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Abstract
In this work, we discuss a cell–cell repulsion model based on a hyperbolic Keller–
Segel equation with two populations, which aims at describing the cell growth and
dispersion in the co-culture experiment from the work of Pasquier et al. (Biol Direct
6(1):5, 2011). We introduce the notion of solution integrated along the characteristics,
which allows us to prove the existence and uniqueness of solutions and the segregation
property for the two species. From a numerical perspective, we also observe that our
model admits a competitive exclusion principle which is different from the classical
competitive exclusion principle for the corresponding ODEmodel. More importantly,
our model shows the complexity of the short term (6days) co-cultured cell distribution
depending on the initial distribution of each species. Through numerical simulations,
we show that the impact of the initial distribution on the proportion of each species
in the final population lies in the initial number of cell clusters and that the final
proportion of each species is not influenced by the precise distribution of the initial
distribution. We also find that a fast dispersion rate gives a short-term advantage while
the vital dynamics contributes to a long-term population advantage. When the initial
condition for the two species is not segregated, the numerical simulations suggest that
asymptotic segregation occurs when the dispersion coefficients are not equal for two
populations.
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1 Introduction

In many recent biological experiments, the co-culture of multiple types of cells has
been used to improve our understanding of cell–cell interactions. Typical examples of
such co-culture experiment include the study of the interaction between cancer cells
and normal cells, which plays a crucial role in tumor development, and comparative
studies of the resistance of different types of cancer cells to a chemotherapeutic drugs.
The goal of this work is to introduce a mathematical model taking into account the
growth of the cell population and the physical motion of cells induced by the com-
petition for space in a Petri dish, in order to better understand the spatial segregation
between two types of cells and its potential impact on the outcome of co-culture exper-
iments. Such a segregation phenomenon was observed by Pasquier et al. (2012) in a
study of protein transfer between two types of human breast cancer cell. Over a 7-day
cell co-culture, a spatial competitive exclusion was observed between these two types
of cells and a clear boundary was formed between them on day 7 (see Fig. 1). A segre-
gation property in cell co-culture was also studied recently by Taylor et al. (2017), who
compared their experimental results with an individual-based model. They found that
heterotypic repulsion and homotypic cohesion can account for cell segregation and
border formation. A similar segregation property is also found in the mosaic pattern
between nections and cadherins in the experiments of Katsunuma et al. (2016).

Early attempts to explain the segregation property by continuum equations date
back to 1970s. Shigesada et al. (1979) studied segregation with a nonlinear diffusion
model and they found that the spatial segregation acts to stabilize the coexistence
of two similar species by relaxing the interspecific competition. Lou and Ni (1996)
generalized the model of Shigesada et al and studied the steady state problem for the
self/cross-diffusion model. For the nonlinear diffusion model, Bertsch et al. (2012)
proved the existence of segregated solutions when the reaction term is of Lotka–
Volterra type. Other mechanisms such as nonlocal competition in the framework of
the Lotka–Volterra model leading to the segregation are considered in Mimura and
Kawasaki (1980), Mimura et al. (1984), Ni et al. (2018). Crooks et al. (2004), Dancer
et al. (1999) considered a competition–diffusion system where two populations spa-
tially segregate as the interspecific competition becomes large. Conti et al. (2005)
considered a reaction–diffusion system in which asymptotic segregation occurs (the
steady states are segregated). One of the main points in the present model is that seg-
regation is achieved directly and not in the asymptotic limit, contrary to Dancer et al.
(1999), Crooks et al. (2004) and Conti et al. (2005).

Here instead of using nonlinear diffusionmodels,we focus on a (hyperbolic)Keller–
Segel model. Such models have been used to describe the attraction and repulsion of
cell populations when the motion of the cells is driven by the concentration gradi-
ent of a chemical substance, a phenomenon known as chemotaxis. Theoretical and
mathematical modeling of chemotaxis can be traced back to the pioneering works of
Patlak (1953) in the 1950s and Keller and Segel (1971) in the 1970s. It has become an
important model in the description of tumor growth or embryonic development. We
refer to the review papers of Horstmann (2003) and Hillen and Painter (2009) for a
detailed introduction about the Keller–Segel model.
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Fig. 1 Direct immunodetection of P-gp transfers in co-cultures of sensitive (MCF-7) and resistant (MCF-
7/Doxo) variants of the human breast cancer cell line

As explained in this work, our model can also be regarded as a nonlocal advection
model. Recently, implementing nonlocal advection models for the study of cell–cell
adhesion and repulsion has attracted a lot of attention. As pointed out by many biolo-
gists, cell–cell interactions donot only exist in a local scope, but long-range interactions
should also be taken into account to guide themathematicalmodeling. Armstrong et al.
(2006) in their early work proposed a model (the APS model) in which cells undergo
a local diffusion process and a nonlocal advection driven by the adhesion forces, in
order to describe cell aggregation and sorting. Based on the APS model, Murakawa
and Togashi (2015) thought that the population pressure should come from the cell
volume size instead of the linear diffusion, and changed the linear diffusion term into
a nonlinear diffusion in order to capture the sharp fronts and the segregation in cell
co-culture. Carrillo et al. (2019) recently proposed a new assumption on the adhe-
sion velocity field and their model showed a good agreement with the experiments
in the work of Katsunuma et al. (2016). The idea of the long-range attraction and
short-range repulsion can also be found in the work of Leverentz et al. (2009). They
considered a nonlocal advection model to study the asymptotic behavior of swarms.
By choosing a Morse-type kernel which encodes both attractive and repulsive inter-
actions, they found that the solution can asymptotically spread, contract (blow-up), or
reach a steady-state. Burger et al. (2014) considered a similar nonlocal adhesionmodel
with nonlinear diffusion. They studied the well-posedness of the model and proved
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the existence of a compactly supported, non-constant steady state. Dyson et al. (2010)
established the local existence of a classical solution for a nonlocal cell–cell adhesion
model in spaces of uniformly continuous functions. For the diffusive model with time
delay effect, we refer to Shi et al. (2019a, b) where the authors considered the spatial
patterns due to bifurcations. For further Turing and Turing–Hopf bifurcations due to
the nonlocal effect, we refer to Ducrot et al. (2018) and Song et al. (2019). We also
refer the readers to Mogilner et al. (2003), Eftimie et al. (2007), Ducrot and Magal
(2014), Fu andMagal (2018) for more topics about nonlocal advection equations. The
derivation of such models as been done in Bellomo et al. (2012) and Morale et al.
(2005).

In this work, we consider a two-dimensional bounded domain which represents
a flat circular Petri dish. We introduce the notion of solution integrated along the
characteristics. Thanks to the appropriate boundary condition of the pressure equation
(seeEq.2.2),we deduce that the characteristics stay in the domain for any positive time.
The positivity of solutions, the segregation property and a conservation law follow
from the notion of solutions as well. By using numerical simulations, we investigate
the impact of the seeding condition (as well as the law of initial distributions) on the
proportion of each species in thefinal population. In the above-mentioned literature, the
numerical simulations are restricted to a rectangular domain with periodic boundary
conditions. It is worth mentioning that here the domain is circular and the pressure
satisfies a no-flux boundary condition (see Appendix 5.4 for numerical scheme).

Our paper is organized as follows. In Sect. 2, we present the model for the single-
species case and we prove the local existence and uniqueness of solutions as well as
the conservation law by considering the solution integrated along the characteristics.
In Sect. 3, we apply our nonlocal advection model established in Sect. 2 to study the
cell co-culture. Themain goal in this work is to investigate the complexity of the short-
term (6 days) co-cultured cell distribution depending on the initial distribution of each
species. In Sect. 3.1, we investigate the competitive exclusion principle in our model
and compare our spatial model to an ODE model which is homogeneous in space and
has been previously studied by Zeeman (1995). In Sect. 3.2, we investigated the impact
of the initial distribution on the proportion of each species in the final population. The
spatial competition due to the dispersion coefficients and cell kinetics is considered
in Sect. 3.3. Section4 is devoted to discussion and conclusion. We also discuss the
case of overlapping (non-segregated) initial conditions for the two species, and how
numerical simulations suggest that asymptotic segregation occurs.

2 Mathematical modeling

2.1 Single species model

Let us consider the following model with one species

{
∂t u(t, x) − d div

(
u(t, x)∇P(t, x)

) = u(t, x)h(u(t, x)) in (0, T ] × �,

u(0, x) = u0(x) on �,
(2.1)
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where P satisfies the following elliptic equation

{(
I − χ�

)
P(t, x) = u(t, x) in (0, T ] × �

∇P(t, x) · ν(x) = 0 on [0, T ] × ∂�,
(2.2)

We let � ⊂ R
2 be the unit open disk centered at 0 = (0, 0) with radius r = 1, i.e.,

� = BR2(0, 1).Here ν is the outward normal unit vector,d is the dispersion coefficient,
χ is the sensing coefficient. The divergence, gradient and Laplacian are taken with
respect to x . System (2.1)–(2.2) can be regarded as a hyperbolic Keller–Segel equation
(with chemotactic repulsion) on a bounded domain.

Remark 2.1 Equation (2.2) can be derived from the following parabolic equation
(which is the classical case in the Keller–Segel equation Horstmann 2003) as ε goes
to 0:

ε∂t P(t, x) = χ�P(t, x) + u(t, x) − P(t, x). (2.3)

The process of letting ε → 0 corresponds to the assumption that the dynamics of the
chemorepellent is fast compared to the evolution of the cell density. In the case of
chemoattractant a variant of such a model was considered by Perthame and Dalibard
(2009), Calvez and Dolak-Struß (2008).

Remark 2.2 As we mentioned in the introduction, Eq. (2.2) can be regarded as a non-
local integral equation by using the following representation

P(t, x) =
∫

�

κ(x, y)u(t, y)dy,

where κ is the Green function of the operator (I − χ�)−1 with Neumann boundary
conditions.

2.1.1 The invariance of domainÄ and the well-posedness of the model

Note that in System (2.1)–(2.2) we do not impose any boundary condition directly on
u. Instead, the boundary condition here is induced by ∇P · ν = 0. If we consider the
associated characteristics flow of (2.1)–(2.2){

∂
∂t 	(t, s; x) = −d ∇P(t,	(t, s; x))
	(s, s; x) = x ∈ �,

(2.4)

where 	(t, s; x) is the solution of the non-autonomous ODE, t represents the time
variable, s is the initial time and x is the initial position. 	(s, s; x) = x is our initial
condition. We can prove (see Appendix 5.1) that the characteristics can not leave the
domain � (see Fig. 2 for an illustration). In fact, we can prove that for any t > 0,
the mapping x �→ 	(t, 0; x) is a bijection from � to itself (see Lemma 2.10). We
consider the solution along the characteristics

w(t, x) := u(t,	(t, 0; x)) x ∈ �, t > 0.
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Fig. 2 An illustration of the
invariance of the domain �. The
green curve represents the
trajectory of a characteristic
(color figure online)

Taking any x ∈ �, there exists y ∈ � such that x = 	(t, 0; y), and since

w(t, y) = w(t,	(0, t; x)) = u(t, x),

we can reconstruct the solution u(t, ·) from the knowledge of w(t, ·) and
{	(t, s, ·)}t,s∈[0,T ] on �.

