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In this work, we describe a hyperbolic model with cell–cell repulsion with a dynamics in
the population of cells. More precisely, we consider a population of cells producing a field
(which we call “pressure”) which induces a motion of the cells following the opposite
of the gradient. The field indicates the local density of population and we assume that
cells try to avoid crowded areas and prefer locally empty spaces which are far away from
the carrying capacity. We analyze the well-posedness property of the associated Cauchy
problem on the real line. We start from bounded initial conditions and we consider
some invariant properties of the initial conditions such as the continuity, smoothness and
monotony. We also describe in detail the behavior of the level sets near the propagating
boundary of the solution and we find that an asymptotic jump is formed on the solution
for a natural class of initial conditions. Finally, we prove the existence of sharp traveling
waves for this model, which are particular solutions traveling at a constant speed, and
argue that sharp traveling waves are necessarily discontinuous. This analysis is confirmed
by numerical simulations of the PDE problem.
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1. Introduction

In this paper, we are concerned with the following diffusion equation with logistic

source:{
∂tu(t, x)− χ∂x(u(t, x)∂xp(t, x)) = u(t, x)(1 − u(t, x)), t > 0, x ∈ R,

u(t = 0, x) = u0(x),
(1.1)
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where χ > 0 is a sensing coefficient and p(t, x) is an external pressure. Model (1.1)

describes the behavior of a population of cells u(t, x) living in a one-dimensional

habitat x ∈ R, which undergo a logistic birth and death population dynamics, and

in which individual cells follow the gradient of a field p. The constant χ characterizes

the response of the cells to the effective gradient px. In this work, we will consider

the case where p is itself determined by the state of the population u(t, x) as

−σ2∂xxp(t, x) + p(t, x) = u(t, x), t > 0, x ∈ R. (1.2)

Equation (1.2) corresponds to the limit of fast diffusion ε → 0 of the parabolic

equation (1.8). It corresponds to a scenario in which the field p(t, x) is produced by

the cells, diffuses to the whole space with diffusivity σ2 (for σ > 0), and vanishes

at rate one. As a result cells are pushed away from crowded area to emptier region.

A similar model has been successfully used in our recent work23 to describe the

motion of cancer cells in a Petri dish in the context of cell co-culture experiments

of Pasquier et al.41 Pasquier et al.41 cultivated two types of breast cancer cells to

study the transfer of proteins between them in a study of multi-drug resistance. It

was observed that the two types of cancer cells form segregated clusters of cells of

each kind after a 7-day co-culture experiment (Fig. 1(a)). In a previous paper,23 we

studied the segregation property of a model similar to (1.1)–(1.2), set in a circular

domain in two spatial dimensions x ∈ R
2 representing a Petri dish. Starting from

islet-like initial conditions representing cell clusters, it was numerically observed

that the distribution of cells converges to a segregated state in the long run.

One may observe that in such an experiment the cells are well fed. So there is

no limitation for food. As explained in Ref. 16, the limitations are due to space and

the contact inhibition of growth is involved. Therefore, the right-hand side of (1.1),

which is a logistic term (for simplicity), could possibly have the following form:

f(x) =
βx

1 + αx
− μx,

where β is the division rate and μ is the mortality rate. We believe that our results

hold for such a non-linearity and this is left for future work.

Strikingly, even before the two species come in contact, a sharp transition is

formed between the space occupied by one species and the empty space being

invaded (Fig. 1(b)) and the distribution of cells looks like a very sharp traveling

front. In an attempt to better understand the spatial behavior of cell populations

growing in a Petri dish, in this paper we investigate the mathematical properties of

a simplified model for a single species on the real line. We are particularly interested

in showing the existence of a sharp traveling front moving at a constant speed.

Our model can be included in the family of nonlocal advection models for cell–

cell adhesion and repulsion. As pointed out by many biologists, cell–cell interactions

do not only exist in a local scope, but a long-range interaction should be taken into

account to guide the mathematical modeling. Armstrong et al.1 in their early work

proposed a model (APS model) in which a local diffusion is added to the nonlocal
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(a) (b)

Fig. 1. (Color online) (Figs. 1 and 5(b) in Ref. 23) (a) Direct immunodetection of P-gp transfers
in co-cultures of sensitive (MCF-7) and resistant (MCF-7/Doxo) variants of the human breast
cancer cell line. (b) The temporal-spatial evolution of the two species in the 1D model. One can
check that a discontinuity is forming near the front face of the green surface.

attraction driven by the adhesion forces to describe the phenomenon of cell mixing,

full/partial engulfment and complete sorting in the cell sorting problem. Based on

the APS model, Murakawa and Togashi39 thought that the population pressure

should come from the cell volume size instead of the linear diffusion. Therefore,

the linear diffusion was changed into a nonlinear diffusion in order to capture the

sharp fronts and the segregation in cell co-culture. Carrillo et al.10 recently pro-

posed a new assumption on the adhesion velocity field and their model showed a

good agreement in the experiments in the work of Katsunuma et al.30 The idea of

the long-range attraction and short-range repulsion can also be seen in the work of

Leverentz et al.34 They considered a nonlocal advection model to study the asymp-

totic behavior of the solution. By choosing a Morse-type kernel which follows the

attractive-repulsive interactions, they found that the solution can asymptotically

spread, contract (blow-up), or reach a steady-state. Burger et al.6 considered a sim-

ilar nonlocal adhesion model with nonlinear diffusion, for which they investigated

the well-posedness and proved the existence of a compactly supported, non-constant

steady state. Dyson et al.20 established the local existence of a classical solution for

a nonlocal cell–cell adhesion model in spaces of uniformly continuous functions. For

Turing and Turing-Hopf bifurcation due to the nonlocal effect, we refer to Refs. 15

and 48. We also refer to Refs. 37, 21, 17 and 18 for more topics on nonlocal advec-

tion equations. For the derivation of such models, we refer to the work of Bellomo

et al.5 and Morale et al.38

Since the pressure p(t, x) is a nonlocal function of the density u(t, x) in (1.2),

the spatial derivative appears as a nonlocal advection term in (1.1). In fact, our

problem (1.1)–(1.2) can be rewritten as a transport equation in which the speed of

particles is nonlocal in the density,{
∂tu(t, x)− χ∂x(u(t, x)∂x(ρ 	 u)(t, x)) = u(t, x)(1 − u(t, x)),

u(t = 0, x) = u0(x),
(1.3)
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where

(ρ 	 u)(x) =

∫
R

ρ(x− y)u(t, y)dy, ρ(x) =
1

2σ
e−

|x|
σ . (1.4)

Traveling waves for a similar diffusive equation with logistic reaction have been

investigated for quite general nonlocal kernels by Hamel and Henderson,26 who

considered the model

ut + (u (K 	 u))x = uxx + u(1− u), (1.5)

whereK ∈ Lp(R) is odd and p ∈ [1,∞]. Notice that the attractive parabolic–elliptic

Keller–Segel model (1.9) is included in this framework by the particular choice

K(x) = −χ sign(x)e−|x|/√d/
(
2
√
d
)
.

They proved a spreading result for this equation (initially compactly supported

solutions to the Cauchy problem propagate to the whole space with constant speed)

and explicit bounds on the speed of propagation. Diffusive nonlocal advection also

appears in the context of swarm formation.36 Pattern formation for a model similar

to (1.5) by Ducrot et al.15 Let us mention that the inviscid equation (1.3) has

been studied in a periodic cell by Ducrot and Magal.17 Other methods have been

established for conservative systems of interacting particles and their kinetic limit4,9

based on gradient flows set on measure spaces; those are difficult to adapt here

because of the logistic term. There is also related literature regarding traveling

waves in nonlocal reaction–diffusion equations.12,19,22,25,50

Recall that a traveling wave is a special solution having the specific form:

u(t, x) = U(x− ct), for a.e. (t, x) ∈ R
2,

where the profile U has the following behavior at ±∞:

lim
z→−∞U(z) = 1, lim

z→∞U(z) = 0.

The goal of this paper is to investigate sharp traveling waves namely,

U(x) = 0, for all x > 0.

Moreover as it is represented in Fig. 2(a) we will obtain the existence of such a wave

with a discontinuity at x = 0 for the profile U . Discontinuous traveling waves in

hyperbolic partial differential equations have appeared in the literature of the recent

few years. Traveling wave solutions with a shock or jump discontinuity have been

found e.g. in models of malignant tumor cells (where the existence of discontinuous

waves is proved by means of geometric singular perturbation theory for ODEs27,35)

or chemotaxis (where both smooth and discontinuous traveling waves are found

using phase plane analysis33).

It can be noticed that, in the limit of slow diffusivity σ → 0 (and under the

simplifying assumption that χ = 1), we get u(t, x) ≡ p(t, x) and (1.1) is equivalent

to an equation with porous medium-type diffusion and logistic reaction

ut −
1

2
(u2)xx = u(1− u). (1.6)
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(a) (b)

Fig. 2. An illustration of two types of traveling wave solutions.

We refer to Ref. 49 for more result about porous medium equation. The propagation

dynamics for this kind of equation was first studied, to the extent of our knowledge,

by Aronson,2 Atkinson et al.,3 and later by de Pablo and Vázquez,14 in the more

general context of nonlinear diffusion

ut = (um)xx + u(1− u), with m > 1. (1.7)

In Sec. 3.3, we observe that the discontinuous sharp traveling obtained in this paper

converge (numerically) to the continuous profile described by Pablo and Vázquez.14

The particular relation between the pressure p(t, x) and the density u(t, x) in

(1.2) strongly reminds the celebrated model of chemotaxis studied by Patlak and

Keller and Segel31,32,42 (parabolic–parabolic Keller–Segel model) and, more specifi-

cally, the parabolic–elliptic Keller–Segel model which is derived from the former by

a quasi-stationary assumption on the diffusion of the chemical.29 Indeed Eq. (1.2)

can be formally obtained as the quasistatic approximation of the following parabolic

equation:

ε∂tp(t, x) = χpxx(t, x) + u(t, x)− p(t, x), (1.8)

when ε → 0. A rigorous derivation of the limit has been achieved in the case of

the Keller–Segel model by Carrapatoso and Mischler.8 We also refer to Ref. 13 for

such a result in the context of linear parabolic equations. We refer to Refs. 7, 28

and 43 and the references therein for a mathematical introduction and biological

applications. In these models, the field p(t, x) is interpreted as the concentration

of a chemical produced by the cells rather than a physical pressure. One of the

difficulties in attractive chemotaxis models is that two opposite forces compete to

drive the behavior of the equations: the diffusion due to the random motion of cells,

on the one hand, and on the other hand the nonlocal advection due to the attractive

chemotaxis; the former tends to regularize and homogenize the solution, while the

latter promotes cell aggregation and may lead to the blow-up of the solution in finite

time.11,29 At this point let us mention that our study concerns repulsive cell–cell

interaction with no diffusion, therefore no such blow-up phenomenon is expected in



June 11, 2021 16:49 WSPC/103-M3AS 2150021

866 X. Fu, Q. Griette & P. Magal

our study; however the absence of diffusion adds to the mathematical complexity

of the study, because standard methods of reaction–diffusion equations cannot be

employed here. Traveling waves for the (attractive) parabolic–elliptic Keller–Segel

model were studied by Nadin et al.40 who constructed these traveling wave by a

bounded interval approximation of the 1D system{
ut + χ (upx)x = uxx + u(1− u),

−d pxx + p = u,
(1.9)

set on the real line x ∈ R, when the strength of the advection is not too strong 0 <

χ < min(1, d), and gave estimates on the speed of such a traveling wave: 2 ≤ c∗ ≤
2+χ

√
d/(d−χ). More recently, Salako and Shen44–46 and Salako et al.47 published

a series of papers concerning the asymptotic properties and spatial dynamics of

chemotaxis models.

