composed as PI = P̂I × 1
νV

where P̂I denotes the probability for a patient to

become infected during a unit time of HCW visit. Here, we assume that P̂I
is fixed so that PI = P̂Iε. On the other hand, the contamination process of
an HCW by the contaminated patient, described by PC , is rather different.
Indeed, the contamination of the environment occurs as soon as the patient
is contaminated. This environmental contamination is due to the bacterial
spread as well as the manipulation of the material by the HCW. As a conse-
quence, a contaminated patient and his environment ensure a rather strong
probability of HCW colonization even if the visit time is small. Hence, we

decompose the probability PC into two terms PC = P 0
C + P̂C × 1

νV
wherein

P 0
C > 0 corresponds to the initial probability of an HCW to become colonized

as soon as he enters the contaminated environment while P̂C corresponds to
an additional probability to become colonized per unit time of visit. This

leads PC := PC(ε) = P 0
C + P̂Cε. As a consequence of the above modelling,

system (1.7) re-writes as
dI(t)

dt
=
P̂IβV
NH

(
NP −

∫ +∞

0
i(t, a)da

)
HC(t)− νRI(t),

ε
dHC(t)

dt
=
PC(ε)

NP
(NH −HC(t))e−νRτI(t− τ)− γHHC(t),

I(t, .) = I0(t) ≥ 0, ∀t ∈ [−τ, 0] , HC(0) = HC0 ≥ 0.

(1.9)

Formally, when ε = 0 the second equation of the above system reduces to

HC(t) = h(I(t− τ)), (1.10)

where h : [0,+∞) → [0,+∞), h(x) := βNHx
γH+βx , with β :=

P 0
C

NP
e−νRτ . The so-

called reduced system corresponds to the first equation of (1.9) (i.e., the slow
equation of (1.9)) in which HC(t) is replaced by h(I(t− τ)). Therefore, the
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result model is nothing but the following single delay differential equation

dI(t)

dt
=
P̂IβV
NH

(NP − I(t))h(I(t− τ))− νRI(t). (1.11)

In Section 2, we will provide a careful comparison between the solutions of
system (1.9) and the solutions of system (1.11). A question left for future
investigation is the comparison of the original model with age of infection
with the following model

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −νRi(t, a),

i(t, 0) =
P̂IβV
NH

(
NP −

∫ +∞

0
i(t, a)da

)
h
(∫ ∞

0
γ(a)i(t, a)da

)
,

i(0, .) = i0 ∈ L1
+(0,+∞).

(1.12)

One may observe that this reduced model also corresponds to the model
introduced by Webb et al. in [26]. We refer to [9, 13, 16, 23] (and the
references therein) for more results on such a nosocomial infections model.

The plane of the paper is the following. In Section 2, we summarize the
main results of this article. Section 3 is devoted to deriving preliminary
results that will be used to the proof of Theorem 2.1 in Section 4. Finally
Section 5 is devoted to the study of the convergence as ε→ 0 to the unique
heteroclinic solution of the reduced system.

0

5

10

15 1h30

1h36

1h42

1h48

1h54

2h

0

10

20

30

40

Aver
age d

ura
tio

n o
f a

 v
isi

t t
o a

 p
atie

nt

Time necessary to become infectious in days

%
P

re
v

a
le

n
ce

 o
f 

in
fe

ct
ed

 p
a

ti
en

ts
 a

t 
eq

u
il

ib
ri

u
m

0

5

10

15 1h30

1h36

1h42

1h48

1h54

2h

0.5

1

1.5

2

Avara
ge d

ura
tio

n o
f a

 v
isi

t t
o a

 p
atie

nt

Time necessary to become infectious in days

R
0

(a) (b)

Figure 2: Figures (a) and (b) describe respectively the evolution of the prevalence
of infected patients at the equilibrium and R0 with respect to 1/νV and τ .
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2. Main results

For simplicity we fix P̂C = 0, so we assume that PC(ε) ≡ P 0
C . Then

by introducing the prevalence xε = I
Np

and yε = HC
NH

, system (1.9) can be

rewritten as the following delay differential equation
dxε(t)

dt
= −µxε(t) + αyε(t)(1− xε(t)), ∀t ≥ 0,

ε
dyε(t)

dt
= −νyε(t) + βxε(t− τ)(1− yε(t)), ∀t ≥ 0,

yε(0) = y0 ∈ R, xε(θ) = ϕ(θ),∀θ ∈ [−τ, 0],

(2.1)

wherein we have set

µ = νR, α = P̂IβV
NH

, ν = γH and β =
P 0
C

NP
e−νRτ , (2.2)

while ε ∈ (0, 1) is a small parameter. Note that using the above notations,
R0 defined in (1.8) re-writes as

R0 :=
√

αβ
µν . (2.3)

Let C := C([−τ, 0],R) be the Banach space of continuous functions from
[−τ, 0] to R endowed with the supremum norm

‖ϕ‖C := sup
θ∈[−τ,0]

|ϕ(θ)| .

By taking ε = 0 in equation (2.1) and solving the second equation in y,

we obtain y(t) = βx(t−τ)
βx(t−τ)+ν . By replacing y by this expression in the first

equation of system (2.1), we obtain the reduced equation of (2.1)
dx(t)

dt
= −µx(t) + αh(x(t− τ))(1− x(t)), ∀t ≥ 0,

x(θ) = ϕ(θ),∀θ ∈ [−τ, 0],

(2.4)

where the function h : R+ → R+ is defined by

h(x) := βx
βx+ν , ∀x ≥ 0. (2.5)

Set

M := C
(
[−τ, 0], [0, 1]

)
× [0, 1]. (2.6)

The main results are stated as follows.
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Theorem 2.1. Let τ, µ, α, ν, β > 0 be given positive constants and let (ϕ, y0)
∈ M such that ϕ 6≡ 0C . Let (xε, yε) (resp. x) be the solution of (2.1) with
initial data (ϕ, y0) ∈ M (resp. of (2.4) with initial data ϕ). Then the
following properties are satisfied

lim
ε→0

sup
t≥0
|xε(t)− x(t)| = 0,

and

lim
ε→0

sup
t≥ε|ln ε|

|yε(t)− h(x(t− τ))| = 0.

Remark 2.2. If R0 ≤ 1 and ϕ ≡ 0, then the above uniform convergence
holds true.

Remark 2.3. By using the classical change of time scale x(t) = xε(εt) and
y(t) = yε(εt), system (2.1) becomes

dx(t)

dt
= ε [−µx(t) + αy(t)(1− x(t))] ,

dy(t)

dt
= −νy(t) + βx(t− τε)(1− y(t)),

(2.7)

where τε := τ
ε → +∞ as ε(> 0) → 0. One may observe that the equation

remains singular after this change of time scale since the delay τε goes to
infinity as ε → 0. To the best of our knowledge the only available nonlin-
ear theory is concerned with convergence local in time towards the reduced
system. We refer to Artstein and Slemrod [5] and the references therein for
general results on this topic.

Remark 2.4. Roughly speaking the proof of the above result shows that in
a very fast time tε of order ε| ln ε|, yε(tε) becomes very close to h(ϕ(tε− τ)).
Next, yε(t) stays close to h(xε(t− τ)) with the following kind of estimate for
t ≥ τ and ε small enough:

yε(t) = h(xε(t− τ)) +O(ε) +O(e−
ν(t−τ)
ε ).

It is important to point out the fact that the above theorem is established
in the context that the same initial condition ϕ is taken for the system (2.1)
and (2.4). When ϕ is the zero function we do not have a global uniform
convergence of xε to x whenever y0 6= 0 and R0 > 1. The study of the
convergence of xε to x is much more delicate. The result obtained is the
following
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Theorem 2.5. Assume that R0 > 1. Then the reduced system (2.4) has a
unique (up to time shift) heteroclinic orbit x∞ such that

lim
t→−∞

x∞(t) = 0 and lim
t→+∞

x∞(t) = x̄ :=
αβ − µν
αβ + µβ

. (2.8)

Furthermore, x∞ is increasing on R. Let y0 ∈ (0, 1] be given and let us
denote by (xε, yε) the solution of (2.1) with initial data (0C , y0). Define
tε := sup{t ≥ 0 : xε(t) = x

2} < +∞. Then we have limε→0 tε = +∞
and limε→0 x

ε(t + tε) = x∞(t), uniformly in t on each interval of the form
[−T,+∞) withT ≥ 0 and where x∞ ≡ x∞(t) is the unique heteroclinic orbit
of the reduced system (2.4) satisfying x∞(0) = x

2 .
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Figure 3: Error between the full and the reduced system for the same non zero
initial data and different νV . Precisely error(t) = |xε(t)− x(t)|, the parameters ν,
µ, α, β are computed using the relation (2.2) with the approximation P 0

C = PC for
the parameter value of the Table 1. The initial data for y is y0 = 0.5 and the initial
data for x and xε is ϕ(t) = 0.6 for t ∈ [−9.86, 0].

