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Abstract In this article we revisit the perturbation of exponential trichotomy of linear dif-
ference equation in Banach space by using a Perron–Lyapunov fixed point formulation for
the perturbed evolution operator. This approach allows us to directly re-construct the per-
turbed semiflow without using shift spectrum arguments. These arguments are presented to
the case of linear autonomous discrete time dynamical system. This result is then coupled
to Howland semigroup procedure to obtain the persistence of exponential trichotomy for
non-autonomous difference equations.
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1 Introduction

Let A ∈ L (X) be a bounded linear operator on a Banach space (X, ‖.‖). Recall that the
spectral radius of A is defined by

r (A) := lim
n→+∞

∥
∥An

∥
∥
1/n
L(X)

.

Assume that A has a state space decomposition, whenever A is regarded as the following
discrete time dynamical system

{

xn+1 = Axn, for n ∈ N,

x0 = x ∈ X.
(1.1)
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Namely,we canfind three closed subspaces Xs the stable subspace, Xc the central subspace,
and Xu the unstable subspace such that

X = Xs ⊕ Xc ⊕ Xu and A (Xk) ⊂ Xk, ∀k = s, c, u.

Moreover if we define for each k = s, c, u, Ak ∈ L (Xk) the part of A in Xk (i.e. Akx =
Ax, ∀x ∈ Xk). Then there exists a constant α ∈ (0, 1) such that

r (As) ≤ α < 1

the linear operator Au on Xu is invertible and

r
(

A−1
u

) ≤ α < 1

and the operator Ac on Xc is invertible and

r (Ac) < α−1 and r
(

A−1
c

)

< α−1.

We summarize the notion of state space decomposition into the following definition. In
the context of linear dynamical system (or linear skew-product semiflow) this notion also
corresponds to the notion of exponential trichotomy. The following definition corresponds
to the one introduced by Hale and Lin in [13].

Definition 1.1 Let A ∈ L (X) be a bounded linear operator on a Banach space (X, ‖.‖). We
will say that A has an exponential trichotomy (or A is exponentially trichotomic) if there
exist three bounded linear projectors �s,�c,�u ∈ L (X) such that

X = Xs ⊕ Xc ⊕ Xu,

and
A (Xk) ⊂ Xk, ∀k = s, c, u,

where Xk := �k (X), for k = s, c, u, and

Xc ⊕ Xu = (I − �s)(X), Xs ⊕ Xu = (I − �c)(X) and Xs ⊕ Xc = (I − �u)(X).

Moreoverweassume that there exists a constantα ∈ (0, 1) satisfying the followingproperties:

(i) Let As ∈ L (Xs) be the part of A in Xs (i.e. As(x) = A(x), ∀x ∈ Xs) we assume that
r (As) ≤ α ;

(ii) Let Au ∈ L (Xu) be the part of A in Xu (i.e. Au(x) = A(x), ∀x ∈ Xu) we assume
that Au is invertible and r

(

A−1
u

) ≤ α;
(iii) Let Ac ∈ L (Xc) be the part of A in Xc (i.e. Ac(x) = A(x), ∀x ∈ Xc) we assume that

Ac is invertible and r (Ac) < α−1 and r
(

A−1
c

)

< α−1.

Let A : D(A) ⊂ X → X is a linear operator on a Banach space X . Let Y ⊂ X is a
subspace of X. Recall that AY : D (AY ) ⊂ Y → Y the part of A in Y is defined by

D (AY ) := {x ∈ D(A) ∩ Y : Ax ∈ Y } and AY x = Ax, ∀x ∈ D (AY ) .

Note that inDefinition 1.1 only the forward information are used on the stable part Xs , forward
and backward for the central part Xc while only backward information are necessary on the
unstable part Xu . This remark motivates the following definition of exponential trichotomy
for unbounded linear operator operator that will be used throughout this work.
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Definition 1.2 Let A : D(A) ⊂ X → X be a closed linear operator on a Banach space
(X, ‖.‖). We will say that A has an exponential trichotomy (or A is exponentially tri-
chotomic) if there exist three bounded linear projectors �s,�c,�u ∈ L (X) such that

X = Xs ⊕ Xc ⊕ Xu, where Xk := �k (X) , ∀k = s, c, u, (1.2)

and

Xc ⊕ Xu = (I − �s)(X), Xs ⊕ Xu = (I − �c)(X) and Xs ⊕ Xc = (I − �u)(X).

Moreover we assume that

D(A) = Xs ⊕ Xc ⊕ (D(A) ∩ Xu) .

and
A (D(A) ∩ Xk) ⊂ Xk, ∀k = s, c, u. (1.3)

Furthermore we assume that there exists a constant α ∈ (0, 1) satisfying the following
properties:

(i) Let As ∈ L(Xs) be the part of A in Xs , we assume that

r (As) ≤ α; (1.4)

(ii) Let Au : D(Au) ⊂ Xu → Xu be the part of A in Xu , we assume that Au is invertible
and

r
(

A−1
u

) ≤ α; (1.5)

(iii) Let Ac ∈ L(Xc) be the part of A in Xc, we assume that Ac is invertible and

r (Ac) < α−1 and r
(

A−1
c

)

< α−1. (1.6)

Remark 1.3 The above properties (1.5)–(1.7) are also equivalent to say that there exist three
constants κ ≥ 1 and 0 < ρ0 < ρ such that

∥
∥An

c

∥
∥L(Xc)

≤ κeρ0|n|, ∀n ∈ Z, (1.7)
∥
∥An

s

∥
∥L(Xs )

≤ κe−ρn, ∀n ∈ N, (1.8)

0 ∈ ρ (Au) the resolvent set of Au and
∥
∥A−n

u

∥
∥L(Xu)

≤ κe−ρn, ∀n ∈ N. (1.9)

In the sequel, the above estimates will be referred as exponential trichotomy with exponents
ρ0 < ρ, constant κ and associated to the projectors {�α}α=s,c,u .

Remark 1.4 Since the linear operator A is assumed to be closed, by the closed graph theorem,
Definition 1.2 coincides with Definition 1.1 if and only if D(Au) = Xu .

By using the definition of exponential trichotomy we may also define the notion of expo-
nential dichotomy.

Definition 1.5 Let A : D(A) ⊂ X → X be a closed linear operator on a Banach space
(X, ‖.‖).Wewill say that A has an exponential dichotomy if A has an exponential trichotomy
with Xc = {0} .

123



96 J Dyn Diff Equat (2016) 28:93–126

The aim of this paper is to study the persistence of exponential trichotomy (according to
Definition 1.2) under small bounded additive perturbation. Before going to our main result
and application to non-autonomous problems, let us recall that exponential dichotomy (tri-
chotomyandmore generally invariant exponential splitting) is a basic tool to study stability for
non-autonomous dynamical systems (see for instance [2,11,20] and the references therein). It
is also a powerful ingredient to construct suitable invariant manifolds for non-linear problems
(see [2,6,10] and the references therein). In the last decades a lot of attention has been paid to
and much progress has been made in understanding invariant splitting for non-autonomous
linear dynamical systems (continuous time as well as linear difference equations) as well as
their persistence under small perturbations. We refer for instance to [8,9,13,14,19,21–24]
and the references cited therein.

Let us also mention the notion of non-uniform dichotomy and trichotomy in which the
boundedness of the projectors is relaxed allowing unbounded linear projectors (see for
instance [1–4] for non-autonomous dynamical systems and [27] for random linear differ-
ence equations).

The persistence of exponential splitting under small perturbation is also an important
problem with several applications in dynamical systems such as shadowing properties. We
refer to Palmer [16,17] and the references therein.

Finally we would like to compare our definition of exponential splitting with the one
recently considered by Potzsche in his monograph (see Chap. 3 in [20]). In the homogeneous
case, Potzsche considers exponential splitting for a pair of linear operators (A, B) ∈ L(X, Y )

where X and Y denote two Banach spaces. Note that X can be different from Y so that this
framework applies to closed linear operators. Let us recall that when (A, B) ∈ L(X, Y ) one
may consider the corresponding (Y -valued) linear difference equation on X defined as

Bxk+1 = Axk, k ∈ Z.

We now recall the definition of exponential dichotomy used by Potzsche in [20]:

Definition 1.6 An operator pair (A, B) ∈ L(X, Y )2 acting between two Banach spaces X
and Y is said to have an exponential dichotomy if there exist κ > 0, ρ > 0 and two orthogonal
and complementary projectors �s,�u ∈ L(X) such that, by setting Xk = �k (X) for
k = s, u

X = Xs ⊕ Xu

ker B|Xs = {0}, R (A�s) ⊂ R (B�s) =: Ys
ker A|Xu = {0}, R (B�u) ⊂ R (A�u) =: Yu

and �s :=
(

B−1
|Ys A

)

|Xs
∈ L(Xs) and �u :=

(

A−1
|Yu B

)

|Xu
∈ L(Xu) while

‖�n
s ‖L(Xs ) ≤ κe−nρ, and ‖�n

u‖L(Xs ) ≤ κe−nρ ∀n ≥ 0.

Note that when A : D(A) ⊂ X → X is a closed linear operator, the application of this
theory to the pair (A, J ) ∈ L(D(A), X) (where J : D(A) → X denotes the canonical
embedding from D (A) into X i.e. J (x) = x, ∀x ∈ D (A)) would lead us to a splitting
of the Banach space D(A) (endowed with the graph norm). Let us also notice that when
A ∈ L(X) has an exponential dichotomy (according toDefinition 1.1) then the pair (A, IX ) ∈
L(X)2 has an exponential dichotomy in the above sense (Definition 1.6). In the same way
when A ∈ L(X) has an exponential trichotomy (according to Definition 1.1) then the pair
(A, IX ) ∈ L(X)2 has 3-exponential invariant splitting in the sense of Potzsche [20, Definition
3.4.12, p. 135].
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Now let A : D(A) ⊂ X → X be an exponential dichotomic closed linear operator with
parameters κ > 0, ρ > 0 and > 0 and projectors �k k = s, u (see Definition 1.2). Consider
the linear operator B̂ ∈ L(X) defined by B̂ = (

A−1
u �u + �s

) ∈ L(X). Then by applying B̂
on the left side of (1.1), the linear difference equation xn+1 = Axn becomes

B̂xn+1 = B̂ Axn

or equivalently
B̂xn+1 = Âxn

where Â := �u + As�s ∈ L(X) is a bounded extension of B̂ A : D(A) ⊂ X → X (the
unique bounded extension if A is densely defined). In order to deal with the above linear
difference equation, one may consider the operator pair

(

Â, B̂
)

. Note that ker B̂ = {0} and
B̂−1 : D (

B̂−1
) ⊂ X → X is the closed linear operator defined by

D
(

B̂−1) = R(B̂) = Xs ⊕ D(A) ∩ Xu = D(A) and B̂−1 = Au�u + �s .