In this paper, we focus on the particular case of (1.1)–(1.2) with σ > 0 and

χ > 0. The paper is organized as follows. In Sec. 2, we present our main results. In

Sec. 3 we present numerical simulations to illustrate our theoretical results. In Sec. 4,

we prove the propagation properties of the solution and describe the local behavior

near the propagating boundary (see Proposition 2.2 for definition), including the

formation of a discontinuity for time-dependent solutions. In Sec. 5 we prove the

existence of sharp traveling waves. We also prove that smooth traveling waves are

necessarily positive, which shows that sharp traveling waves are necessarily singular

(in this case, discontinuous). In particular, a solution starting from a compactly

supported initial condition with polynomial behavior at the boundary can never

catch such a smooth traveling wave.

2. Main Results and Comments

We begin by defining our notion of solution to Eq. (1.1).

Definition 2.1. (Integrated solutions) Let u0 ∈ L∞(R). A measurable function

u(t, x) ∈ L∞([0, T ]×R) is an integrated solution to (1.1) if the characteristic equa-

tion ⎧⎪⎨
⎪⎩
d

dt
h(t, x) = −χ(ρx 	 u)(t, h(t, x)),

h(t = 0, x) = x

(2.1)

has a classical solution h(t, x) (i.e. for each x ∈ R fixed, the function t �→ h(t, x) is

in C1([0, T ],R) and satisfies (2.1)), and for a.e. x ∈ R, the function t �→ u(t, h(t, x))

is in C1([0, T ],R) and satisfies⎧⎪⎨
⎪⎩
d

dt
u(t, h(t, x)) = u(t, h(t, x))

(
1 + χ̂(ρ 	 u)(t, h(t, x)) − (1 + χ̂)u(t, h(t, x))

)
,

u(t = 0, x) = u0(x),

(2.2)

where χ̂ := χ
σ2 .
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We define weighted space L1
η(R) as follows:

L1
η(R) :=

{
f : R → R measurable

∣∣∣∣
∫
R

|f(x)|e−η|x|dx < ∞
}
.

L1
η(R) is a Banach space endowed with the norm

‖f‖L1
η
:=

η

2

∫
R

|f(y)|e−η|y|dy.

We first recall some results concerning the existence of integrated solutions for

Eq. (1.1) in Theorem 2.1, Proposition 2.1 and Theorem 2.2. We prove those results

in the companion paper.24

Theorem 2.1. (Well-posedness) Let u0 ∈ L∞
+ (R) and fix η > 0. There exists

τ∗(u0) ∈ (0,+∞] such that for all τ ∈ (0, τ∗(u0)), there exists a unique integrated

solution u ∈ C0([0, τ ], L1
η(R)) to (1.1) which satisfies u(t = 0, x) = u0(x). Moreover

u(t, ·) ∈ L∞(R) for each t ∈ [0, τ∗(u0)) and the map t ∈ [0, τ∗(u0)) �→ Ttu0 := u(t, ·)
is a semigroup which is continuous for the L1

η(R)-topology. The map u0 ∈ L∞(R) �→
Ttu0 ∈ L1

η(R) is continuous.

Finally, if 0 ≤ u0(x) ≤ 1, then τ∗(u0) = +∞ and 0 ≤ u(t, ·) ≤ 1 for all t > 0.

The next result concerns the preservation properties satisfied by the solutions

of (1.1) (see Proposition 2.2 in Ref. 24).

Proposition 2.1. (Regularity of solutions) Let u(t, x) be an integrated solution to

(1.1).

(1) if u0(x) is continuous, then u(t, x) is continuous for each t > 0.

(2) if u0(x) is monotone, then u(t, x) has the same monotony for each t > 0.

(3) if u0(x) ∈ C1(R), then u ∈ C1([0, T ]× R) and u is then a classical solution to

(1.1).

In this following theorem we consider the long-time behavior of some solutions

to (1.1) (see Theorem 2.3 in Ref. 24).

Theorem 2.2. (Long-time behavior) Let 0 ≤ u0(x) ≤ 1 be a nontrivial non-

negative initial condition and u(t, x) be the corresponding integrated solution. Then

0 ≤ u(t, x) ≤ 1 for all t > 0 and x ∈ R. If moreover there exists δ > 0 such that

δ ≤ u0(x) ≤ 1 then

u(t, x) → 1, as t → ∞

and the convergence holds uniformly in x ∈ R.

We now arrive at the main interest of the paper, which is to describe the spatial

dynamics of solutions to (1.1)–(1.2). To get insight about the asymptotic propa-

gation properties of the solutions, we focus on initial conditions whose support is

bounded towards +∞. If the behavior of the initial condition in a neighborhood of

the boundary of the support is polynomial, we can establish a precise estimate of
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the location of the level sets relative to the position of the rightmost positive point.

Our first assumption requires that the initial condition is supported in (−∞, 0].

Assumption 2.1. (Initial condition) We assume that u0(x) is a continuous func-

tion satisfying

0 ≤ u0(x) ≤ 1, for all x ∈ R,

u0(x) = 0, for all x ≥ 0,

u0(x) > 0, for all x ∈ (−δ0, 0),

for some δ0 > 0.

Under this assumption we show that u is propagating to the right.

Proposition 2.2. (The separatrix) Let u0(x) satisfy Assumption 2.1 and h∗(t) :=
h(t, 0) be the separatrix. Then h∗(t) stays at the rightmost boundary of the support

of u(t, ·), i.e.

(i) we have

u(t, x) = 0 for all x ≥ h∗(t), (2.3)

(ii) for each t > 0 there exists δ > 0 such that

u(t, x) > 0 for all x ∈ (h∗(t)− δ, h∗(t)). (2.4)

Moreover, u is propagating to the right i.e.

d

dt
h∗(t) > 0 for all t > 0.

We precise the behavior of the initial condition in a neighborhood of 0 and

estimate the steepness of u in positive time.

Assumption 2.2. (Polynomial behavior near 0) In addition to Assumption 2.1,

we require that there exists α ≥ 1 and γ > 0 such that

u0(x) ≥ γ|x|α, for all x ∈ (−δ, 0).

Theorem 2.3. (Formation of a discontinuity) Let u0(x) satisfy Assumptions 2.1

and 2.2 and u(t, x) solve (1.1) with u(t = 0, x) = u0(x). For all δ > 0 we have

lim sup
t→+∞

sup
x∈(h∗(t)−δ,h∗(t))

u(t, x) ≥ 1

1 + χ̂+ αχ
> 0. (2.5)

More precisely, define the level set

ξ(t, β) := sup{x ∈ R |u(t, x) = β},
for all t > 0 and 0 < β < 1

1+χ̂+αχ . Then, for each 0 < β < 1
1+χ̂+αχ , the distance

between ξ(t, β) and the separatrix is decaying exponentially fast :

h∗(t)−
(
β

γ

) 1
α

e−
η
2α t ≤ ξ(t, β) ≤ h∗(t), (2.6)

where η ∈ (0, 1) is given in Proposition 4.4 and χ̂ = χ
σ2 .
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Fig. 3. A cartoon for the formation of the discontinuity. Here we choose t1 < t2 and ξ(t, β), t =
t1, t2 are the level sets. Theorem 2.3 proves that when Assumptions 2.1 and 2.2 are satisfied, then
the distance |ξ(t, β)− h∗(t)| converges to 0 exponentially fast.

In particular, the profile u(t, x) forms a discontinuity near the boundary point

h∗(t) as t → +∞, see Fig. 3. By considering discontinuous integrated solutions, we

are able to estimate the size of the jump for nonincreasing profiles, which leads to

an estimate of the asymptotic speed.

Proposition 2.3. (Asymptotic jump near the separatrix) Let u0 be a nonincreas-

ing function satisfying u0(−∞) ≤ 1, u0(0) > 0 and u0(x) = 0 for x > 0. Then

lim inf
t→+∞ u(t, h∗(t)) ≥ 2

2 + χ̂
, (2.7)

lim inf
t→+∞

d

dt
h∗(t) ≥ σχ̂

2 + χ̂
, (2.8)

where χ̂ = χ
σ2 .

We finally turn to traveling wave solutions u(t, x) = U(x − ct), which are self-

similar profiles traveling at a constant speed.

Definition 2.2. (Traveling wave solution) A traveling wave is a non-negative solu-

tion u(t, x) to (1.1) such that there exists a function U ∈ L∞(R) and a speed c ∈ R

such that u(t, x) = U(x − ct) for a.e. (t, x) ∈ R
2. By convention, we also require

that U has the following behavior at ±∞:

lim
z→−∞U(z) = 1, lim

z→∞U(z) = 0.

The function U is the profile of the traveling wave.

Under a technical assumption on χ̂ = χ
σ2 , we can prove the existence of sharp

traveling waves which present a jump at the vanishing point.
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Assumption 2.3. (Bounds on χ̂) Let χ > 0 and σ > 0 be given and define χ̂ := χ
σ2 .

We assume that 0 < χ̂ < χ̄, where χ̄ is the unique root of the function

χ̂ �→ ln

(
2− χ̂

χ̂

)
+

2

2 + χ̂

(
χ̂

2
ln

(
χ̂

2

)
+ 1− χ̂

2

)
given in Lemma A.1.

Remark 2.1. It follows from Lemma A.1 that χ̂ = 1 satisfies Assumption 3.

Actually, numerical evidence suggest that χ̄ ≈ 1.045.

Theorem 2.4. (Existence of a sharp discontinuous traveling wave) Let Assumption

2.3 be satisfied. There exists a traveling wave u(t, x) = U(x− ct) traveling at speed

c ∈
(

σχ̂

2 + χ̂
,
σχ̂

2

)
,

where χ̂ = χ
σ2

Moreover, the profile U satisfies the following properties (up to a shift in space):

(i) U is sharp in the sense that U(x) = 0 for all x ≥ 0; moreover, U has a

discontinuity at x = 0 with U(0−) ≥ 2
2+χ̂ .

(ii) U is continuously differentiable and strictly decreasing on (−∞, 0], and satisfies

−c U ′ − χ(UP ′)′ = U(1− U)

pointwise on (−∞, 0), where P (z) := (ρ 	 U)(z).

Our proof is based on a fixed-point argument. Other methods could have been

imagined, like a vanishing viscosity argument. This method consists in adding a

small elliptic regularization ε∂xxu in the right-hand side of Eq. (1.1), prove the

existence of a traveling wave for the regularized problem (similar to (1.5)), then let

the regularization vanish ε → 0. With the appropriate estimates, it may then be

possible to prove the existence of a traveling front for the original equation. However,

the implementation of this method is not without difficulties. Firstly, the vanishing

viscosity process ε → 0 requires a kind of compactness, which cannot be provided

by the Arzelà–Ascoli here because the limiting object is discontinuous. Secondly,

the traveling wave problem (1.5) is itself nontrivial. The existing constructions40,44

are only valid for a parameter range which prevents the vanishing of the elliptic

parameter. Overall the vanishing viscosity method may be as hard to implement as

the present argument. Connecting the solutions to (1.5) to the ones of (1.1)–(1.2)

is still an interesting problem and we plan to investigate it in a future work.

Finally, we show that continuous traveling waves cannot be sharp, i.e. are nec-

essarily positive on R.

Proposition 2.4. (Smooth traveling waves) Let U(x) be the profile of a traveling

wave solution to (1.1) and assume that U is continuous. Then U ∈ C1(R), U is

strictly positive and we have the estimate:

−χ(ρx 	 U)(x) < c, for all x ∈ R. (2.9)
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In particular, by Theorem 2.3, any solutions starting from an initial condition

satisfying Assumption 2.2 may never catch such a traveling wave.

3. Numerical Simulations

We first describe the numerical framework of this study.

• The parameters σ and χ are fixed as σ = 1 and χ = 1.

• We choose a bounded interval [−L,L] and an initial distribution of φ ∈
C([−L,L]);

• We solve numerically the following PDE using the upwind scheme (p being given):⎧⎪⎨
⎪⎩
∂tu(t, x)− ∂x

(
u(t, x)∂xp(t, x)

)
= u(t, x)(1− u(t, x)),

∇p(t, x) · ν = 0,

u(0, x) = φ(x),

t > 0, x ∈ [−L,L].