In order to illustrate the latter results and more specifically Theorem 2.1
with realistic parameters, we shall use the values described in Table 1. Notice
that the average time necessary to become infectious, namely τ , is unknown
and needs to be estimated. This is performed by using the expression of
the endemic prevalence equilibrium x given in (2.8). Using the parameters
of Table 1, to reach 10% prevalence of patient we obtain τ = 9.86 days.
Figure 2-(a) illustrates how the equilibrium prevalence of patients varies
with respect to the parameters τ and 1

νV
. Note that the prevalence is very
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sensitive with respect to the average time of HCW visit. Indeed, for the
value τ = 9.86 days the prevalence at equilibrium varies from 10% to 18%
when the length of visit varies from 95 min to 90 min. Figure 2-(b) illustrates
the dependence on the basic reproduction number R0 with respect to τ and
1
νV

. An increasing of the length of visit 1
νV

leads to a decrease of the basic

reproduction number and thus on the bacteria’s spread.
Finally, the convergence result stated in Theorem 2.1 is illustrated in

Figure 3. The error between the prevalence for the full and reduced system
is plotted for different values for the time of HCW visit. Together with the
parameters of Table 1 and the different values of νV recalled in Figure 3, we
obtain a maximal error of order 10−3 over one year’s computation time.

3. Preliminaries

The aim of this section is to derive preliminary results for (2.1) and (2.4).
We shall more specifically focus one existence and uniqueness of solution
as well as asymptotic behavior. We shall use the usual history function to
deal with delay differential equation, namely for each continuous function
x : [−τ, T ) → R for some given T > 0 we write t ∈ [0, T ) 7→ xt ∈ C defined
by xt(θ) = x(t + θ) for each θ ∈ [−τ, 0] and t ∈ [0, T ). We first state the
preliminary result for the reduced system (2.4).

Lemma 3.1. Consider the set

M̂ := {ϕ ∈ C : 0C ≤ ϕ ≤ 1C}. (3.1)

Then M̂ is positively invariant with respect to the semiflow generated by
(2.4). If we denote by {U(t)}t≥0 the strongly continuous semiflow on M̂
generated by (2.4) defined by U(t)ϕ = xt the following holds true:

(i) for each (ϕ,ψ) ∈ (M̂)2

ϕ ≤ ψ ⇒ U(t)ϕ ≤ U(t)ψ, ∀t ≥ 0. (3.2)

(ii) When R0 ≤ 1 then the semiflow U only has the trivial equilibrium 0C .
When R0 > 1 the semiflow admits exactly two equilibrium points: the
trivial one and the constant x defined by

x̄ :=
αβ − µν
αβ + µβ

. (3.3)

(iii) When R0 ≤ 1 then the trivial equilibrium 0C is globally asymptoti-

cally stable in M̂ . When R0 > 1 then the positive equilibrium x̄ is
globally asymptotically stable in M̂ \ {0C} .
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Proof. The proof of the forward invariance of M̂ as well as (i) directly
follows from the results of Smith [24]. Indeed if we define g : C → R by

g(ψ) := −µψ(0) + αh(ψ(−τ))(1− ψ(0)).

Then one has g(1C) ≤ 0 and g(0C) = 0 so that M̂ is forward invariant

and on M̂ function g is quasi monotone. Now the proof (ii) comes from
straightforward computations. It remains to prove (iii). To do so let us first
notice that

lim
δ→0

g(δ1C)

δ
= −µ+

αβ

ν
= µ

[
R2

0 − 1
]
> 0.

Then using the results of Smith [24] for each δ ∈ (0, 1) small enough we
have U(t)(δ1C) → x̄ as t → +∞. On the other hand let us also notice that
g(1C) < 0 so that we deduce using (i) that U(t)1C → x as t → ∞. To

complete the proof (iii) it remains to show that for each ϕ ∈ M̂\ {0C} the
solution t → xt = U(t)ϕ of the system (2.4) satisfies x(t) > 0 for all t ≥ τ.

Since ϕ ∈ M̂\ {0C} there exists t0 ∈ [0, τ ] such that x(t0) > 0. Hence one
gets for each

x(t) = e−µ(t−t0)x(t0) +

∫ t

t0

e−µ(t−s)αh(x(s− τ))(1− x(s))ds

≥ e−µ(t−t0)x(t0) > 0, ∀t ≥ t0,

and the result follows. �

Let us now state a similar preliminary result for System (2.1).

Lemma 3.2. Let ε > 0 be given. Then the subset M ⊂ C × R (defined in
(2.6)) is positively invariant by the semiflow generated by (2.1). If we denote
by {U ε(t)}t≥0 the continuous semiflow on M generated by (2.1) defined by
U ε(t)ϕ = (xεt , y

ε(t))T then the following holds true:

(i) for each (ϕ,ψ) ∈ (M)2:

ϕ ≤C×R ψ ⇒ U(t)ϕ ≤C×R U(t)ψ, ∀t ≥ 0, (3.4)

where the partial order ≤C×R is defined by the usual positive cone
C+ × R+ ⊂ C × R.

(ii) When R0 ≤ 1, then the only equilibrium of the semiflow U ε is the
trivial equilibrium (0C , 0)T . When R0 > 1 the semiflow admits ex-
actly two equilibrium points: the trivial one and the constant (x, y)T

where x is defined in defined in (3.3) while y = h(x).



A singularly perturbed delay differential equation 333

(iii) When R0 ≤ 1 then the trivial equilibrium (0C , 0)T is globally asymp-
totically stable in M . When R0 > 1 then the interior equilibrium
(x̄, y)T is globally asymptotically stable in M \ {(0C , 0)}.

The proof of this results is straightforward and follows by the same steps
and arguments as the one of Lemma 3.1.

Our next preliminary result relies on some property of the entire solutions
of the reduced system (2.4). This will be needed in the proof of Theorem
2.1 as well as Theorem 2.5.

Lemma 3.3. Assume that R0 > 1. Then {x(t)}t∈R is a complete orbit in

M̂ of (2.4) if and only if one of the following property is satisfied:

(i) x is an equilibrium point of the system (2.4), namely x(t) ≡ 0C or
x(t) ≡ x̄.

(ii) x is a heteroclinic orbit of the system (2.4) satisfying the following
properties
(a) 0 < x(t) ≤ x̄ for all t ∈ R.
(b) lim

t→+∞
x(t) = x̄ and lim

t→−∞
x(t) = 0.

Proof. Let us first notice that (i) or (ii) implies that x is an complete orbit

of (2.4) in M̂ . Let {x(t)}t∈R be a given complete orbit of the system (2.4)

in M̂ such that x 6≡ 0C and x 6≡ x̄.
Let us first prove that x satisfies (ii)-(a). Since x(t) ∈ M̂ for each t ∈ R

one has 0C ≤ xt−s ≤ 1C for each t ∈ R and s ∈ R. Lemma 3.1-(i) yields
that 0C ≤ xt ≤ U(s)1C for each s ≥ 0 and t ∈ R. Lemma 3.1-(iii) implies
that U(s)1→ x̄ as s→ +∞ that ensures that 0 ≤ x(t) ≤ x for all t ∈ R. To
complete the proof of ii)-(a) it remains to prove that 0 < x(t) for all t ∈ R.
To prove this property let us argue by contradiction by assuming that there
exists t̃ ∈ R such that x(t̃) = 0. Let us first notice that from the reduced
system, one gets

d[eµtx(t)]

dt
= eµth(x(t− τ))(1− x(t)) ≥ 0, ∀t ∈ R,

so that t 7→ eµtx(t) is non-decreasing. Hence x(t) = 0 for all t ≤ t̃. Since
x(t) ≡ 0 on [t̃ − τ, t̃] one concludes that x(t) = 0 for all t ≥ t̃. We obtain
that x(t) ≡ 0, a contradiction that completes the proof of (ii)-(a).