Then it is easy to check that if A : D(A) ⊂ X → X has an exponential dichotomy (see
Definition 1.2) then the pair

(

B̂, Â
) ∈ L(X)2 has an exponential dichotomy according to

Definition 1.6.
One can therefore try to use this operator pair framework to study the persistence of

exponential dichotomy provided by the extended Definition 1.2. Let recall that Potzsche
derived in his monograph a general roughness result using the operator pair framework (see
Theorem 3.6.5, p. 165). Let (A, B) ∈ L(X, Y )2 be an exponential dichotomy operator pair
and let

(

A, B
) ∈ L(X, Y )2 be a given perturbation. Then if

R(A) ⊂ R(B), R
(

A
) ⊂ R(B) and R

(

B
) ⊂ R(B)

then under suitable smallness assumptions the operator pair
(

A + A, B + B
)

has an expo-
nential dichotomy.
Consider an exponentially dichotomic closed linear operator A : D(A) ⊂ X → X as well
as a small perturbation C ∈ L(X). Using the above transformation the linear difference
equation xk+1 = (A + C)xk rewrites as studying the invariant splitting for the operator pair(

B̂, Â + B̂C
) ∈ L(X)2. In that context, note the compatibility condition R

(

Â
) ⊂ R

(

B̂
)

re-writes as Xu ⊕ R (As) ⊂ (D(A) ∩ Xu) ⊕ Xs that is true if and only if D(A) ∩ Xu = Xu ,
that is D(A) = X and A ∈ L(X). Here since A is closed the closed graph theorem implies
that A is bounded.

As a consequence, the general persistence results of Potzsche in [20] cannot directly apply
to study the persistence of the splitting for the class of linear unbounded operators.

In this work we propose to revisit the problem of persistence of exponential trichotomy
for the class of operators described in Definition 1.2 by dealing with a direct proof based
on Perron–Lyapunov fixed point argument for the perturbed semiflows and projectors. More
specifically if B ∈ L (X) (with ‖B‖L(X) small enough) we aim at investigating the persis-
tence of such the state space decomposition for a small bounded linear perturbation of an
exponentially trichotomic closed linear operator A : D(A) ⊂ X → X .

The main result of the manuscript is the following theorem.

Theorem 1.7 (Perturbation) Let A : D(A) ⊂ X → X be a closed linear operator on a
Banach space X, and assume that A has exponential trichotomy with exponents ρ0 < ρ,
constant κ and associated to the projectors {�α}α=s,c,u (see Remark 1.3). Then for each B ∈
L (X) with ‖B‖L(X) small enough the closed linear operator (A + B) : D(A) ⊂ X → X
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has an exponential trichotomy, which corresponds to the following state space decomposition

X = X̂s ⊕ X̂c ⊕ X̂u,

and which corresponds to the bounded linear projectors �̂s, �̂c, �̂u ∈ L (X) satisfying

X̂k := �̂k (X) , ∀k = s, c, u,

and

X̂c ⊕ X̂u = (I − �̂s)(X), X̂s ⊕ X̂u = (I − �̂c)(X) and X̂s ⊕ X̂c = (I − �̂u)(X).

Moreover precisely, let three constants ρ̂0, ρ̂ ∈ (0,+∞) and κ̂ be given such that

0 < ρ0 < ρ̂0 < ρ̂ < ρ and κ̂ > κ.

There exists δ0 = δ0 (ρ0, ρ̂0, ρ̂, ρ, κ, κ̂) ∈
(

0,
√
2 − 1

)

such that for each δ ∈
(

0,
δ20

κ+δ0

)

if

‖B‖L(X) ≤ δ, then (A + B) has an exponential trichotomy with exponent ρ̂0 and ρ̂ and with
constant κ̂ .

Moreover, the three associated projectors �̂s, �̂c, �̂u ∈ L (X) satisfy

∥
∥�̂k − �k

∥
∥L(X)

<
κδ

δ0 − δ
≤ δ0 <

√
2 − 1, ∀k = s, c, u,

and as a consequence the subspace X̂k := �̂k (X) is isomorphic to the subspace Xk =
�k (X) .

Furthermore the following estimates hold true for each n ∈ N,

∥
∥(A + B)ns �̂s − An

s�s
∥
∥L(X)

≤ κδ

δ0 − δ
e−ρ̂n,

∥
∥(A + B)−n

u �̂u − A−n
u �u

∥
∥L(X)

≤ κδ

δ0 − δ
e−ρ̂n,

and for each n ∈ Z

∥
∥(A + B)nc �̂c − An

c�c
∥
∥L(X)

≤ κδ

δ0 − δ
eρ̂0|n|.

In case of bounded linear operator the above result is a particular case of the result proved
by Potzsche in [20] and by Pliss and Sell [18] using perturbation of exponential dichotomy
for linear skew product semiflow and shifted operators. For the class of unbounded linear
operator we consider in this work this result is new.

In addition, the above result has some consequence for non-autonomous discrete time
linear equations by using Howland semigroup procedure to re-formulate such problems as
autonomous systems.

In the next subsection we will state some consequences of Theorem 1.7. Section 2 is
devoted to the proof of Theorem 1.7. Section 3 is concerned with the application of Theorem
1.7 for non-autonomous dynamical system (see Theorem 2.2). We also refer to Seydi [25]
for further application in the context random dynamical systems and shadowing of normally
hyperbolic dynamics.
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2 Consequences of Theorem 1.7 for Discrete Time Non-autonomous
Dynamical System

As mentioned above, exponential trichotomy or dichotomy play an important role in the
study of the asymptotic behaviour of non-autonomous dynamical systems. Roughly speaking
exponential trichotomy generalizes the usual spectral theory of linear semigroups to linear
evolution operators. It ensures an invariant state space decomposition at each time into three
sub-spaces: a stable, an unstable and central space in which the the evolution operator has
different exponential behaviours. Let A = {An}n∈Z : Z → L(Y ) be a given sequence of
bounded linear operators on the Banach space (Y, ‖ ‖). Consider the linear non-autonomous
difference equation

x(n + 1) = Anx(n), for n ≥ m, x(m) = xm ∈ Y. (2.1)

Let us introduce the discrete evolution semigroup associated toA defined as the 2-parameters
linear operator on �+ := {

(n,m) ∈ Z
2 : n ≥ m

}

by

UA (n,m) := An−1...Am, if n > m, and IY , if n = m,

wherein IY denotes the identity operator in Y . In the followingwewill always use the notation
n ≥ m as well asUA (n,m) for the evolution semigroup. WheneverUA (m, n) is considered
this will mean that UA (n,m) is invertible and

UA (m, n) = UA (n,m)−1 .

Let us observe that UA satisfies

UA (n, k)UA (k,m) = UA (n,m) for each n ≥ k ≥ m.

Then let us recall the following definition taken from Hale and Lin [13].

Definition 2.1 (Exponential trichotomy) Let A = {An}n∈Z : Z → L(Y ) be given. Then UA
has an exponential trichotomy (or A is exponentially trichotomic) on Z with constant κ ,
exponents 0 < ρ0 < ρ if there exist three families of projectors�α = {

�α
n

}

n∈Z : Z → L(Y ),
with α = u, s, c satisfying the following properties:

(i) For all n ∈ Z and α, β ∈ {u, s, c} we have
�α

n�β
n = 0, if α 
= β, and �s

n + �u
n + �c

n = IY .

(ii) For all n,m ∈ Z with n ≥ m we have

Uα
A (n,m) := �α

nUA (n,m) = UA (n,m) �α
m, for α = u, s, c.

(iii) Uα
A (n,m) is invertible from �α

m (Y ) into �α
n (Y ) for all n ≥ m in Z, α = u, c and its

inverse is denoted by Uα
A (m, n) : �α

n (Y ) → �α
m (Y ).

(iv) For each y ∈ Y we have for all n,m ∈ Z

∥
∥Uc

A (n,m) �c
m y

∥
∥ ≤ κeρ0|n−m| ‖y‖ , (2.2)

and if n ≥ m
∥
∥Us

A (n,m) �s
m y

∥
∥ ≤ κe−ρ(n−m) ‖y‖ , (2.3)

∥
∥Uu

A (m, n) �u
n y
∥
∥ ≤ κe−ρ(n−m) ‖y‖ . (2.4)
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Let us observe that the operatorsUα
A (n, p) ∈ L (Y ) , for n ≥ p in Z and α = u, s, c (resp.

Uα
A (p, n) , for n ≥ p in Z and α = u, c) inherit the evolution property of UA that reads as

Uα
A (n, p)Uα

A (p,m) = Uα
A (n,m) , ∀n ≥ p ≥ m in Z and α = u, s, c,

respectively

Uα
A (m, p)Uα

A (p, n) = Uα
A (m, n) , ∀n ≥ p ≥ m in Z and α = u, c.

Before stating our result, let us notice that since �α
n = Uα

A (n, n) , for α = u, s, c and
n ∈ Z, property (iv) in Definition 2.1 implies that the projectors are uniformly bounded by
the constant κ .

Using Howland’s semigroups like procedure (see Chicone and Latushkin [7]), as a con-
sequence of Theorem 1.7, we obtain the following version for non-autonomous dynamical
systems.

Theorem 2.2 (Perturbation) Let A : Z → L(Y ) be given such that UA has an exponential
trichotomy on Z with constant κ, exponents 0 < ρ0 < ρ and associated to the three families
of projectors {�α : Z → L(Y )}α=s,c,u. Let ρ0 < ρ̂0 < ρ̂ < ρ and κ̂ > κ be given. Then

there exists δ0 := δ0 (ρ0, ρ̂0, ρ̂, ρ, κ, κ̂) ∈
(

0,
√
2 − 1

)

such that for each δ ∈
(

0,
δ20

κ+δ0

)

and each B : Z → L(Y ) with
sup
n∈Z

‖Bn‖ ≤ δ,

the evolution semigroupUA+B has an exponential trichotomy onZwith constant κ̂, exponents
ρ̂, ρ̂0 and projectors

{

�̂α
}

α=s,c,u. For each n ∈ Z and α = u, s, c, the spaces R (

�α
n

)

and

R (

�̂α
n

)

are isomorphic. Moreover the following perturbation estimates hold true: we have
for all n ≥ p,

∥
∥Us

A+B (n, p) −Us
A (n, p)

∥
∥ ≤ κδ

δ0 − δ
e−ρ̂(n−p), (2.5)

∥
∥Uu

A+B (p, n) −Uu
A (p, n)

∥
∥ ≤ κδ

δ0 − δ
e−ρ̂(n−p), (2.6)

and for all (n, p) ∈ Z

∥
∥Uc

A+B (n, p) −Uc
A (n, p)

∥
∥ ≤ κδ

δ0 − δ
eρ̂0|n−p|. (2.7)

The proof of the above result will be obtained as a consequence of Theorem 1.7 by
using Howland procedure (we refer to the monograph of Chicone and Latushkin [7] and
the references therein). To be more precise, let q ∈ [1,∞] be given and let us introduce
the Banach space X = lq(Z, Y ). Let us consider the closed linear operator A : D (A) ⊂
lq(Z; Y ) → lq(Z; Y ) defined by

D (A) = {

u ∈ X : {Aku}k∈Z ∈ X
}

,

(Au)k = Ak−1uk−1, ∀k ∈ Z, ∀u ∈ lq(Z; Y ).
(2.8)

Then we will show if A has an exponential trichotomy (according to Definition 2.1) then the
linear operatorA also has an exponential trichotomy (see Definition 1.2). Note that Theorem
2.2 is not a new result (see Pötzsche [20] and the reference therein). However since we do
not assume that the sequence A is uniformly bounded, the Howland evolution operator is not
bounded and therefore our proof of Theorem 2.2 is new.
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Note that since operator (A, D (A)), one can apply Theorem 1.7 with general small
perturbation B = (

Bi, j
)

(i, j)∈Z2 ∈ L(X) to obtain the peristence of exponential dichotomy
or trichotomy for some advanced and retarded perturbation of (2.1) of the form:

xn+1 = Anxn +
∑

j∈Z
Bn, j x j .

Of course, in such a setting the perturbed projectors �̂α does not a simple form but are “full”
matrix operators.