(3.1)

• The pressure p is defined as

p(t, x) = (I −Δ)−1
N u(t, x), t > 0, x ∈ [−L,L], (3.2)

where (I −Δ)−1
N is the Laplacian operator with Neumann boundary condition.

Due to the Neumann boundary condition of the pressure p, we do not need

boundary condition on u (see our related paper23).

Our numerical scheme is detailed in Appendix B.

3.1. Formation of a discontinuity

In this part, we use numerical simulations to verify the theoretical predictions in

the previous sections. Firstly, we choose the initial value φ ∈ C1([−L,L]) as follows:

φ(x) =
(x − x0)

2

(L+ x0)2
�[−L,x0](x), L = 20, x0 = −15. (3.3)

Notice that this initial condition satisfies Assumptions 2.1 and 2.2. Due to The-

orem 2.3, we should observe the formation of a discontinuity in space for large

time.

We plot the evolution of the solution u(t, x) starting from u(0, x) = φ(x) in

Fig. 4. We observe that the jump is formed for large time and the height of the

jump is greater than 2/3 which is in accordance with Theorem 2.4.

Next, we study the propagation speed of different level sets, namely,

t �−→ ξ(t, β) + L,

where ξ(t, β) := sup{x ∈ R |u(t, x) = β} and β = 0, 0.2, 2/3, 0.8. Note that the case

β = 0 corresponds to the rightmost characteristic. We plot the position of some

level sets as a function of time in Fig. 5.
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Fig. 4. We plot the propagation of the traveling waves under system (3.1) with the initial value
(3.3). We plot the propagation profile at t = 0, 10, 25, 40 (respectively, dashed lines, dotted-dashed
lines, dotted lines and solid lines).

We compute the propagation speed in the following way: for different β ∈ [0, 1],

we choose t1 = 15 and t2 = 40 where the propagation speed is almost stable after

t = t1. Thus, we can compute the mean propagation speed as follows:

Propagation speed at level β=
ξ(t2, β)− ξ(t1, β)

t2 − t1
. (3.4)

Next, we want to check whether the solutions of system (3.2) starting from two

different initial values converge to the same discontinuous traveling wave solution.

Fig. 5. We plot the evolution of different level sets t �−→ ξ(t, β)+L under system (3.1). Our initial
distribution is taken as (3.3). We plot the propagating speeds of the profile at β = 0, 0.2, 2/3, 0.8.
The x-axis represents the time and the y-axis is the relative distance ξ(t, β) + L. The velocity is

calculated by (3.4) for t1 = 15 and t2 = 40.
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Fig. 6. (Color online) We plot the propagation of two profiles under system (3.1) with initial
distributions are taken as (3.5). The blue curves represent the profile with initial distribution φ1

while the red curves represent the profile with initial distribution φ2. We plot the propagation
profiles at t = 0, 15 and 30 (respectively, dashed lines, dotted-dashed lines and solid lines). The
simulation shows that the two profiles converge to the same discontinuous traveling wave solution.

To that aim, given two different initial profiles φ1 and φ2 with φ1 ≤ φ2 on [−L,L],

φ1(x) = −x+ 15

5
�[−20,−15](x),

φ2(x) = �[−20,−17.5](x)−
x+ 15

10
�[−17.5,−15](x).

(3.5)

We simulate the propagation of these two profiles in Fig. 6.

3.2. Large speed traveling waves

As we know for porous medium equation, the existence of large speed c > c∗
traveling wave solutions is known14 and it can be observed numerically by taking

the exponentially decreasing function as initial value. In this part, instead of taking

a compactly supported initial value, we set the initial value

φα(x) =
1

1 + eα(x−x0)
, x0 = −15, (3.6)

where α ≥ 1 is a parameter introduced to describe the decaying rate of the initial

value.

We compare the following three different scenarios with different parameters

α = 1, 2, 5 in the initial value (3.6). We observe the large speed traveling waves

in Fig. 7 when α = 1, 2. We note that as the parameter α in (3.6) is increasing,

the propagation speed is decreasing and c ≈ 1/α. When α = 5, the propagation

of the traveling waves is similar to the case in Fig. 4 in which we started from the

compactly supported initial value. In other word, we can observe the formation of

discontinuity and the critical speed c∗ ≈ 0.414 is reached.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. We plot the propagation of the traveling waves under system (3.1) with the initial values
(3.6) and the corresponding evolution of different level sets t �−→ ξ(t, β)+L. (a) and (d) represent
the evolution of the traveling wave and its level sets when α = 1. (b) and (e) correspond to the
case when α = 2. (c) and (f) correspond to the case when α = 5.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. We plot the propagation of the traveling waves for system (3.1) with the kernel (3.7)
and the corresponding evolution of different level sets t �−→ ξ(t, β) + L. (a) and (d) represent the
evolution of the traveling wave and its level sets when σ2 = 0.5. (b) and (e) correspond to the
case when σ2 = 0.1. (c) and (f) correspond to the case when σ2 = 0.01. Our initial value is taken
as in (3.6) with α = 5.
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3.3. Comparison with porous medium equations:

The vanishing jump

In this part, we compare the nonlocal advection model with the porous medium

equation by varying the parameter σ

p(t, x) = (I − σ2Δ)−1
N u(t, x). (3.7)

Thus, if σ → 0 then formally we have p(t, x) → u(t, x). Thus, the first equation of

(3.1) becomes

ut −
1

2
(u2)xx = u(1− u),

which is the classical porous medium equation. It is well-known that this equation

has the explicit traveling wave solution U(z) = (1 − ez/
√
2)+ with critical speed

c∗ = 1/
√
2.

We consider the transition from the discontinuous traveling wave solution to the

continuous sharp-type traveling wave solution by letting σ → 0. Moreover, we want

to see if the critical traveling speed of the discontinuous wavefront c(σ) converges to

c∗ = 1/
√
2 ≈ 0.707 as σ → 0. Our initial value is taken as 1/(1+exp(5∗(x+15))), x ∈

[−20, 20] in (3.6). We compare the following three different scenarios with different

parameters σ2 = 0.5, 0.1, 0.01 in kernel (3.7).

In Fig. 8 we can observe that as σ → 0 in the kernel, the discontinuous jump is

gradually vanishing from (a) to (c). Moreover, the critical speed c(σ) is increasing

as σ → 0 and is approaching the critical speed c∗ = 1/
√
2 ≈ 0.707 for the porous

medium case.

To explore more about the relationship between parameter σ2 and the critical

speed c(σ), we plot Fig. 9.

Fig. 9. The relationship between parameter σ2 and the critical propagation speed c(σ) by numer-
ical simulations. Concerning the computation for the critical speed c, we take the speed on three
level sets t → ξ(t, β) + L for β = 0.3, 0.5, 0.8 and we plot the mean value (the standard variation
is negligible ≈ 10−3). As the critical speed c(σ) is decreasing with respect to σ, the theoretical
lower bound is obtained by setting χ = 1, σ0 = 0.5 in Theorem 2.4.
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4. Properties of the Time-Dependent Solutions

4.1. The separatrix

In this section, we study the qualitative properties of solutions to (1.1) starting

from an initial condition supported in (−∞, 0].

Proposition 4.1. (The separatrix) Let u be a solution integrated along the charac-

teristics to (1.1), starting from u0(x) satisfying Assumption 2.1. Let h∗(t) := h(t, 0)

be the separatrix (as in Proposition 2.2). Then h∗(t) stays at the rightmost boundary

of the support of u(t, ·), i.e.

(i) we have

u(t, x) = 0 for all x ≥ h∗(t), (4.1)

(ii) for each t > 0 there exists δ > 0 such that

u(t, x) > 0 for all x ∈ (h∗(t)− δ, h∗(t)). (4.2)

Proof. By definition the characteristics are well-defined by (2.1) as the flow of an

ODE. In particular, if x ≥ h∗(t) = h(t, 0) there exists x0 ≥ 0 such that x = h(t, x0).

Since u0(x0) = 0 and in view of (2.2), we have indeed u(t, x) = 0. This proves

item 4.1.

By Assumption 2.1, there exists δ0 > 0 such that u0(x) > 0 for x ∈ (−δ0, 0).

We remark that

d

dt
u(t, h(t, x)) = χ̂ u(t, h(t, x))((ρ ∗ u)(t, h(t, x))− u(t, h(t, x)))

+ u(t, h(t, x))(1− u(t, h(t, x)))

≥ u(t, h(t, x))(1 − (1 + χ̂)u(t, h(t, x))).

By comparison with the solution to the ODE v′(t) = v(t)(1 − (1 + χ̂)v(t)) starting

from v(t = 0) = u0(x) > 0, we deduce that u(t, x) ≥ v(t) > 0 for each x ∈
(h(t,−δ0), h

∗(t)). Since h(t,−δ0) < h(t, 0) = h∗(t), this proves item 4.1.

Next, we investigate the propagation of u.

Proposition 4.2. (u is propagating) Let u0 satisfy Assumption 2.1 and let u be

the solution integrated along the characteristics to (1.1) starting from u(t = 0, x) =

u0(x). Then u is propagating to the right, i.e.

d

dt
h∗(t) > 0. (4.3)

Moreover, we have the estimate:

d

dt
h∗(t) ≤ χ

2σ
. (4.4)
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Proof. We have the following estimates:

d

dt
h∗(t) = −χ(ρx ∗ u)(t, h∗(t))

= −χ

∫ +∞

−∞
ρx(y)u(t, h

∗(t)− y)dy

= χ

∫ +∞

−∞

sign(y)

2σ2
e−

|y|
σ u(t, h∗(t)− y)dy

=
χ

σ

∫ +∞

0

ρ(y)u(t, h∗(t)− y)dy

> 0,

since u(t, x) = 0 for all x > h∗(t). (4.3) is proved.
Then, since 0 ≤ u ≤ 1, we have

d

dt
h∗(t) =

χ

σ

∫ +∞

0

ρ(y)u(t, h∗(t)− y)dy

≤ χ

σ

∫ +∞

0

ρ(y)dy =
χ

2σ
,

which proves (4.4).

These first two propositions together yield a proof of Proposition 2.2.

Proof of Proposition 2.2. Items 2.2 and 2.2 have been proved in Proposition 4.1,

and the propagating property follows from Proposition 4.2.

We continue with a technical lemma that will be used in the proof of

Theorem 2.3.

Lemma 4.1. (Divergence speed near the separatrix) Let u0(x) satisfy Assumptions

2.1 and 2.2 and u(t, x) be the corresponding solution to (1.1). Let h(t, x) be the

characteristic flow of u and h∗(t) be the separatrix of u, as defined in Proposition

2.2. For all t ≥ 0 and x < 0 we have

d

dt
(h∗(t)− h(t, x)) ≤ χ (h∗(t)− h(t, x)) sup

y∈(h(t,x),h∗(t))
u(t, y). (4.5)

Proof. Recall that, by Proposition 4.1, u(t, x) = 0 for each x ≥ h∗(t). For x < 0,

we notice that

d

dt
(h∗(t)− h(t, x)) = −χ(ρx 	 u)(t, h∗(t)) + χ(ρx 	 u)(h(t, x))

= χ

∫
R

(ρx(h(t, x)− y)− ρx(h
∗(t)− y))u(t, y)dy
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= χ

∫ h(t,x)

−∞
(ρx(h(t, x)− y)− ρx(h

∗(t)− y))u(t, y)dy

+χ

∫ h∗(t)

h(t,x)

(ρx(h(t, x) − y)− ρx(h
∗(t)− y))u(t, y)dy.

Therefore,

d

dt
(h∗(t)− h(t, x)) ≤ χ

∫ h(t,x)

−∞

(
ρx(h(t, x)− y)− ρx(h

∗(t)− y)
)
u(t, y)dy

+χ(h∗(t)− h(t, x))× sup
y∈(h(t,x),h∗(t))

u(t, y).

Since ρx(y) = − 1
2σ2 sign(y)e

− |y|
σ is increasing on (0,+∞), we have

ρx(h(t, x) − y)− ρx(h
∗(t)− y) ≤ 0

for each y ≤ h(t, x), which shows (4.5). Lemma 4.1 is proved.