It remains to prove (ii)-(b). First since x 6≡ 0C , Lemma 3.1-(iii) yields
that x(t) → x̄ as t → ∞. As a consequence we only need to show that
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x(t)→ 0 as t→ −∞. This property is related to the following functional

V (xt) := x(t) + µ

∫ t

t−τ
x(s)ds, ∀t ∈ R. (3.5)

Straightforward computations yield that

dV (xt)

dt
= h(x(t− τ)) [α(x̄− x(t)) + µ(x̄− x(t− τ))] , ∀t ∈ R. (3.6)

Then due to (ii)-(a), x(t) ≤ x̄ for all t ∈ R and t 7→ V (xt) is non-decreasing.
To conclude let us consider a decreasing sequence {tn}n≥0 such that tn →
−∞ as n → +∞. Let us define the uniformly bounded sequence of shifted
maps {xn}n≥0 be

xn(t) = x(t+ tn), ∀t ∈ R.
Since xn is a an entire solution of (2.4) and since {xn} is uniformly bounded,
one concludes that

{
dxn

dt

}
n≥0

is also uniformly bounded. As a consequence,

possibly along a sub-sequence, one may assume that xn(t)→ x∞(t) as n→
∞ locally uniformly in t ∈ R and wherein x∞ is also an entire solution in M̂
of (2.4). Next for each n ≥ 0 and K > 0, integrating (3.6) over [tn−K, tn+K]
yields

V (xtn+K) =

∫ K

−K
h(xn(t− τ)) [α(x̄− xn(t)) + µ(x̄− xn(t− τ))] dt

+ V (x)(tn −K).

Since t 7→ V (xt) is non-increasing and bounded from below one obtains when
n→ +∞ that∫ K

−K
h(x∞(t− τ)) [α(x̄− x∞(t)) + µ(x̄− x∞(t− τ))] dt = 0, ∀K > 0.

This implies that

h(x∞(t− τ)) [α(x̄− x∞(t)) + µ(x̄− x∞(t− τ))] ≡ 0,

so that x∞(t) ≡ 0 or x∞(t) ≡ x. To conclude the proof we need to prove
that x∞(t) ≡ 0. Let us argue by contradiction by assuming that x∞(t) ≡ x̄.
Then the functional ϕ→ V (ϕ) is monotone increasing therefore

xt ≤ x̄1C ⇒ V (xt) ≤ V (x̄),

since t ∈ R 7→ V (xt) is non-decreasing, we also have V (x̄) ≤ V (xt). There-
fore,

V (xt) = V (x̄),∀t ∈ R.
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As a consequence, V (xt)
dt ≡ 0 that re-writes as

h(x(t− τ)) [α(x̄− x(t)) + µ(x̄− x(t− τ))] ≡ 0,

so that x(t) ≡ 0 or x(t) ≡ x, a contradiction. The proof is completed. �

4. Proof of Theorem 2.1

The aim of this section is to prove Theorem 2.1. This proof is divided
into two parts. The first part is devoted to the convergence xεt → xt as
ε(> 0)→ 0. The second part is related the behavior of t→ yε(t).

4.1. Convergence of t 7→ xε(t). In order to investigate the uniform con-
vergence of xε let us first prove the following local uniform convergence:

Lemma 4.1 (Local uniform convergence). Let (ϕ, y0) ∈ M be given. Let x
be the solution of (2.4) with initial data ϕ. Then for each τ̂ > 0 we have

lim
ε→0

sup
t∈[−τ,τ̂ ]

|xε(t)− x(t)| = 0,

and

lim
ε→0

∫ τ̂

0
yε(t)ψ(t)dt =

∫ τ̂

0
h(x(t− τ))ψ(t)dt, ∀ψ ∈ L1(0, τ̂ ;R).

Note that the proof of the above result can be directly obtained using
the theory of Artstein and Slemrod in [5]. For the sake of completeness
we provide a direct and easy proof that takes into account the particular
structure of our system to conclude to the local weak star convergence for the
y−component. Let us also notice that since the work of Artstein and Slemrod
[5] deals with Young measure narrow convergence for the y−component, it
allows to conclude to the (local) strong L1−convergence of yε(t) to h(x(t−
τ)). Such a strong convergence will be derived latter on by deriving direct
uniform estimates as well as layer time estimates.

Proof. The proof of the above result also relies on Arzela-Ascoli’s theo-
rem. Since {(xε, yε)}ε∈(0,1) ⊂ C([0,∞),M) is uniformly bounded, one gets

by using (2.1) that
{
dxε

dt

}
ε∈(0,1)

is also uniformly bounded in C([0,∞),R).

Since xε0 = ϕ for all ε ∈ (0, 1) we infer from Arzela-Ascoli’s theorem that

{xε}ε∈(0,1) is relatively compact in Cloc([−τ,∞), M̂) while due to Banach-

Alaoglu-Bourbaki’s theorem {yε}ε∈(0,1) is relatively compact for the weak-∗
topology of σ(L∞loc((0,∞),R), L1

loc((0,∞),R)).
Let τ̂ > 0 be given and let {εn}n≥1 ⊂ (0, 1) be a given sequence tending

to 0 as n → ∞. Up to a sub-sequence, one may assume that xεn → x0 ∈
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C([−τ, τ̂ ], M̂) uniformly on [−τ, τ̂ ] with x0(θ) = ϕ(θ) for each θ ∈ [−τ, 0]

and yεn
∗
⇀ y0 ∈ L∞((0, τ̂),R) for the weak-∗ topology of L∞((−τ, τ̂),R).

That is to say that for each τ̂ ∈ (0,+∞)

lim
n→+∞

∫ τ̂

0
yεn(t)φ(t)dt =

∫ τ̂

0
y0(t)φ(t)dt,∀φ ∈ L1((0, τ̂),R).

It follows that∫ τ̂

0
y0(t)φ(t)dt ≥ 0 and

∫ τ̂

0

[
1− y0(t)

]
φ(t)dt ≥ 0,∀φ ∈ L1

+((0, τ̂),R).

Since τ̂ < +∞, we deduce that y0 ∈ L1((0, τ̂),R) and∫ τ̂

0
y0(t)φ(t)dt ≥ 0 and

∫ τ̂

0

[
1− y0(t)

]
φ(t)dt ≥ 0,∀φ ∈ L∞+ ((0, τ̂),R).

Now, by applying the Hahn-Banach in L1((0, τ̂),R), it follows that 0 ≤
y0 ≤ 1. On the one hand, let ψ ∈ C1([0, τ̂ ],R) be a given test function.
Multiplying the yεn-equation in (2.1) by ψ and integrating over (0, τ̂) yields
for each n ≥ 0

εn [yεn(τ̂)ψ(τ̂)− y0ψ(0)]− εn
∫ τ̂

0
yεn(t)ψ′(t)dt

=

∫ τ̂

0
[βxεn(t− τ)(1− yεn(t))− νyεn(t)]ψ(t)dt.

Letting n→ +∞ provides∫ τ̂

0

[
βx0(t− τ)(1− y0(t))− νy0(t)

]
ψ(t)dt = 0, ∀ψ ∈ C1([0, τ̂ ] ,R),

so that

y0(t) = h(x0(t− τ)) a.e. for t ∈ [0, τ̂ ] . (4.1)

On the other hand, from the xεn-equation in (2.1) one has for each n ≥ 0:

xεn(t) = ϕ(0) +

∫ t

0
[α(1− xεn(s))yεn(s)− µxεn(s)] ds, ∀t ∈ [0, τ̂ ] .

Letting n→ +∞ provides that

x0(t) = ϕ(0) +

∫ t

0

[
α(1− x0(s))y0(s)− µx0(s)

]
ds, ∀t ∈ [0, τ̂ ] .

Recalling (4.1) and that x0 satisfies x0(θ) = ϕ(θ) for each θ ∈ [−τ, 0], we
obtain that x0 = x on [−τ, τ̂ ]. This completes the proof of the result. �
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Before proving Theorem 2.1, we need some preliminary lemmas. First,
we have an estimation from below of solutions independent of the parameter
ε > 0.

Lemma 4.2. Assume that R0 > 1. Then for all (ϕ, y0) ∈ M, with ϕ 6= 0C .
Then the map t 7→ wε(t) defined by

wε(t) = xε(t) +
εµ

β
yε(t) + µ

∫ t

t−τ
xε(s)ds, ∀t ≥ 0, (4.2)

satisfies the following properties:

(i) For all t ≥ 0 and ε > 0

dwε(t)

dt
= αyε(t)(x̄− xε(t)) + µyε(t)(x̄− xε(t− τ)).

(ii) There exists η > 0 and ε0 > 0 such that

wε(t) ≥ η,∀t ≥ τ,∀ε ∈ (0, ε0).

Proof. The proof of (i) follows from straightforward computations. In order
to prove (ii), let’s observe that by integrating the x-equation in system (2.1)
in between t− τ and t we obtain that

xε(t) + µ

∫ t

t−τ
xε(s)ds = xε(t− τ) + α

∫ t

t−τ
yε(s)1− xε(s))ds, ∀t ≥ τ.

Thus,

wε(t) =
εµ

β
yε(t) + xε(t− τ) + α

∫ t

t−τ
yε(s)(1− xε(s))ds, ∀t ≥ τ.