To conclude this section, in view of Definition 1.2, wewill introduce without any proof the
new class of sequence of closed linear operators A = {An}n∈Z such that the corresponding
Howland evolution operator has an exponential trichotomy and for which perturbation result
(see Theorem 2.2) holds true. To do so let us consider for each n ∈ Z a closed linear operator
An : D(An) ⊂ Y → Y . We introduce the following definition:

Definition 2.3 We say that the sequence A = {An : D(An) ⊂ Y → Y }n∈Z. A is exponen-
tially trichotomic) on Z with constant κ , exponents 0 < ρ0 < ρ if there exist three families
of projectors �α = {

�α
n

}

n∈Z : Z → L(Y ), with α = u, s, c satisfying the following
properties:

(i) For all n ∈ Z and α, β ∈ {u, s, c} we have
�α

n�β
n = 0, if α 
= β, and �s

n + �u
n + �c

n = IY .

(ii) For all n ∈ Z we have D(An) = �s
n(Y ) ⊕ �c

n(Y ) ⊕ (

D(An) ∩ �u
n(Y )

)

and for each
α = s, c, u An

(

D(An) ∩ �α
n (Y )

) ⊂ �α
n+1(Y ).

(iii) For each n ∈ Z the operator Ac
n := (An)|�c

n(Y ) is invertible from �c
n(Y ) onto �c

n+1(Y )

and the operator Au
n : D

(

Au
n

) ⊂ �u
n(Y ) → �u

n+1(Y ) is invertible with
(

Au
n

)−1 ∈
L (

�u
n+1(Y ),�u

n(Y )
)

.
Now for each n ≥ m we set for α = s, c:

Uα
A (n,m) := Aα

n−1...A
α
m�α

m, if n > m, and IY if n = m,

and for each n ≥ m we set for α = u, c:

Uα
A (m, n) := (

Aα
m

)−1
...
(

Aα
n−1

)−1
�α

n , if n > m, and IY if n = m.

(iv) For each y ∈ Y we have for all n,m ∈ Z

∥
∥Uc

A (n,m) �c
m y

∥
∥ ≤ κeρ0|n−m| ‖y‖ ,

and if n ≥ m
∥
∥Us

A (n,m) �s
m y

∥
∥ ≤ κe−ρ(n−m) ‖y‖ ,

∥
∥Uu

A (m, n) �u
n y
∥
∥ ≤ κe−ρ(n−m) ‖y‖ .

Using the above definition, one can check that if A = {An : D(An) ⊂ Y → Y }n∈Z is
an exponentially trichotomic sequence of closed linear operators then the linear operator
A : D (A) ⊂ X → X defined by

{

D (A) = {

u ∈ X : uk ∈ D(Ak), ∀k ∈ Z and (Anun)n∈Z ∈ X
}

,

(Au)k = Ak−1uk−1, k ∈ Z, u ∈ D (A) ,

has an exponential trichotomy according to Definition 1.2.

123



102 J Dyn Diff Equat (2016) 28:93–126

3 Proof of Theorem 1.7

3.1 A Continuity Projector Lemma

The following lemma is inspired from [5, Lemma 4.1].

Lemma 3.1 Let � : X → X and �̂ : X → X be two bounded linear projectors on a
Banach space X. Assume that

∥
∥� − �̂

∥
∥L(X)

< δ with 0 < δ <
√
2 − 1. (3.1)

Then � is invertible from �̂ (X) into �(X) and
∥
∥
∥
∥

(

�|�̂(X)

)−1
x

∥
∥
∥
∥

≤ 1

1 − δ
‖x‖ , ∀x ∈ � (X) . (3.2)

Remark 3.2 By symmetry, the bounded linear projector �̂ is also invertible from � (X) into
�̂ (X) and

∥
∥
∥

(

�̂|�(X)

)−1
x
∥
∥
∥ ≤ 1

1 − δ
‖x‖ , ∀x ∈ �̂ (X) (3.3)

Proof We will first prove two claims.

Claim 3.3 If �̂� is invertible from �̂(X) into �̂ (X) then �̂ is onto from� (X) into �̂ (X) .

Proof of Claim 3.3 Let y ∈ �̂ (X) be given. Since the map �̂� is invertible on �̂ (X), there
exists a unique x ∈ �̂ (X) such that �̂�x = y. Therefore by setting x̄ = �x ∈ � (X) we
have �̂x̄ = y, which implies the surjectivity of �̂ from � (X) onto �̂ (X) . ��
Claim 3.4 If ��̂ is invertible from �(X) into �(X) then �̂ is one to one from �(X) into
�̂(X).

Proof of Claim 3.4 Let x ∈ �(X) be given such that �̂x = 0. Then we have ��̂x = 0.
Since ��̂ is invertible from �(X) into �(X) we deduce that x = 0 and the claim follows.

��
Let us now prove that �̂� is invertible from �̂(X) into �̂(X). First note that one has

�̂� = I − (

I − �̂�
)

.

Hence it is sufficient to prove that
∥
∥I − �̂�

∥
∥L(�̂(X))

< 1. (3.4)

Let x ∈ �̂(X) be given. Then we have

x − �̂�x = �̂x − �̂�x = [

�̂ − �
]

x + [

�̂ − �
]

�x .

Thus
∥
∥x − �̂�x

∥
∥ ≤ ∥

∥�̂ − �
∥
∥L(X)

‖x‖ + ∥
∥�̂ − �

∥
∥L(X)

‖�x‖ ,

and
∥
∥x − �̂�x

∥
∥ ≤ δ ‖x‖ + δ ‖�x‖ .

Since x ∈ �̂(X) we have

�x = �x − x + x = �x − �̂x + x, (3.5)
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hence
‖�x‖ ≤

[∥
∥� − �̂

∥
∥L(X)

+ 1
]

‖x‖ ≤ (1 + δ) ‖x‖ .

Then we obtain
∥
∥x − �̂�x

∥
∥ ≤ δ (2 + δ) ‖x‖ , ∀x ∈ �̂(X).

Recalling that δ ∈
(

0,
√
2 − 1

)

, that reads δ (2 + δ) < 1, andwededuce that �̂� is invertible

from �̂(X) into �̂(X). By symmetry it follows that ��̂ is also invertible from �(X) into
�(X).

To conclude the proof let us estimate the norm of the inverse of �|�̂(X). Let x ∈ �̂(X)

be given. From (3.5) one has

‖�x‖ ≥ ‖x‖ − ∥
∥�̂x − �x

∥
∥ ≥ ‖x‖ − ∥

∥�̂ − �
∥
∥L(X)

‖x‖ ≥ (1 − δ) ‖x‖,
and the result follows. ��
3.2 Derivation of the Fixed Point Problem

In this section we shall derive a fixed point formulation for perturbed trichotomy. All the
computations we will done for bounded linear operator. However one could remark that the
formulations summarized in the lemma below makes sense for unbounded exponentially
trichotomic linear operator as defined in Definition 1.2. This will be used to prove Theorem
1.7 for bounded perturbation of unbounded exponentially trichotomic linear operator.

Recall the discrete time variation of constant formula for bounded linear operators A, B ∈
L(X). We have

(A + B)n = A (A + B)n−1 + B (A + B)n−1

= A2(A + B)n−2 + AB (A + B)n−2 + B (A + B)n−1

thus by induction

(A + B)n = An + An−1B + · · · + AB (A + B)n−2 + B (A + B)n−1, (3.6)

so that for each n ≥ p we obtain

(A + B)n−p = An−p +
n−1
∑

m=p

An−m−1B (A + B)m−p. (3.7)

In the sequel and throughout this work we shall use the following summation convention:

m
∑

n

= 0 if m < n.

This notational convention is similar to the one used byVanderbauwhede in [26]who specified
this using the symbol

∑(+).
Then using the above constant variation formula, one obtains the following fixed point

formulation for a perturbed trichotomic semiflow in the bounded case:

Lemma 3.5 Let A ∈ L(X) be given such that it has an exponential trichotomy with constant
κ, exponents 0 < ρ0 < ρ and associated to the three projectors �k, k = s, c, u. Let
B ∈ L(X) be given such that A+B has an exponential trichotomywith constant κ̂, exponents
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0 < ρ̂0 < ρ̂ such that ρ0 < ρ̂0 < ρ̂ < ρ and associated to the three projectors �̂k, k =
s, c, u. Then one has for each n ∈ N,

(A + B)ns �̂s = An
s�s�̂s +

n−1
∑

m=0

An−m−1
s �s B (A + B)ms �̂s

−
+∞
∑

m=0

[

A−m−1
u �u + A−m−1

c �c
]

B (A + B)n+m
s �̂s, (3.8)

(A + B)−n
u �̂u = A−n

u �u�̂u

−
n−1
∑

m=0

[

A−m−1
u �u

]

B (A + B)m−n
u �̂u

+
+∞
∑

m=0

[

Am
s �s + Am

c �c
]

B (A + B)−m−1−n
u �̂u, (3.9)

(A + B)nc �̂c = An
c�c�̂c +

n−1
∑

m=0

An−m−1
c �c B (A + B)mc �̂c

−
+∞
∑

m=0

A−m−1
u �u B (A + B)m+n

c �̂c

+
+∞
∑

m=0

Am
s �s B (A + B)−m−1+n

c �̂c. (3.10)

(A + B)−n
c �̂c = A−n

c �c�̂c −
n−1
∑

m=0

A−m−1
c �c B (A + B)m−n

c �̂c

−
+∞
∑

m=0

A−m−1
u �u B (A + B)m−n

c �̂c

+
+∞
∑

m=0

Am
s �s B (A + B)−m−1−n

c �̂c. (3.11)

�̂s = �s −
+∞
∑

m=0

Am
s �s B

[

(A + B)−m−1
u �̂u + (A + B)−m−1

c �̂c
]

−
+∞
∑

m=0

[

A−m−1
u �u + A−m−1

c �c
]

B (A + B)ms �̂s, (3.12)

�̂u = �u +
+∞
∑

m=0

[

Am
c �c + Am

s �s
]

B (A + B)−m−1
u �̂u

+
+∞
∑

m=0

A−m−1
u �u B

[

(A + B)ms �̂s + (A + B)mc �̂c
]

, (3.13)

and

�̂c = I − �̂s − �̂u (3.14)
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= �c −
+∞
∑

m=0

[

Am
c �c + Am

s �s
]

B (A + B)−m−1
u �̂s

−
+∞
∑

m=0

A−m−1
u �u B

[

(A + B)ms �̂s + (A + B)mc �̂c
]

+
+∞
∑

m=0

Am
s �s B

[

(A + B)−m−1
u �̂u + (A + B)−m−1

c �̂c
]

+
+∞
∑

m=0

[

A−m−1
u �u + A−m−1

c �c
]

B (A + B)ms �̂s

Proof Derivation of formula (3.12) for �̂s : By applying �̂s on the right side of (3.7) we
obtain

(A + B)
n−p
s �̂s = An−p�̂s +

n−1
∑

m=p

An−m−1B (A + B)
m−p
s �̂s, ∀n ≥ p. (3.15)

By fixing p = 0 and by applying A−n
u �u on the left side of the above formula we obtain

A−n
u �u (A + B)ns �̂s = �u�̂s +

n−1
∑

m=0

A−m−1
u �u B (A + B)ms �̂s . (3.16)

Since for each n ≥ 0 one has
∥
∥A−n

u �u
∥
∥L(X)

≤ κe−ρn ‖�u‖L(X) and
∥
∥(A + B)ns �̂s

∥
∥L(X)

≤ κe−ρ̂n
∥
∥�̂s

∥
∥L(X)

,

by letting n goes to +∞ in (3.16) it follows that

�u�̂s = −
+∞
∑

m=0

A−m−1
u �u B (A + B)ms �̂s . (3.17)

By fixing p = 0 and by applying A−n
c �c (instead of A−n

u �u) on the left side of (3.15) we
obtain

�c�̂s = −
+∞
∑

m=0

A−m−1
c �c B (A + B)ms �̂s . (3.18)

Then combining (3.17) and (3.18) leads us to

�̂s = �s�̂s + �u�̂s + �c�̂s

= �s�̂s −
+∞
∑

m=0

[

A−m−1
u �u + A−m−1

c �c
]

B (A + B)ms �̂s . (3.19)

It thus remains to reformulate �s�̂s by using

�s�̂s = �s
[

I − �̂u − �̂c
]

.