Proposition 4.3. (Formation of a discontinuity) Let u0(x) satisfy Assumptions

2.1 and 2.2 and u(t, x) be the corresponding solution to (1.1). For all δ > 0 we have

lim sup
t→+∞

sup
x∈(h∗(t,x)−δ,h∗(t))

u(t, x) ≥ 1

1 + χ̂+ αχ
> 0. (4.6)

Proof. We divide the proof in two steps.

Step 1. We show that for all δ > 0,

sup
t>0

sup
x∈(h∗(t)−δ,h∗(t))

u(t, x) ≥ 1

1 + χ̂+ αχ
. (4.7)

Assume by contradiction that there exists δ > 0 such that

for all t > 0, sup
x∈(h∗(t)−δ,h∗(t))

u(t, x) ≤ η <
1

1 + χ̂+ αχ
, (4.8)

where α ≥ 1 is the constant from Assumption 2.2.

We remark that the following inequality holds for x ∈ (h∗(t)− δ, h∗(t)):

d

dt
u(t, h(t, x)) = χ̂ u(t, h(t, x))(ρ 	 u)(t, h(t, x))

+ u(t, h(t, x))
(
1− (1 + χ̂)u(t, h(t, x))

)
≥ u(t, h(t, x))

(
1− (1 + χ̂)u(t, h(t, x))

)
≥ u(t, h(t, x)) (1− (1 + χ̂)η) , (4.9)

therefore

u(t, h(t, x)) ≥ u(0, x) exp((1− (1 + χ̂)η)t),
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provided the characteristic h(t, x) does not leave the cylinder (h∗(s)− δ, h∗(s)) for
any 0 ≤ s ≤ t.

Next by (4.5) and (4.8), we have

d

dt
(h∗(t)− h(t, x)) ≤ χ(h∗(t)− h(t, x))× η

for each x ∈ (h∗(t)− δ, h∗(t)). Hence by Grönwall’s lemma

(h∗(t)− h(t, x)) ≤ −xeηχt,

provided the characteristic h(t, x) does not leave the cylinder (h∗(s)− δ, h∗(s)) for
any 0 ≤ s ≤ t. In particular for 0 > − 1

2δe
−ηχt ≥ x ≥ −δe−ηχt, we find

u(t, h(t, x)) ≥ u(0, x) exp

((
1− 1 + χ̂

1 + χ̂+ αχ

)
t

)

≥ γ(−x)α exp

((
1− 1 + χ̂

1 + χ̂+ αχ

)
t

)

≥ 1

2α
γδα exp((1 − (1 + χ̂+ αχ)η)t) −−−−→

t→+∞ +∞,

by our assumption that η < 1
1+χ̂+αχ . This is a contradiction.

Step 2. We show (4.6).

Assume by contradiction that there exists T > 0 and δ > 0 such that

sup
t≥T

sup
x∈[h∗(t)−δ,h∗(t)]

u(t, x) <
1

1 + χ̂+ αχ
.

Since the function u(t, x+h∗(t)) is continuous on the compact set [0, T ]×[−δ, 0],

it is uniformly continuous on this set and hence (recall that u(t, h∗(t)) = 0) there

exists 0 < δ0 ≤ δ such that

sup
t∈[0,T ],x∈[−δ0,0]

u(t, x+ h∗(t)) = sup
t∈[0,T ],x∈[−δ0,0]

(
u(t, x+ h∗(t))− u(t, h∗(t))

)

≤ 1

1 + χ̂+ αχ
.

Hence we conclude

sup
t>0,x∈[−δ0,0]

u(t, x− h∗(t)) ≤ 1

1 + χ̂+ αχ
.

This is in contradiction with Step 1. Proposition 4.3 is proved.

Proposition 4.4. (Refined estimate on the level sets) Let u0(x) satisfy Assumption

2.1 and 2.2. Define

ξ(t, β) := sup{x ∈ R |u(t, x) = β}
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for any 0 < β < 1
1+χ̂+αχ . Then, the level set function ξ(t, β) converges exponentially

fast to h∗(t)

h∗(t)−
(
β

γ

) 1
α

e−
η
2α t ≤ ξ(t, β) ≤ h∗(t) (4.10)

for each 0 < β < 1
1+χ̂+αχ , where η is given by

η := 1− 1 + χ̂+ αχ

β
∈ (0, 1).

Proof. Let η ∈ (0, 1) be given and set β∗:= 1−η
1+χ̂+αχ . Let us first remark that for any

β ∈ (0, β∗), ξ(t, β) is well-defined by the continuity of x �→ u(t, x) and Assumption

2.2, that u(t, ξ(t, β)) = β and that supx∈(ξ(t,β),h∗(t)) u(t, x) ≤ β. Moreover ξ(0, β) <

0 and u0(ξ(0, β)) = β ≥ γ|ξ(0, β)|α, therefore

ξ(0, β) ≥ −
(
β

γ

) 1
α

(4.11)

for each 0 < β ≤ β∗ = 1−η
1+χ̂+αχ .

Step 1. We show that if u0 satisfies Assumption 2.1 and (4.11), then

ξ(t, β) ≥ h∗(t)−
(
β

γ

) 1
α

e
η
2α t, (4.12)

for all 0 ≤ t ≤ t∗ := 1
1+χ̂ ln(1 + η

2(1−η) ).

Let 0 < β ≤ β∗. We remark that, by Assumption 2.1, we have 0 ≤ u(t, x) ≤ 1

hence 0 ≤ (ρ 	 u)(t, x) ≤ 1. It follows that, for all t ≥ 0:

d

dt
u(t, h(t, x)) = u(t, h(t, x))

(
1 + χ̂ρ 	 u− (1 + χ̂)u(t, h(t, x))

)
≤ (1 + χ̂)u(t, h(t, x)).

In the remaining part of Step 1 we consider t ∈ [0, t∗]. Using (4.5) from Lemma 4.1

we establish the following estimates on u and h for 0 ≤ t ≤ t∗ and ξ(0, β∗) ≤ x ≤ 0:

• Since d
dtu(t, h(t, x)) ≤ (1 + χ̂)u(t, h(t, x)) we have u(t, h(t, x)) ≤ u0(x)e

(1+χ̂)t for

all t ≤ t∗ and hence if x ≥ ξ(0, β∗),

u(t, h(t, x)) ≤ β∗eln(1+
η

2(1−η)
) =

1− η

1 + χ̂+ αχ

(
1 +

η

2(1− η)

)

=
1− η

2

1 + χ̂+ αχ
. (4.13)

• Using (4.13) in the equation along the characteristic (2.2):

d

dt
u(t, h(t, x)) = u(t, h(t, x))

(
1 + χ̂(ρ 	 u)(t, h(t, x)) − (1 + χ̂)u(t, h(t, x))

)

≥
(
1−

(1 + χ̂)(1 − η
2 )

1 + χ̂+ αχ

)
u(t, h(t, x)),
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we get

u(t, h(t, x)) ≥ u0(x) exp

[(
1−

(1 + χ̂)
(
1− η

2

)
1 + χ̂+ αχ

)
t

]
(4.14)

• For all x ∈ (ξ(0, β∗), 0), since

sup
y∈(h(t,x),h∗(t))

u(t, y) ≤ sup
y∈(h(t,ξ(0,β∗)),h∗(t)

u(t, y) ≤
1− η

2

1 + χ̂+ αχ
,

we have by (4.5):

h∗(t)− h(t, x) ≤ exp

( (
1− η

2

)
χ

1 + χ̂+ αχ
t

)
(h∗(0)− h(0, x)),

hence

h(t, x) ≥ h∗(t) + x exp

( (
1− η

2

)
χ

1 + χ̂+ αχ
t

)
. (4.15)

Since β ≤ β∗, we have ξ(0, β) ≥ ξ(0, β∗). Using (4.14) with x = ξ(0, β) we find

that

u(t, h(t, ξ(0, β))) ≥ β exp

[(
1−

(1 + χ̂)(1− η
2 )

1 + χ̂+ αχ

)
t

]
,

which implies

ξ

(
t, β exp

[(
1−

(1 + χ̂)(1 − η
2 )

1 + χ̂+ αχ

)
t

])
≥ h(t, ξ(0, β)).

Now by using x = ξ(0, β) in (4.15), we obtain

h(t, ξ(0, β)) ≥ h∗(t) + ξ(0, β) exp

(
(1− η

2 )χ

1 + χ̂+ αχ
t

)
.

Using (4.11) we find that

ξ

(
0, β exp

[
−
(
1−

(
1 + χ̂

)(
1− η

2

)
1 + χ̂+ αχ

)
t

])

≥ −
(
β

γ

) 1
α

exp

[
− 1

α

(
1−

(1 + χ̂)(1 − η
2 )

1 + χ̂+ αχ

)
t

]
,

which leads to

ξ(t, β) ≥ h∗(t)−
(
β

γ

) 1
α

exp

[
− 1

α

(
1−

(1 + χ̂)(1− η
2 )

1 + χ̂+ αχ

)
t+

(1− η
2 )χ

1 + χ̂+ αχ
t

]

= h∗(t)−
(
β

γ

) 1
α

exp
[
− η

2α
t
]

and this estimate holds for each 0 ≤ t ≤ t∗ and 0 < β ≤ β∗.
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Step 2. We show that the estimate (4.12) can be extended by induction.

Define ū0(x) := u(t∗, x+ h(t∗)) and ξ̄(t, β) = ξ(t+ t∗, β)− h∗(t∗). We have for

each 0 < β ≤ β∗

ξ̄(0, β) ≥ −
(
β

γ̄

) 1
α

,

where γ̄ = γe
η
2 t

∗
. In particular the inequality (4.11) is satisfied by ū0(x), as well as

Assumption 2.1. We can apply Step 1 and (4.12) gives

ξ̄(t, β) ≥ h̄∗(t)−
(
β

γ̄

) 1
α

e−
η
2α t = h(t, h∗(t)) − h∗(t∗)−

(
β

γ

) 1
α

e−
η
2α (t+t∗)

= h∗(t+ t∗)−
(
β

γ

) 1
α

e−
η
2α (t+t∗),

which yields

ξ(t+ t∗, β) ≥ h∗(t+ t∗)−
(
β

γ

) 1
α

e−
η
2α (t+t∗).

The proof is completed.

We are now in the position to prove Theorem 2.3

Proof of Theorem 2.3. The first part, Eq. (2.5), has been shown in Proposition

4.3, while the second part (Eq. (2.6)) has been shown in Proposition 4.4.

We conclude this section by the proof of Proposition 2.3.

Proof of Proposition 2.3. Since x �→ u(t, x) is nonincreasing, we have u(t, x) ≥
u(t, h∗(t)) for each x ≤ h∗(t). Hence (ρ 	 u)(t, h∗(t)) ≥ 1

2u(t, h
∗(t)) and

d

dt
u(t, h∗(t)) = u(t, h∗(t))(1 + χ̂ ρ 	 u− (1 + χ̂)u(t, h∗(t)))

≥ u(t, h∗(t))
(
1−

(
1 +

χ̂

2

)
u(t, h∗(t))

)
.

This yields

u(t, h∗(t)) ≥ u0(0)(
1 + χ̂

2

)
u0(0) + e−t

(
1−

(
1 + χ̂

2

)
u0(0)

) −→
t→+∞

1

1 + χ̂
2

=
2

2 + χ̂
.

Equation (2.7) is shown. Next, we have d
dth

∗(t) = −(ρx 	 u)(t, h∗(t)) which gives

d

dt
h∗(t) =

χ

σ

∫ ∞

0

ρ(y)u(t, h∗(t)− y)dy ≥ u(t, h∗(t))× χ

2σ
−→

t→+∞
σχ̂

2 + χ̂
.