Assumption 2.3 The vector field (t, x) �→ ∇P(t, x) is continuous in [0, T ] × � and
Lipschitz continuous with respect to x ∈ � for each fixed t ∈ [0, T ].

Remark 2.4 Assumption 2.3 is a sufficient condition for the existence and uniqueness
of the characteristic flow {	(t, s; ·)}t,s∈[0,T ] in (2.4).

Definition 2.5 (Evans 1998, Section 5.1) Let � ⊂ R
2 be a bounded domain. If u :

� → R is bounded and continuous, we write

‖u‖C(�) := sup
x∈�

|u(x)|.

For any γ ∈ (0, 1], the γ th-Hölder norm of u : � → R is

‖u‖C0,γ (�) := ‖u‖C(�) + [u]C0,γ (�),

where

[u]C0,γ (�) := sup
x,y∈�
x �=y

{ |u(x) − u(y)|
|x − y|γ

}
.
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The Hölder space Ck,γ (�) consists of all functions u ∈ Ck(�) having a finite norm

‖u‖Ck,γ (�) :=
∑
|α|≤k

‖Dαu‖C(�) +
∑
|α|=k

[Dαu]C0,γ (�)

where α = (α1, . . . , αn) ∈ N
n and |α| = α1 + · · · + αn in the sum above.

Lemma 2.6 (Gilbarg and Trudinger 2001, Theorem 6.30 and 6.31) Let � ⊂ R
2 be the

unit open disk. Consider the following elliptic equation

{
(I − χ�)P(x) = u(x) x ∈ �,

∇P(x) · ν(x) = 0 x ∈ ∂�,
(2.5)

where ν is the outward unit normal vector on ∂�. Then for all u ∈ C0,α(�), the
elliptic problem (2.5) has a unique solution P ∈ C2,α(�). Moreover,

‖P‖C2,α(�) ≤ C‖u‖C0,α(�),

where C = C(α, χ,�).

The following theorem tells us if we choose our initial value u0 sufficiently smooth,
then Assumption 2.3 is automatically satisfied and the existence and uniqueness of
solutions follow.

Theorem 2.7 (Existence and uniqueness of solutions) Let u0 ∈ W 1,∞(�) ∩ C0+(�).
There exists T > 0 such that problem (2.1)–(2.2) has a unique solution u ∈
C
([0, T ];C0+(�)

)
which satisfies u(0, x) = u0(x). Moreover u is non-negative and

for any t ∈ [0, T ], we have u(t, ·) ∈ W 1,∞(�) and supt∈[0,T ] ‖u(t, ·)‖W 1,∞(�) < ∞.

The proof of Theorem 2.7 will be detailed in Appendix 5.2.

Remark 2.8 Since for any t ∈ [0, T ] and for any α ∈ (0, 1), we have u(t, ·) ∈
W 1,∞(�) ↪→ C0,α(�), we deduce from Lemma 2.6 that P(t, ·) ∈ C2,α(�). There-
fore, (t, x) → ∇P(t, x) is continuous (since P ∈ C([0, T ];C1(�))) and Lipschitz
continuous with respect to x which implies that Assumption 2.3 is satisfied.

2.1.2 Conservation law on a volume

If the reaction term h ≡ 0 is null in System (2.1)–(2.2), we have a conservation law
for u. This can be seen by integrating the solution along the characteristics. In fact,
we have the following conservation law.

Theorem 2.9 For each volume A ⊂ � and each 0 ≤ s ≤ t we have

∫
	(t,s;A)

u(t, x)dx =
∫
A
exp

(∫ t

s
h (u (l,	(l, s; z))) dl

)
u(s, z)dz.
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In particular, if there is no reaction h = 0, then for any 0 ≤ s ≤ t∫
	(t,s;A)

u(t, x)dx =
∫
A
u(s, z)dz.

This means that the total number of cells in the volume A is constant along the volumes
	(t, s; A).

Before proving Theorem 2.9, we need the following lemma.

Lemma 2.10 Let T > 0 and {	(t, s; x)}t,s∈[0,T ] be the characteristic flow gener-
ated by (2.4). Then the map x �→ 	(t, s; x) is continuously differentiable and the
determinant of the Jacobian matrix is given by

det J	(t, s; x) = exp

(∫ t

s

d

χ
(u(l,	(l, s; x)) − P(l,	(l, s; x))) dl

)
, (2.6)

where J	(t, s; x) is the Jacobian matrix of 	(t, s; x) with respect to x at (t, s; x).
Proof From Theorem 2.7 and Remark 2.8, the mapping (t, x) → P(t, x) is
C([0, T ];C1(�)) and P(t, ·) ∈ C2,α(�) for any α ∈ (0, 1) if u0 ∈ W 1,∞(�).
This ensures that the characteristics x → 	(t, s; x) is continuously differentiable.
Taking the partial derivative of Eq. (2.4) with respect to x yields{

∂t J	(t, s; x) = −d J∇P (t,	(t, s; x))J	(t, s; x)
J	(s, s; x) = Id,

where J∇P (t,	(t, s; x)) is the Jacobian matrix of ∇P(t, x) with respect to x at point
(t,	(t, s; x)). For anymatrix-valuedC1 function A : t �→ A(t), the Jacobian formula
reads as follows

d

dt
det A(t) = det A(t) × Trace

(
A−1(t)

d

dt
A(t)

)
.

Hence, we obtain

d

dt
det J	(t, s; x) = det J	(t, s; x) × Trace

(
J	(t, s; x)−1 J∇P (t,	(t, s; x))J	(t, s; x))

= det J	(t, s; x) × Trace (J∇P (t,	(t, s; x)))

and since Trace (J∇P (t,	(t, s; x))) = (�P)(t,	(t, s; x)) = − 1
χ

(u(t,	(t, s; x))
−P(t,	(t, s; x))), we conclude⎧⎨
⎩

d

dt
det J	(t, s; x) = det J	(t, s; x) × d

χ

[
u(t,	(t, s; x)) − P(t,	(t, s; x))]

det J	(s, s; x) = 1.

The result follows. 
�
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Proof Let {	(t, s; x)}t,s∈[0,T ] to be the characteristic flow generated by (2.4). Given
any measurable set A ⊂ � and any 0 ≤ s ≤ t , we integrate u(t, x) over the volume
	(t, s; A) with respect to x

∫
�

1	(t,s;A)(x)u(t, x)dx =
∫

�

1A(z)u(t,	(t, s; z)) det J	(t, s; z)dz, (2.7)

where we have changed the variable x to 	(t, s; z) on the right-hand-side.
We will prove in (5.5) in Appendix 5.2 that

u(t,	(t, s; z))
= u(s, z) exp

(∫ t

s
h(u(l,	(l, s; z))) + d

χ
(P(l,	(l, s; z)) − u(l,	(l, s; z))) dl

)
.

Combined with (2.6), this equality yields

u(t,	(t, s; z)) det J	(t, s; z) = u(s, z) exp

(∫ t

s
h(u(l,	(l, s; z)))dl

)
,

and substituting into (2.7) we get

∫
�

1	(t,s;A)(x)u(t, x)dx =
∫

�

1A(z)u(s, z) exp

(∫ t

s
h(u(l,	(l, s; z)))dl

)
dz,

which is equivalent to

∫
	(t,s;A)

u(t, x)dx =
∫
A
exp

(∫ t

s
h (u (l,	(l, s; z))) dl

)
u(s, z)dz.

The result follows. 
�
Remark 2.11 For the PDEwith logistic source, the nonlocal advection term div(u(t, x)
∇P(t, x)) makes the uniqueness of the equilibrium non-trivial. In our case, the semi-
flow associated to the solution is not monotone. Therefore, comparison arguments fail
and more complex dynamical behaviors may occur. However, from numerical sim-
ulations for the single species model with logistic source uh(u) = u(b − au), we
observe that the solution converges to the constant equilibrium of the corresponding
ODE case. Let us consider a single species one-dimensional model

∂t u(t, x) − div(u(t, x)∇P(t, x)) = u(t, x)(1 − u(t, x))

(I − �)P(t, x) = u(t, x),
[0, T ] × [−1, 1]

with Neumann boundary conditions ∇P · ν = 0 for (t, x) ∈ [0, T ] × {−1, 1}. The
behavior of the solution is illustrated in Fig. 3 by using a compactly supported initial
condition.
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Fig. 3 In this simulation we show that the solution converges numerically to the constant positive steady
state

2.2 Multi-species model

2.2.1 Multi-species ODEmodel

Let us consider the corresponding two species model without the spatial variable x
that is ui = ui (t) for i = 1, 2.

⎧⎨
⎩
dui
dt

= ui hi (u1, u2) i = 1, 2,

ui (0) = ui,0 ∈ R+.
(2.8)

We adopt the Lotka–Volterra model by setting

hi (u1, u2) = bi − δi −
2∑
j=1

ai j u j , i = 1, 2, (2.9)

where bi > 0, i = 1, 2 are the growth rates, ai j ≥ 0, i �= j represent the interspecific
competition between the species, aii is the intraspecific competition (the competition
of individuals from the same species) and δi is the additional mortality rate caused by
drug treatment. In Sect. 2.2.1 we will always assume δi = 0 for i = 1, 2 without loss
of generality (replacing bi − δi by bi if δi > 0). If we consider (2.8) in the absence of
the other species, we can rewrite (2.9) as

hi (u1, u2) = bi − aii ui , i = 1, 2.

We always assume that for each i , aii > 0 meaning that each species alone exhibits
logistic growth. This model has been considered by many authors (for example, see
Murray 2003; Zeeman 1995). Here we give a short summary of some qualitative
properties of the solution to (2.8) in order to compare it with the PDE model.
Equilibrium and stability for (2.8)–(2.9)

The system has the following equilibria

E0 = (0, 0), E1 = (P1, 0) , E2 = (0, P2) , E∗ = (u∗
1, u

∗
2),
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where

P1 := b1
a11

, P2 := b2
a22

, E∗ =
(

a22b1 − a12b2
a11a22 − a12a21

,
a21b1 − a11b2
a12a21 − a11a22

)
. (2.10)

The solution E∗ is only of relevance when a12a21 �= a11a22 and (u∗
1, u

∗
2) is strictly

positive, which is equivalent to either condition

⎧⎪⎪⎨
⎪⎪⎩
a12
a11

>
P1
P2

a21
a22

>
P2
P1

or

⎧⎪⎪⎨
⎪⎪⎩
a12
a11

<
P1
P2

a21
a22

<
P2
P1

.

Weadapt themain stability results fromZeeman (1995)where the author considered
a general n-species extinction case, Murray (2003, Chapter 3.5) and Hirsch (2012,
Chapter 11) to system (2.8)–(2.9) for the following fours cases (i)–(iv) and discuss
their biological implications.