Therefore we will compute �s�̂u and �s�̂c.

Computation of �s�̂u: By applying �̂u on the right side of (3.7) we have

(A + B)
n−p
u �̂u = An−p�̂u +

n−1
∑

m=p

An−m−1B (A + B)
m−p
u �̂u, ∀n ≥ p. (3.20)
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By applying �s on the left side of the above formula we obtain

�s (A + B)
n−p
u �̂u = An−p

s �s�̂u +
n−1
∑

m=p

An−m−1
s �s B (A + B)

m−p
u �̂u, ∀n ≥ p,

(3.21)
and by applying (A + B)

p−n
u �̂u on the right side of (3.21) we have

�s�̂u = An−p
s �s (A + B)

p−n
u �̂u +

n−1
∑

m=p

An−m−1
s �s B (A + B)m−n

u �̂u, ∀n ≥ p,

(3.22)
and since ∥

∥
∥A

n−p
s �s

∥
∥
∥L(X)

≤ κe−ρ(n−p) ‖�c‖L(X)

and ∥
∥
∥(A + B)

p−n
u �̂u

∥
∥
∥L(X)

≤ κe−ρ̂(n−p)
∥
∥�̂u

∥
∥L(X)

,

by taking the limit when p goes to −∞ in (3.22) yields

�s�̂u =
+∞
∑

m=0

Am
s �s B (A + B)−m−1

u �̂u . (3.23)

Computation of �s�̂c: Starting from the equality

(A + B)
n−p
c �̂c = An−p�̂c +

n−1
∑

m=p

An−m−1B (A + B)
m−p
c �̂c, ∀n ≥ p.

and applying (A + B)
p−n
c �̂u on the right side of this formula we obtain for each n ≥ p

�s�̂c = An−p
s �s (A + B)

p−n
c �̂u+

n−1
∑

k=p

An−m−1
s �s B (A + B)m−n

c �̂c, ∀n ≥ p. (3.24)

and since ∥
∥
∥A

n−p
s �s

∥
∥
∥L(X)

≤ κe−ρ(n−p) ‖�c‖L(X),

and ∥
∥
∥(A + B)

p−n
u �̂u

∥
∥
∥L(X)

≤ κeρ̂0(n−p)
∥
∥�̂u

∥
∥L(X)

,

with ρ̂0 < ρ, by letting p goes to −∞ into ( 3.24) we derive

�s�̂c =
+∞
∑

m=0

Am
s �s B (A + B)−m−1

c �̂c. (3.25)

Computation of �s�̂s: By summing (3.23) and (3.25) it follows that

�s
[

�̂c + �̂u
] =

+∞
∑

m=0

Am
s �s B

[

(A + B)−m−1
c �̂c + (A + B)−m−1

u �̂u
]

, (3.26)

and since �̂c + �̂u = I − �̂s it follows that

�s�̂s = �s −
+∞
∑

m=0

Am
s �s B

[

(A + B)−m−1
c �̂c + (A + B)−m−1

u �̂u
]

. (3.27)
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Finally the expression of �̂s in (3.12) follows by combining (3.19) and (3.27).
Computation of �̂u and �̂c: The derivation of the formula (3.13) for �̂u uses the same
arguments as for �̂s . The formula (3.14) for �̂c is obtained by using �̂c = I − �̂s − �̂u .

Computation of (A + B)ns �̂s: Next we derive (3.8). By applying (A + B)ns �̂s on the right
side of (3.12) we obtain

(A + B)ns �̂s = �s (A + B)ns �̂s −
+∞
∑

m=0

[

A−m−1
u + A−m−1

c

]

B (A + B)m+n
s �̂s . (3.28)

In order to determine �s (A + B)ns �̂s , we apply �s on the left side of (3.15) and we obtain

�s (A + B)ns �̂s = An−p
s �s�̂s +

n−1
∑

m=0

An−m−1
s �s B (A + B)ms �̂s, ∀n ∈ N, (3.29)

and (3.8) follows.
Computation of (A + B)nc �̂c for n ≥ 0: By applying (A + B)nc �̂c on the right side of
(3.14) we obtain for each n ∈ N

(A + B)nc �̂c = �c (A + B)nc �̂c −
+∞
∑

m=0

A−m−1
u �u B (A + B)m+n

c �̂c (3.30)

+
+∞
∑

m=0

Am
s �s B (A + B)−m−1+n

c �̂c.

Next we compute �c (A + B)nc �̂c. By using the variation of constant formula (3.7) with
p = 0, and applying �̂c on the right side and �c on the left side we obtain

�c (A + B)nc �̂c = An
c�c�̂c +

n−1
∑

m=0

An−m−1
c �c B (A + B)mc �̂c, (3.31)

and (3.10) follows.
Computation of (A + B)nc �̂c for n ≤ 0: By applying (A + B)−n

c �̂c on the right side of
(3.14) we obtain

(A + B)−n
c �̂c = �c (A + B)−n

c �̂c (3.32)

−
+∞
∑

m=0

A−m−1
u �u B (A + B)m−n

c �̂c

+
+∞
∑

m=0

Am
s �s B (A + B)−m−1−n

c �̂c.

Next we compute �c (A + B)−n
c �̂c. By applying (A + B)−n

c �̂c on the right side of the
variation of constant formula (3.7) (with p = 0) we obtain

�̂c = An (A + B)−n
c �̂c +

n−1
∑

m=0

An−m−1B (A + B)m−n
c �̂c. (3.33)

By applying A−n
c �c on the left side of the above formula we get

A−n
c �c�̂c = �c (A + B)−n

c �̂c +
n−1
∑

m=0

A−m−1
c �c B (A + B)m−n

c �̂c, (3.34)
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and the result follows. ��
3.3 Abstract Reformulation of the Fixed Point Problem

In this section we reformulate the fixed point problem (3.8)–(3.13) by using an abstract fixed
point formulation.

Let η > 0 be given. Define

L−η (N,L (X)) :=
{

u : N → L (X) : sup
n∈N

eηn ‖un‖ < +∞
}

,

which is a Banach space endowed with the norm

‖u‖L−η
:= sup

n∈N
eηn ‖un‖ .

Define

Lη (Z,L (X)) :=
{

v : Z → L (X) : sup
n∈Z

e−η|n| ‖vn‖L(X) < +∞
}

which is a Banach space endowed with the norm

‖v‖Lη
:= sup

n∈Z
e−η|n| ‖vn‖L(X) .

Consider S− the shift operators on L±η (N,L (X))

S− (u)n = un+1 whenever n ∈ Z or n ∈ N.

Let C ∈ L (X). In the following we will use the linear operators

�C (u)n =
n−1
∑

m=0

Cmun−1−m, and �C (u)n =
+∞
∑

m=0

Cmun+m .

Reformulation of Eq. (3.8) on X̂s : Set for each n ∈ N: Es
n := (A + B)ns �̂s . We require

Es ∈ L−ρ̂ (N,L (X)), where ρ̂ is the constant introduced in Theorem 1.7. Consider the linear
operators �s, �cu : L−ρ̂ (N,L (X)) → L−ρ̂ (N,L (X)) defined by

�s = �As�s and �cu = �(

A−1
c �c+A−1

u �u

).

We observe that

�s ◦ B ◦ (Es)

n =
n−1
∑

l=0

Al
s�s BE

s
n (A + B)n−1−l

s �̂s =
n−1
∑

m=0

An−m−1
s �s B (A + B)ms �̂s

therefore the Eq. (3.8) can be rewritten for n ∈ N as

Es
n = An

s�s�̂s + �s ◦ B ◦ (Es)

n − �cu(
(

A−1
u �u + A−1

c �c
)

BEs)n . (3.35)

In order to solve the fixed point problem we will use the following lemma.

Lemma 3.6 The operators �s and �cu map L−ρ̂ (N,L (X)) into itself and are bounded
linear operators on L−ρ̂ (N,L (X)). More precisely we have

‖�s (u)‖L−ρ̂
≤ κeρ̂

1 − eρ̂−ρ
‖u‖L−ρ̂

, ∀u ∈ L−ρ̂ (N,L (X)),
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and

‖�cu (u)‖L−ρ̂
≤
[

κ

1 − eρ0−ρ̂
+ κ

1 − e−(ρ+ρ̂)

]

‖u‖L−ρ̂
, ∀u ∈ L−ρ̂ (N,L (X)).

Reformulation of Eq. (3.9) on X̂u: Set for each n ∈ N: Eu
n := (A + B)−n

u �̂u . We require
Eu ∈ L−ρ̂ (N,L (X)), where ρ̂ is the constant introduced in Theorem 1.7. Consider the linear
operators �u, �sc : L−ρ̂ (N,L (X)) → L−ρ̂ (N,L (X))

�u := �A−1
u �u

and �sc := �(As�s+Ac�c).

We observe that

�u ◦ (A−1
u �u B

) ◦ S−
(

Eu)

n =
n−1
∑

m=0

A−m
u �u

(

A−1
u �u B

)

Eu
n−m

=
n−1
∑

m=0

[

A−m−1
u �u

]

B (A + B)m−n
u �̂u

therefore Eq. (3.9) can be rewritten for each n ∈ N as

Eu
n = A−n

u �u�̂u − �u ◦ (A−1
u �u B

) ◦ S−
(

Eu)

n + �sc ◦ B ◦ S−
(

Eu)

n . (3.36)

Lemma 3.7 The operators �u and �sc map L−ρ̂ (N,L (X)) into itself and are bounded
linear operators on L−ρ̂ (N,L (X)). More precisely we have

‖�u (u)‖L−ρ̂
≤ κeρ̂

1 − eρ̂−ρ
‖u‖L−ρ̂

, ∀u ∈ L−ρ̂ (N,L (X)) ,

and

‖�sc (u)‖L−ρ̂
≤
[

κ

1 − e−(ρ+ρ̂)
+ κ

1 − eρ0−ρ̂

]

‖u‖L−ρ̂
, ∀u ∈ L−ρ̂ (N,L (X)) .