This proves (2.8) and finishes the proof of Proposition 2.3.
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5. Traveling Wave Solutions

In this section, we investigate the existence of particular solutions which consist in

a fixed profile traveling at a constant speed c (traveling waves). We are particularly

interested in profiles which connect the stationary state 1 near −∞ to the stationary

solution 0 at a finite point of space, say, for any x ≥ 0.

5.1. Existence of sharp traveling waves

We study the traveling wave solutions of Eq. (1.1):{
∂tu(t, x)− χ∂x

(
u(t, x)∂xp(t, x)

)
= u(t, x)(1 − u(t, x)),

−σ2∂2
xp(t, x) + p(t, x) = u(t, x),

t > 0, x ∈ R.

Let us formally derive an equation for the traveling wave solutions to (1.1). We

consider the traveling wave solution U(x − c t) = u(t, x). By using the resolvent

formula of the second equation of (1.1) formula we deduce that

p(t, x) =
1

2σ

∫
R

e−
|x−y|

σ u(t, y)dy =
1

2σ

∫
R

e−
|x−ct−l|

σ U(l)dl = P (x− c t)

and the first equation in (1.1) becomes

−c U ′(x− c t)− χ∂x(U(x− c t) ∂xP (x− c t))

= U(x− c t)(1 − U(x− c t)), t > 0, x ∈ R. (5.1)

By developing the derivative in (5.1) we obtain

(−c− χP ′(x− c t))U ′(x− c t) = U(x− c t)(1 + χ̂P (x− c t)− (1 + χ̂)U(x− c t)),

for all t > 0 and x ∈ R, where χ̂ = χ
σ2 . Therefore, by letting z = x−c t, the traveling

wave solutions of system (1.1) satisfy the following equation:{
(−c− χP ′(z))U ′(z) = U(z)

(
1 + χ̂P (z)− (1 + χ̂)U(z)

)
,

−σ2P ′′(z) + P (z) = U(z).
(5.2)

Let us finally remark that

P (z) =
1

2σ

∫
R

e−
|y|
σ U(z − y)dy =

1

2σ

∫
R

e−
|z−y|

σ U(y)dy. (5.3)

In particular if U is non-constant and nonincreasing, then z �→ P (z) is strictly

decreasing.

The goal of this section is to show that Eq. (5.2) can solved on the half-line

(−∞, 0) which, as we will see later, will give a proof of Theorem 2.4. We begin

by defining a set of admissible profiles, which is the set of function on which an

appropriate fixed-point theorem will be used. The properties we impose are those

who we suspect will be satisfied by the real profile of the traveling wave.
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Definition 5.1. We say that the profile U : R → [0, 1] is admissible if

(i) U ∈ C((−∞, 0),R) and limz→0− U(z) exists and belongs to [ 2
2+χ̂ , 1];

(ii) 0 ≤ U(z) ≤ 1 for any z ∈ R;

(iii) the map z �→ U(z) is nonincreasing on R;

(iv) U(z) ≡ 0 for any z ≥ 0.

We denote A the set of all admissible functions.

Lemma 5.1. Let Assumption 2.3 hold and suppose that U is admissible (as in

Definition 5.1). Then the function P defined by P = (ρ 	 U) satisfies

P ′(0) < P ′(z) ≤ 0, for all z ∈ R\{0}.

Moreover, this estimate is locally uniform in U on (−∞, 0) in the sense that for

each L > 1 there is ε > 0 independent of U ∈ A such that

P ′(z)− P ′(0) ≥ ε > 0, for all z ∈
[
−L,− 1

L

]
.

Proof. We divide the proof in five steps.

Step 1. We prove P ′(0) < P ′(z) for any z > 0. Notice that, for z > 0, we have

P (z) =
1

2σ

∫ z

−∞
e−

z−y
σ U(y)dy +

1

2σ

∫ ∞

z

e
z−y
σ U(y)dy =

1

2σ
e−

z
σ

∫ 0

−∞
e

y
σ U(y)dy.

Thus, taking derivative gives

P ′(z) = − 1

σ
e−

z
σ

1

2σ

∫ 0

−∞
eyU(y)dy = e−

z
σ P ′(0)

and since U is strictly positive for negative values of z, we deduce that P ′(0) < P ′(z)
for any z > 0.

Step 2. We prove that P ′(0) < P ′(z) for any −σ ln( χ̂2 ) < z < 0. In fact, we prove

the stronger result

P ′′(z) < 0 if σ ln

(
χ̂

2

)
< z < 0.

For any z < 0, we have

P ′′(z) =
1

2σ3

∫ z

−∞
e−

z−y
σ U(y)dy +

1

2σ3

∫ ∞

z

e
z−y
σ U(y)dy − 1

σ2
U(z)

=
1

2σ3

∫ z

−∞
e−

z−y
σ U(y)dy +

1

2σ3

∫ 0

z

e
z−y
σ U(y)dy − 1

σ2
U(z).

Due to the assumption U ≤ 1 and the fact that U is decreasing we have

σ2P ′′(z) ≤ 1

2σ

∫ z

−∞
e−

z−y
σ dy +

1

2σ

∫ 0

z

e
z−y
σ U(y)dy − U(z)
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=
1

2
+

1

2σ

∫ 0

z

e
z−y
σ U(y)dy − U(z) ≤ 1

2
+

1

2σ

∫ 0

z

e
z−y
σ dyU(z)− U(z)

=
1

2
− 1

2

(
1 + e

z
σ

)
U(z) ≤ 1

2

2 + χ̂− 2(1 + e
z
σ )

2 + χ̂
=

χ̂− 2e
z
σ

2(2 + χ̂)
< 0,

provided z ∈ (σ ln(χ̂/2), 0). In particular

P ′(z)− P ′(0) = −
∫ 0

z

P ′′(y)dy ≥ 1

σ(2 + χ̂)

(
χ̂

2σ
z + 1− e

z
σ

)
> 0. (5.4)

Step 3. We prove that P ′(0) < P ′(z) for any z < σ ln(1 − χ̂
2 ). For any z < 0, we

have

σP ′(z) = − 1

2σ

∫ z

−∞
e−

z−y
σ U(y)dy +

1

2σ

∫ 0

z

e
z−y
σ U(y)dy,

σP ′(0) = − 1

2σ

∫ 0

−∞
e

y
σU(y)dy

and

σ(P ′(z)− P ′(0)) =
1

2σ

∫ 0

−∞
e

y
σU(y)dy − 1

2σ

∫ z

−∞
e−

z−y
σ U(y)dy

+
1

2σ

∫ 0

z

e
z−y
σ U(y)dy.

Since for any z ≤ 0, 2
2+χ̂ ≤ U(z) ≤ 1, we have the following estimate:

σ
(
P ′(z)− P ′(0)

)
≥ 1

2σ

∫ 0

−∞
e

y
σ × 2

2 + χ̂
dy − 1

2σ

∫ z

−∞
e−

z−y
σ dy

+
1

2σ

∫ 0

z

e
z−y
σ

2

2 + χ̂
dy

=
1

2 + χ̂
− 1

2
+

1

2 + χ̂
(1− e

z
σ )

=
1

2 + χ̂

(
2− e

z
σ − 1

2
(2 + χ̂)

)
=

1

2 + χ̂

(
1− χ̂

2
− e

z
σ

)
. (5.5)

By our assumption z < σ ln(1− χ̂
2 ), we deduce that P ′(z)− P ′(0) > 0.

Notice that, if χ̂ < 1, we have σ ln( χ̂2 ) < σ ln(1 − χ̂
2 ) and the estimate is done.

If 1 ≤ χ̂ < 2 we still need to fill a gap between the two bounds.

Step 4. We assume that χ̂ ≥ 1 and we prove that

P ′(z)− P ′(0) ≥ −
∫ 0

z

P ′′(y)dy

≥ z

2σ2
− 1

2σ
ln

(
χ̂

2

)
+

1

σ(2 + χ̂)

(
χ̂

2
ln

(
χ̂

2

)
+ 1− χ̂

2

)
> 0 (5.6)
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for any z ∈ [σ ln( χ̂2 )−
σ

2+χ̂(
χ̂
2 ln

(
χ̂
2

)
+ 1− χ̂

2 ), σ ln( χ̂2 )]. Notice that

χ̂

2
ln

(
χ̂

2

)
+ 1− χ̂

2
> 0,

because x �→ x ln(x) is strictly convex.

By Step 2 we have for all z ≤ 0:

P ′′(z) ≤ 1

2σ2
,

therefore if z ∈ [σ ln( χ̂2 )−
σ

2+χ̂ (
χ̂
2 ln( χ̂2 ) + 1− χ̂

2 ), σ ln( χ̂2 )] we have

P ′(z)− P ′(0) = P ′(z)− P ′
(
σ ln

(
χ̂

2

))
+ P ′

(
σ ln

(
χ̂

2

))
− P ′(0)

≥ −
∫ σ ln( χ̂

2 )

z

P ′′(y)dy +
1

σ(2 + χ̂)

(
χ̂

2σ
σ ln

(
χ̂

2

)
+ 1− χ̂

2

)

≥ − 1

2σ2

(
σ ln

(
χ̂

2

)
− z

)
+

1

σ(2 + χ̂)

(
χ̂

2
ln

(
χ̂

2

)
+ 1− χ̂

2

)

≥ z

2σ2
−

ln
(

χ̂
2

)
2σ

+
1

σ(2 + χ̂)

(
χ̂

2
ln

(
χ̂

2

)
+ 1− χ̂

2

)
> 0.

We have proved the desired estimate.

Step 5. We show the local uniformity. If χ̂ < 1 the local uniformity follows from

Steps 2 and 3 because 1− χ̂
2 < χ̂

2 . If 1 ≤ χ̂ < 2, then

ln

(
χ̂

2

)
− 2

2 + χ̂

(
χ̂

2
ln

(
χ̂

2

)
+ 1− χ̂

2

)
< ln

(
1− χ̂

2

)
, (5.7)

because of Assumption 2.3 and Lemma A.1 (notice that (5.7) is equivalent to f(χ̂) <

0, where f is as defined in Lemma A.1). By the estimates (5.4)–(5.6) from Steps 2–4,

we find that P ′(z)−P ′(0) > 0 on every compact subset of (−∞, 0) and is bounded

from below by a constant independent of U . This finishes the proof of Lemma 5.1.

Before resuming to the proof, let us define the mapping T to which we want to

apply a fixed-point theorem. Fix U ∈ A, we define T (U) as

T (U)(z) := U(τ−1(z)) for all z < 0 (5.8)

and T (U)(z) ≡ 0 for all z ≥ 0, where τ : R �→ (−∞, 0) is the solution of the

following scalar ordinary differential equation:{
τ ′(t) = χ(P ′(0)− P ′(τ(t))),

τ(0) = −1
(5.9)

and

U(t) =
[
(1 + χ̂)

∫ t

−∞
exp

(
−
∫ t

l

1 + χ̂P (τ(s))ds

)
dl

]−1

, for all t ∈ R.
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Lemma 5.2. (Stability of A) Let Assumption 2.3 be satisfied, let U be admissible

in the sense of Definition 5.1 and T be the map defined by (5.8). Then the image

of U by T has the following properties :

(i) 2
2+χ̂ ≤ T (U)(z) ≤ 1 for all z ≤ 0;

(ii) T (U) is strictly decreasing on (−∞, 0];

(iii) T (U) ∈ C1((−∞, 0),R) and T (U)(0−) = limz→0− T (U)(z) = 1+χ̂P (0)
1+χ̂ .

In particular, A is left stable by T

T (A) ⊂ A.

Proof. We divide the proof in three steps.

Step 1. We prove that 2
2+χ̂ ≤ T (U)(z) ≤ 1 for all z < 0. For any z ∈ R we have

P (z) =

∫ ∞

−∞
ρ(y)U(z − y)dy ≤

∫ +∞

−∞
ρ(y)dy = 1,

P (z) =

∫ ∞

−∞
ρ(y)U(z − y)dy ≥ 0.

Since 2
2+χ̂ ≤ U(z) ≤ 1 for all z < 0, we have for z < 0,

P (z) ≥ 1

2σ

∫ +∞

z

exp

(
−|y|
σ

)
× 2

2 + χ̂
dy =

2

2 + χ̂

(
1− e

z
σ

2

)
≥ 1

2 + χ̂
.