Proposition 2.12 For system (2.8)–(2.9), suppose for each i = 1, 2, bi > 0, aii > 0
and ai j ≥ 0 for any i �= j . Let P1 = b1/a11, P2 = b2/a22 be the equilibrium for each
species alone and assume the initial value (u1,0, u2,0) lies strictly in the first quadrant
that is u1,0 > 0 and u2,0 > 0. Then for the following four cases we have

(i) a12/a11 < P1/P2, a21/a22 < P2/P1. This case corresponds to Fig.4a. The
system (2.8) has four positive equilibrium, namely E0, E1, E2 and E∗. In such
case, only E∗ is globally asymptotically stable in the region {(u1, u2) ∈ R

2 | u1 >

0, u2 > 0}.
(ii) a12/a11 > P1/P2, a21/a22 < P2/P1. This case corresponds to Fig.4b. The

system (2.8) has three positive equilibrium, namely E0, E1 and E2. Only E2 is
globally stable in the positive quadrant excepted for the axis u1 = 0.

(iii) a12/a11 < P1/P2, a21/a22 > P2/P1. This case corresponds to Fig.4c. The
analysis of the stability is similar to the case (ii). Only E1 is globally stable in
the positive quadrant excepted for the axis u2 = 0.

(iv) a12/a11 > P1/P2, a21/a22 > P2/P1. This case corresponds to Fig.4d. In this
case, system (2.8) has four equilibrium, where E1 and E2 are stable while E∗ is
a saddle point. The steady states E1 and E2 have two non-overlapping domains
of attraction, separated by the stable manifold S of the equilibrium E∗.

Remark 2.13 Although among the four cases, (ii) and (iii) always lead to a competitive
exclusion principle and so do (iv) due to the natural perturbation in population levels,
case (i) leads to the stable coexistence of the two species in the long term.Aswe further
develop our PDE model for (2.8), we can show numerically that the competitive
exclusion principle occurs even in the case (i). This situation is a major difference
between the PDE and the ODE model (2.8).

A scheme of the qualitative behavior of the phase trajectory is given in Fig. 4 by
numerical simulations.
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(a) (b)

(c) (d)

Fig. 4 A scheme of the qualitative behavior of the phase trajectory for various cases. a a12/a11 <

P1/P2, a21/a22 < P2/P1. Only the positive steady state E∗ is stable and all trajectories tend to it. b
a12/a11 > P1/P2, a21/a22 < P2/P1. Only one stable steady state E2 exists with the whole positive
quadrant its domain of attraction. c a12/a11 < P1/P2, a21/a22 > P2/P1. Only one stable steady state E1
exists with the whole positive quadrant its domain of attraction. d a12/a11 > P1/P2, a21/a22 > P2/P1.
E1 and E2 are stable steady states, each of which has a domain of attraction namely I and II, separated by
a separatrix S which is the stable manifold of equilibria E∗

2.2.2 Multi-species PDEmodel

We study a two species population dynamics model on the unit open disk � ⊂ R
2

given as follows
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t u1(t, x) − d1 div
(
u1(t, x)∇P(t, x)

) = u1(t, x)h1((u1, u2)(t, x))

∂t u2(t, x) − d2 div
(
u2(t, x)∇P(t, x)

) = u2(t, x)h2((u1, u2)(t, x))(
I − χ�

)
P(t, x) = u1(t, x) + u2(t, x)

in [0, T ] × �,

∇P(t, x) · ν(x) = 0 on [0, T ) × ∂�,

(2.11)
where ν is the outward normal vector, di is the dispersion coefficient, χ is the sensing
coefficient. Recall that the function hi is given by

hi (u1, u2) = bi − δi −
2∑
j=1

ai j u j , i = 1, 2.

System (2.11) is supplemented with the initial condition

u0(·) := (u1(0, ·), u2(0, ·)) ∈ C1(�)2. (2.12)

2.2.3 Segregation property

It has been observed in mono-layer co-culture experiments that once the two cell
populations confront each other, they will stop growing, thus, forming separated islets.
We can prove that our model (2.11) preserves such segregation property.

Theorem 2.14 Suppose u = (u1, u2)(t, x) is the solution of (2.11)–(2.12) and assume
d1 = d2 = d in (2.11). Then for any initial distribution with u1(0, x)u2(0, x) = 0 for
all x ∈ �, we have u1(t, x)u2(t, x) = 0 for any t > 0 and x ∈ �.

Proof We argue by contradiction and assume that there exist t∗ > 0, x∗ ∈ � such
that

u1(t
∗, x∗)u2(t∗, x∗) > 0.

Recall that the characteristic flow satisfies the following equation

{
∂
∂t 	(t, s; x) = −d ∇P(t,	(t, s; x))
	(s, s; x) = x ∈ �.

Since x → 	(t, s; x) is invertible from � to itself, there exists some x0 ∈ � such
that 	(t∗, 0; x0) = x∗. Then for any i = 1, 2, we have

ui (t
∗,	(t∗, 0; x0))

= ui (0, x0) e
∫ t∗
0 hi ((u1,u2)(l,	(l,0;x0)))+ d

χ (P(l,	(l,0;x0))−(u1+u2)(l,	(l,0;x0)))dl > 0,

(2.13)

which implies

ui (0, x0) > 0, i = 1, 2.
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(a) (b)

Fig. 5 In this figure we illustrate the notion of segregation with a one dimensional bounded domain. a The
characteristic t �→ 	(t, 0; x0) forms a segregation “wall”. b The temporal-spatial evolution of the two
species

This is a contradiction. 
�
For the one dimensional case N = 1, suppose u1, u2 are solutions to (2.11)–(2.12),

we give an illustration (see Fig. 5) of the segregation for the solutions integrated along
the characteristics ui (t,	(t, 0; x)) for i = 1, 2. In fact, if there exists for some x0
such that ui (0, x0) = 0 for i = 1, 2, then from Eq. (2.13) we obtain

u1(t,	(t, 0; x0)) = u2(t,	(t, 0; x0)) = 0, ∀t > 0.

Therefore, the characteristics t �→ 	(t, 0; x0) forms a segregation barrier for the two
cell populations.

Remark 2.15 Ourmodel can be regarded as an alternative to nonlinear diffusionmodels
which also implements the finite speed propagation property. The local existence and
uniqueness of solutions is proved rigorously in Appendix 5.2. The notion of solution
integrated along the characteristics also leads to the segregation property.

Note that solutions starting from compactly supported initial value stay compactly
supported for the single and multi-species models. This is a consequence of the notion
of solution integrated along the characteristics together with the fact that the charac-
teristics cannot blow up in finite time as long as theW 1,∞ norm of the solution u(t, ·)
is finite for time t . Therefore, in our case, the finite speed propagation holds, which is
similar to the models with nonlinear diffusion.

2.2.4 Conservation law on a volume

If we assume that d1 = d2 = d in system (2.11), we have the following similar
conservation law for two species case. Suppose volume A ⊂ � and each 0 ≤ s ≤ t :

∫
	(t,s;A)

ui (t, x)dx =
∫
A
exp

[∫ t

s
hi ((u1, u2) (l,	(l, s; z))) dl

]
ui (s, z)dz, i = 1, 2.
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Therefore, if we assume in addition that hi = 0 for any 0 ≤ s ≤ t

∫
	(t,s;A)

ui (t, x)dx =
∫
A
ui (s, z)dz, i = 1, 2.

This means the total number of cells for each species ui remains constant along the
volume 	(t, s; A).

3 Numerical simulations

In Sect. 2, we established a PDE model for two species and we also proved that
the solution satisfies some basic properties such as local existence and uniqueness,
positivity, segregation and conservation law. These properties are ideal to explain the
monolayer cell co-culture in the experiments. Based on the data from experiments in
Pasquier et al. (2011), we will fit some parameters in our model. By varying certain
parameters such as the extra mortality rate caused by drug treatment (see Pasquier
et al. 2011 for details), we will simulate the evolution of two populations in the Petri
dish and the variation of population number of cells.

3.1 Impact of the segregation on the competitive exclusion principle

In this section, the goal of our simulations is to compare the various cases discussed
in Proposition 2.12 (ODE case) with our PDE model with segregation. As we will
see in the numerical simulations, the model with spatial structure presents completely
different results compared to the ODE model. To that aim, we consider the case
where the drug (doxorubicine) concentration is low in the cell co-culture for MCF-
7 and MCF-7/Doxo (see Fig. 1). The drug treatment causes an additional mortality
to the sensitive population MCF-7 represented by u1 but no extra mortality to the
resistant population MCF-7/Doxo represented by u2 (MCF-7/Doxo is resistant to a
small quantity of drug treatment, see Table 4 in Appendix 5.3).

We let Ui be the total number of cells in the ui -population at time t = 0,

Ui =
∫

�

ui (0, x)dx, i = 1, 2. (3.1)

The parameter values used in the simulations and their interpretations are listed in
Table 1. The growth rate bi and the intraspecific competition aii are fitted to the data
(see Appendix 5.3 for details).

In the presence of the drug, the equilibrium (2.10) of the ODE should be rewritten
as

P̄1 = b1 − δ1

a11
, P̄2 = b2 − δ2

a22
. (3.2)
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Moreover, we assume the drug concentration is low, so that b1 − δ1 > 0 and δ2 = 0,
therefore we have

P̄1 < P̄2.

The case when P̄1 > P̄2 is similar and will be discussed in the end of this section. We
choose our parameters to satisfy

a12
a11

<
P̄1
P̄2

,
a21
a22

<
P̄2
P̄1

, (3.3)

which corresponds to Case (i) in Proposition 2.12 for the ODE system. By using (3.2),
the condition in (3.3) can be interpreted as

a12
a22

<
b1 − δ1

b2 − δ2
,

a21
a11

<
b2 − δ2

b1 − δ1
.

Since we have b1 − δ1 > 0 and δ2 = 0, if the coefficients a12 and a21 are small, then
(3.3) holds. We give a possible set of parameters satisfying (3.3):

δ1 = 0.4, δ2 = 0, a12 = 0.2, a21 = 1. (3.4)

We assume the initial condition of each species ui is composed of 20 circular cell
clusters (represented by the red/green dots in Fig. 6a), uniformly distributed over the
Petri dish �. The total number of cells is initially Ui = 0.01 (recall (3.1)) for each
species andwe assume that each cluster contains the same quantity of cells.We present
the numerical simulation in Fig. 6 from day 0 to day 6. We also plot the proportions
of cells in Fig. 6f, which are defined as

Ui (t)

U1(t) +U2(t)
, where Ui (t) :=

∫
�

ui (t, x)dx, i = 1, 2,

for species i.
If the parameters are set as in (3.4) for the ODE system, Proposition 2.12 indicates

that the two species are in the stable coexistence regime and the solution converges to
the equilibrium

Ē∗ :=
(
a22(b1 − δ1) − a12(b2 − δ2)

a11a22 − a12a21
,
a21(b1 − δ1) − a11(b2 − δ2)

a12a21 − a11a22

)
≈ (0.11, 0.34).

However, as shown in Fig. 6, we can see the population density u1 tends to 0 and u2
tends to 1. In particular, we observe the competitive exclusion principle for the PDE
even though the solutions to the ODE are in the stable coexistence regime.