Reformulation of Eq. (3.10)–(3.11) on X̂c: Set for each n ∈ Z: Ec
n := (A + B)nc �̂c. We

require Ec ∈ Lρ̂0 (Z,L (X)). Define the linear operators

�c(u)n :=

⎧

⎪⎪⎨

⎪⎪⎩

n−1∑

m=0
An−m−1
c �cum, if n ≥ 0

−
−n−1∑

m=0
A−m−1
c �cum+n, if n ≤ 0

and

�su(u)n := −
+∞
∑

m=0

A−m−1
u �uum+n +

+∞
∑

m=0

Am
s �sun−1−m, for n ∈ Z,

therefore Eqs. (3.10)–(3.11) can be rewritten for each n ∈ Z as

Ec
n := An

c�c
[

I − (

�̂s + �̂u
)] + �c(BE

c)n + �su(BE
c)n . (3.37)

Lemma 3.8 The operators �c and �su map Lρ̂0 (Z,L (X)) into itself and are bounded
linear operators on Lρ̂0 (Z,L (X)). More precisely we have

‖�c (v)‖Lρ̂0
≤ κ

1 − eρ0−ρ̂0
‖v‖Lρ̂0

, ∀v ∈ Lρ̂0 (Z,L (X)),
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and

‖�su (v)‖Lρ̂0
≤
[

κeρ̂

1 − eρ̂0−ρ̂
+ κe−ρ̂

1 − eρ̂0−ρ̂

]

‖v‖Lρ̂0
, ∀v ∈ Lρ̂0 (Z,L (X)).

Reformulation of Eqs. (3.12)–(3.13) for the projectors on X̂s and X̂u: Define the linear
operator

�s(u) := �As�s (u)0 =
+∞
∑

m=0

Am
s �sum

then Eq. (3.12) becomes

�̂s = �s − �s ◦ B ◦ S−(Eu + χ−
(

Ec)) + �cu(
(

A−1
u �u + A−1

c �c
)

BEs)0 (3.38)

where χ− : Lρ̂0 (Z,L (X)) → Lρ̂0 (N,L (X)) is defined by

χ−
(

Ec)

n = Ec−n for n ≥ 0.

Define

�u(u) := �A−1
u �u

(u)0 =
+∞
∑

m=0

A−m
u �uum,

and (3.13) re-writes as:

�̂u = �u + �sc ◦ B ◦ S−
(

Eu)

0 + �u
(

A−1
u �u B

(

Es + χ+
(

Ec))), (3.39)

where χ+ : Lρ̂0 (Z,L (X)) → Lρ̂0 (N,L (X)) is defined by

χ+
(

Ec)

n := Ec
n for n ≥ 0.

Lemma 3.9 The operators �s and �u have the following properties:

(i) �s and �u map Lρ̂0 (N,L (X)) into L (X) with

‖�s (v)‖L(X) ≤ κ

1 − eρ̂0−ρ
‖v‖Lρ̂0

, ∀v ∈ Lρ̂0 (N,L (X)),

and
‖�u (v)‖L(X) ≤ κ

1 − eρ̂0−ρ
‖v‖Lρ̂0

, ∀v ∈ Lρ̂0 (N,L (X));
(ii) �s and �u map L−ρ̂ (N,L (X)) ⊂ Lρ̂0 (N,L (X)) into L (X) with

‖�s (v)‖L(X) ≤ κ

1 − e−ρ̂−ρ
‖v‖L−ρ̂

, ∀v ∈ L−ρ̂ (N,L (X)),

‖�u (v)‖L(X) ≤ κ

1 − e−ρ̂−ρ
‖v‖L−ρ̂

, ∀v ∈ L−ρ̂ (N,L (X)).

By using the expressions of �̂s and �̂u obtained in (3.38) and (3.39), and by replacing
those expressions into An

s�s�̂s
(

respectively into A−n
u �u�̂u and An

c�c
[

I − (

�̂s + �̂u
)] )

in Eq. (3.35) [(respectively in (3.36) and (3.37)] we will derive a new fixed point problem
only for Es, Eu and Ec given explicitly as follow for each n ∈ N:

Es
n = An

s�s −
+∞
∑

m=0

Am+n
s �s B

[

Eu
m+1 + Ec−m−1

]

+
n−1
∑

m=0

An−m−1
s �s BE

s
m −

+∞
∑

m=0

[

A−m−1
u �u + A−m−1

c �c
]

BEs
n+m, (3.40)
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Eu
n = A−n

u �u +
+∞
∑

m=0

A−n−m−1
u �u B

[

Es
m + Ec

m

]

−
n−1
∑

m=0

[

A−m−1
u �u

]

BEu
n−m +

+∞
∑

m=0

[

Am
s �s + Am

c �c
]

BEu
n+m+1, (3.41)

and for each n ∈ Z:

Ec
n = An

c�c −
+∞
∑

m=0

Am+n
c �c BE

u
m+1 +

+∞
∑

m=0

An−m−1
c �c BE

s
m (3.42)

+
n−1
∑

m=0

An−m−1
c �c BE

c
m −

−n−1
∑

m=0

A−m−1
c �c BE

c
n+m

−
+∞
∑

m=0

A−m−1
u �u BE

c
n+m +

+∞
∑

m=0

Am
s �s BE

c−m−1+n .

Moreover with this notation the explicit formulas for �̂k, k = s, c, u reads as

�̂s = �s −
+∞
∑

m=0

Am
s �s B

[

Eu
m+1 + Ec−m−1

] −
+∞
∑

m=0

[

A−m−1
u �u + A−m−1

c �c
]

BEs
m,

�̂u = �u +
+∞
∑

m=0

A−m−1
u �u B

[

Es
m + Ec

m

] +
+∞
∑

m=0

[

Am
s �s + Am

c �c
]

Eu
m+1,

�̂c = �c −
+∞
∑

m=0

Am
c �c BE

u
m+1 +

+∞
∑

m=0

A−m−1
c �c BE

s
m

−
+∞
∑

m=0

A−m−1
u �u BE

c
m +

+∞
∑

m=0

Am
s �s BE

c−m−1.

Observe that we have the following relation Ek
0 = �̂k for each k = s, c, u, as well as the

following identity
Es
0 + Ec

0 + Eu
0 = �̂s + �̂c + �̂u = I.

Furthermore the system (3.40)–(3.42) also re-writes as the following compact form
⎛

⎝

Es

Eu

Ec

⎞

⎠ =
⎛

⎝

A·
s�s

A−·
u �u

A·
c�c

⎞

⎠ + J
⎛

⎝

Es

Eu

Ec

⎞

⎠, and J := (Ji j
)

1≤i, j≤3 (3.43)

wherein the linear operators
{Ji j

}

1≤i, j≤3 are given by

J11 := A·
s�s ◦ �cu (·)0 ◦ (A−1

u �u + A−1
c �c

) ◦ B + �s ◦ B

−�cu ◦ (A−1
u �u + A−1

c �c
) ◦ B

J12 := −A·
s�s ◦ �s ◦ B ◦ S−

J13 := −A·
s�s ◦ �s ◦ B ◦ S− ◦ χ−

J21 := A−·
u �u ◦ �u ◦ A−1

u �u ◦ B

J22 := A−·
u �u ◦ �sc (·)0 ◦ B ◦ S− − �u ◦ A−1

u �u ◦ B ◦ S−
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+ �sc ◦ B ◦ S−
J23 := A−·

u �u ◦ �u ◦ A−1
u �u ◦ B ◦ χ+

J31 := −A·
c�c ◦ �cu(·)0 ◦ (A−1

u �u + A−1
c �c

) ◦ B

−A·
c�c ◦ �u(·) ◦ A−1

u �u ◦ B

J32 := A·
c�c ◦ �s ◦ B ◦ S− − A·

c�c ◦ �sc (·)0 ◦ B ◦ S−
J33 := A·

c�c ◦ �s ◦ B ◦ S− ◦ χ−
A·
c�c ◦ �u ◦ A−1

u �u ◦ B ◦ χ+ + �c ◦ B + �su ◦ B.

In the sequel we define the Banach space

X = L−ρ̂ (N,L (X)) × L−ρ̂ (N,L (X)) × Lρ̂0 (Z,L (X)) ,

endowed with the usual product norm:

‖Z‖X = max
{∥
∥Es

∥
∥
L−ρ̂

,
∥
∥Eu

∥
∥
L−ρ̂

,
∥
∥Ec

∥
∥
Lρ̂0

}

, ∀Z = (

Es, Eu, Ec)T ∈ X .

The following lemma holds true:

Lemma 3.10 Let A : D(A) ⊂ X → X be a closed linear operator and let us assume that
the conditions of Theorem 1.7 are satisfied. Then the linear operator J defined in (3.43)
satisfies J ∈ L(X ). More precisely there exists some constant C := C (κ, ρ, ρ0, ρ̂, ρ̂0) such
that

‖J (Z)‖X ≤ C ‖B‖L(X) ‖Z‖X , ∀Z ∈ X .

Proof Let us notice that χ+ and χ− are bounded linear operator defined from Lρ̂0 (Z,L (X))

into Lρ̂0 (N,L (X)) . Furthermore we have

‖χ+‖L(Lρ̂0 (Z,L(X)),Lρ̂0 (N,L(X))
) ≤ 1, (3.44)

and
‖χ−‖L(Lρ̂0 (Z,L(X)),Lρ̂0 (N,L(X))

) ≤ 1. (3.45)

We also note that S− ∈ L (

Lρ̂0 (Z,L (X))
)

and S− ∈ L (

L−ρ̂ (N,L (X))
)

with

‖S−‖L(Lρ̂0 (Z,L(X))
) ≤ eρ̂0 and ‖S−‖L(L−ρ̂ (N,L(X))) ≤ 1. (3.46)

Therefore by combining (3.44)–(3.46) together with lemmas (3.6)–(3.9) the result follows
easily by simple computations. ��

As a consequence of the above lemma we obtain the following result:

Proposition 3.11 Let A : D(A) ⊂ X → X be given such that the conditions of The-
orem 1.7 are satisfied. Then there exists δ0 := δ0 (κ, ρ, ρ0, ρ̂, ρ̂0) ∈ (

0,C−1
)

such that

for each δ ∈
(

0,
δ20

κ+δ0

)

and each B ∈ L(X) with ‖B‖L(X) ≤ δ, there exists a unique

Z = (Es, Eu, Ec)T ∈ X such that (3.43) [or equivalently (3.40 )–(3.42)] holds true. More-
over we have the following properties

(i) For each n ∈ N

∥
∥Es

n

∥
∥L(X)

≤ κδ0

δ0 − δ
e−ρ̂n and

∥
∥Eu

n

∥
∥L(X)

≤ κδ0

δ0 − δ
e−ρ̂n,
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and for each n ∈ Z
∥
∥Ec

n

∥
∥L(X)

≤ κδ0

δ0 − δ
eρ̂0|n|.

(ii) The following estimates hold:

∥
∥Es

n − An
s�s

∥
∥L(X)

≤ κδ

δ0 − δ
e−ρ̂n, n ∈ N,

∥
∥Eu

n − A−n
u �u

∥
∥L(X)

≤ κδ

δ0 − δ
e−ρ̂n, n ∈ N,

and
∥
∥Ec

n − An
c�c

∥
∥L(X)

≤ κδ

δ0 − δ
eρ̂0|n|, n ∈ Z.

(iii) One has
Es
n (X) ⊂ D(A), ∀n ∈ N,

Ec
n (X) ⊂ D(A), ∀n ∈ Z,

Eu
n (X) ⊂ D(A), ∀n ≥ 1 and �̂u (D(A)) ⊂ D(A).

In particular one has �̂k(X) ⊂ D(A) for k = s, c and for each n ≥ 0 (A + B) ◦ Es
n ∈

L(X) while for each n ∈ Z, (A + B) ◦ Ec
n ∈ L(X).