Thus, for any z ≤ 0, we have 1
2+χ̂ ≤ P (z) ≤ 1. Since τ(t) is the solution of

{
τ ′(t) = χ(P ′(0)− P ′(τ(t))),

τ(0) = −1

and due to Lemma 5.1, t → τ(t) is strictly decreasing, continuous and

lim
t→−∞ τ(t) = 0, lim

t→+∞ τ(t) = −∞.

Therefore,

1

2 + χ̂
≤ P (τ(t)) ≤ 1, t ∈ R.
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Since by definition U(t) = [(1 + χ̂)
∫ t

−∞ e−
∫

t
l
1+χ̂P (τ(s))dsdl]−1, U is monotone with

respect to P , and we compute on the one hand

U(t) ≤
[
(1 + χ̂)

∫ t

−∞
e−

∫
t
l
1+χ̂dsdl

]−1

=

[
(1 + χ̂)

∫ t

−∞
e−(1+χ̂)(t−l)dl

]−1

= 1.

On the other hand, we can see that

U(t) ≥
[
(1 + χ̂)

∫ t

−∞
exp

(
−
∫ t

l

1 +
χ̂

2 + χ̂
ds

)
dl

]−1

=

[
(1 + χ̂)

∫ t

−∞
exp

(
−
(
1 +

χ̂

2 + χ̂

)
(t− l)

)
dl

]−1

=
2

2 + χ̂
.

This implies 2
2+χ̂ ≤ U(t) ≤ 1, for all t ∈ R. Since τ−1 maps (−∞, 0) to R, for any

z < 0 we have indeed

2

2 + χ̂
≤ T (U)(z) = U(τ−1(z)) ≤ 1.

Item 5.2 is proved.

Step 2. We prove that z �→ T (U)(z) is strictly decreasing on (−∞, 0). First, we

prove that t �→ U(t) is strictly increasing. Indeed U is differentiable and we have

U ′(t) =
−1

1 + χ̂
×

1 +
∫ t

−∞ −
(
1 + χ̂P (τ(t))

)
e−

∫ t
l
1+χ̂P (τ(s))dsdl[ ∫ t

−∞ exp
(
−
∫ t

l
1 + P (τ(s))ds

)
dl
]2 . (5.10)

Moreover, for any l < t, we have τ(t) < τ(l). Since P is strictly decreasing, P (τ(l)) <

P (τ(t)). We deduce∫ t

−∞
e−

∫ t
l
1+χ̂P (τ(s))ds(1 + χ̂P (τ(t)))dl >

∫ t

−∞
e−

∫ t
l
1+χ̂P (τ(s))ds

(
1 + χ̂P (τ(l))

)
dl

=

∫ t

−∞

d

dl

(
e−

∫ t
l
1+χ̂P (τ(s))ds

)
= 1.

This implies U ′(t) > 0 and t �→ U(t) is strictly increasing. Note that the inverse

map z �→ τ−1(z) is strictly decreasing, therefore the composition of two mappings

z �−→ T (U)(z) = U(τ−1(z))

is also strictly decreasing on (−∞, 0). Item 5.2 is proved.

Step 3. We prove that T (U) ∈ C1((−∞, 0),R) and compute the limit of T (U) as

z → 0−.
Since for any z < 0

σ2P ′′(z) = −U(z) + P (z) ∈ C((−∞, 0),R),
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P belongs to C2((−∞, 0),R), which implies that t �→ τ(t) belongs to

C1(R, (−∞, 0)). By (5.10), the function t �→ U ′(t) is continuous and the inverse

map z → τ−1(z) is also of class C1 from (−∞, 0) to R. Thus, the function

z �−→ T (U)(z) = U(τ−1(z))

is of class C1 from (−∞, 0) to R. Moreover, the map t �→ U(t) is strictly decreasing

and is bounded from below by 2
2+χ̂ > 0, thus limt→−∞ U(t) exists. In particular

T (U)(0−) := lim
z→0−

U(τ−1(z)) = lim
t→−∞U(t).

By the definition of U

T (U)(0−) = lim
t→−∞U(t)

= lim
t→−∞

[
(1 + χ̂)

∫ t

−∞
e−

∫
t
l
1+χ̂P (τ(s))dsdl

]−1

= lim
t→−∞

e
∫ t
0
1+χ̂P (τ(s))ds

(1 + χ̂)
∫ t

−∞ e
∫ l
0
1+χ̂P (τ(s))dsdl

.

By employing L’Hôpital rule

T (U)(0−) = lim
t→−∞

e
∫ t
0
1+χ̂P (τ(s))ds

(1 + χ̂)
∫ t

−∞ e
∫ l
0
1+χ̂P (τ(s))dsdl

= lim
t→−∞

(
1 + χ̂P (τ(t))

)
e
∫

t
0
1+P (τ(s))ds

(1 + χ̂) e
∫

t
0
1+P (τ(s))ds

=
1 + χ̂P (0)

1 + χ̂
.

Therefore, T (U) ∈ C1((−∞, 0),R) ∩ C((−∞, 0],R) and T (U)(0) = (1 +

χ̂P (0))/(1 + χ̂). This proves item (iii) and concludes the proof of Lemma 5.2.

Next, we focus on the continuity of T for a particular topology.

Lemma 5.3. (Continuity of T ) Define the weighted norm

‖U‖η := sup
z∈(−∞,0)

α(z)|U(z)|, (5.11)

where

α(z) :=
√
−z eηz ≤ 1√

2eη
, for all z ≤ 0,

with 0 < η < σ−1. If Assumption 2.3 is satisfied, then the map T is continuous on

A for the distance induced by ‖ · ‖η.
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Proof. Let U ∈ A and ε ∈ (0, 2
√
2/ηe) be given. Let Ũ ∈ A be given and define

the corresponding pressure and rescaled variable P̃ := ρ 	 Ũ and τ̃ as the solution

to (5.9) with U replaced by Ũ . We remark that

|T (U)(z)− T (Ũ)(z)|

= |T (U)(z)T (Ũ)(z)|
∣∣∣∣∣
∫ τ̃−1(z)

−∞
e−

∫ τ̃−1(z)
l 1+χ̂P̃ (τ̃(s))dsdl

−
∫ τ−1(z)

−∞
e−

∫ τ−1(z)
l 1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤
∣∣∣∣∣
∫ τ̃−1(z)

−∞
e−

∫ τ̃−1(z)
l 1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)

−∞
e−

∫ τ−1(z)
l 1+χ̂P (τ(s))dsdl

∣∣∣∣∣ ,

by Lemma 5.2. Define T−L(U) :=
∫ τ−1(z)

−L
e−

∫ τ−1(z)
l 1+χ̂P (τ(s))dsdl. We have T (U) =

T−∞(U) and

|T−∞(U)− T−∞(Ũ)|

≤
∣∣∣∣∣
∫ τ̃−1(z)−L

−∞
e−

∫ τ̃−1(z)
l 1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)−L

−∞
e−

∫ τ−1(z)
l 1+χ̂P (τ(s))dsdl

∣∣∣∣∣
+

∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L

e−
∫ τ̃−1(z)
l

1+χ̂P̃ (τ̃(s))dsdl −
∫ τ−1(z)

τ−1(z)−L

e−
∫ τ−1(z)
l

1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ e−L + e−L

+

∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L

e−
∫ τ̃−1(z)
l 1+χ̂P (τ̃(s))dsdl −

∫ τ−1(z)

τ−1(z)−L

e−
∫ τ−1(z)
l 1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ ε

2

√
2ηe

+

∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L

e−
∫ τ̃−1(z)
l 1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)

τ−1(z)−L

e−
∫ τ−1(z)
l 1+χ̂P (τ(s))dsdl

∣∣∣∣∣
=

ε

2

√
2ηe+ |T−L(U)(z)− T−L(Ũ)(z)|,

for L := − ln( ε2
√ eη

2 ) > 0.

Let z0 and z1 be respectively the smallest and the biggest negative root of the

equation

ηz +
1

2
ln(−z) = ln

(ε
4

)
.
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The choice of ε ensures that z0 and z1 exist. Then if z �∈ [z0, z1] we have
√
−zeηz ≤ ε

4

and, since |T−L(U)| ≤ 1 we have

√
−zeηz|T−L(U)(z)| =

√
−zeηz

∣∣∣∣∣
∫ τ−1(z)

τ−1(z)−L

e−
∫ τ−1(z)
l

1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ ε

4

∫ τ−1(z)

τ−1(z)−L

e−
∫ τ−1(z)
l 1dsdl =

ε

4
(1− e−L) ≤ ε

4
.

Similarly, we have

√
−zeηz|T−L(Ũ)(z)| ≤ ε

4
.

We have shown

sup
z 	∈[z0,z1]

√
−zeηz|T (U)(z)− T (Ũ)(z)| ≤ ε.

There remains to estimate
√
−zeηz|T−L(U)(z) − T−L(Ũ)(z)| when z ∈ [z0, z1].

We have

|T−L(U)(z)− T−L(Ũ)(z)|

=

∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L

e−
∫ τ̃−1(z)
l

1+χ̂P̃ (τ̃(s))dsdl −
∫ τ−1(z)

τ−1(z)−L

e−
∫ τ−1(z)
l

1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ 2|τ̃−1(z)− τ−1(z)|

+

∣∣∣∣∣
∫ τ−1(z)

τ−1(z)−L

e−
∫ τ̃−1(z)
l 1+χ̂P̃ (τ̃(s))ds − e−

∫ τ−1(z)
l 1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ 2|τ̃−1(z)− τ−1(z)|

+L sup
l∈(τ−1(z)−L,τ−1(z))

∣∣∣∣e∫ τ−1(z)
l 1+χ̂P (τ(s))ds−∫ τ̃−1(z)

l 1+χ̂P̃ (τ̃(s))ds − 1

∣∣∣∣
and we remark that∣∣∣∣∣

∫ τ−1(z)

l

1 + χ̂P (τ(s))ds −
∫ τ̃−1(z)

l

1 + χ̂P̃ (τ̃ (s))ds

∣∣∣∣∣
≤ 2|τ−1(z)− τ̃−1(z)|+ χ̂

∣∣∣∣∣
∫ τ−1(z)

l

P (τ(s)) − P̃ (τ̃ (s))ds

∣∣∣∣∣
≤ 2|τ−1(z)− τ̃−1(z)|+ χ̂L sup

s∈(τ−1(z)−L,τ−1(z))

|P (τ(s)) − P (τ̃ (s))|

+ χ̂L sup
s∈(τ−1(z)−L,τ−1(z))

|P (τ̃ (s))− P̃ (τ̃ (s))|.
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To conclude the proof of the continuity of T , we show that each of those three terms

can be made arbitrarily small (uniformly on [z0, z1]) by choosing Ũ sufficiently close

to U in the ‖ · ‖η norm. We start with the second one. We have for all z ≤ 0:

|P (z)− P̃ (z)| = 1

2σ

∣∣∣∣
∫ 0

−∞
e−

|z−y|
σ (U(y)− Ũ(y))dy

∣∣∣∣
≤ 1

2σ

∫ z

−∞
e

y−z
σ |U(y)− Ũ(y)|dy +

1

2σ

∫ 0

z

e
z−y
σ |U(y)− Ũ(y)|dy

≤ 1

2σ

√
2η

e
e−

z
σ

∫ z

−∞

e(1−ση) y
σ

√−y
‖U − Ũ‖ηdy

+
1

2

√
2η

e
e

z
σ

∫ 0

z

e−(1+ση) y
σ

√−y
‖U − Ũ‖ηdy

= σ−1

√
η

2e

[
e−

z
σ

∫ z

−∞

e(1−ση) y
σ

√−y
dy + e

z
σ

∫ 0

z

e−(1+ση) y
σ

√−y
dy

]
‖U − Ũ‖η

=: CP (z)‖U − Ũ‖η.
A similar computation shows that, for all z ≤ 0,

|P ′(z)− P̃ ′(z)| ≤ σ−2

√
η

2e

[
e−

z
σ

∫ z

−∞

e(1−ση) y
σ

√−y
dy + e

z
σ

∫ 0

z

e−(1+ση) y
σ

√−y
dy

]
‖U − Ũ‖η

=
1

σ
CP (z)‖U − Ũ‖η.