One can notice that unlike the ODE system (2.8), the segregation property for the
PDE model implies that it is impossible for the two species to coexist at the same
position x ∈ �. Thus the coefficients a12, a21 do not play any role in the competition
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Spatial-temporal evolution of the two species u1 and u2 and their proportions. a–e correspond to the
evolution of cell growth form day 0 to day 6 and f is the plot of the proportion of each species in the total
population from day 0 to day 6. We fix the parameters δ1 = 0.4, δ2 = 0, a12 = 0.2, a21 = 1 in (3.4). The
initial condition is composed of 20 cell clusters which are uniformly distributed over the Petri dish. The
initial total number of cells is U1 = U2 = 0.01 for each species and cells are equally distributed in each
cluster. Other parameter values are listed in Table 1

because of the segregation principle. This is verified by numerical simulations: when
we vary the coefficient coefficients a12, a21, we obtain identical plots for cell evolution
and cell population ratio. Since the simulations are identical, we omitted them here.

Through the numerical simulations, we observed that the PDE model (2.11) under-
goes a competitive exclusion principle. Our numerical simulations strongly indicate
that the stable steady states only depend on the relation between P̄1 and P̄2 [see (3.2)
for definition]. If P̄1 < P̄2 (resp. P̄1 > P̄2), the population u2 (resp. u1) will dominate
and the other species will die out. We also simulated the case when P̄1 > P̄2, the
results showed that Ē1 is the only stable steady state, which verifies our conjecture.
As Proposition 2.12 shows, the stability of the equilibrium of the ODE system depends
on the coefficients a12, a21 which measure the interspecies competition. However, the
stability of the steady states of the PDE system only depends on P̄1 and P̄2, which do
not depend on a12, a21. This is a major difference between the ODE and PDE models.

3.2 Impact of the initial distribution on the final proportion of each species

In the previous section, we investigated the competitive exclusion principle for two
species. By investigating Fig. 6f, we can see that the speed of increase in proportion
of the dominant population u2 (red curve) is varying with time. We remark that the
increase of the dominant population u2 is faster from day 0 to day 2 than from day 4 to
day 6. If we further study the spatial-temporal evolution of the cell co-culture presented
in Fig. 6a–e, we can observe that from day 0 to day 2 the competition between the two
groups is mainly expressed in terms of competition for spatial resources. However,
from day 4 to day 6, when the surface of the Petri dish is almost fully occupied by
cells of either type, the reaction term ui hi (u1, u2) in the equation begins to play a
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Fig. 7 Cell co-culture for species u1 and u2 over 6 days in the sparsely seeded case, i.e., U1 = U2 =
0.005, Nu1 = Nu2 = 10, for day 0, 2 and 6. Parameter values are listed in (3.5) and Table 1

major role in the change of the number of cells. In order to explore the major factors
in cell competition, we investigate the impact on the initial distribution of cells on the
proportion of each species on day 6. We will mainly focus on two factors, namely the
initial number of cell clusters and the law of initial distribution of those clusters in
space, which might influence the proportions for u1 and u2. To that aim, we set the
following parameters

δ1 = 0.15, δ2 = 0, a12 = 0, a21 = 0, (3.5)

and fix the other parameters as in Table 1.

3.2.1 Dependency on the initial number of cell clusters

In cell culture, the initial number of cell clusters is an important factor. Bailey et al.
(2018) study the sphere-forming efficiency of MCF-7 human breast cancer cell by
comparing the cell culture with different initial numbers of cell clusters. Here we
consider the impact of the initial number of cell clusters on the final proportion of
each species. To that aim, we assume that the initial distribution follows the uniform
distribution on a disk.

We consider two sets of initial condition, that is

U1 = U2 = 0.005, Nu1 = Nu2 = 10, (3.6)

U1 = U2 = 0.1, Nu1 = Nu2 = 200, (3.7)

where U1 and U2 are defined in (3.1) and Nu1 (respectively Nu2 ) is the initial number
of cell clusters of species u1 (respectively, of species u2).

The above initial conditions correspond to different types of seeding in the exper-
iment, namely cells are sparsely seeded or densely seeded. We assume that the total
number of cells is proportional to the initial number of cell clusters, meaning the dilu-
tion procedure adopted in the experiment is the same, thus the number of cells in each
cell cluster is a constant. In Fig. 7, we first give a numerical simulation for the cell
growth with parameters in (3.6). In Fig. 8, we present the simulation with parameters
in (3.7), tracking from day 0 to day 6.

In Fig. 9 we plot the evolution of the total number of cells and the proportion of
each species over 6 days.
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Fig. 8 Cell co-culture for species u1 and u2 over 6 days in the densely seeded case, i.e., U1 = U2 =
0.1, Nu1 = Nu2 = 200, for day 0, 2 and 6. Parameter values are listed in (3.5) and Table 1

(a) (b) (c)

Fig. 9 Evolution of the total number of cells (in log scale) and their proportion for species u1 and u2 over 6
days. a corresponds to the sparsely seeded case [with parameter values as in (3.6)], b to the densely seeded
case [with parameter values as in (3.7)]. In c, the solid lines represent the proportions of each species when
we start with Nu1 = Nu2 = 10 and the dashed lines represent the proportions of each species when we
start with Nu1 = Nu2 = 200. Parameters are listed in Table 1 and in (3.5)

From Fig. 9a, b, we can also observe a difference in the growth of each cell popula-
tion. In Fig. 9a we can see that both cell populations are in the regime of exponential
growth from day 0 to day 6 (a base-10 log scale is used for the y-axis). Conversely, in
Fig. 9b the growth of each population is slowing down from day 4 to day 6, meaning
that the cell co-culture is reaching the carrying capacity. More importantly, in Fig. 9c,
we observe a significant difference in the development of proportion of each species.
In fact, since the spatial competition is still the dominant factor in the first 2 days, we
can hardly see any difference between the dashed lines and solid lines. The propor-
tion of the dominant population grows almost linearly. However, the variation of the
proportion of each species in the densely seeded case changes much slower after day
4, while the sparsely seeded group still varies linearly.

In the above numerical simulations, we considered the case where the total number
of cells is proportional to the number of cell clusters. In the following numerical
experiments, we fix the total number of cells, and vary only the number of cell clusters.
Bydoing so,we intend to show the influenceuniquely due to the number of cell clusters.

We consider two sets of initial condition, that is

U1 = U2 = 0.075, Nu1 = Nu2 = 10, (3.8)

U1 = U2 = 0.075, Nu1 = Nu2 = 100, (3.9)
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Fig. 10 Cell co-culture for species u1 and u2 over 6 days in the sparsely seeded case, i.e., U1 = U2 =
0.075, Nu1 = Nu2 = 10, for day 0, 1 and 6. Parameter values are listed in (3.5) and Table 1

Fig. 11 Cell co-culture for species u1 and u2 over 6 days in the densely seeded case, i.e., U1 = U2 =
0.075, Nu1 = Nu2 = 100, for day 0, 1 and 6. Parameter values are listed in (3.5) and Table 1

(a) (b) (c)

Fig. 12 Evolution of the total number (in log scale) and the proportion of each species u1 and u2 over 6
days. In awe plot the total number of each cell population corresponding to the simulations with parameters
in (3.8) while b corresponds to the simulations with parameters in (3.9). In c, the solid lines represent the
proportion of each species in the sparsely seeded case Nu1 = Nu2 = 10 and the dashed lines represent the
proportion in the densely seeded case Nu1 = Nu2 = 100. Parameters are listed in Table 1 and (3.5)

where U1 and U2 are defined in (3.1) and Nu1 (respectively Nu2 ) is the initial number
of cell clusters of species u1 (respectively species u2).

The above initial conditions correspond to different types of seeding in the exper-
iment, namely cells are sparsely seeded or densely seeded. We assume that the total
number of cells is not proportional to the initial number of cell clusters, meaning that
the dilution procedures adopted in the experiment are different, thus the number of
cells in each cell cluster can be different.

In Fig. 10, we first give a numerical simulation for the cell growth with parameters
in (3.8). In Fig. 11, we present the simulation with parameters in (3.9).

In Fig. 12 we plot the evolution of the total number of cells and the proportion of
each species u1 and u2 over 6 days of the simulation.
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The curves of the growth of the two cell populations in Fig. 12a, b are very similar.
Both of them are reaching the carrying capacity (a base-10 log scale is used for the
y-axis). However, as Fig. 12c shows, there is still a clear difference in the proportion
of each species in the total population (dashed lines and solid lines) and this difference
persists when we change the random seed for the uniform distribution at t = 0. In
fact, as the total number of cells for the two scenarios is the same, the transition from
the first expansion phase (from day 0 to day 1 in Figs. 10 and 11) to the second phase
of the interspecies competition is very short for both two scenarios. During the first
4 days, we can hardly see any difference between the dashed lines and solid lines in
Fig. 12c. The proportion of the dominant population grows almost linearly. However,
the proportion of the densely seeded group slows down after day 4, while the sparsely
seeded group still grows almost linearly. This difference can be more significant if
we increase the difference of the initial number of clusters [see Fu (2019, page 119,
Figures 3.7 and 3.8)].

Figures 10 and 11 show that when we start with the sparsely seeded condition,
the species quickly expand to some large and connected clusters. On the contrary, for
the densely seeded case, cells form small and scattered islets. Thus, even though the
curves for the two scenarios are similar in Fig. 12a, b, the interactions of large clusters
and small islets are different. This discrepancy can affect the competition between
the two populations and eventually be expressed in the population ratio. As for the
densely seeded case, though the competitive exclusion principle holds in this case, the
time for the extinction of u1 can be very long.

3.2.2 Dependency on the law of the initial distribution

In the experiment, the size of the Petri dish can be a factor to determine the law of
the initial distribution for the cell. In general, under the same total number of cells, a
small size Petri dish will lead to a biased initial distribution and cells are more likely
to aggregate at the border. While a big Petri dish will make the cell distribution more
homogeneous, closer to a uniform distribution. Therefore, in this section, we study
whether the proportion of each species can be affected by the law of initial distribution.

We will assume that the center of each cluster in the initial distribution is given
by its polar coordinates (r , θ), that the radius r follows the Beta distribution with
parameters α and β, and that the angle θ is uniformly distributed in [0, 2π ]. More
precisely,

{rn}n=1,...,N ∼ Beta(α, β), {θn}n=1,...,N ∼ U(0, 2π).

Hence the Cartesian coordinates of the center of each cluster are given by{
xn = √

rn cos(θn)

yn = √
rn sin(θn)

n = 1, 2, . . . , N . (3.10)

In Fig. 13, we plot the density function of the Beta distribution for different α, β

fα,β(r) = 1/B(α, β) rα−1(1 − r)β−1,
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Fig. 13 Density function of the
initial distribution fα,β (r) =
1/B(α, β) rα−1(1 − r)β−1 for
different α and β, where B(α, β)

is a normalization constant to
ensure that the total integral is 1

(a) (b)

Fig. 14 Spatial distribution of the initial condition when (α, β) = (1, 1) (a) and (α, β) = (3, 2) (b). Here
red dots and green dots represent cell clusters. The initial condition is composed of Nu1 = 40 and Nu2 = 40
cell clusters, in both cases (color figure online)

where B(α, β) is a normalization constant to ensure that the total mass is 1.
Our simulation will mainly compare the following two cases

(α1, β1) = (1, 1), (α2, β2) = (3, 2).