Since wε(t) ≥ xε(t) for all t ≥ 0, one obtains

wε(t) ≥ max {xε(t), xε(t− τ)} , ∀t ≥ τ. (4.3)

If one sets xt = U(t)ϕ then since ϕ 6≡ 0 one has x(τ) = [U(τ)ϕ] (0) > 0. On
the other hand due to Lemma 4.1 we know that xε(τ) → x(τ) as ε → 0.
Thus, there exists ε0 > 0 such that

xε(τ) ≥ x(τ)

2
> 0, ∀ε ∈ (0, ε0). (4.4)

To conclude the proof of (ii) we will use the following claim.

Claim 4.3. Let ε ∈ (0, ε0) be given. Then for each δ ∈ (0, 1) such that
δ
2x(τ) < x, we have wε(t) ≥ δ

2x(τ), ∀t ≥ τ .
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To prove this claim, let us notice that by (4.3) and (4.4), we have wε(τ) ≥
xε(τ) > δ

2x(τ). Let us consider

t0 := sup

{
t > τ : wε(l) ≥ δ

2
x(τ), ∀l ∈ [τ, t]

}
.

Then let us prove that t0 = +∞. Assume that t0 < +∞, then one has

wε(t0) =
δ

2
x(τ) < x̄.

One can therefore introduce t1 > t0 defined by

t1 = sup {t > t0 : wε(l) ≤ x̄, ∀l ∈ [t0, t]} .
We infer from (4.3) that

xε(t) ≤ x and xε(t− τ) ≤ x, ∀t ∈ [t0, t1).

As a consequence (i) the map t 7→ wε(t) is non-decreasing on [t0, t1), that
implies

wε(t) ≥ wε(t0) ≥ δ

2
x(τ), ∀t ∈ [t0, t1).

This contradicts the definition of t0 and completes the proof of (ii). �

Coupling Lemma 3.3 and Lemma 4.2 lead to the following lemma.

Lemma 4.4. Let us assume that R0 > 1. Let (ϕ, y0) ∈ M be given such
that ϕ 6≡ 0C . Then for each sequence {εn}n≥0 ⊂ (0, 1) and {tn}n≥0 ⊂ (0,∞)
such that εn → 0 and tn → +∞ as n→ +∞ we have

lim
n→+∞

xεn(t+ tn) = x̄, locally uniformly for t ∈ R.

Proof. Let {εn}n≥0 and {tn}n≥0 be given sequences such that εn → 0 and
tn → +∞ as n→ +∞. Define the sequences of shifted maps

xn(t) := xεn(t+ tn) ∈ [0, 1] and yn(t) := yεn(t+ tn) ∈ [0, 1],

with n ≥ 0 and t ∈ (−tn,+∞), that satisfy the system of equations:
dxn(t)

dt
= −µxn(t) + α(1− xn(t))yn(t), ∀t ≥ −tn,

εn
dyn(t)

dt
= −νyn(t) + βxn(t− τ)(1− yn(t)), ∀t ≥ −tn.

Thus, by using the same techniques as in the proof of Lemma 4.1, up to a
sub-sequence, one may assume that xn → x∞ locally uniformly for t ∈ R
wherein x∞ is a complete orbit of (2.4) in M̂ . It remains to prove that
x∞ ≡ x̄ that is a consequence of the uniform persistence result stated in
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Lemma 4.2-(ii). Indeed, since ϕ 6≡ 0, there exists η > 0 and N > 0 such that
for each n ≥ N and each t ≥ τ − tn:

xεn(t+ tn) +
εnµ

β
yεn(t+ tn) + µ

∫ t

t−τ
xεn(s+ tn)ds ≥ η.

Letting n→∞ yields

x∞(t) + µ

∫ t

t−τ
x∞(s)ds ≥ η, ∀t ∈ R.

The classification of complete orbits of (2.4) provided by Lemma 3.3 allows
us to conclude that x∞(t) ≡ x and the result follows. �

We are now ready to prove the first part of Theorem 2.1.

Theorem 4.5. Let (ϕ, y0) ∈M be given such that

either ϕ 6= 0 or
(
ϕ
y0

)
=
(

0C
0R

)
.

Let x be the solution of (2.4) with initial data ϕ. Then we have

lim
ε→0

sup
t≥0
|xε(t)− x(t)| = 0. (4.5)

Remark 4.6. Using similar argument as in the proof of Theorem 4.5, the
conclusion remains true whenever R0 ≤ 1 and ϕ = 0. However, when R0 > 1
then Theorem 4.5 is no longer true when ϕ ≡ 0 and y0 > 0. The question
will be studied in Theorem 2.5.

Proof. Let us first remark that when ϕ = 0C and y0 = 0 then (4.5) it trivial
verified since

xεn(t) = x(t) = 0,∀t ≥ 0, ∀ε > 0.

Let (ϕ, y0) ∈M with ϕ 6= 0. Assume that (4.5) is not satisfied. Then there
exist η > 0 and two sequences {εn}n≥0 → 0 and {tn}n≥0 such that

|xεn(tn)− x(tn)| > η, ∀n ≥ 0. (4.6)

Moreover, by Lemma 4.1, we must have {tn}n≥0 → +∞. Define the shifted
maps

xn(t) := xεn(t+ tn) and yn(t) := yεn(t+ tn),

for all n ≥ 0 and all t ∈ (−tn,+∞). Then, we have 0 ≤ xn(t) ≤ 1 and
0 ≤ yn(t) ≤ 1, for all n ≥ 0 and t ∈ (−tn,+∞).
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By using the same techniques as in the proof of Lemma 4.1, one may
assume that xn(t) → x∞(t) locally uniformly where x∞ is a complete orbit

of (2.4) in M̂ such that

|x∞(0)− L| ≥ η, (4.7)

where L := limt→+∞ x(t). So either L = 0 or L = x. According to the
classification provided by Lemma 3.1-(iii) we will now split the proof into
two parts: a) R0 ≤ 1 and L = 0; b) R0 > 1 and L = x.

a) If R0 ≤ 1 then x∞ is an entire solution of (2.4) in M̂ so that one can
deduce that x∞(t) ≡ 0. This is a direct consequence of Lemma 3.1 (ii) and
(iii). Since L = 0 we obtain a contradiction with (4.7).

b) If we consider the case when R0 > 1. Then by Lemma 4.4 we deduce
that x∞ ≡ x. But ϕ 6= 0 we also have L = x and we obtain a contradiction
with (4.7). This completes the proof of the result. �

4.2. Convergence of yε. The aim of this section is to study the convergence
property of yε as ε→ 0 in order to complete the proof of Theorem 2.1. Let’s
start with an estimation of yε(t)− h(xε(t− τ)) for t ∈ [τ,+∞).

Lemma 4.7. For each ε > 0 and each initial datum (ϕ, y0) ∈M , we have

|yε(t)− h(xε(t− τ))| ≤ e−
ν
ε

(t−τ) |yε(τ)− h(ϕ(0))|+ κε, ∀t ≥ τ,

with κ := β(µ+α)
ν2

.

Proof. Let us first notice that the integration of the y−equation in (2.1)
yields for each t ≥ τ to:

yε(t) = e−
1
ε

∫ t
τ (ν+βxε(l−τ))dlyε(τ)+

∫ t

τ
e−

1
ε

∫ t
s (ν+βxε(l−τ))dlβ

ε
xε(s−τ)ds. (4.8)

Equation (4.8) may of course be re-written for each t ≥ τ as

yε(t) = e−
1
ε

∫ t
τ (ν+βxε(l−τ))dlyε(τ) + vε(t),

where the map vε : [τ,∞)→ R+ is defined by

vε(t) :=

∫ t

τ
e−

1
ε

∫ t
s (ν+βxε(l−τ))dlβ

ε
xε(s− τ)ds,

then we observe that

vε(t) =

∫ t

τ

d

ds

[
e−

1
ε

∫ t
s (ν+βxε(l−τ))dl

]
h(xε(s− τ))ds

=
[
e−

1
ε

∫ t
s (ν+βxε(l−τ))dlh(xε(s− τ))

]s=t
s=τ
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−
∫ t

τ

d

ds

[
e−

1
ε

∫ t
s (ν+βxε(l−τ))dl

]
h′(xε(s− τ))

dxε

dt
(s− τ)ds.

Therefore, for each t ≥ τ, one has

vε(t)− h(xε(t− τ)) = −e−
1
ε

∫ t
τ (ν+βxε(l−τ))dlh(ϕ(0))− wε(t),

with

wε(t) =

∫ t

τ
e−

1
ε

∫ t
s (ν+βxε(l−τ))dlh′(xε(s− τ))

dxε

dt
(s− τ)ds.