Proof Let δ0 ∈ (

0,C−1
)

be given. Assume that

‖B‖L(X) ≤ δ with δ ∈
(

0,
δ20

κ + δ0

)

. (3.47)

Then since
δ20

κ+δ0
≤ δ0, the existence and the uniqueness of a fixed point of (3.43) [or

equivalently (3.40)–(3.42)] follows from Lemma 3.10.
In the sequel of this proof we denote by Z0 = (

A·
s�s, A−·

u �u, A·
c�c

)T ∈ X the fixed
point of J with B = 0. In order to obtain the properties (i) and (ii) we will make use of (
3.43). First of all since Z0 ∈ X , let us observe that using (1.7)–(1.9) we obtain

‖Z0‖X ≤ κ. (3.48)

Proof of (i): By using the fixed point problem (3.43 ) combined together with Lemma 3.10
and (3.47) we obtain (recalling the notation Z = (Es, Eu, Ec)T ) that

‖Z‖X ≤ κ + Cδ ‖Z‖X ,

so that (i) follows from the estimate:

‖Z‖X ≤ κ

1 − Cδ
≤ κδ0

δ0 − δ
. (3.49)

Proof of (ii): By using the fixed point problem ( 3.43) combined together with Lemma 3.10
and (3.47) we obtain that

‖Z − Z0‖X ≤ Cδ ‖Z‖X , (3.50)

so that plugging (3.49) into (3.50) yields

‖Z − Z0‖ ≤ κCδ

1 − Cδ
≤ κδ

δ0 − δ
.

This prove (ii).
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Proof of (iii): Let us recall that since (A, D(A)) is exponentially trichotomic (see Definition
1.2) then one has D(A) = Xs ⊕ Xc ⊕ (D(A) ∩ Xu). Hence the result directly follows from
right-hand side of (3.40)–(3.42). The boundedness of (A+ B)◦ Es

n and (A+ B)◦ Ec
n follows

from the closed graph theorem since A is closed and B bounded. ��
3.4 Regularized Semigroup Property and Orthogonality Property

Definition 3.12 A family of bounded linear operators {Wn}n∈N ⊂ L (X) is a discrete time
regularized semigroup if

WnWp = Wn+p, ∀n, p ∈ N. (3.51)

Remark 3.13 If {Wn}n∈N ⊂ L (X) is a regularized semigroup then W0 is a bounded linear
projector on X .

Remark 3.14 Observe that if {Wn}n∈N ⊂ L (X) is discrete time regularized semigroup then
by setting C := W0, and using (3.51) we obtain WnWp = CWn+p for all n, p ≥ 0. These
properties correspond to the notion of C-regularized semigroup given in [12, Definition
3.1, p. 13] for discrete time.

In the next lemmas we will show that
{

Ek
n

}

n∈N, k = s, c, u, are regularized semigroup
and that we have the orthogonality property namely for each n ∈ N

Ek
n E

l
n = 0L(X) if k, l = s, c, u with k 
= l.

The latter equality will allows us to obtain that the bounded linear projectors �̂k = Ek
0 , k =

s, c, u satisfy the orthogonality property

�̂k�̂l = 0L(X) if k, l = s, c, u with k 
= l.

Lemma 3.15 Let the conditions of Theorem 1.7 be satisfied. If

‖B‖L(X) ≤ δ, with δ ∈
(

0,
δ20

κ + δ0

)

(3.52)

where δ0 is given in Proposition 3.11 then the following properties hold:

(i) for each n, p ∈ N we haveEu
n E

u
p = Eu

n+p and Es
n E

u
p = 0L(X), while for each n ∈

Z, p ∈ N we have Ec
n E

u
p = 0L(X).

(ii) �̂u ∈ L(X) is a projector on X and for each n ≥ 0 one has Eu
n (X) ⊂ �̂u(X).

Proof First of all let us notice that since we have �̂u = Eu
0 the property (ii) is a direct

consequence of the property (i). Therefore we will focus on the property (ii).
The idea of this proof is to derive a suitable closed system of equations for the following
three quantities (wherein p ∈ N is fixed)

{

Eu
n E

u
p − Eu

n+p

}

n∈N ,
{

Es
n E

u
p

}

n∈N and
{

Ec
n E

u
p

}

n∈Z .

Let p ∈ N be given and fixed. Then observe that

W :=
(

Es
. E

u
p, Eu

. E
u
p − Eu

.+p, E
c
. E

u
p

)T ∈ X .
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Equation for
{

Eu
n E

u
p − Eu

n+p

}

n∈N: Let n ∈ N and p ∈ N be given. Multiplying the right

side of Eu
n given in (3.41) by Eu

p leads us to

Eu
n E

u
p = A−n

u �u E
u
p +

+∞
∑

m=0

A−n−m−1
u �u B

[

Es
mE

u
p + Ec

mE
u
p

]

(3.53)

−
n−1
∑

m=0

[

A−m−1
u �u

]

BEu
n−mE

u
p +

+∞
∑

m=0

[

Am
s �s + Am

c �c
]

BEu
n+m+1E

u
p.

Next by using also (3.41) and replacing n with n + p we obtain

Eu
n+p = A−n−p

u �u +
+∞
∑

m=0

A−n−p−m−1
u �u B

[

Es
m + Ec

m

]

(3.54)

−
n+p−1
∑

m=0

[

A−m−1
u �u

]

BEu
n+p−m +

+∞
∑

m=0

[

Am
s �s + Am

c �c
]

BEu
n+p+m+1.

Therefore by subtracting (3.54) from (3.53) we get

Eu
n E

u
p − Eu

n+p = A−n
u �u E

u
p − A−n−p

u �u (3.55)

−
+∞
∑

m=0

A−n−p−m−1
u �u B

[

Es
m + Ec

m

]

+
n+p−1
∑

m=0

[

A−m−1
u �u

]

BEu
n+p−m −

n−1
∑

m=0

[

A−m−1
u �u

]

BEu
n−mE

u
p

+
+∞
∑

m=0

A−n−m−1
u �u B

[

Es
m E

u
p + Ec

mE
u
p

]

+
+∞
∑

m=0

[

Am
s �s + Am

c �c
]

B
[

Eu
n+m+1E

u
p − Eu

n+p−m

]

.

Now note that by using (3.41), replacing n with p in order to obtain Eu
p and multiply its left

side by A−n
u �u we obtain

A−n
u �u E

u
p = A−n−p

u �u +
+∞
∑

m=0

A−n−p−m−1
u �u B

[

Es
m + Ec

m

]

−
p−1
∑

m=0

[

A−n−m−1
u �u

]

BEu
p−m,

and since we have

−
p−1
∑

m=0

[

A−n−m−1
u �u

]

BEu
p−m = −

n+p−1
∑

m=n

[

A−m−1
u �u

]

BEu
n+p−m,

it follows that

A−n
u �u E

u
p = A−n−p

u �u +
+∞
∑

m=0

A−n−p−m−1
u �u B

[

Es
m + Ec

m

]

(3.56)
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−
n+p−1
∑

m=n

[

A−m−1
u �u

]

BEu
n+p−m .

Therefore by plugging the expression of A−n
u �u Eu

p given by (3.56) into (3.55) and recalling
(3.43) we obtain that

Eu
. E

u
p − Eu

.+p = (J21,J22,J23) W. (3.57)

Equation for
{

Es
n E

u
p

}

n∈N : Let n ∈ N and p ∈ N be given. Then by using (3.40) and

multiply the right side of Es
n by Eu

p we obtain

Es
n E

u
p = An

s�s E
u
p −

+∞
∑

m=0

Am+n
s �s B

[

Eu
m+1E

u
p + Ec−m−1E

u
p

]

(3.58)

+
n−1
∑

m=0

An−m−1
s �s BE

s
m E

u
p −

+∞
∑

m=0

[

A−m−1
u �u + A−m−1

c �c
]

BEs
n+mE

u
p.

Next by replacing n by p in (3.41) we obtain Eu
p and by multiplying its left side by An

s�s

we get

An
s�s E

u
p =

+∞
∑

m=0

An+m
s �s E

u
p+m+1. (3.59)

Then plugging (3.59) into (3.58) yields

Es
. E

u
p = (J11,J12,J13) W. (3.60)

Equation for
{

Ec
n E

u
p

}

n∈Z : Let n ∈ Z and p ∈ N be given. By multiplying the right side of

(3.42) by Eu
p we get

Ec
n E

u
p = An

c�cE
u
p −

+∞
∑

m=0

Am+n
c �c BE

u
m+1E

u
p +

+∞
∑

m=0

An−m−1
c �c BE

s
m E

u
p

+
n−1
∑

m=0

An−m−1
c �c BE

c
m E

u
p −

−n−1
∑

m=0

A−m−1
c �c BE

c
n+mE

u
p (3.61)

−
+∞
∑

m=0

A−m−1
u �u BE

c
n+mE

u
p +

+∞
∑

m=0

Am
s �s BE

c−m−1+n E
u
p.

Next by replacing n by p in (3.41) we obatin Eu
p and by multiplying its left side by An

c�c

we get

An
c�cE

u
p =

+∞
∑

m=0

An+m
c �cE

u
p+m+1, (3.62)

Therefore by plugging (3.62) into (3.61) we get

Ec
. E

u
p = (J31,J32,J33) W. (3.63)

Recalling (3.43), it follows that W satisfies W = J (W). Hence we infer from Lemma
3.10 that since C ‖B‖L(X) ≤ Cδ < 1, one has W = 0X and this completes the proof of the
lemma. ��
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Remark 3.16 The arguments for the proof of the next two lemmas are similar to the arguments
used for the proof of Lemma 3.15.

Lemma 3.17 Let the conditions of Theorem 1.7 and (3.52) be satisfied. Then the following
properties hold true:

(i) for each n, p ∈ N we have Es
n E

s
p = Es

n+p and Eu
n E

s
p = 0L(X) while for each n ∈

Z, p ∈ N we have Ec
n E

s
p = 0L(X).

(ii) �̂s is a bounded linear projector on X and for each n ≥ 0 one has Es
n(X) ⊂ �̂s(X).

Proof First of all let us notice that since we have �̂s = Es
0 the property (ii) is a direct

consequence of the property (i). Therefore we will focus on the property (ii).
The idea of this proof is to derive a suitable closed system of equations for the following
three quantities (wherein p ∈ N is fixed):

{

Es
n E

s
p − Es

n+p

}

n∈N ,
{

Eu
n E

s
p

}

n∈N and
{

Ec
n E

s
p

}

n∈Z .

Let p ∈ N be given and fixed and let us observe that

W :=
(

Es
. E

s
p − Es

.+p, E
u
. E

s
p, E

c
. E

s
p

)T ∈ X .

By proceeding as in the proof of Lemma 3.15 we obtain the following closed system of
equations W = J (W), that ensures that W = 0X . This ends the proof of this lemma. ��

Lemma 3.18 Let the conditions of Theorem 1.7 and (3.52) be satisfied. Then the following
properties hold true:

(i) for each n, p ∈ Z we have Ec
n E

c
p = Ec

n+p and for each n ∈ N, p ∈ Z we have
Es
n E

c
p = Eu

n E
c
p = 0L(X).

(ii) �̂c is a bounded linear projector on X and for each n ∈ Z one has Ec
n(X) ⊂ �̂c(X).

Proof First of all let us notice that since we have �̂c = Ec
0 the property (ii) is a direct

consequence of the property (i). Therefore we will focus on the property (ii).
The idea of this proof is to derive a suitable closed system of equations for the following
three quantities (wherein p ∈ N is fixed):

{

Ec
n E

c
p − Ec

n+p

}

n∈Z ,
{

Eu
n E

c
p

}

n∈N and
{

Es
n E

c
p

}

n∈N .