We plot the initial distributions of the two different cases in Fig. 14 where we choose
40 cell clusters (i.e., Nu1 = 40 and Nu2 = 40 in (3.10)) for species u1 and species u2.

Suppose that the total number of cellsU1 = U2 = 0.02 is equally distributed in each
cell cluster. A typical numerical solution is shown in Fig. 15 when (α1, β1) = (1, 1)
and in Fig. 16 when (α2, β2) = (3, 2).

Now we plot the evolution of the total number of cells for each species u1 and u2
over 6 days.

FromFig. 17we can see that the law of initial distribution has almost no influence on
the final proportion of species. We also tried different scenarios when the total number
of cell clusters are 20, 50 and 100 or with different extra mortality rate δ1 = 0, 0.2 and
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Fig. 15 Cell co-culture for species u1 and u2 over 6 days. We plot the case where the initial distribution
follows beta distribution with parameters (α, β) = (1, 1). Parameters are listed in Table 1 and (3.5)

Fig. 16 Cell co-culture for species u1 and u2 over 6 days. We plot the case where the initial distribution
follows beta distribution with parameters (α, β) = (3, 2). Parameters are listed in Table 1 and (3.5)

(a) (b) (c)

Fig. 17 Evolution of the total number of cells (in log scale) for species u1 and u2 and their proportions over
6 days. In a we plot the total number of cells corresponding to the uniform initial distribution in Fig. 15.
In b we plot the number of cells corresponding to the initial distribution as in Fig. 16. In c, the solid lines
represent the proportion when (α, β) = (1, 1) and the dashed lines represent the proportion in the case
(α, β) = (3, 2). From c, we can see that they overlap. Parameters are listed in Table 1 and (3.5)

0.5, and the results are similar. Thus we can deduce that the final relative proportion
is stable under the variation of the law of the initial distribution.

Combining the above numerical experiments in Sects. 3.2.1 and 3.2.2, we can see
that under the competitive exclusion principle, the difference in the initial number
of cell clusters can have an influence on the interspecific competition. To be more
precise, with the same initial number of cells, the interspecific competition of the
densely seeded group is different from the one in the sparsely seeded group.

3.3 Impact of the dispersion coefficient on the population ratio

In Sect. 3.2, when the parameters of the model are the same, the competition induced
by the cell dynamics can be reflected by the difference in the spatial resource. Nowwe
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Table 2 Two sets of dispersion
coefficients for u1 and u2

Parameters d1 d2 δ1 δ2

Scenario 1 2 2 0 0

Scenario 2 2 0.2 0 0

Fig. 18 Cell co-culture for species u1 and u2 over 6 days. a–c correspond to scenario 1 (i.e. with the
parameters d1 = 2, d2 = 2, δ1 = δ2 = 0) while d–f correspond to scenario 2 (i.e. with d1 = 2, d2 =
0.2, δ1 = δ2 = 0). In both scenarios, the initial number of cell clusters and the total number of cells are the
same and follow (3.11) and the same uniform distribution. We plot the simulations for day 1, 3 and day 6.
Other parameters are listed in Table 1

assume the spatial resource is the same and we investigate the role of the dispersion
coefficient in the evolution of the species.

To that aim, we let the initial distribution of the two species follow the same uniform
distribution and they are sparsely seeded on the Petri dish. Furthermore, we let the
cell dynamics for the two population be almost the same, the only variable we control
here is the dispersion coefficient for the population. We take the same uniform initial
distribution at day 0, with the same initial number of cell clusters and the same number
of cells, i.e.,

U1 = U2 = 0.005, Nu1 = Nu2 = 10, a12 = a21 = 0. (3.11)

We compare the following two scenarios in Table 2 where the only difference is the
dispersion parameters.

In scenario 1, the dispersion coefficients of the two species are the same, while in
scenario 2 we suppose the species u1 has an advantage in the spatial competition over
its competitor u2 (Fig. 18).

Now we plot the evolution of the total number of cells and the proportion of each
species for species u1 and u2 over 6 days.

The main result from Fig. 19 is that the dispersion coefficient can have a great
impact on the proportion of each species after 6 days. Next, we consider the following
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(a) (b) (c)

Fig. 19 Evolution of the total number of cells (in log scale) and the proportion in the total population for
species u1 and u2 over 6 days. In a we plot the total number of cells corresponding to the scenario 1. In b
we plot the total number of cells corresponding to the scenario 2. In c we plot the proportion of each species
and the dashed lines corresponds to scenario 1 while the solid lines corresponds to scenario 2 in 2. Other
parameters are listed in Table 1 and (3.11)

Fig. 20 Cell co-culture for species u1 and u2 over 6 days. a–c corresponds to the scenario 3 with d1 =
2, d2 = 0.2, δ1 = 0.1, δ2 = 0 in Table 3. The initial number of cell clusters and the total number of cells
follow (3.11). Other parameters are listed in Table 1

(b)(a)

Fig. 21 Evolution of the total number of cells (in log scale) and the proportion of each species for species
u1 and u2 over 6 days. In awe plot the total number of cells in scenario 3 (see Fig. 20). In b, the dashed lines
correspond to the proportion of each species in the total population in scenario 2with d1 = 2, d2 = 0.2, δ1 =
0, δ2 = 0 in Table 2 while the solid lines correspond to scenario 3 with d1 = 2, d2 = 0.2, δ1 = 0.1, δ2 = 0
in Table 3. Other parameters are listed in Table 1 and (3.11)

scenario where u1 has the advantage in dispersion coefficient but is at a disadvantage
induced by drug treatment. Therefore

By including now a drug treatment, we can see from Figs. 20 and 21 that between
day 0 and day 2, the population u1 dominates u2 thanks to a larger dispersion rate.
After day 2, since the drug is killing the cell for species u1 while the drug has no effect
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Table 3 This scenario
corresponds to the case where
the species u1 spreads faster
than the species u2

Parameters d1 d2 δ1 δ2

Scenario 3 2 0.2 0.1 0

Moreover, due to a drug treatment, the mortality of the species u1 is
strictly positive while the mortality of the species u2 is zero (i.e. the
drug treatment does not affect the second species). In the context of
cancer cell, the speciesu1 would correspond to cellswhich are sensitive
to the drug while u2 would correspond to the cell resistant to the drug
treatment

on the species u2, the species u2 finally takes over the species u1. It leads to a gradual
increase in the proportion of the species u2.

In the numerical simulations for the scenarios 1 and 2 in Table 2, we let the cell
dynamics of the two species be almost equal. Thus the competition due to the cell
dynamics is almost negligible.Wehave shown the dispersion coefficient of populations
can have a great impact on the population ratio after 6 days.

In the simulation for scenario 3 in Table 3, we can observe that despite the com-
petitive exclusion principle, a larger dispersion coefficient can lead to a short-term
advantage in the population. In the long term, the competitive exclusion principle still
dominates.

4 Conclusion and discussion

From the experimental data in the work of Pasquier et al. (2011), we modeled the
mono-layer cell co-culture by a hyperbolic Keller–Segel equation (2.11). We proved
the local existence and uniqueness of solutions by using the notion of the solution
integrated along the characteristics in Theorem 2.7 and proved the conservation law
in Theorem 2.9. For the asymptotic behavior, we analyzed the problem numerically
in Sect. 3.

In Sect. 3.1 we discussed the competitive exclusion principle, indicating that the
asymptotic behavior of the population depends only on the relationship between the
steady states P̄1 and P̄2 [see (3.2) for definition] which is different from the ODE case.
We found that except for the case P1 = P2, the model with spatial segregation always
exhibits a competitive exclusion principle.

Even though the long term dynamics of cell density is decided by the relative
values of the equilibrium, the short term behavior needs a more delicate description.
We studied two factors which may influence the population ratios. The first factor is
the initial cell distribution, as measured by the initial number of cell clusters and the
law of initial distribution. We found that the impact of the initial distribution on the
proportion of each species lies in the initial number of cell clusters but not in the law
of initial distribution.

The second factor influencing the population ratio is the cell movement in space,
as measured by the dispersion coefficient di . In the first stage (i.e. before the Petri
dish is saturated), the dispersion rate di is the dominant factor. Once the surface of
the Petri dish is saturated by cells, cell dynamics ui h(u1, u2) becomes the key factor.
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Note that the coefficients a12, a21 do not play any role in the competition because of
the segregation principle.

We briefly summarize the main factors that can influence the population ratio in
cell culture for model (2.11):

(a) The difference of cell dynamics in the two species (internal factor): if the equi-
librium P̄1 > P̄2 (see (3.2) for definition), then u1 will dominate, u2 will die out
(and vice-versa when P̄1 < P̄2) (see Fig. 6);

(b) If the initial number of cells is similar, the interspecific competition of the densely
seeded group is different than the one of the sparsely seeded group (see Fig. 12).
We also concluded that the law of initial distribution has almost no influence on
the population ratio (see Figs. 15, 16);

(c) If cells are sparsely seeded at the beginning, the cell competition consists of two
stages: the first stage, where the dispersion rate plays a major role, is for cells to
occupy the surface of the Petri dish and the second stage, where the cell dynamics
becomes the key factor, is for each species to reach a saturation stage (see Figs. 19,
21).

4.1 Mixed initial condition

In this paper, we are mainly focused on applying the model to the monolayer cell
co-culture experiments in Pasquier et al. (2011) where the initial condition is always
segregated. However, when the dispersion coefficients are the same d1 = d2 and
the initial condition is mixed in the domain, the two population stay mixed even for
large time, this can be proved by an argument similar to the one in Theorem 2.14. By
Eq. (2.13),

ui (t,	(t, 0; x)) = ui (0, x)

exp

(∫ t

0
hi ((u1, u2)(l,	(l, 0; x))) + d

χ
(P(l,	(l, 0; x))

−(u1 + u2)(l,	(l, 0; x))) dl) .

Therefore, if u1(0, x0)u2(0, x0) > 0,we can deduce u1(t,	(t, 0; x))u2(t,	(t, 0; x))
> 0 for any t > 0. To be more precise, if we take the time derivate of (2.13), we obtain

d

dt
ui (t,	(t, 0; x)) = ui (t,	(t, 0; x))

(
hi ((u1, u2)(t,	(t, 0; x)))

+ d

χ

(
P(t,	(t, 0; x)) − (u1 + u2)(t,	(t, 0; x)))).