In particular for z = 0 we have

|P ′(0)− P̃ ′(0)| ≤ σ−2

√
η

2e

∫ 0

−∞

e(1−ση) y
σ

√−y
dy‖U − Ũ‖η

and therefore P ′(0) and P̃ ′(0) can be chosen arbitrarily small. Next, we show that

τ(t) and τ̃ (t) are uniformly close for t ∈ [τ−1(z0)−L, τ−1(z1)]. Indeed, we compute:

|(τ − τ̃ )(t)| = χ

∣∣∣∣
∫ t

0

P ′(0)− P ′(τ(s))ds −
∫ t

0

P̃ ′(0)− P̃ ′(τ̃ (s))ds
∣∣∣∣

≤ χ

∣∣∣∣t(P ′(0)− P̃ ′(0)) +
∫ t

0

P̃ ′(τ(s)) − P ′(τ(s))ds
∣∣∣∣

+χ

∣∣∣∣
∫ t

0

P̃ ′(τ̃ (s)) − P̃ ′(τ(s))ds
∣∣∣∣

≤ χt[CP (0) + max
0≤s≤t

CP (τ(s))]‖U − Ũ‖η + χ̂

∫ t

0

|τ̃ (s)− τ(s)|ds,

where we have used the fact that σ2|P ′′(z)| = |P (z) − U(z)| ≤ 1. By Grönwall’s

lemma, we have therefore

|τ(t) − τ̃(t)| ≤ χt
[
CP (0) + max

0≤s≤t
CP (τ(s))

]
‖U − Ũ‖ηeχ̂t
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and we have shown that τ and τ̃ can be made arbitrarily close by choosing ‖U−Ũ‖η
sufficiently small. This gives an arbitrary control on the term

sup
s∈(τ−1(z)−L,τ−1(z))

|P (τ(s)) − P (τ̃(s))| ≤ |P ′(0)||τ(s) − τ̃ (s)|,

since P ′(0) < P ′(z) ≤ 0 by Lemma 5.1, and on the term

sup
s∈(τ−1(z)−L,τ−1(z))

|P (τ̃ (s)) − P̃ (τ̃ (s))| ≤
[

sup
s∈(τ−1(z)−L,τ−1(z))

CP (τ̃ (s))

]
‖U − Ũ‖η.

Finally, we estimate τ−1(z)− τ̃−1(z) by the remark:

|τ−1(z)− τ̃−1(z)| =
∣∣∣∣
∫ z

−1

1

τ ′(τ−1(y))
dy −

∫ z

−1

1

τ̃ ′(τ̃−1(y))
dy

∣∣∣∣
=

1

χ

∣∣∣∣
∫ z

−1

1

P ′(0)− P ′(y)
− 1

P̃ ′(0)− P̃ ′(y)
dy

∣∣∣∣
≤ 1

χ

∫ z

−1

|P ′(0)− P̃ ′(0)|+ |P ′(y)− P̃ ′(y)|
|P ′(0)− P ′(y)||P̃ ′(0)− P̃ ′(y)|

dy,

recalling that we have a uniform lower bound for |P ′(0)−P ′(y)| and |P̃ ′(0)− P̃ ′(y)|
by Lemma 5.1.

This finishes the proof of Lemma 5.3.

Lemma 5.4. Suppose U is admissible in the sense of Definition 5.1 and that

Assumption 2.3 holds. Then T (U) ∈ C1((−∞, 0],R) and

T (U)′(z) = T (U)(z)
1 + χ̂P (z)− (1 + χ̂)T (U)(z)

χ
(
P ′(0)− P ′(z)

) , for all z < 0. (5.12)

Moreover

lim
z→0−

T (U)′(z) =
P ′(0)
1 + χ̂

1 + χ̂P (0)

1 + χ̂U(0−)
.

Proof. We divide the proof in two steps.

Step 1. We prove (5.12).

We observe that

τ ′(τ−1(z)) := χ
(
P ′(0)− P ′(z)

)
,

therefore T (U) is differentiable for each z < 0 and

T (U)′(z) = U ′(τ−1(z))
1

τ ′(τ−1(z))
= U ′(τ−1(z))

1

χ
(
P ′(0)− P ′(z)

) .
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By Eq. (5.10) in Lemma 5.2 we have

U ′(t) =
1

1 + χ̂

[∫ t

−∞
e−

∫
t
l
1+χ̂P (τ(s))dsdl

]−2

×
(∫ t

−∞
e−

∫
t
l
1+χ̂P (τ(s))ds

(
1 + χ̂P (τ(t))

)
dl − 1

)

=

[
(1 + χ̂)

∫ t

−∞
e−

∫
t
l
1+χ̂P (τ(s))dsdl

]−2

×
(
(1 + χ̂)

∫ t

−∞
e−

∫ t
l
1+χ̂P (τ(s))dsdl(1 + χ̂P (τ(t))) − (1 + χ̂)

)

= U2(t)(U−1(t)(1 + χ̂P (τ(t))) − (1 + χ̂))

= U(t)(1 + χ̂P (τ(t)) − (1 + χ̂)U(t)).

Therefore, we can rewrite T (U)′(z) as

T (U)′(z) =
U ′(τ−1(z))

χ(P ′(0)− P ′(z))

= U(τ−1(z))
1 + χ̂P (z)− (1 + χ̂)U(τ−1(z))

χ(P ′(0)− P ′(z))

= T (U)(z)
1 + χ̂P (z)− (1 + χ̂)T (U)(z)

χ(P ′(0)− P ′(z))
.

Equation (5.12) follows.

Step 2. Next, we prove

lim
z→0−

T (U)′(z) =
P ′(0)
1 + χ̂

1 + χ̂P (0)

1 + χ̂U(0)
.

Recall that

T (U)(z) = U(τ−1(z)) =
1

(1 + χ̂)
∫ τ−1(z)

−∞ e−
∫ τ−1(z)
l

1+χ̂P (τ(s))dsdl

=
e
∫ τ−1(z)
0 1+χ̂P (τ(s))ds

(1 + χ̂)
∫ τ−1(z)

−∞ e
∫

l
0
1+χ̂P (τ(s))dsdl

.

We have shown in Step 1 that for any z < 0

T (U)′(z) = T (U)(z)
1 + χ̂P (z)− (1 + χ̂)T (U)(z)

χ(P ′(0)− P ′(z))
(5.13)

and by Lemma 5.2 we have

lim
z→0−

T (U)(z) =
1 + χ̂P (0)

1 + χ̂
.
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Moreover,

1 + χ̂P (z)− (1 + χ̂)T (U)(z)

χ(P ′(0)− P ′(z))

=
(1 + χ̂P (z))

∫ τ−1(z)

−∞ e
∫

l
0
1+χ̂P (τ(s))dsdl − e

∫ τ−1(z)
0 1+χ̂P (τ(s))ds

χ(P ′(0)− P ′(z))
∫ τ−1(z)

−∞ e
∫

l
0
1+χ̂P (τ(s))ds

=:
N(z)

D(z)

and

N ′(z)
D′(z)

=
χ̂P ′(z)

∫ τ−1(z)

−∞ e
∫

l
0
1+χ̂P (τ(s))dsdl

−χP ′′(z)
∫ τ−1(z)

−∞ e
∫ l
0
1+χ̂P (τ(s))dsds

+χ
(
P ′(0)− P ′(z)

)
(τ−1)′(z)e

∫ τ−1(z)
0 1+χ̂P (τ(s))ds

=
P ′(z)

χ̂(U(z)− P (z)) + (1 + χ̂)T (U)(z)
−−−−→
z→0−

P ′(0)
χ̂U(0−) + 1

.

Therefore, by using L’Hôpital’s rule, T (U)′(z) admits a limit when z → 0− and

lim
z→0−

T (U)′(z) =
P ′(0)
1 + χ̂

1 + χ̂P (0)

1 + χ̂U(0−)
.

Lemma 5.5. (Compactness of T ) Let Assumption 2.3 hold. The metric space A
equipped with the distance induced by the ‖·‖η norm (defined in (5.11)) is a complete

metric space on which the map T : A → A is compact.

Proof. Let us first briefly recall that the space A is complete. Let Bη be the set

of all continuous functions defined on (−∞, 0) with finite ‖ · ‖η norm:

Bη := {u ∈ C0((−∞, 0)) | ‖u‖η < +∞}.

It is classical that Bη equipped with the norm ‖ · ‖η is a Banach space. Therefore,

in order to prove the completeness of A, it suffices to show that A is closed in Bη.

Let Un ∈ A, U ∈ Bη be such that lim ‖Un − U‖η = 0. Then Un converges to U

locally uniformly on (−∞, 0), and in particular we have

U(z) ∈
[

2

2 + χ̂
, 1

]
for all z ≤ 0,

U is nonincreasing.

Therefore, u ∈ A and the completeness is proved.

Let us show that T is a compact map of the metric space A. We have shown in

Lemma 5.2 that T is continuous onA and leavesA stable. Let Un ∈ A, then combin-

ing Eq. (5.12) and the local uniform lower bound of P ′(z)−P ′(0) from Lemma 5.1,

the family T (Un)
′|[−k,−1/k] is uniformly Lipschitz continuous on [−k,−1/k] for each

k ∈ N. Therefore, the Ascoli–Arzelà applies and the set {T (Un)|[−k,−1/k]}n≥0 is

relatively compact for the uniform topology on [−k,−1/k] for each k ∈ N. Using

a diagonal extraction process, there exists a subsequence ϕ(n) and a continuous
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function U such that Uϕ(n) → U uniformly on every compact subset of (−∞, 0).

Let us show that ‖Uϕ(n) −U‖η → 0 as n → +∞. Let ε > 0 be given, and let z0, z1
be respectively the smallest and largest root of the equation:

ηz +
1

2
ln(−z) = ln

(ε
2

)
.

Then, on the one hand, for any z �∈ [z0, z1], we have
√
−zeηz ≤ ε

2 and therefore
√
−zeηz|T (Uϕ(n))(z)− T (U)(z)| ≤

√
−zeηz(|Uϕ(n)(z)|+ |U(z)|) ≤ ε.

On the other hand, since T (Uϕ(n)) converges locally uniformly to T (U), there is

n0 ≥ 0 such that

sup
z∈[z0,z1]

√
−zeηz|T (Uϕ(n))(z)− T (U)(z)| ≤ ε, for all n ≥ n0.

We conclude that

‖T (Uϕ(n))− T (U)‖η ≤ ε,

for all n ≥ n0. The convergence is proved. This ends the proof of Lemma 5.5.

We are now in the position to prove Theorem 2.4.

Proof of Theorem 2.4. We remark that the set of admissible functions A is

a nonempty, closed, convex, bounded subset of the Banach space Bη and T is a

continuous compact operator on A (Lemma 5.5). Therefore, a direct application of

the Schauder fixed-point Theorem (see e.g. Theorem 2.A on p. 57 in Ref. 51) shows

that T admits a fixed point U in A:

T (U) = U.

Applying Lemmas 5.2 and 5.4, U is strictly decreasing on (−∞, 0), U((−∞, 0)) ⊂
[ 2
2+χ̂ , 1], U is C1 on (−∞, 0] and

lim
z→0−

U(z) =
1 + χ̂P (0)

1 + χ̂
and lim

z→0−
U ′(z) =

P ′(0)
1 + χ̂

1 + χ̂P (0)

1 + χ̂U(0)
.