Let p ∈ Z be given and fixed and observe that:

W :=
(

Es
. E

c
p, E

u
. E

c
p, E

c
. E

c
p − Ec

.+p

)T ∈ X .

By proceeding as in the proof of Lemma 3.15 we obtain the following closed system of
equations W = J (W). This completes the proof of this lemma. ��
3.5 Proof of Theorem 1.7

In this section we complete the proof of Theorem 1.7. The main points are summarized in
the following lemma. Note that the proof of Theorem 1.7 becomes a direct consequence of
Proposition 3.11 and Lemma 3.19 below.
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Lemma 3.19 Let us assume that the conditions of Theorem 1.7 are satisfied. Up to reduce

the value of δ0 provided by Proposition 3.11 so that δ0 < min
(

C−1, 1−C−1

6κ3+1−C−1 ,
√
2 − 1

)

,

if B ∈ L(X) satisfies

‖B‖L(X) ≤ δ, with δ ∈
(

0,
δ20

κ + δ0

)

then the following properties hold:

(i) The three bounded linear projectors �̂s, �̂u and �̂c provided by Lemmas 3.15, 3.17
and 3.18 satisfy

�̂k�̂l = 0L(X) if k 
= l, with k, l = s, u, c, (3.64)

and
∥
∥�̂k − �k

∥
∥L(X)

≤ κδ

δ0 − δ
≤ δ0. (3.65)

(ii) For each n ∈ N and k = s, c we have Ek
n = (A + B)n �̂k ∈ L (

X, �̂k(X)
)

.

(iii) For each n ∈ N (A + B)n �̂c is invertible from �̂c (X) into �̂c (X) with

Ec−n (A + B)n �̂c = (A + B)n �̂cE
c−n = �̂c. (3.66)

(iv) One has (A + B)
(

D(A) ∩ �̂u(X)
) ⊂ �̂u(X). Consider (A+ B)u : D(A)∩ �̂u(X) ⊂

�̂u(X) → �̂u(X) the part of (A + B) in �̂u(X). Then one has 0 ∈ ρ ((A + B)u) and
for each n ≥ 0:

Eu
n = ((A + B)u)

−n �̂u . (3.67)

(v) For k = s, u, c, the projector �̂k satisfies �̂k (D(A)) ⊂ D(A) and

(A + B) �̂k x = �̂k (A + B) x, ∀x ∈ D(A). (3.68)

Proof Proof of (i): By recalling that Ek
0 = �̂k it follows from Lemmas 3.15, 3.17 and

3.18 that (3.64) holds true. Moreover the condition (ii) of Proposition 3.11 together with

δ ∈
(

0,
δ20

κ+δ0

)

provide that

∥
∥�̂k − �k

∥
∥L(X)

≤ κδ

δ0 − δ
≤ δ0 ∈

(

0,
√
2 − 1

)

. (3.69)

This completes the proof of (i).
Proof of (ii): Let n ∈ N\ {0} be given. We will first prove that Es

n = (A + B)n �̂s . By
replacing n by n − 1 in (3.40), recalling that Es

n−1(X) ⊂ �̂s(X) ∩ D(A) [see Proposition
3.11 (iii)] and multiplying the left side of Es

n−1 by A it follows that

AEs
n−1 = Es

n − BEs
n−1 ⇐⇒ Es

n = (A + B) Es
n−1.

Hence by induction [see Proposition 3.11 (iii)] one obtains that for each n ≥ 0: (A +
B)n�̂s(X) ⊂ D(A), (A + B)n�̂s ∈ L (

X, �̂s(X)
)

and

Es
n = (A + B)n Es

0 = (A + B)n �̂s .

Next we prove that Ec
n = (A + B)n �̂c for each n ∈ N. Let n ∈ N\ {0} be given. By replacing

n by n − 1 in (3.42), recalling that Ec
n−1(X) ⊂ D(A) and multiplying the left side of Ec

n−1
by A we obtain

AEc
n−1 = Ec

n − BEc
n−1 ⇐⇒ Ec

n = (A + B) Ec
n−1,
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providing that
Ec
n = (A + B)n �̂c ∈ L (

X, �̂c(X)
)

. (3.70)

This completes the proof of (ii).
Proof of (iii): Let us prove that for each n ∈ N the bounded linear operator (A + B)n �̂c is
invertible from �̂c (X) into �̂c (X) .

In fact each n ∈ N by using Lemma 3.18 combined together with (3.70) we obtain

Ec−n (A + B)n �̂c = Ec−n E
c
n = Ec

0 = �̂c = Ec
n E

c−n = (A + B)n �̂cE
c−n .

This prove that (A + B)n �̂c is invertible from �̂c (X) into �̂c (X) and (3.66) holds true.

Proof of (iv): In order to prove this point we claim that

Claim 3.20 The following holds true:

(a) Recalling that Eu
1 (X) ⊂ D(A) one has (A + B)Eu

1 = �̂u.
(b) Consider the closed linear operator Cu : D(Cu) ⊂ �̂u(X) → �̂u(X) defined by

D (Cu) = D(A) ∩ �̂u(X) and Cu = �̂u (A + B). Then it satisfies 0 ∈ ρ (Cu).

Before proving this claim let us complete the proof of (3.67). To do so let us first notice
that (a) and (b) implies that

(A + B)
(

D(A) ∩ �̂u(X)
) = (A + B)

(

C−1
u

(

�̂u(X)
)) = �̂u(X).

Hence the linear operator (Cu, D(Cu)) coincide the part (A + B)u of (A + B) in �̂u(X).
Therefore 0 ∈ ρ

(

(A + B)u
)

and using (a) and the orthogonality of the perturbed projectors
one gets:

Eu
1 = (

(A + B)u
)−1

�̂u .

Finally due to the semiflow property for Eu
n one gets

Eu
n = (

(A + B)u
)−n

�̂u, n ≥ 0,

and (3.67) follows.
It remains to prove Claim 3.20.

Proof of (a): Let us first recall that E1(X) ⊂ D(A) and let us multiply the left side of Eu
1

given in (3.41) by A to obtain

AEu
1 = Eu

0 − BEu
1 ⇐⇒ (A + B) Eu

1 = Eu
0 ,

that completes the proof of (a).
Proof of (b): Before proceeding to the proof of this statement let us notice that since we
have Ek

0 = �̂k, k = s, u, c it follows from the condition (i) of Proposition 3.11 that

∥
∥�̂k

∥
∥L(X)

≤ κδ0

δ0 − δ
, k = s, u, c. (3.71)

Now recalling that D(A) = Xs⊕Xc⊕(Xu ∩ D(A)) one has that for each x ∈ D(A)∩�̂u(X):

x = �s x + �cx + �ux,

so that�ux ∈ Xu ∩D(A). This re-writes as�u
(

D(A) ∩ �̂u(X)
) ⊂ D(A)∩�u(X). Hence

one has
Cu = �̂u A [�u + �s + �c] + �̂u B.
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This re-writes as
Cu = Ãu + Lu, (3.72)

wherein we have set Ãu : D(Cu) ⊂ �̂u(X) → �̂u(X) defined as

Ãu x = �̂u A�ux, ∀x ∈ D(A) ∩ �̂u(X),

and Lu ∈ L (

�̂u(X)
)

defined by:

Lu := �̂u As�s�̂u + �̂u Ac�c�̂u + �̂u B�̂u .

Next observe that due to (3.69) Lemma 3.1 applies to�u and �̂u and provides that�u |�̂u(X)

is an isomorphism from �̂u (X) onto�u (X)while �̂u |�u(X) is an isomorphism from�u (X)

onto �̂u (X). One furthermore has
∥
∥
∥

(

�̂u |�u(X)

)−1
x
∥
∥
∥ ≤ 1

1 − δ0
‖x‖ , ∀x ∈ �u (X), (3.73)

and ∥
∥
∥
∥

(

�u |�̂u(X)

)−1
x

∥
∥
∥
∥

≤ 1

1 − δ0
‖x‖ , ∀x ∈ �̂u (X). (3.74)

Then due to the above isomorphism one has

�u
(

D(A) ∩ �̂u(X)
) = D(A) ∩ �u(X).

Indeed first note that inclusion ⊂ has already been observed. Consider x ∈ D(A) ∩ �u(X).
Then there exists a unique y ∈ �̂u(X) such that �u(y) = x . Then we write y = �s y +
�c y + �u y . Since D(A) = Xs ⊕ Xc ⊕ (D(A) ∩ Xu) and �u y = x ∈ D(A) ∩ �u(X) one
obtains that y ∈ D(A) ∩ �̂u(X) and x ∈ �u

(

D(A) ∩ �̂u(X)
)

and the equality follows.
As a consequence one gets:

D (Cu) = D(A) ∩ �̂u(X) =
(

�u |�̂u(X)

)−1
(D(A) ∩ �u(X)).

Using this relation and recalling that 0 ∈ ρ (Au) it is easy to check that 0 ∈ ρ
(

Ãu
)

and

(

Ãu
)−1 =

(

�u |�̂u(X)

)−1 ◦ A−1
u ◦ (�̂u |�u(X)

)−1
.

Finally due to (3.72), in order to complete the proof of point (b) it is sufficient to check
that

‖Lu‖L(�̂u(X))

∥
∥ Ã−1

u

∥
∥L(�̂u(X))

< 1.

To do so let us first notice that due to (3.73)–(3.74) one has

∥
∥ Ã−1

u

∥
∥L(�̂u (X))

≤ 1

(1 − δ0)
2

∥
∥A−1

u

∥
∥L(�u(X))

≤ 1

(1 − δ0)
2 κe−ρ. (3.75)

On the other one has

Lu = �̂u A�s�̂u + �̂u A�c�̂u + �̂u B�̂u

= �̂u As�s
[

�̂u − �u
] + �̂u Ac�c

[

�̂u − �u
] + �̂u B�̂u .

Then by using (3.65) and (3.71) and recalling that ‖B‖L(X) ≤ δ0, it follows that

‖Lu‖L(�̂u (X)) ≤ 2κ2δ0 + 2κ2eρ0 + 2κδ0 ≤ 6κ2eρ0δ0. (3.76)
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Now combining (3.75) together with (3.76) provides that

‖Lu‖L(�̂u(X))

∥
∥ Ã−1

u

∥
∥L(�̂u (X))

≤ 6κ3

(1 − δ0)
2 δ0.

Hence up to reduce δ0 such that

δ0 < min

{

C−1,
1 − C−1

6κ3 + 1 − C−1

}

, (3.77)

where C > 1 is the constant provided by Lemma 3.10 we obtain that

‖Lu‖L(�̂u(X))

∥
∥ Ã−1

u

∥
∥L(�̂u(X))

< 1.

This completes the proof of Claim 3.20 (b) and also the proof of (iv).
Proof of (v): Let us first notice that the inclusions �̂k(X) ⊂ D(A) for any k = s, c and
�̂u(D(A)) ⊂ D(A) have been observed in Proposition 3.11 (iii) . Next recall that by (ii) we
have

Ek
1 = (A + B) �̂k, ∀k = s, c,

so that
�̂k (A + B) �̂k = �̂k E

k
1 = Ek

0E
k
1 = Ek

1 = (A + B) �̂k,

that is
(A + B) �̂k = �̂k (A + B) �̂k, k = s, c. (3.78)

Moreover the property (iii) implies that (A + B) �̂u maps D(A) into �̂u , that is for any
x ∈ D(A):

(A + B) �̂ux = �̂u (A + B) �̂ux . (3.79)

Therefore for each k = s, c, u by using (3.78) and (3.79) combined together with the orthog-
onality property in (3.64) we obtain for each x ∈ D(A):

�̂k (A + B) x = �̂k (A + B)
[

�̂s + �̂u + �̂c
]

x

= �̂k (A + B) �̂k x = (A + B) �̂k x .