Note that both solutionsui (t,	(t, 0; x)), i = 1, 2have a common term d
χ
(P(t,	(t, 0;

x)) − (u1 + u2)(t,	(t, 0; x))). Therefore, for those mixed (non-segregated) initial
condition, it is the term hi ((u1, u2)(t,	(t, 0; x))) that determines the competition
between these two species.
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Fig. 22 Evolution of two species under a toy model (4.1) with mixed initial condition. The dispersion rate
d1 = 2 while d2 = 1. For t > 15, the distributions u1(t, .) and u2(t, .) are almost independent of t . The
numerical results suggest that asymptotic segregation occurs

When d1 �= d2, it is interesting to show some further numerical simulations with
mixed initial condition. Our numerical simulations suggest that segregation occurs
asymptotically. We present numerical results of asymptotic segregation in Fig. 22,
which were obtain by simulating the following toy model

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t u1(t, x) − d1 div
(
u1(t, x)∇P(t, x)

) = u1(t, x) (1 − u1(t, x) − 2u2(t, x))

∂t u2(t, x) − d2 div
(
u2(t, x)∇P(t, x)

) = u2(t, x) (1 − 2u1(t, x) − u2(t, x))(
I − �

)
P(t, x) = u1(t, x) + u2(t, x)

in [0, T ] × [−2, 2]

∇P(t, x) · ν(x) = 0 on [0, T ] × {−2, 2},
(4.1)

where we set T = 15 and d1 = 2 and d2 = 1.

Acknowledgements The authors would like to thank the referees for their valuable comments and sugges-
tions.

5 Appendix

5.1 Invariance of domainÄ

In this section, we prove the invariance of domain � for the characteristic equation.

Assumption 5.1 Let � ⊂ R
2 be an open bounded subset with ∂� of class C2.

Since � is a bounded domain of class C2, there exists U a neighborhood of the
boundary ∂� such that the distance function x → dist(x, ∂�) := inf y∈∂� ‖x − y‖
restricted to U has the regularity C2 [see Foote (1984, Theorem 1)]. Furthermore,
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by Foote (1984, Theorem 1) and Ambrosio (2000, Theorem 1 p.11), we have the
following properties for �.

Lemma 5.2 Let Assumption 5.1 be satisfied. Then

(i) There exists a small neighborhoodU of ∂�withU ⊂ � such that, for every x ∈ U
there is a unique projection P(x) ∈ ∂� satisfying dist(x, P(x)) = dist(x, ∂�).

(ii) The distance function x �→ δ(x) := dist(x, ∂�) is C2 on U\∂�.
(iii) For any x ∈ U, ∇δ(x) = −ν(P(x)) where ν(x) is the outward normal vector.

We consider the following non-autonomous differential equation on �

{
x ′(t) = f (t, x(t)) t > 0

x(0) = x0 ∈ �.
(5.1)

Assumption 5.3 The vector field f : [0,∞) × � → R
2 is continuous and satisfies

ν(x) · f (t, x) ≤ 0, ∀t > 0, ∀x ∈ ∂�. (5.2)

Moreover, for any T > 0, there exists a constant K = K (T ) such that vector field f
satisfies

| f (t, x) − f (t, y)| ≤ K |x − y|, ∀x, y ∈ �, t ∈ [0, T ]. (5.3)

By (5.3), we have the existence and uniqueness of the solutions of (5.1) and the
solutions may eventually reach the boundary ∂� in finite time. We will prove that
(5.2) implies that the solutions of (5.1) actually stay in � and can not attain boundary
∂� in finite time under Assumption 5.1.

Theorem 5.4 Let Assumptions 5.1 and 5.3 be satisfied. For any T > 0, let x(t) be the
solution of (5.1) on [0, T ]. Then x(t) ∈ � for any t ∈ [0, T ].
Proof We prove this theorem by contradiction. Let t∗ ∈ (0, T ] be the first time when
x(t) reaches boundary ∂�, i.e.,

t∗ = inf{0 < t ≤ T : δ(x(t)) = 0}.

We can find a θ > 0 such that, x(t) ∈ U ∩ � for any t ∈ [t∗ − θ, t∗]. Since t → x(t)
is C1, the mapping t �→ δ(x(t)) is C1 on [t∗ − θ, t∗]. By Lemma 5.2(iii), we have

d

dt
δ(x(t)) = x ′(t) · ∇δ(x(t)) = − f (t, x(t)) · ν(y(t)), (5.4)

where ν is the outward normal vector and y(t) := P∂�(x(t)) is the unique projection
of x(t) onto ∂�. By assumption (5.2), we have

− f (t, x(t)) · ν(y(t)) = (
f (t, y(t)) − f (t, x(t))

) · ν(y(t)) − f (t, y(t)) · ν(y(t))

≥ (
f (t, y(t)) − f (t, x(t))

) · ν(y(t)).
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Hence (5.4) becomes

d

dt
δ(x(t)) = − f (t, x(t)) · ν(y(t))

≥ (
f (t, y(t)) − f (t, x(t))

) · ν(y(t))

≥ − | f (t, y(t)) − f (t, x(t))| |ν(y(t))|
≥ −K |y(t) − x(t)| = −K δ(x(t)), t ∈ [t∗ − θ, t∗],

which yields

δ(x(t)) ≥ δ(x(t∗ − θ))e−K (t−t∗+θ), ∀t ∈ [t∗ − θ, t∗],

and δ(x(t∗ − θ)) > 0 implies δ(x(t∗)) > 0 which contradicts our assumption
δ(x(t∗)) = 0. 
�

5.2 Proof of Theorem 2.7

The objective of Appendix 5.2 is to give a clear notion of solutions and to prove the
local existence and uniqueness of solution.
Solution integrated along the characteristics Let us temporarily suppose u ∈
C1 ([0, T ] × �), we can rewrite the first equation in (2.1) as

∂t u(t, x) − d ∇u(t, x) · ∇P(t, x) = u(t, x)h(u(t, x)) + d u(t, x)�P(t, x)

= u(t, x)

(
h(u(t, x)) + d

χ
(P(t, x) − u(t, x))

)
.

Moreover, if we differentiate the solution along the characteristic with respect to t then

d

dt
u(t,	(t, 0; x))
= ∂t u(t,	(t, 0; x)) + ∇u(t,	(t, 0; x)) · ∂t	(t, 0; x)
= ∂t u(t,	(t, 0; x)) − d ∇u(t, 	(t, 0; x)) · ∇P(t,	(t, 0; x))
= u(t, 	(t, 0; x))

(
h(u(t, 	(t, 0; x))) + d

χ
(P(t,	(t, 0; x)) − u(t, 	(t, 0; x)))

)
.

The solution along the characteristics can be written as

u(t, 	(t, 0; x))
= u0(x) exp

(∫ t

0
h(u(l, 	(l, 0; x))) + d

χ

(
P(l, 	(l, 0; x)) − u(l, 	(l, 0; x)))dl) .

Similarly, we can deduce for any 0 ≤ s ≤ t
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u(t, 	(t, s; x))
= u(s, x) exp

(∫ t

s
h(u(l, 	(l, s; x))) + d

χ

(
P(l, 	(l, s; x)) − u(l, 	(l, s; x)))dl) .

(5.5)

For the simplicity of notation, we let d = χ = 1 in our following discussion and define
w(t, x) := u(t,	(t, 0; x)). We construct the following Banach fixed point problem
for the pair (w, P). For each (w, P), we let

w1(t, x) = u0(x) exp
( ∫ t

0
F(w(l, x)) + P (l,	(l, 0; x))dl

)
. (5.6)

where we set F(u) = h(u) − u for any u ≥ 0 and we define

T
(

w(t, x)
P (t, x)

)
:=

(
w1(t, x)

(I − �)−1w1(t,	(0, t; x))
)

=
(

w1(t, x)
P1(t, x)

)
, (5.7)

where (I − �)−1 is the resolvent of the Laplacian operator with Neumann boundary
condition.

We define

X τ := C0([0, τ ],C0(�)
)
, Y τ := C0([0, τ ],C1(�)

)
,

X̃ τ :=
{

w ∈ C0([0, τ ],C0(�)
) ∣∣∣ w ≥ 0, sup

t∈[0,τ ]
‖w(t, ·)‖W 1,∞(�) ≤ C1

}
,

Ỹ τ :=
{
P ∈ C0([0, τ ],C1(�)

) ∣∣∣ sup
t∈[0,τ ]

∥∥P(t, ·)∥∥W 2,∞(�)
≤ C2

}
, (5.8)

where Ci , i = 1, 2 are two constants to be fixed later. We also set

Z τ := X τ × Y τ , Z̃ τ := X̃ τ × Ỹ τ .

Notice Z̃ τ is a complete metric space for the distance induced by the norm
(‖ · ‖Xτ , ‖ · ‖Y τ ). For simplicity, we denote ‖ · ‖Cα,k := ‖ · ‖Cα,k (�) and ‖ · ‖Wk,∞ :=
‖ · ‖Wk,∞(�) for α ∈ (0, 1], k ∈ N+.
Theorem 5.5 (Existence and uniqueness of solutions) For any initial value u0 ∈
W 1,∞(�) and u0 ≥ 0, for any C1, C2 large enough in (5.8), there exists τ =
τ(C1,C2) > 0 such that the mapping T has a unique fixed point in Z̃ τ .

Proof For any positive initial value u0 ∈ W 1,∞(�) and r > 0, we fix C1 to be a
constant such that 4‖u0‖W 1,∞ ≤ C1 and C2 is a constant defined in (5.19) later in the
proof.

We also denote (
w0

P0

)
=

(
u0

(I − �)−1
N u0

)
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and let BZ̃ τ

((
w0

P0

)
, r

)
be the closed ball centered at

(
w0

P0

)
with radius r in Z̃ τ =

X̃ τ × Ỹ τ with usual product norm

∥∥∥∥
(

w

P

)∥∥∥∥
Z̃ τ

:= ‖w‖Xτ + ‖P‖Y τ

and we set

κ :=
∥∥∥∥
(

w0

P0

)∥∥∥∥
Z̃ τ

+ r .

Suppose

(
w

P

)
∈ BZ τ

((
w0

P0

)
, r

)
, we need to prove that there exits a τ small enough

such that the following properties hold

(a) For any t ∈ [0, τ ], (w1(t, ·), P1(t, ·)) in (5.6) and (5.7) belong to W 1,∞(�) ×
W 2,∞(�) and their norms satisfy

sup
t∈[0,τ ]

‖w1(t, ·)‖W 1,∞ ≤ C1, (5.9)

sup
t∈[0,τ ]

‖P1(t, ·)‖W 2,∞ ≤ C2. (5.10)

(b) Moreover, we have

‖w1 − w0‖Xτ ≤ r

2
, (5.11)

‖P1 − P0‖Y τ ≤ r

2
. (5.12)

Moreover, we plan to show that the mapping is a contraction: there exists a θ ∈ (0, 1)

such that for any

(
w̃

P̃

)
,

(
w

P

)
∈ BZ̃ τ

((
w0

P0

)
, r

)
we have

∥∥∥∥T
(

w̃

P̃

)
− T

(
w

P

)∥∥∥∥
Z̃ τ

≤ θ

∥∥∥∥
(

w̃

P̃

)
−

(
w

P

)∥∥∥∥
Z̃ τ

. (5.13)

Step 1We show that there exists a τ small enough such that for any (w, P ) ∈ X̃ τ × Ỹ τ

then

sup
t∈[0,τ ]

‖w1(t, ·)‖W 1,∞ ≤ C1,

where w1 is defined in (5.6).
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Indeed, since ∇P (t, ·) is Lipschitz continuous, then x → 	(t, 0, x) is also Lips-
chitz continuous. Since 	(t, 0; ·) maps � into �, we have

‖P (t,	(t, 0; ·))‖W 1,∞ ≤ ‖P (t,	(t, 0; ·))‖L∞ + ‖∇P (t, ·)‖L∞‖	(t, 0; ·)‖W 1,∞

≤ ‖P (t, ·)‖W 1,∞ max{‖	(t, 0; ·)‖W 1,∞ , 1}.