Finally

U ′(z) = U(z)
1 + χ̂P (z)− (1 + χ̂)U(z)

χ(P ′(0)− P ′(z))
, for all z < 0, (5.14)

therefore

χP ′(0)U ′(z)− χP ′(z)U ′(z)− χU(z)P ′′(z) = U(z)(1− U(z)), for all z < 0

and finally

χP ′(0)U ′(z)− χ(P ′(z)U(z))′ = U(z)(1− U(z)), for all z < 0.

We now prove that U(−∞) := limz→∞ U(z) = 1. Since U is monotone decreas-

ing on (−∞, 0) and is bounded by 1 from above, U(−∞) exists and, by a direct
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application of Lebesgue’s dominated convergence theorem, P also converges to a

limit near −∞, P (−∞) = U(−∞). Therefore, U ′(z) → 0, P ′(z) → 0 and P ′′(z) → 0

as z → −∞. We conclude that

lim
z→−∞U(z)(1− U(z)) = 0,

which implies that U(−∞) = 1.

Let us define u(t, x) := U(x − ct), with c := −χP ′(0). The characteristics

associated with u(t, x) are

d

dt
h(t, x) = −χ(ρx 	 u)(t, h(t, x)) = χ(ρ 	 U)(h(t, x) − ct) = −χP ′(h(t, x) − ct),

and u(t, x) satisfies for all x such that h(t, x)− ct < 0:

∂tu(t, h(t, x)) = ∂t(U(h(t, x) − ct)) =

(
d

dt
(h(t, x) − ct)

)
U ′(h(t, x)− ct)

= χ(−P ′(h(t, x)− ct) + P ′(0))U ′(h(t, x)− ct)

= u(t, h(t, x))(1 + χ̂(ρ 	 u)(t, h(t, x)) − (1 + χ̂)u(t, h(t, x))).

If h(t, x)− ct > 0 then u(t, h(t, x)) = U(h(t, x)− ct) = 0 (locally in t) and therefore

∂tu(t, h(t, x)) = 0 = u(t, h(t, x))(1 + χ̂(ρ 	 u)(t, h(t, x))− (1 + χ̂)u(t, h(t, x))).

Since {0} is a negligible set for the Lebesgue measure, we conclude that u(t, x) is a

solution integrated along the characteristics to (1.1) and thus U is a traveling wave

profile with speed c = −P ′(0) > 0 as defined in Definition 2.2. Finally

c = −χP ′(0) =
χ

2σ

∫ 0

−∞
eyU(y)dy ∈

(
χ

σ(2 + χ̂)
,
χ

2σ

)
=

(
σχ̂

2 + χ̂
,
σχ̂

2

)
.

This finishes the proof of Theorem 2.4

5.2. Non-existence of continuous sharp traveling waves

Remark 5.1. This result tells us if U is a sharp traveling wave solution to (1.1),

then it must be discontinuous. This situation is very different from the porous

medium case. However, it does not exclude the existence of positive continuous

traveling wave solutions which decay to zero near +∞. In fact, as we will show

in the numerical simulations in the later section, we can observe numerically large

speed traveling wave solutions that are smooth and strictly positive.

Proof of Proposition 2.4. We divide the proof in three steps.

Step 1. We show the estimate (2.9).

Assume by contradiction that there exists x ∈ R such that

−χ

∫
R

ρx(x − y)U(y)dy = c. (5.15)
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We let P (x) := (ρ 	 U)(x) =
∫
R
ρ(x − y)U(y)dy. Since U ∈ C0(R), we have that

P ∈ C2(R). Differentiating, we find that

P ′(x) =
∫
R

ρx(x− y)U(y)dy = (ρ′ 	 U)(x),

σ2P ′′(x) =
∫
R

ρ(x− y)U(y)dy − U(x) = P (x)− U(x).

Letting Y (x) := −χ(ρx 	 U)(x) − c = −χP ′(x)− c, then Y ∈ C1(R) and we have

Y ′(x) = −χP ′′(x) = χ̂(U(x)− (ρ 	 U)(x)). (5.16)

Since limx→+∞ U(x) = 0, we have limx→+∞ Y (x) = −c < 0. Remark that by our

assumption (5.15), Y has at least one zero and therefore the largest root of Y is

well-defined:

x∗ := inf{x | for all y > x, Y (y) < 0}.
We first remark that

d

dt

(
h(t, x)− ct

)
=

d

dt
h(t, x)− c = −χ(ρx 	 u)(t, h(t, x)) − c = Y (h(t, x) − ct),

(5.17)

where we recall that u(t, x) := U(x − ct) is a solution to (1.1). In particular since

Y (x∗) = 0 by the continuity of Y , we have h(t, x∗) − ct = x∗. Next by using (2.2)

we have

d

dt
u(t, h(t, x∗)) = u(t, h(t, x∗))(1 + χ̂(ρ 	 u)(t, h(t, x∗))− (1 + χ̂)u(t, h(t, x∗)))

= U(h(t, x∗)− ct)
(
1 + χ̂(ρ 	 U)(h(t, x∗)− ct)

− (1 + χ̂)U(h(t, x∗)− ct))

= U(x∗)(1 + χ̂P (x∗)− (1 + χ̂)U(x∗))

and since u(t, h(t, x∗)) = U(h(t, x∗)− ct) = U(x∗) does not depend on t, this yields

0 = U(x∗)(1 + χ̂P (x∗)− (1 + χ̂)U(x∗)).

We conclude that either U(x∗) = 0 or U(x∗) =
1+χ̂P (x∗)

1+χ̂ > 0. In the remaining part

of this step we will show that these two cases lead to contradiction.

Case 1. U(x∗) =
1+χ̂P (x∗)

1+χ̂ > 0. By (5.16) we have:

Y ′(x∗) = χ̂(U(x∗)− P (x∗)) = (1− P (x∗))
χ̂

1 + χ̂
,

however U(x) ∈ [0, 1], U(x) �≡ 1 and thus P (x∗) = (ρ 	 U)(x∗) < 1 which shows

Y ′(x∗) > 0. Yet by definition of x∗ we have Y (x∗) = 0 and Y (x) < 0 for all x > x∗,
hence Y ′(x∗) ≤ 0, which is a contradiction.

Case 2. U(x∗) = 0. By (5.16) we have

Y ′(x∗) = 0− χ̂P (x∗) = −χ̂(ρ 	 U)(x∗) < 0. (5.18)
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Hence by the continuity of Y , there exists a x0 < x∗ such that

Y (x) > 0, for all x ∈ [x0, x∗).

Recall that, by (5.17), we have for all t > 0

d

dt
(h(t, x0)− ct) = Y (h(t, x0)− ct) > 0

as well as h(0, x0)− c× 0 = x0, therefore the function t �→ h(t, x0)− ct is increasing

and converges to x∗ as t → +∞. In particular as t → +∞ we have u(t, h(t, x0)) =

U(h(t, x0) − ct) → U(x∗) = 0. Let T > 0 be such that 0 < u(t, h(t, x0)) ≤ 1
2(1+χ̂)

for all t ≥ T . We have

d

dt
u(t, h(t, x0)) = u(t, h(t, x0))

(
1 + χ̂(ρ 	 u)(t, h(t, x0))− (1 + χ̂)u(t, h(t, x0))

)
≥ 1

2
u(t, h(t, x0)),

hence u(t, h(t, x0)) ≥ u(T, h(T, x0))e
t−T
2 . In particular letting

t∗ := T − 2 ln
(
u(T, h(T, x0))

)
> T,

we have

u(t∗, h(t∗, x0)) ≥ 1 >
1

2(1 + χ̂)
,

which is a contradiction. Since both Cases 1 and 2 lead to contradiction, we have

shown (2.9).

Step 2. Regularity of u.

We have shown in Step 1 that for all x ∈ R the strict inequality:

Y (x) = −χP ′(x)− c < 0

holds. Let x ∈ R and t0 > 0. Then, there exists y ∈ R such that h(t0, y) = x, where

h is the characteristic semiflow defined by (2.1). Since

d

dt
(h(t, y)− ct) = −χ(ρx 	 u)(t, h(t, y))− c = Y (h(t, y)) �= 0,

the mapping t �→ h(t, y)− ct has a C1 inverse which we denote ϕ(z), i.e.

for all z | ∃ t > 0, z = h(t, y)− ct, h(ϕ(z), y)− cϕ(z) = z.

Then we have

U(h(t, y)− ct) = u(t, h(t, y)) ⇔ U(z) = u(ϕ(z), h(ϕ(z), y)),

with z = h(t, y) in a neighborhood of x. Since ϕ is C1 and the function t �→
u(t, h(t, y)) is C1, we conclude that U is C1 in a neighborhood of x. The regularity

is proved.
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Step 3. We show that u is positive.

Combining Steps 1 and 2, we know that u is a classical solution to the equation:

−cUx − χ((ρ 	 U)xU)x = U(1− U)

(−c− χP ′)Ux = U(1 + χ̂P − (1 + χ̂)U)

Ux =
U

Y
(1 + χ̂P − (1 + χ̂)U)

and since Y < 0, the right-hand side is a locally Lipschitz vector field in the

variable U . In particular, the classical Cauchy–Lipschitz Theorem applies and the

only solution with U(x) = 0 for some x ∈ R is U ≡ 0. Since U is nontrivial by

assumption, U has to be positive.

Appendix A. An Nonlinear Function

We study a function used in the proof of Lemma 5.1 and Assumption 2.3.

Lemma A.1. The function

f(x) := ln

(
2− x

x

)
+

2

2 + x

(x
2
ln
(x
2

)
+ 1− x

2

)

defined for x ∈ (0, 2) is strictly decreasing and satisfies

lim
x→0+

f(x) = +∞, lim
x→2−

f(x) = −∞.

In particular f(x) has a unique root in (0, 2).

Finally, we have f(1) > 0.

Proof. The behavior of f at the boundary is standard. The strict monotony

requires the computation of the derivative:

f ′(x) =
(
−x− (2− x)

x2

)
× x

2− x
+

−2

(2 + x)2

(x
2
ln
(x
2

)
+ 1− x

2

)
+

1

2 + x
ln
(x
2

)
.

Recalling that

χ̂

2
ln

(
χ̂

2

)
+ 1− χ̂

2
> 0, (A.1)

for each x ∈ (0, 2) because x �→ x ln(x) is strictly convex, all three terms in the

expression of f ′(x) are negative, therefore

f ′(x) < 0

for all x ∈ (0, 2). The fact that f(1) > 0 can also be deduced from (A.1). Lemma A.1

is proved.
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Appendix B. Numerical Scheme

Our numerical scheme for the traveling waves in Sec. 3 reads

un+1
i − un

i

Δt
+

1

Δx
(G(un

i+1, u
n
i )−G(un

i , u
n
i−1)) = un

i (1− un
i ),

i = 1, 2, . . . ,M, n = 0, 1, 2, . . .

u0 = 1, uM+1 = 0,

with G(un
i+1, u

n
i ) defined as

G(un
i+1, u

n
i ) = (vni+ 1

2
)+un

i − (vni+ 1
2
)−un

i+1 =

{
vn
i+ 1

2

un
i , vn

i+ 1
2

≥ 0,

vn
i+ 1

2

un
i+1, vn

i+ 1
2

< 0,
i = 1, . . . ,M.

Moreover, the velocity v is given by

vni+ 1
2
= −

pni+1 − pni
Δx

, i = 0, 1, 2, . . . ,M,

where from (3.2) we define

Pn := (I −A)−1Un, Pn =
(
pni
)
M×1

Un =
(
un
i

)
M×1

,

where A = (ai,j)M×M is the usual linear diffusion matrix with Neumann boundary

condition. Therefore, by Neumann boundary condition p0 = p1 and pM+1 = pM ,

when i = 1,M we have

G
(
un
1 , u

n
0

)
= 0,

G
(
un
M+1, u

n
M

)
= 0,

which gives

un+1
1 = un

1 − d
Δt

Δx
G(un

2 , u
n
1 ) + Δt f(un

1 ),

un+1
M = un

M + d
Δt

Δx
G(un

M , un
M−1) + Δt f(un

M ).

Owing to the boundary condition, we have the conservation of mass for Eq. (3.1)

when the reaction term equals zero.
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