Together with these notations, one gets for each t ≥ τ

|yε(t)− h(xε(t− τ))| ≤ e−
ν
ε

(t−τ) |yε(τ)− h(ϕ(0))|+ |wε(t)| . (4.9)

It remains to obtain an estimate for the last term in the above inequality.
But by using the x−equation in (2.1), we have∣∣∣∣dxε(t)dt

∣∣∣∣ ≤ (α+ µ), ∀t ≥ 0.

Therefore

|wε(t)| ≤
∫ t

τ
e−

ν
ε

(t−s)β(µ+ α)

ν
ds,∀t ≥ τ,

and the estimate follows from (4.9). �

Next, we evaluate yε(t)− h(x(t− τ)) for t ∈ [0, τ ]. Set∥∥h′∥∥∞,[0,1]
:= sup

x∈[0,1]

∣∣h′(x)
∣∣ .

Lemma 4.8. Let (ϕ, y0)T ∈ M be given. Then for each δ > 0 there exists
η := η(δ) > 0 such that for each ε ∈ (0, 1) and t ∈ [0, τ ]

|yε(t)− h(ϕ(t− τ))| ≤ e−
νt
ε +

∥∥h′∥∥∞,[0,1]

ν + β

ν

[
2e−

νη
ε + δ

]
.

Proof. Let δ > 0 be given. Since ϕ is uniformly continuous on [−τ, 0], there
exists η := η(δ) > 0 such that for each θ1, θ2 ∈ [−τ, 0] ,

|θ1 − θ2| < η =⇒ |ϕ(θ1)− ϕ(θ2)| ≤ δ. (4.10)

By using similar arguments as in the proof of Lemma 4.7, we obtain

yε(t) = e−
1
ε

∫ t
0 (ν+βϕ(l−τ))dly0 + vε(t),∀t ∈ [0, τ ],

with vε : [0, τ ]→ R+ is defined by

vε(t) :=

∫ t

0

d

ds

[
e−

1
ε

∫ t
s (ν+βϕ(l−τ))dl

]
h(ϕ(s− τ))ds, ∀t ∈ [0, τ ] .
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Therefore, we obtain

|yε(t)− h(ϕ(t− τ))| ≤ e−
νt
ε + |vε(t)− h(ϕ(t− τ))| , ∀t ∈ [0, τ ] . (4.11)

In order to provide a suitable estimate of the second term of the right hand
side of the above inequality, let us notice that

vε(t) =

∫ t

0

de−
1
ε

∫ t
s (ν+βϕ(l−τ))dl

ds
[h(ϕ(s− τ))− h(ϕ(t− τ))] ds

+

∫ t

0

de−
1
ε

∫ t
s (ν+βϕ(l−τ))dl

ds
h(ϕ(t− τ))ds

=

∫ t

0

de−
1
ε

∫ t
s (ν+βϕ(l−τ))dl

ds
[h(ϕ(s− τ))− h(ϕ(t− τ))] ds

+ h(ϕ(t− τ))− h(ϕ(t− τ))e−
1
ε

∫ t
0 (ν+βϕ(l−τ))dl,

thus,

|vε(t)− h(ϕ(t− τ))|

≤
∫ t

0

∣∣∣de− 1
ε

∫ t
s (ν+βϕ(l−τ))dl

ds

∣∣∣ |h(ϕ(s− τ))− h(ϕ(t− τ))| ds

≤
∥∥h′∥∥∞,[0,1]

ν + β

ε

∫ t

0
e−

ν
ε

(t−s) |ϕ(s− τ)− ϕ(t− τ)| ds

≤
∥∥h′∥∥∞,[0,1]

ν + β

ε

[∫ t

t−η
e−

ν
ε

(t−s) |ϕ(s− τ)− ϕ(t− τ)| ds

+

∫ t−η

0
e−

ν
ε

(t−s) |ϕ(s− τ)− ϕ(t− τ)| ds
]

≤ 2
∥∥h′∥∥∞,[0,1]

ν + β

ε

∫ t−η

0
e−

ν
ε

(t−s)ds

+
∥∥h′∥∥∞,[0,1]

ν + β

ε

∫ η

0
e−

ν
ε
l |ϕ(t− τ − l)− ϕ(t− τ)| dl.

Due to (4.10), one obtains∫ η

0
e−

ν
ε
l |ϕ(t− τ − l)− ϕ(t− τ)| dl ≤

∫ η

0
e−

ν
ε
lδdl, ∀t ∈ [0, τ ] ,

that implies that for all t ∈ [0, τ ] ,

|vε(t)− h(ϕ(t− τ))| ≤
∥∥h′∥∥∞,[0,1]

ν + β

ε

[
2

∫ t−η

0
e−

ν
ε

(t−s)ds+ δ

∫ η

0
e−

ν
ε
ldl
]
,
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that completes the proof. �

We are now able to complete the proof of Theorem 2.5 by investigating
the limit behavior of yε as ε→ 0.

Theorem 4.9 (Almost global uniform convergence). Let (ϕ, y0) ∈ M be
given such that ϕ 6= 0C . Then the following holds true for each K > 0

lim
ε→0

sup
t≥Kε|ln ε|

|yε(t)− h(x(t− τ))| = 0.

Proof. Let K > 0 be given. Let δ > 0 be given. Due to Lemma 4.8 that
there exists η > 0 such that for all ε > 0 small enough and t ∈ [Kε| ln ε|, τ ],
one has

|yε(t)− h(ϕ(t− τ))| ≤ e−Kν| ln ε| +
∥∥h′∥∥∞,[0,1]

ν + β

ν

[
2e−

νη
ε + δ

]
. (4.12)

On the other hand from Lemma 4.7, we have

|yε(t)− h(xε(t− τ))| ≤ κε+ e−
ν
ε

(t−τ) |yε(τ)− h(ϕ(0))| , ∀t ≥ τ.

Now, using (4.12) with t = τ to estimate |yε(τ)− h(ϕ(0))|, one obtains that
for all ε > 0 small enough and each t ≥ ε| ln ε|

|yε(t)− h(xε(t− τ))| ≤ κε+ e−Kν| ln ε| +
∥∥h′∥∥∞,[0,1]

ν + β

ν

[
2e−

νη
ε + δ

]
.

As a consequence one obtains

lim sup
ε→0

sup
t≥Kε| ln ε|

|yε(t)− h(xε(t− τ))| ≤
∥∥h′∥∥∞,[0,1]

ν + β

ν
δ, ∀δ > 0,

and the result follows. �

5. Heteroclinic orbits

The aim of this section is to prove Theorem 2.5. To be more specific, in
this section we consider the case where ϕ ≡ 0C and y0 ∈ (0, 1] and we are
interested by the convergence of xε whenever R0 > 1. In such a case, due to
Lemma 3.2-(iii), the uniform convergence on the half line toward the solution
of the reduced problem cannot hold true. Instead of that we will prove the
convergence to the unique heteroclinic of the reduced system. We conclude
the paper with a convergence result which achieve the proof of Theorem 2.5.
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5.1. Existence and uniqueness of heteroclinic orbits for the reduced
system. Our first result deals with the existence of heteroclinic orbits for
the reduced system and the result reads as follows:

Proposition 5.1. Assume that R0 > 1. Then there exists an heteroclinic
orbit x of the reduced system (2.4) that satisfies

0 < x(t) ≤ x̄, ∀t ∈ R; lim
t→−∞

x(t) = 0 and lim
t→+∞

x(t) = x̄.

Proof. Let ϕ = 0C and y0 ∈ (0, 1] be given. Due to Lemma 3.2 (iii) we
know that for each ε > 0, xε(t)→ x as t→∞. Next since xε(0) = ϕ(0) = 0,
for each ε > 0 there exists tε > 0 such that xε(tε) = x̄

2 . Moreover due to
Lemma 4.1 the family of maps t 7→ xεt converges locally uniformly to the
equilibrium 0C , so that tε → +∞ as ε→ 0. Hence one can define the family
of shifted maps

x̂εt = xεt+tε and ŷε(t) = yε(t+ tε), ∀t ≥ −tε.

Similarly to proof of Lemma 4.1, there exists a sequence {εn}n≥0 ⊂ (0, 1]
and tending to 0 as n→∞ such that x̂εn → x0 locally uniformly and where
x0 is an entire solution of (2.4) such that

x∞(0) =
x

2
, 0 ≤ x∞(t) ≤ 1, ∀t ∈ R.

As a consequence of the first constraint, x∞ cannot be identically equal to
an equilibrium point of (2.4), namely 0C or x. Then Lemma 3.3 applies and
completes the proof of the result. �

The next result of this section is related to the uniqueness of the het-
eroclinic orbit constructed in Proposition 5.1. Our precise result reads as
follows:

Theorem 5.2. Assume that R0 > 1. The reduced system (2.4) has a unique
(up to time shift) heteroclinic orbit x such that

lim
t→−∞

x(t) = 0 and lim
t→+∞

x(t) = x̄.