For any t ∈ [0, τ ], we let F̃ := supu∈[0,κ]
{|F(u)| + |F ′(u)|}. By the definition of w1

in (5.6), we have

‖w1(t, ·)‖W 1,∞

≤ ‖u0‖W 1,∞

∥∥∥∥exp
{∫ t

0
F(w(l, ·)) + P(l, 	(l, 0, ·))dl

}∥∥∥∥
W 1,∞

≤ ‖u0‖W 1,∞

∥∥∥∥exp
{∫ t

0
F(w(l, ·)) + P(l, 	(l, 0, ·))dl

}∥∥∥∥
L∞

×
(
1 +

∫ t

0
‖F(w(l, ·))‖W 1,∞ + ‖P (l, 	(l, 0, ·))‖W 1,∞dl

)

≤ ‖u0‖W 1,∞ exp

{∫ t

0
‖F(w(l, ·))‖L∞ + ‖P (l, 	(l, 0, ·))‖L∞dl

}

×
(
1 + τ F̃ max{ sup

l∈[0,τ ]
‖w(l, ·)‖W 1,∞ , 1} + τ‖P (l, ·)‖W 1,∞ max{‖	(l, 0, ·)‖W 1,∞ , 1}

)

≤ ‖u0‖W 1,∞e
τ
(
F̃+κ

)(
1 + τ F̃ max{C1, 1} + τκ max{‖	(l, 0, ·)‖W 1,∞ , 1}

)
. (5.14)

Next we estimate max
{
supl∈[0,τ ] ‖	(l, 0, ·)‖W 1,∞ , 1

}
. We have for any t, s ∈ [0, τ ]

	(t, s; x) = x −
∫ t

s
∇P (l,	(l, s; x))dl.

Since � is the unit open disk, ‖x‖W 1,∞(�) = 2. We can obtain the following estimate

‖	(t, s; ·)‖W 1,∞ ≤ 2 +
∫ t

s
‖∇P (l,	(l, s; ·))‖W 1,∞dl

≤ 2 + sup
l∈[s,t]

‖∇P (l, ·)‖W 1,∞
∫ t

s
max

{‖	(l, s; ·)‖W 1,∞ , 1
}
dl

≤ 2 + C2

∫ t

s
max{‖	(l, s; ·)‖W 1,∞ , 1}dl.

Thanks to Grönwall’s inequality, we have

sup
t,s∈[0,τ ]

‖	(t, s; ·)‖W 1,∞ ≤ 2eτC2 . (5.15)
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Substituting the (5.15) into (5.14) yields

‖w1(t, ·)‖W 1,∞ ≤ ‖u0‖W 1,∞e
τ
(
F̃+κ

)(
1 + τ F̃ max{C1, 1} + 2τκeτC2

)
.

Since C1 ≥ 4‖u0‖W 1,∞ , we can choose τ ≤ min
{

ln 2
F̃+κ

, 1
F̃ max{C1,1}+2κeC2

, 1
}
and we

obtain
sup

t∈[0,τ ]
‖w1(t, ·)‖W 1,∞ ≤ C1. (5.16)

Thus, Eq. (5.9) holds.
Let us nowcheck thatw1 satisfies (5.11). Letχ [u] := ueu , we remark that |eu−1| ≤

ueu = χ [u] for all u ≥ 0. We have

|w1(t, x) − u0(x)| ≤ |u0(x)|
∣∣∣∣exp

{∫ t

0
F(w(l, x)) + P (l,	(l, 0, x))dl

}
− 1

∣∣∣∣
≤ ‖u0‖C0χ

[∫ t

0
‖F(w(l, ·))‖C0 + ‖P (l,	(l, 0, ·))‖C0dl

]

≤ ‖u0‖C0χ

[
τ F̃ + τ sup

l∈[0,τ ]
‖P (l, ·)‖C0

]

≤ ‖u0‖C0χ
[
τ F̃ + τκ

]
, (5.17)

where F̃ = supu∈[0,κ]
{|F(u)| + |F ′(u)|}. From (5.17) we have

sup
t∈[0,τ ]

‖w1(t, ·) − u0(·)‖C0 ≤ ‖u0‖C0χ
[
τ F̃ + τκ

]
. (5.18)

Since limu→0 χ [u] = 0, it suffice to take τ small enough to ensure (5.11).

Step 2 Next we verify (5.10) and (5.12) for P1 where P1 is defined as the second
component of (5.7). We show that there exists τ small enough such that for any
(w, P ) ∈ X̃ τ × Ỹ τ

sup
t∈[0,τ ]

‖P1(t, ·)‖W 2,∞ ≤ C2.

Thanks to the Schauder estimate (Gilbarg and Trudinger 2001, Theorem 6.30), there
exists a constant C depending only on � such that

‖P1(t, ·)‖
C2, 12

≤ C‖w1(t,	(0, t; ·))‖
C0, 12

.

Recalling supt∈[0,τ ] ‖	(0, t; ·)‖W 1,∞ ≤ 2eτC2 as a consequence of (5.15), we have

‖P1(t, ·)‖W 2,∞ ≤ ‖P1(t, ·)‖
C2, 12
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≤ C‖w1(t,	(0, t; ·))‖
C0, 12

≤ C‖w1(t,	(0, t; ·))‖W 1,∞

≤ C‖w1(t, ·)‖W 1,∞ max{‖	(0, t; ·)‖W 1,∞ , 1}
≤ 2C C1e

τC2 .

We can now define
C2 = 4C C1, (5.19)

which only depends on � and ‖u0‖W 1,∞ . Finally, we let τ ≤ (ln 2)/C2 and we have

‖P1(t, ·)‖W 2,∞ ≤ 4C C1 = C2.

In particular, we have shown (5.10).
Next we prove (5.12). Since � is a two-dimensional unit disk, using Morrey’s

inequality (Evans 1998, Chapter 5. Theorem 6), we have

‖P1(t, ·) − P0(·)‖
C1, 12

≤ C‖P1(t, ·) − P0(·)‖W 2,4 ,

whereC is a constant depending only on�. For the sake of simplicity, we use the same
notation C for a universal constant depending only on � in the following estimates.
Moreover, by the classical elliptic estimates we have

‖P1(t, ·) − P0(·)‖W 2,4 ≤ C‖w1(t,	(0, t; ·)) − u0(·)‖L4 .

This implies that

‖P1(t, ·) − P0(·)‖C1 ≤ C‖w1(t,	(0, t; ·)) − u0(·)‖L4

≤ C‖w1(t,	(0, t; ·)) − u0(·)‖C0

≤ C‖w1(t,	(0, t; ·)) − w1(t, ·)‖C0 + C‖w1(t, ·) − u0(·)‖C0

≤ C‖w1‖W 1,∞‖	(0, t; ·) − ·‖C0 + C‖w1(t, ·) − u0(·)‖C0

≤ C C1‖	(0, t; ·) − ·‖C0 + C‖w1(t, ·) − u0(·)‖C0

≤ C C1 τ sup
t∈[0,τ ]

‖∇P (t, ·)‖C0 + C‖w1(t, ·) − u0(·)‖C0

≤ C C1 τ κ + C‖w1(t, ·) − u0(·)‖C0

≤ C C1 τ κ + C‖u0‖C0χ
[
τ F̃ + τκ

]
,

where we have used (5.18) for the last inequality . We can conclude

sup
t∈[0,τ ]

‖P1(t, ·) − P0(·)‖C1 → 0, τ → 0.

Thus, it suffice to take τ small enough to ensure the neighborhood condition (5.12).
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Step 3: Contraction mapping In order to verify (5.13), we let

(
w̃

P̃

)
,

(
w

P

)
∈

BZ̃ τ

((
w0

P0

)
, r

)
. We observe that

∣∣∣w̃1(t, x) − w1(t, x)
∣∣∣ =

∣∣∣∣u0(x) exp (
∫ t

0
F(w(l, x)) + P (l,	(l, 0; x))dl

)

− u0(x) exp
( ∫ t

0
F(w̃(l, x)) + P̃ (l, 	̃(l, 0; x))dl

)∣∣∣∣.
Due to the classical inequality |ex − ey | ≤ ex+y |x − y| which holds for any x, y ∈ R,
we deduce

∣∣w̃1(t, x) − w1(t, x)
∣∣

≤ ‖u0‖C0e2τ(F̃+κ)

[ ∫ t

0
‖F(w̃(l, ·)) − F(w(l, ·))‖C0dl

+
∫ t

0
‖P̃ (l, 	̃(l, 0; ·)) − P (l,	(l, 0; ·))‖C0dl

]

≤ ‖u0‖C0e2τ(F̃+κ)

[
τ F̃ sup

l∈[0,τ ]
‖w̃(l, ·) − w(l, ·)‖C0

+ τ sup
l∈[0,τ ]

‖P̃ (l, 	̃(l, 0; ·)) − P (l, 	̃(l, 0; ·))‖C0

+ τ sup
l∈[0,τ ]

‖P (l, 	̃(l, 0; ·)) − P (l,	(l, 0; ·))‖C0

]

≤ ‖u0‖C0e2τ(F̃+κ)
[
τ F̃ sup

l∈[0,τ ]
‖w̃(l, ·) − w(l, ·)‖C0 + τ sup

l∈[0,τ ]
‖P̃ (l, ·) − P (l, ·)‖C0

+ τ sup
l∈[0,τ ]

‖P (l, ·)‖W 1,∞ sup
l∈[0,τ ]

‖	̃(l, 0; ·) − 	(l, 0; ·)‖C0

]

≤ τ‖u0‖C0e2τ(F̃+κ)
[
F̃‖w̃ − w‖Xτ + ‖P̃ − P‖Y τ

+ C2 sup
l∈[0,τ ]

‖	̃(l, 0; ·) − 	(l, 0; ·)‖C0

]
. (5.20)

To estimate supl∈[0,τ ] ‖	̃(l, 0; ·) − 	(l, 0; ·)‖C0 in (5.20), we claim that

sup
t,s∈[0,τ ]

‖	̃(t, s; ·) − 	(t, s; ·)‖C0 ≤ τeτC2 sup
t∈[0,τ ]

‖P̃ (l, ·) − P (l, ·)‖C1 (5.21)

Indeed, we can obtain that

∣∣∣	̃(t, s; x) − 	(t, s; x)
∣∣∣ =

∣∣∣∣
∫ t

s
∇ P̃ (l, 	̃(l, s; x)) − ∇P (l,	(l, s; x))dl

∣∣∣∣
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≤
∫ t

s
‖∇ P̃ (l, 	̃(l, s; ·)) − ∇P (l, 	̃(l, s; ·))‖C0dl

+
∫ t

s
‖∇P (l, 	̃(l, s; ·)) − ∇P (l,	(l, s; ·))‖C0dl

≤ τ sup
l∈[0,τ ]

‖∇ P̃ (l, 	̃(l, s; ·)) − ∇P (l, 	̃(l, s; ·))‖C0

+ sup
l∈[0,τ ]

‖∇P (l, ·)‖W 1,∞
∫ t

s
‖	̃(l, s; ·) − 	(l, s; ·)‖C0dl.