This completes the proof of this lemma. ��

4 Proof of Theorem 2.2

The aim of this section is to complete the proof of Theorem 2.2.
Let q ∈ [1,∞] be given. Recall that we denote the Banach space X = lq(Z; Y ). Recall

also the definition of the linear operator (A, D (A)) in (2.8). Next let us consider the three
bounded linear operators Pα ∈ L(X) defined for α = s, c, u by

(Pαu)k = �α
k uk, ∀k ∈ Z, ∀u ∈ X.

Using the above notations let us notice that for each α = s, c, u, Pα is a projector on X that
satisfies

• PαPβ = 0L(X) for all α 
= β.
• Ps + Pc + Pu = IL(X).
• for each α = s, c, u, one has A (D (A) ∩ Pα(X)) ⊂ Pα(X).
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Next we set Xα = Pα(X) for α = s, c, u and the following straightforward lemma holds
true:

Lemma 4.1 The following holds true:

(i) The part As of A in Xs satisfies D (As) = Xs and r (As) ≤ eρ . We furthermore have
for each u ∈ Xs and each (n, k) ∈ N × Z:

(An
s u
)

k = Us
A (k, k − n)�s

k−nuk−n .

(ii) The part Au of A in Xu satisfies 0 ∈ ρ (Au) and satisfies r
(A−1

u

) ≤ e−ρ . We further-
more have for each u ∈ Xu and each (n, k) ∈ N × Z:

(A−n
u u

)

k = Uu
A(k, k + n)�u

k+nuk+n

(iii) The part Ac of A in Xc satisfies D (Ac) = Xc. It is invertible on Xc and satisfies:

r (Ac) ≤ eρ0 and r
(A−1

c

) ≤ eρ0 .

We furthermore have for each u ∈ Xu and each (n, k) ∈ Z × Z:
(An

c u
)

k = Uc
A(k, k − n)�c

k−nuk−n

Remark 4.2 The above discussion and the above lemma imply that the closed linear operator
A has an exponential trichotomy according to Definition 1.2.

Let B = {Bn}n∈Z be a bounded sequence inL(Y ). Then let us consider the bounded linear
operator B ∈ L(X) defined by

(Bu)k = Bk−1uk−1, ∀k ∈ Z, ∀u ∈ X.

Then note that one has:
‖B‖L(X) ≤ sup

k∈Z
‖Bk‖L(Y ). (4.1)

We are now interesting in the spectral properties of A+ B by applying Theorem 1.7. We fix
0 < ρ0 < ρ̂0 < ρ̂ < ρ and κ̂ > κ . Using the constant δ0 > 0 provided by Theorem 1.7, we
fix a bounded sequence B = {Bn}n∈Z in L(Y ) such that

sup
n∈Z

‖Bn‖L(Y ) ≤ δ20

κ + δ0
.

In view of (4.1), Theorem 1.7 applies to the perturbation problemA+B and operator (A + B)

has an exponential trichotomy with exponent ρ̂0 and ρ̂ and with constant κ̂ . If we denote the
three corresponding projectors by P̂s, P̂c, P̂u ∈ L (X) and X̂α = P̂s (X) we have:

⎛

⎜
⎝

(A + B).s P̂s

(A + B)−.
u P̂u

(A + B).c P̂c

⎞

⎟
⎠ = (I − J )−1

⎛

⎜
⎝

A.
sPs

A−.
u Pu

A.
cPc

⎞

⎟
⎠, (4.2)

wherein the bounded linear operator J acting on the Banach space X := L−ρ̂ (N,L(X)) ×
L−ρ̂ (N,L(X)) ×Lρ̂0(Z,L(X)) is defined in (3.43). One furthermore has the following esti-
mates

∥
∥(A + B)nc P̂c

∥
∥L(X)

≤ κ̂eρ̂0|n|, ∀n ∈ Z, (4.3)
∥
∥(A + B)ns P̂s

∥
∥L(X)

≤ κ̂e−ρ̂n, ∀n ∈ N, (4.4)
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and
∥
∥(A + B)−n

u P̂u
∥
∥L(X)

≤ κ̂e−ρ̂n, ∀n ∈ N, (4.5)

as well as the following estimates for each n ∈ N,

∥
∥(A + B)ns P̂s − An

sPs
∥
∥L(X)

≤ κδ

δ0 − δ
e−ρ̂n, (4.6)

∥
∥(A + B)−n

u P̂u − A−n
u Pu

∥
∥L(X)

≤ κδ

δ0 − δ
e−ρ̂n, (4.7)

and for each n ∈ Z
∥
∥(A + B)nc P̂c − An

cPc
∥
∥L(X)

≤ κδ

δ0 − δ
eρ̂0|n|. (4.8)

In order to prove our perturbation result, namely Theorem 2.2, we will show that the
perturbed projectors exhibit a suitable structure inherited from the one of the shift operators
A and B that reads as

(P̂αu
)

k = �̂α
k uk, ∀u ∈ X, α = s, c, u,

and wherein for each k ∈ Z and α = s, c, u, �̂α
k denotes a projector of Y . To do so, let us

introduce for each p ∈ Z the linear bounded operator Dp ∈ L(X) defined for each u ∈ X
and k ∈ Z by

(Dpu
)

k =
{

u p if k = p

0 if k 
= p

Together with this notation, let us notice that for each p ∈ Z the following commutativity
properties hold true:

DpAn
sPs = An

sPsDp−n, ∀n ≥ 0, ∀p ∈ Z,

DpA−n
u Pu = A−n

u PuDp+n, ∀n ≥ 0, ∀p ∈ Z,

DpAn
cPu = An

cPuDp−n, ∀n ∈ Z, ∀p ∈ Z.

(4.9)

One may also notice that B satisfies:

DpB = BDp−1, ∀p ∈ Z. (4.10)

If one considers the closed subspace Z ⊂ X defined by

Z =

⎧

⎪⎨

⎪⎩

⎛

⎝

Es

Eu

Ec

⎞

⎠ ∈ X :
⎛

⎜
⎝

DpEs
. − Es

. Dp−.

DpEu
. − Eu

. Dp+.

DpEc
. − Ec

. Dp−.

⎞

⎟
⎠ = 0X , ∀p ∈ Z

⎫

⎪⎬

⎪⎭

,

then we claim that

Claim 4.3 The linear bounded operator J : X → X satisfies JZ ⊂ Z.

We postpone the proof of this claim and complete the proof of Theorem 2.2.
Using the above claim and recalling that Z is a closed subspace of X lead us to

(I − J )−1 Z ⊂ Z.

Indeed since ‖J ‖L(X ) < 1 then (I − J )−1 = ∑∞
k=0 J k . Hence due to (4.9) one obtains

that
(A.

sPs,A−.
u Pu,A.

cPc
)T ∈ Z,
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while (4.2) ensures that
⎛

⎜
⎝

(A + B).s P̂s

(A + B)−.
u P̂u

(A + B).c P̂c

⎞

⎟
⎠ ∈ Z.

The above statement completes the proof of Theorem 2.2. Indeed let us first notice that the
above result implies that for each p ∈ Z and α = s, c, u,

DpP̂α = P̂αDp.

This means that for each p ∈ Z there exists three projectors �̂α
p ∈ L(Y ) for α = s, c, u such

that:
(P̂αu

)

p = �̂α
pu p for all p ∈ Z, u ∈ X and α = s, c, u.

Note that the properties P̂αP̂β = 0 for α 
= β and P̂s + P̂c + P̂u = IX directly re-write as
for each p ∈ Z:

�̂α
p�̂

β
p = 0 for α 
= β and �̂s

p + �̂c
p + �̂u

p = IY .

It remains to check that A + B has an exponential trichotomy with constant κ̂ , exponents
ρ̂0 < ρ̂ and associated to the projectors

{

�̂α
k

}

k∈Z with α = s, c, u.

Property (ii) of Definition 2.1: For each k ∈ Z and α = s, c, u one has for each u ∈ D(A):
[P̂α (A + B) u

]

k = �̂α
k [(A + B) u]k = �̂α

k UA+B(k, k − 1)uk−1.

Since for each u ∈ D(A) one has P̂α (A + B) u = (A + B) P̂αu and for each k ∈ Z and
each u ∈ Y the sequences uk = {u p}p∈Z defined by u p = 0 for p 
= k − 1 and uk−1 = u
belongs to D (A), one obtains:

�̂α
k UA+B(k, k − 1)u = UA+B(k, k − 1)

[

P̂αuk
]

k−1
= UA+B(k, k − 1)�̂α

k−1u.

As a consequence one gets that for each k ∈ Z and α = s, c, u:

�̂α
k UA+B(k, k − 1) = UA+B(k, k − 1)�̂α

k−1.

This proves statement (ii). ��
Proof of (iii) in Definition 2.1: Let us set for each k ∈ Z the subspaces Ŷ α

k = �̂α
k (Y ). Recall

that 0 ∈ ρ
(

(A + B)u
)

. Hence for each v ∈ X̂u there exists a unique u ∈ D (A) ∩ X̂u such
that (A + B) u = v. This re-writes as for each k ∈ Z:

UA+B(k, k − 1)uk−1 = vk .

This proves that for each k ∈ Z the linear operator UA+B(k, k − 1) is invertible from Ŷ u
k−1

onto Ŷ u
k . Due to composition argument for each k ∈ Z and n ≥ 1, the linear operator

UA+B(k, k − n) is invertible from Ŷ u
k−n onto Ŷ u

k . Furthermore one has for each n ≥ 0 and
p ∈ Z:

[

(A + B)−n P̂uv
]

p = UA+B(p, p + n)�̂u
p+nvp+n .

The same arguments hold true for the central part and one obtains that for each k ∈ Z and
n ≥ 0 the linear operator UA+B(k, k − n) is invertible from Ŷ c

k−n onto Ŷ
c
k . Furthermore one

has for each n ∈ Z and p ∈ Z:
[

(A + B)n P̂cv
]

p = UA+B(p, p − n)�̂c
p−nvp−n .

This proves that (iii) is true. ��
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Proof of (iv) in Definition 2.1: The proof of the growth estimates directly follow from the
trichotomy estimates for (A + B).α recalled in (4.3)–(4.5).

Finally the perturbed estimates for projected evolution semiflow stated in Theorem 2.2
directly follows from (4.6) to (4.8). This completes the proof of the result.

To complete the proof of Theorem 2.2 it remains to prove Claim 4.3. ��
Proof of Claim 4.3 Let (Es, Eu, Ec)T ∈ X be given. Let us set (Fs, Fu, Fc)T =
J (Es, Eu, Ec)T . Then according to the definition of J [see (3.43) and (3.40)–(3.42)] for
each n ≥ 0 one has

Fs
n = An

sPs −
+∞
∑

m=0

Am+n
s PsB

[

Eu
m+1 + Ec−m−1

]

+
n−1
∑

m=0

An−m−1
s PsBEs

m −
+∞
∑

m=0

[A−m−1
u Pu + A−m−1

c Pc
]BEs

n+m .

Recalling (4.9) and (4.10) one directly checks that for each n ≥ 0 and p ∈ Z: DpFs
n =

Fs
nDp−n .Using the formula described in (3.41) and (3.42) one may directly check the claim.

��
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