The proof of this result will be related to Ikehara’s theorem (see Carr
and Chmaj [8] and the references cited therein) and Laplace transform (see
Widder [27]). Our proof is inspired by the one by Carr and Chmaj [8] and Yu
and Mei [28]. Before proving the above result, several lemmas are necessary.
The uniqueness of this orbit is related to a suitable description of its behavior
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as t→ −∞, when the function is approaching 0C . We will therefore consider
the linearized equation associated to (2.4) around 0C , namely

du(t)

dt
= −µu(t) + αh′(0)u(t− τ), u0 = ϕ ∈ C. (5.1)

The characteristic equation of the above delay differential equation is

∆(λ) := λ+ µ− αβ

ν
e−λτ . (5.2)

Then our first result is related to some properties on the location of the roots
of the characteristic function ∆.

Lemma 5.3. Assume that R0 > 1. Then the following properties are satisfied

(i) There exists a unique λ0 > 0 such that ∆(λ0) = 0 and

∆′(λ0) 6= 0 and ∆(λ) < 0, ∀λ ∈ [0, λ0).

(ii) For all z ∈ C we have

∆(z) = 0 and Re(z) = λ0 ⇐⇒ z = λ0.

Proof. The proof (i) is obvious and thus omitted. Now let us prove (ii).
Let z ∈ C be given such that ∆(z) = 0 and Re(z) = λ0. Then we have
∆(λ0 + iIm(z)) = 0 which implies that{

λ0 + µ = αβ
ν e
−τλ0 cos(τIm(z)),

Im(z) = −αβ
ν e
−τλ0 sin(τIm(z)).

(5.3)

Since ∆(λ0) = 0, namely λ0 + µ = αβ
ν e
−τλ0 , we infer from (5.3) that

αβ

ν
e−τλ0 =

αβ

ν
e−τλ0 cos(τIm(z)) =⇒ cos(τIm(z)) = 1,

thus, sin(τIm(z)) = 0. The result follows by using the second equation of
(5.3). �

In the sequel, we always assume that R0 > 1 and let x be a given
heteroclinic orbit of the reduced system (2.4) such that 0 < x(t) < 1,
limt→−∞ x(t) = 0, and limt→∞ x(t) = x. The aim of the next lemma is
to prove that the convergence to 0 as t→ −∞ is exponential. In the sequel,
we will prove that we have in fact x(t) = O(eλ0t) as t → −∞ where λ0 is
described in Lemma 5.3.

Lemma 5.4. Assume that R0 > 1. There exists ρ > 0 such that x(t) =
O(eρt) as t→ −∞.
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The proof of this result is split into three steps. In step 1, we show that∫ t
−∞ x(s)ds < +∞ for all t ∈ R. Step 2 is devoted to show that there exists
ρ > 0 such that

sup
t≤0

e−ρt
∫ t

−∞
x(s)ds < +∞.

Finally, step 3 completes the proof of the lemma.

Proof. Note that ∥∥h′∥∥∞,[0,1]
= h′(0) =

β

ν
> 0. (5.4)

Since R0 > 1, we can find η ∈ (0, 1) such that

αβ

ν
(1− η) > µ. (5.5)

Moreover, due to (5.4), we can find δ > 0 small enough such that

0 < x < δ =⇒ h(x) >
β

ν
(1− η)x, (5.6)

and
αβ

ν
(1− η)(1− δ) > µ. (5.7)

Step 1: Let us prove that for each t ∈ R,
∫ t
−∞ x(s)ds < +∞. Integrating

(2.4) from t0 to t yields

x(t)− x(t0) = −µ
∫ t

t0

x(s)ds+ α

∫ t

t0

h(x(s− τ))(1− x(s))ds. (5.8)

Recalling that x(t) → 0 as t → −∞, there exists T > 0 large enough such
that for all t ≤ −T 0 < x(t) < δ, where δ > 0 is defined in (5.6). Hence, we
obtain

h(x(s− τ)) ≥ β

ν
(1− η)x(s− τ), ∀s ≤ −T, (5.9)

and by combining (5.8) and (5.9) we obtain for all t0 ≤ t ≤ −T, that

x(t)− x(t0) ≥ −µ
∫ t

t0

x(s)ds+

∫ t

t0

αβ

ν
(1− η)x(s− τ)(1− x(s))ds.

But due to Lemma 3.3, we have 0 < x(t) ≤ x̄,∀t ∈ R, therefore, for all
t0 ≤ t ≤ −T,

x(t)− x(t0) ≥ −µ
∫ t

t0

x(s)ds+

∫ t

t0

αβ

ν
(1− η)(1− δ)x(s− τ)ds,
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thus,

x(t)− x(t0) ≥ A
∫ t

t0

[x(s− τ)− x(s)] ds+B

∫ t

t0

x(s)ds, (5.10)

where

A :=
αβ

ν
(1− η)(1− δ) > 0 and B :=

[
αβ

ν
(1− η)(1− δ)− µ

]
> 0.

Note that ∫ t

t0

[x(s− τ)− x(s)] ds = −
∫ t

t0

∫ 0

−τ

dx(s+ l)

dl
dlds

= −
∫ 0

−τ
[x(l + t)− x(l + t0)] dl.

Due to the above reformulation and B > 0, recalling that x(t) → 0 as
t→ −∞, allow us to let t0 → −∞ into (5.10) yielding that for all t ≤ −T ,

x(t) +A

∫ 0

−τ
x(l + t)dl ≥ B

∫ t

−∞
x(s)ds, (5.11)

that completes the proof of Step 1.
Step 2: Let us prove that there exists ρ > 0 and some constant κ > 0

such that e−ρt
∫ t
−∞ x(s)ds ≤ κ, for all t ∈ (−∞, 0]. To do so let us define

X : R→ R+ by

X(t) :=

∫ t

−∞
x(r)dr.

Note that due to (5.11), X ∈ L1(−∞,−T ). Since X is non-decreasing, one
has for each t ≤ −T∫ t

−∞

∫ 0

−τ
x
(
l + s

)
dsdl =

∫ 0

−τ
X(t+ l)dl ≤ τX(t),

therefore, by integrating (5.11) over (−∞, t], we obtain

B

∫ t

−∞
X(s)ds ≤ (1 + τA)X(t), ∀t ≤ −T. (5.12)

Now, let t1 > 0 be given large enough such that

ρ :=
1

t1
ln
( Bt1

1 + τA

)
> 0.

Then note that since X is increasing then

X(t− t1) ≤ X(t+ s), ∀s ∈ [−t1, 0], ∀t ∈ (−∞,−T ].
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This implies that for each t ≤ −T

X(t− t1) ≤ 1

t1

∫ t

t−t1
X(s)ds, (5.13)

and this latter inequality combined together with (5.12) provides that for all
t ≤ −T :

X(t− t1) ≤ 1

t1

∫ t

−∞
X(s)ds ≤ 1 + τA

Bt1
X(t).

Due to the definition of ρ, one obtains that supt≤−T e
−ρtX(t) < ∞, that

completes the proof of Step 2.
Step 3: This step will conclude the proof of Lemma 5.4. Integrating (2.4)

over (−∞, t) for some given t ≤ 0 yields

x(t) ≤
∫ t

−∞
αh(x(s− τ))(1− x(s))ds

≤
∫ t

−∞
αh(x(s− τ))ds ≤

∫ t

−∞

αβ

ν
x(s− τ)ds.

Step 2 applies and provides that the right hand side of this inequality is
bounded by Keρt on (−∞, 0] for some constant K > 0 and the result follows.

�

Define the Laplace transform of u

L(u)(λ) :=

∫ +∞

0
u(t)e−λtdt,

whenever the integral exists. We will say that the Laplace transform con-
verges if the limit

lim
τ→+∞

∫ τ

0
e−λtu(t)dt,

exists, and we will say that the Laplace transform diverges otherwise.
For convenience let us recall the following theorem which can be found in

Carr and Chmaj [8].

Theorem 5.5 (Ikehara’s). Let u : [0,+∞)→ [0,+∞) a positive decreasing
locally integrable function. Assume that there exists a function H which is
analytic in the strip Σ :=

{
λ ∈ C : −ζ ≤ Re(λ) < 0

}
and there exists an

integer k > −1 such that

L(u)(λ) :=
H(λ)

(λ+ ζ)k+1
, ∀λ ∈ Σ.
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Then

lim
t→+∞

u(t)

tke−ζt
exists,

and this limit is equal to H(−ζ)
Γ(ζ+1) where Γ(x) is the gamma function.

Before recalling Widder’s theorem, let us recall that for a function u :
[0,+∞)→ R, we call abscissa of convergence of u,

abs(u) := inf {Re(λ) : there exists λ ∈ C for which L(u)(λ) exists} .
Recall also that the abscissa of absolute convergence of u is abs(|u|).