This leads to

sup
t,s∈[0,τ ]

‖	̃(t, s; ·) − 	(t, s; ·)‖C0 ≤ τ sup
l∈[0,τ ]

‖P̃ (l, ·) − P (l, ·)‖C1

+ C2

∫ t

s
‖	̃(l, s; ·) − 	(l, s; ·)‖C0dl.

Again due to Grönwall’s inequality, we conclude that (5.21) holds.
Inserting (5.21) into (5.20) we have

sup
t∈[0,τ ]

∥∥∥w̃1(t, ·) − w1(t, ·)
∥∥∥
C0

≤ ‖u0‖C0e2τ(F̃+κ)
[
τ F̃‖w̃ − w‖Xτ + τ‖P̃ − P‖Y τ + τ 2 C2 e

τC2‖P̃ − P‖Y τ

]
≤ τ‖u0‖C0e2τ(F̃+κ)

[
F̃‖w̃ − w‖Xτ +

(
1 + τ C2 e

τC2
)

‖P̃ − P‖Y τ

]
≤ L1(τ )

[
‖w̃ − w‖Xτ + ‖P̃ − P‖Y τ

]
, (5.22)

where we set

L1(τ ) := τ‖u0‖C0e2τ(F̃+κ)
(
F̃ +

(
1 + τ C2 e

τC2
))

and L1(τ ) → 0 as τ → 0.
Next we prove the contraction property for ‖P̃1 − P1‖Y τ . As before, applying

the same argument of Morrey’s inequality and the classical elliptic estimates, we can
deduce

‖P̃1(t, ·) − P1(t, ·)‖C1 ≤ C‖w̃1(t, 	̃(0, t; ·)) − w1(t,	(0, t; ·))‖L4

≤ C‖w̃1(t, 	̃(0, t; ·)) − w1(t,	(0, t; ·))‖C0

≤ C‖w̃1(t, 	̃(0, t; ·)) − w1(t, 	̃(0, t; ·))‖C0

+ C‖w1(t, 	̃(0, t; ·)) − w1(t,	(0, t; ·))‖C0

≤ C‖w̃1(t, ·) − w1(t, ·)‖C0

+ C‖w1‖W 1,∞‖	̃(0, t; ·) − 	(0, t; ·)‖C0
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≤ C‖w̃1(t, ·) − w1(t, ·)‖C0

+ C C1‖	̃(0, t; ·) − 	(0, t; ·)‖C0

≤ C‖w̃1(t, ·) − w1(t, ·)‖C0

+ C C1 τ eτC2 sup
t∈[0,τ ]

‖P̃ (t, ·) − P (t, ·)‖C1 ,

where we used (5.21) in the last inequality and C is a constant depending only on �.
Defining L2(τ ) := C C1 τ eτC2 and together with (5.22) we obtain

sup
t∈[0,τ ]

‖P̃1(t, ·)−P1(t, ·)‖C1 ≤ C L1(τ )
[
‖w̃−w‖Xτ +‖P̃−P‖Y τ

]
+L2(τ )‖P̃−P‖Y τ .

(5.23)
Combing with (5.22) and (5.23) we deduce

‖w̃1 − w1‖Xτ + ‖P̃1 − P1‖Y τ ≤ (
C L1(τ ) + L2(τ )

)[‖w̃ − w‖Xτ + ‖P̃ − P‖Y τ

]
,

(5.24)
where Li (τ ) → 0, i = 1, 2 as τ → 0. If τ is small enough, this implies (5.13) for
some θ ∈ (0, 1). Since Z̃ τ is complete metric space for the distance induced by the
norm (‖ · ‖Xτ , ‖ · ‖Y τ ) in Zτ , the result follows by the classical Banach fixed point
theorem. 
�
Remark 5.6 Let us mention that we can derive a maximal time of solutions as long
as the W 1,∞(�) norm of u(t, .) stays bounded. This can be seen by using our local
existence result together with the following observations. Let t0 > 0 and assume that
the solution exists until t = t0. We define for all t, s ≥ t0{

∂
∂t 	t0(t, s; x) = −d ∇P(t + t0,	t0(t, s; x)),
	t0(s, s; x) = x ∈ �.

(5.25)

Then by the uniqueness of solutions we deduce that

	t0(t, s; x) = 	(t + t0, s + t0; x)

where 	 is the solution of (2.4). Moreover

w(t + t0, x) := u(t + t0,	(t + t0, 0; x)) = u(t + t0,	(t + t0, t0;	(t0, 0; x)).

Choose x = 	(t0, 0; x̂) then in order to deal the fixed point problem starting t0 it is
natural to introduce

wt0(t, x̂) := w(t + t0,	(0, t0; x)) = u(t + t0,	t0(t, 0; x̂)). (5.26)

By combining Eqs. (5.25)–(5.26), we can deduce the existence and uniqueness of
solutions as long as the W 1,∞(�) norm of u(t, .) is bounded. This idea can be used
to derive a maximal semiflow in the sense (Magal and Ruan 2018, Chapter 5).
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5.3 Parameter fitting

From the work in Pasquier et al. (2011), MCF-7 and MCF-7/Doxo cells are cultured
at 105 initial number of cells separately in 60× 15 mm cell Petri dish with or without
doxorubicine. We use the cell proliferation data followed every 12 h during 6days to
fit the parameters of the following ordinary differential equation

⎧⎨
⎩
dui
dt

= ui (bi − aii ui ) − δi ui i = 1, 2.

ui (0) = ui,0.
(5.27)

Herewe use u1 to represent theMCF-7 (sensitive to drug) and u2 to represent theMCF-
7/Doxo (resistant to drug) and bi > 0 is the growth rate δi is the extra mortality rate
caused by drug (doxorubicine) treatment and aii > 0 is a coefficient which controls
the carrying capacity.

In the work Sutherland et al. (1983) cell proliferation kinetics for MCF-7 is studied
over 11 days in 150cm2 flask. Following an inoculation of 3 × 105 cells at day 0, a
maximum cell density of 8–9 × 107 cells/flask was reached at day 11. Therefore, we
assume the carrying capacity for each species in 60 × 15 mm (surface of 21.5 cm2)
Petri dish satisfies

bi
aii

≈ 9 × 107 × 21.5 cm2

150 cm2 = 1.29 × 107, i = 1, 2.

By fixing the carrying capacity, we first estimate the growth rate bi of each species
under zero drug concentration, namely δi = 0. We divide the number of cells by
ui,0 = 105 (the initial number of cells) and rescale the parameters as follows

ũi = ui
105

, ãi = aii × 105, b̃i = bi . (5.28)

As seen in Fig. 23, without treatment,MCF-7 andMCF-7/Doxo displayed very similar
growth rates, 0.6420 and 0.6359 per day, respectively.

By fixing the parameters

b1 = 0.6420, a11 = 0.0050, b2 = 0.6359, a22 = 0.0049, (5.29)

we consider different scenarios with the drug concentration varies from 0.1 to 10µM
(see Fig. 24) and we estimate the extra mortality rate δi for each population due to
doxorubicine (see Table 4).

5.4 Numerical scheme

For simplicity, we give the numerical scheme for the following one species and one
dimensional model
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Fig. 23 Fitting for the parameters (under rescaling (5.28)) in model (5.27). We plot the experimental data
(dots in a) of MCF-7 (sensitive to drug) and (dots in b) MCF-7/Doxo (resistant to drug) with no drug
concentration over 6 days. We obtain an estimation of the growth rates b1 = 0.6420, b2 = 0.6359 and
a11 = 0.0050, a22 = 0.0049
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Fig. 24 Fitting for the growth curves ofMCF-7 (a) andMCF-7/Doxo (b) under different drug concentrations
in model (5.27) over 6 days. Cells were grown in the absence or presence of doxorubicine (0.1–10 µM,
corresponding symbols given in the legend in b) and counted every 12 h in a Malassez chamber. Cell counts
are expressed as the logarithm of the numbers of cells (ui ) divided by the number of cells at day 0 (ui,0).
We fix the growth rate bi and aii , i = 1, 2 as in (5.29)

Table 4 List of the estimation of extra mortality rate δ1 for the sensitive cell and δ2 for the resistant cell
under different concentrations of doxorubicine

Drug concentration (µM) 0 0.1 0.3 1 3 10

Extra mortality δ1 (day−1) 0 0.6619 0.8109 1.0118 1.5585 1.9545

Extra mortality δ2 (day−1) 0 0 0 0.0246 0.0569 0.2192

⎧⎪⎨
⎪⎩

∂t u + d ∂x (u∂x P) = f (u)

(I − χ�)P(t, x) = u(t, x)
in (0, T ] × [−L, L]

∂x P(t,±L) = 0 on [0, T ].
(5.30)
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The numerical method used is based on finite volume method. We refer to Leveque
(2002) and Toro (2013) for more results about this subject. Our numerical scheme
reads as follows

un+1
i = uni − d

�t

�x

(
φ(uni+1, u

n
i ) − φ(uni , u

n
i−1)

)
+ �t f (uni ),

i = 1, 2, . . . , M, n = 0, 1, 2, . . . , N ,

(5.31)

with the flux φ(uni+1, u
n
i ) defined as

φ
(
uni+1, u

n
i

) =
(

vn
i+ 1

2

)+
uni −

(
vn
i+ 1

2

)−
uni+1 =

⎧⎨
⎩

vn
i+ 1

2
uni , vn

i+ 1
2

≥ 0,

vn
i+ 1

2
uni+1, vn

i+ 1
2

< 0.
(5.32)

and

vn
i+ 1

2
= − lni+1 − lni

�x
, i = 0, 1, 2, . . . , M, (5.33)

where we define

Ln := (I − χ A)−1Un, n = 0, 1, 2, . . . , N , Ln
i = (

lni
)
M×1 Un = (

uni
)
M×1.

where χ is a constant and A = (ai, j )M×M is the usual linear diffusion matrix with
Neumann boundary condition. Therefore, since the Neumann boundary condition
corresponds to a no flux boundary condition, we impose

φ
(
un1, u

n
0

) = 0,

φ
(
unM+1, u

n
M

) = 0. (5.34)

which corresponds to l0 = l1 and lM+1 = lM .
The numerical scheme at the boundary becomes

un+1
1 = un1 − d

�t

�x
φ(un2, u

n
1) + �t f (un1),

un+1
M = unM + d

�t

�x
φ(unM , unM−1) + �t f (unM ).

By this boundary condition, we have the conservation of mass for Eq. (5.30) when the
reaction term f ≡ 0.
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