We refer to the proof of Proposition 1.4.1 p. 28 in Arendt et al. [2] of the
following lemma.

Lemma 5.6. Let u : [0,+∞)→ [0,+∞) be a locally integrable map. Assume
that L(u)(λ0) converges for some complex number λ0 ∈ C. Then L(u)(λ)
converges for each λ ∈ C with Re(λ) > Re(λ0).

Remark 5.7. By using this lemma we deduce that the Laplace transform of
u converges for each λ ∈ C with Re(λ) > abs(u) and diverges for each λ ∈ C
with Re(λ) < abs(u). This last property sometimes serves as a definition for
the abscissa of convergence of u.

The following Theorem is due to Widder [27, p.58] (see also Arendt et al.
[2, Theorem 1.5.3. p. 34]).

Theorem 5.8 (Widder’s). Let u : [0,+∞) → [0,+∞) be a non-negative
and locally integrable map. Assume that abs(u) < +∞. Then L(u)(λ) is
holomorphic in {λ ∈ C : Re(λ) > abs(u)}. If in addition abs(u) > −∞, then
L(u)(λ) has a singularity at abs(u).

Now, let us set v(t) := x(−t), ∀t ∈ R, that is an entire solution of the
equation

dv(t)

dt
= µv(t)− αh(v(t+ τ))(1− v(t)), t ∈ R. (5.14)

Due to Lemma 5.4, we have v(t) = O(e−ρt) as t→∞. Therefore the Laplace
transform L(v)(λ) converges for each λ ∈ C with Re(λ) > −ρ, and we must
haveabs(v) ≤ −ρ. By applying the Laplace transform to (5.14) yields to(

λ− µ+
αβ

ν
eλτ
)
L(v)(λ) = v(0) +

αβ

ν
eλτ
∫ τ

0
v(t)e−λtdt+ L(R)(λ),

where

R(t) :=
αβ

ν
v(t+ τ)− αh(v(t+ τ))(1− v(t)).
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Recalling the definition of ∆ in (5.2), the latter equation rewrites as

−∆(−λ)L(v)(λ) = v(0) +
αβ

ν
eλτ
∫ τ

0
v(t)e−λtdt+ L(R)(λ). (5.15)

Remark 5.9. Note that for all t ∈ R

αh(v(t+ τ))(1− v(t)) = α
βv(t+ τ)

βv(t+ τ) + ν
(1− v(t))

=
αβv(t+ τ)

ν

ν

βv(t+ τ) + ν
(1− v(t)) ≤ αβv(t+ τ)

ν
(1− v(t)),

thus, for all t ∈ R

R(t) ≥ αβ

ν
v(t+ τ)− αβv(t+ τ)

ν
(1− v(t)) ≥ αβ

ν
v(t+ τ)v(t) > 0,

and we deduce that

v(0) +
αβ

ν
eλτ
∫ τ

0
v(t)e−λtdt+

∫ +∞

0
R(t)e−λtdt > 0,

whenever λ ∈ R and L(v)(λ) < +∞.

In the next lemma we investigate to the analyticity of L(v)(λ).

Lemma 5.10. Let λ0 ∈ R be the real number defined in Lemma 5.3. Then
the Laplace transform L(v)(λ) is well defined and analytic in the strip {λ ∈
C : Re(λ) > −λ0}. Moreover, we have

lim
λ(>−λ0)→−λ0

L(v)(λ) = +∞,

while abs(R) < −λ0.

Proof. Let us first prove that

lim
λ(>−λ+0 )→−λ+0

L(v)(λ) = +∞.

Let us assume that

lim
λ(>−λ+0 )→−λ+0

L(v)(λ) < +∞. (5.16)

Next, note that since v(t) > 0 for all t ∈ R, we have for each λ1, λ2 ∈ R

λ1 ≥ λ2 =⇒ L(v)(λ1) ≤ L(v)(λ2).

Therefore, (5.16) implies that

L(v)(λ) < +∞, ∀λ ∈ R with λ > −λ0. (5.17)
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But by using Fatou’s Lemma, we obtain

L(v)(−λ0) =

∫ +∞

0
lim

λ(>−λ0)→−λ0
eλtv(t)dt

≤ lim
λ(>−λ0)→−λ0

∫ +∞

0
eλtv(t)dt < +∞.

We conclude from (5.17) that

L(v)(λ) < +∞, ∀λ ∈ [−λ0,+∞).

Now, by using (5.15), it follows that

0 < L(v)(λ) < +∞, ∀λ ∈ [−λ0,+∞),

and since ∆(λ0) = 0 by taking the limit when λ goes to −λ+
0 (with λ ∈ R)

into (5.15), we obtain

lim
λ(>−λ0)→−λ0

L(R)(λ) = L(v)(−λ0) = −v(0)− αβ

ν
e−λ0τ

∫ τ

0
v(t)eλ0tdt < 0,

that is a contradiction with the fact that R(t) > 0 for each t ≥ 0 (see Remark
5.9).

The contradiction proves that L(v) has a singularity at −λ0 and

lim
λ(>−λ+0 )→−λ+0

L(v)(λ) = +∞.

As a consequence of Lemma 5.6, we deduce that −λ0 ≤ abs(v) ≤ −ρ < 0.
Next, we will prove that L(v) is analytic on the strip {λ ∈ C : −λ0 < Re(λ)}.
Due to Theorem 5.8 it is sufficient to show that abs(v) = −λ0. Assume by
contradiction that −λ0 < abs(v). Since λ∗ := abs(v) < 0, we have −λ0 <
λ∗ < 0, therefore, by Lemma 5.3-(i), we obtain

∆(−λ∗) < 0. (5.18)

Let η ∈ (0, ρ) (where ρ > 0 is defined above). We also have for each t ∈ R

0 < R(t) =
αβ

ν
v(t+ τ)− α βv(t+ τ)

βv(t+ τ) + ν
(1− v(t))

=
αβ

ν
v(t+ τ)

[
1− ν (1− v(t))

βv(t+ τ) + ν

]
=
αβ

ν
v(t+ τ)

[βv(t+ τ) + νv(t)

βv(t+ τ) + ν

]
≤ αβ

ν
v(t+ τ)v(t).
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Hence,∫ +∞

0
R(t)e−(λ∗−η/2)tdt ≤ αβ

ν

∫ +∞

0
v(t+ τ)v(t)e−(λ∗−η/2)tdt

≤ αβ

ν

∫ +∞

0
v(t)e−(λ∗+η/2)tdt sup

t≥0
eηtv(t+ τ).

Recalling Lemma 5.4 and the definition of v, due to the choice of η ∈ (0, ρ)
one has

sup
t≥0

eηtv(t+ τ) < +∞,

while since abs(v) + η/2 > abs(v), we obtain that∫ +∞

0
v(t)e−(λ∗+η/2)tdt <∞

so by (5.15) ∫ +∞

0
R(t)e−(λ∗−η/2)tdt <∞.

Thus,
abs(R) ≤ abs(v)− η/2, ∀η ∈ (0, ρ).

Moreover, since abs(R) < abs(v) and since −λ0 < abs(v) there exists κ > 0
small enough such that the map

λ 7→ 1

−∆(λ)

[
v(0) +

αβ

ν
eλτ
∫ τ

0
v(t)e−λtdt+ L(R)(λ)

]
,

is analytic on the strip {λ ∈ C : Re(λ) > abs(v)− κ} and it is an extension
of L(v), a contradiction with Widder’s theorem, namely, Theorem 5.8. As a
consequence abs(v) = −λ0. To complete the proof of the Lemma let us notice
that using the same arguments as before, one has abs(R) < −λ0(= abs(v))
and the result follows. �

Before proving Theorem 5.2, we need to derive the precise behavior of
x(t) when t goes to −∞. This will be achieved in the next lemma. Let us
introduce, due to Lemma 5.10 the analytic function H acting from the strip
{λ ∈ C : Re(λ) > −λ0} into C defined by

H(λ) := (λ+ λ0)L(v)(λ), (5.19)

or equivalently

H(λ) :=
(λ+ λ0)

−∆(−λ)

[
v(0) +

αβ

ν
eλτ
∫ τ

0
v(t)e−λtdt+ L(R)(λ)

]
. (5.20)

Using this function, our next lemma reads as



A singularly perturbed delay differential equation 353

Lemma 5.11. The following holds true

lim
t→−∞

x(t)

eλ0t
=

H(−λ0 − µ)

Γ(1 + λ0 + µ)
> 0, (5.21)

with λ0 defined in Lemma 5.3.

Proof. Since we have defined v(t) = x(−t) for all t ∈ R, (5.21) is equivalent
to

lim
t→+∞

v(t)

e−λ0t
=

H(−λ0 − µ)

Γ(1 + λ0 + µ)
.

But, equation (5.14) implies that

d
[
e−µtv(t)

]
dt

= −e−µtαh(v(t+ τ))(1− v(t)) ≤ 0, ∀t ∈ R,

therefore, the map t ∈ [0,+∞) → e−µtv(t) is a decreasing. Set v̂(t) :=

e−µtv(t), ∀t ≥ 0. Next, notice that for each λ ∈ {λ̂ ∈ C : −λ0−µ ≤ Re(λ̂) <
0} one has ∫ +∞

0
v̂(t)e−λtdt =

H(λ+ µ)

λ+ λ0 + µ
.

Therefore, since v̂ is positive and decreasing, and Ikehara’s theorem implies

lim
t→+∞

v̂(t)

e−(λ0+µ)t
=

H(−λ0 − µ)

Γ(1 + λ0 + µ)
⇔ lim

t→−∞

v(t)

eλ0t
=

H(−λ0 − µ)

Γ(1 + λ0 + µ)
.

That completes the proof. �

Corollary 5.12. Function x is increasing on R.

Proof. According to Lemma 5.11, there exists αx > 0 such that e−λ0tx(t)→
αx as t→ −∞. Now from (2.4) one obtains that

lim
t→−∞

e−λ0tx′(t) = αx

[
−µ+ αβ

ν e
−λ0τ

]
= αxλ0 > 0.

The result follows from the results of Smith [24]. �

We now have all the necessary ingredient to complete the proof of Theorem
5.2.

Proof of Theorem 5.2. Let x and y be two heteroclinic orbits of the re-
duced system (2.4). From Lemma Lemma 5.11 there exists αx > 0 and
αy > 0 such that

lim
t→−∞

e−λ0tx(t) = αx and lim
t→−∞

e−λ0ty(t) = αy.
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Hence, there exists h ∈ R such that

lim
t→−∞

e−λ0tx(t) = lim
t→−∞

e−λ0ty(t+ h).

Up to change y(t) by y(t+ h), one may assume that h = 0, that is

lim
t→−∞

e−λ0tx(t) = lim
t→−∞

e−λ0ty(t).

Next, let us define

w(t) :=
x(t)− y(t)

eλ0t
, ∀t ∈ R.

We aim to show that w(t) ≡ 0, so that x(t) ≡ y(t). To do so note that
Lemma 5.11 ensures that w(t)→ 0 as t→ −∞ and one can also notice that
since x and y are bounded, one has w(t)→ 0 as t→∞. We conclude that w
is bounded on R. Assume by contradiction that w(t) 6≡ 0. Then, replacing
eventually x − y by y − x, we can assume, without loss of generality, there
exists t0 ∈ R such that

w(t0) = sup
t∈R
|w(t)| > 0. (5.22)

We claim that w(t0) = w(t0− τ). Indeed since w(t0) is a maximum, we have

dw(t0)

dt
= 0 = −(λ0 + µ)w(t0)

+ e−λ0t0 [λ0αh(x(t0 − τ))(1− x(t0))− αh(y(t0 − τ))(1− y(t0))] ,

thus,

(λ0 + µ)w(t0)

= α
h(x(t0 − τ))− h(y(t0 − τ))

eλ0t0
(1− x(t0))− αw(t0)h(y(t0 − τ))

≤ αh(x(t0 − τ))− h(y(t0 − τ))

eλ0t

≤ α
∫ 1

0
h′(sx(t0 − τ) + (1− s)y(t0 − τ))dsw(t0 − τ)

≤ αh′(0)w(t0 − τ) ≤ αβ

ν
e−λ0τw(t0 − τ).

Here, recalling that λ0 + µ = αβ
ν e
−λ0τ it follows thatw(t0) ≤ w(t0 − τ).

Therefore, since w(t0) is a maximum point we also have w(t0) ≥ w(t0 − τ)
so that w(t0) = w(t0 − τ). By induction one concludes w(t0) = w(t0 − nτ)
for all n ∈ N which implies that

w(t0) = lim
n→+∞

w(t0 − nτ) = lim
t→−∞

w(t) = 0.
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That contradicts the fact that w(t0) > 0. Therefore, w(t) ≡ 0 and the result
follows. �

5.2. Convergence to the heteroclinic orbits. In this subsection, we
study the convergence of xε whenever the initial conditions ϕ = 0C and
y0 6= 0 and we complete the convergence part stated in Theorem 2.5. In
the sequel we denote x∞ the unique heteroclinic orbit of the reduced system
provided by Theorem 5.2 such that x∞(0) = x

2 .

Lemma 5.13. Assume that R0 > 1. Let y0 ∈ (0, 1] be given and let us
denote by (xε, yε) the solution of (2.1) with initial data (0C , y0). Then for
each ε > 0 one has

tε := sup
{
t ≥ 0 : xε(t) = x

2

}
<∞ and lim

ε→0
tε =∞,

and the following convergence holds true

lim
ε→0

xε(t+ tε) = x∞(t),

converges uniformly on any intervals of the form [−T,+∞) with T ≥ 0.

Proof. By using the same arguments as in the proof of Proposition 5.1 we
obtain that there exists a family {tε}ε>0 such that for each ε > 0:

xε(tε) =
x̄

2
and lim

ε→0
tε =∞, (5.23)

and such that the family of function x̂ε(t) := xε(t + tε) converges locally
uniformly to the unique heteroclinic orbit x∞. Now, let T > 0 be given. We
claim that x̂ε converges uniformly to x∞ on [−T,+∞). Indeed, assume that
the convergence is not uniform on [−T,+∞). Then there exists a sequence
{εn} tending to 0 as n → ∞, η > 0 and a sequence tn → +∞ as n → +∞
such that

|x̂εn(tn)− x∞(tn)| > η, ∀n ≥ 0. (5.24)

Consider now the sequence of map xn(t) := x̂εn(tn+ t). Then since x̂εn(0) =
x
2 , Lemma 4.4 applies and provides that

lim
n→+∞

x̂εn(t+ tn) = x̄, locally uniformly.

Since x∞(tn)→ x as n→∞ we reach a contradiction with (5.24). This com-
pletes the proof of the lemma and therefore completes the proof of Theorem
(2.4). �
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6. Discussion

In this article, we have investigated finite and infinite time singular limit
for the following system of delay differential equations

dx(t)

dt
= −µx(t) + αy(t)(1− x(t)), ∀t ≥ 0,

ε
dy(t)

dt
= −νy(t) + βx(t− τ)(1− y(t)), ∀t ≥ 0,

y(0) = y0 ∈ R, and x0 = ϕ ∈ C([−τ, 0] ,R).

(6.1)

From a practical point of view, no information is available for the parameters
of the second equation (i.e. HCW equation). The results of this paper show
that we can replace y in first equation of system (6.1) by

y(t) = h(x(t− τ)) =
βx(t− τ)

ν + βx(t− τ)
.

Therefore, the system (6.1) is reduced to a single equation

dx(t)

dt
= −µx(t) + αh(x(t− τ))(1− x(t)), ∀t ≥ 0.

This new model provide a good generally approximation of the first equation
in system (6.1) as soon as ε is small enough. We prove that the finite time
convergence is always true. Nevertheless, when the infection starts only with
contaminated HCW, some difficulties arise for the long term comparison.

In terms of mathematical perspectives, many questions remain. One
should first extend the presents results to the original age-structured mod-
els (1.2)-(1.3). Another class of questions is can we reconsider the systems
from abstract point of view. Namely it would be interesting to regard sys-
tems (6.1) as non-densely defined Cauchy problem. By using (for example)
the approach presented in Liu, Magal and Ruan [19], one can reformulated
system (6.1) in the following form

d

dt

( 0R

u

)
= A

( 0R

u

)
+ F

(( 0R

u

)
, y
)
,

ε
dy

dt
= −νy(t) + βu

(
t,−τ

)(
1− y(t)

)
,
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where A : D(A) ⊂ X → X is a linear operator on the Banach space X =

R× C
(

[−τ, 0] ,R
)

defined by

A

(
0R
ψ

)
=

(
−ψ′(0)

ψ′

)
with D(A) = {0R} × C1

(
[−τ, 0] ,R

)
,

and F : D(A)→ X is the map defined by

F
((

0R
ϕ

)
, y
)

=
( −µϕ(0) + αy

(
1− ϕ(0)

)
0C

)
.

According to our best knowledge, very few results are available in the liter-
ature for infinite dimensional singular limit. Some results are obtained for
linear diffusion operators (see Bates, Lu and Zeng [7] and reference therein),
but for hyperbolic operators no general theory has been developed.
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