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Abstract

In this paper, we consider a nonlocal advection model for two populations on a bounded domain.
The first part of the paper is devoted to the existence and uniqueness of solutions and the associated
semi-flow properties. By employing the notion of solution integrated along the characteristics, we
rigorously prove the segregation property of solutions. Furthermore, we construct an energy func-
tional to investigate the asymptotic behavior of solutions. To resolve the lack of compactness of the
positive orbits, we obtain a description of the asymptotic behavior of solutions by using the narrow
convergence in the space of Young measures. The last section of the paper is devoted to numerical
simulations, which confirm and complement our theoretical results.

1 Introduction

In this work, we study a two-species model with nonlocal advection

{8tu1(t,x) + div (ul(t,x)v(t,:c) = uy (t,x)hy(ui(t, z), usa(t, z)) £ 0.2 R (11)

)
Aua(t, ) +div (ua(t, z)v(t,z)) = ug(t, x)ho(ur (t, ), ua(t, )
The velocity field v = —V P is derived from pressure P
P(t,x) = (p* (ur +u2)(t, ) (2),

where * is the convolution in RY. Suppose system (1.1) is supplemented with a periodic initial distribu-
tion

up(x) := (Z;Eg: 3) € R? where uy is a 27-periodic function in each direction. (1.2)

We consider the solutions of system (1.1) which are periodic in space. Here a function u(x) is said to be
27-periodic in each direction (or for simplicity periodic) if

u(z + 2kr) = u(x), for any k € ZN, x € RV,

When u(z) is periodic, we can reduce the convolution to the N-dimensional torus TV := RY /27Z" by
the following observation

)@ = [ oo =y

= Z / p(x — (y + 2k7))u(y + 2k7) dy
kezZN [0,2m]N

= Z /[o - plx —y — 2km)u(y) dy.
kezN e
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Hence, we can reformulate as

1
P @ = oy [ K-y

where K is again 2m—periodic in each direction and defined by

K(z)=(2mN > pla+ 2rk), z € RV,
kezZN

The fast decay of p is necessary to ensure the convergence of the above series (see Remark 1.3 for details).
We can rewrite the velocity field v as follows:

V(ta 31‘) ==V [K o (ul + ’u,g)(t, )] (x)7 (13)

where o denotes the convolution on the N-dimensional torus TV := RY /27ZY ~ [0,27]". For any
2m-periodic and measurable function ¢ and 1, it is defined by

(pov) () = [TV| ! / (@ — y)b(y) dy.

TN

Our motivation for this problem comes from a cell monolayer co-culture experiment in the study of
human breast cancer cells. In [26, Figure 1], two types of cells grow into segregated islets over 7 days
and the cell growth stops when they are locally saturated.

In this work, we model this mechanism by using a nonlocal advection system with contact inhibition.
As we will see, our model captures the finite propagating speed in cell co-culture. In the context of cell
sorting, the impact of cell adhesion and repulsion on pattern formation has been studied by many
authors. We refer to the work of Armstrong, Painter and Sherratt [1] and Painter et al. [25]. From a
more general perspective, our study is connected to cell segregation and border formation. Taylor et al.
[31] concluded that the heterotypic repulsion and homotypic cohesion account for cell segregation and
border formation. We also refer the readers to Dahmann et al. [10] and the references therein for more
about boundary formation with its application. These observations and results in biological experiments
lead us to a nonlocal advection system which is able to explain the phenomena such as cell propagation
and segregation. The segregation property was brought up in the 80’s by Shigesada, Kawasaki and
Teramoto [30] and Mimura and Kawasaki [23] through the models with cross-diffusion. Since then, the
cross-diffusion models have been widely studied and we refer to Lou and Ni [18, 19| for more results
about this subject.

The well-posedness of nonlocal advection models with nonlinear diffusion has been considered by
Bertozzi and Slepcev [6] and Bedrossian et al. [3] on a bounded domain  C RY with non-flux boundary
condition. Bertozzi et al. [5, 4] studied the finite time blowup property and the well-posednees in L?
spaces of such nonlocal advection system in high dimensional space. For the studies of the asymptotic
behavior of nonlocal equations, we refer to Bodnar and Velazquez [8] and Raoul [28]. The traveling
wave solutions of such nonlocal system with or without linear diffusion were also considered by many
authors. We refer the readers to [2, 21, 22] for models concerning swarms. Hamel and Henderson [16]
investigated the existence of traveling fronts under a general assumption on the kernel with logistic
source f(u) = u(l —u). We also mention that system (1.1) is also related to the hyperbolic Keller-Segel
equations (see Perthame and Dalibard [27]).

A single-species version of system (1.1) has been studied by Ducrot and Magal [13] (see the derivation
of the model therein). Compared to [13], one of the technical difficulties in this work is that, a priori
L?-uniform boundedness of solutions is missing. This is because the nonlinear function A is more general
(see Assumptions 1.1 and 4.1). This difficulty obliges us to find another method to prove the L
uniform boundedness of solutions (see Lemma 4.9, Remark 4.11 and Theorem 4.10). Moreover, we prove
the segregation property of the two species by employing the notion of solutions integrated along the
characteristics. In addition, the positivity of Fourier coefficients in Assumption 4.4 enables to construct
a decreasing energy functional, this condition has also been considered in [2] and [13]. With the help of
this property, we can prove the L convergence of the sum of two species when the initial distribution
is strictly positive (see Corollary 4.12). Furthermore, the segregation property preserves when ¢ tends to
infinity in the sense of narrow convergence (see Lemma 5.15).

We first specify the assumption on the reaction terms h;,7 = 1,2, in system (1.1).
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Assumption 1.1 Fori= 1,2, suppose h; : R%r — R are of class C' satisfying

sup hi(u,uz) < oo,  sup Oy hi(ui,uz) < oo, j=1,2.

u1,u2>0 u1,u2>0

An example of function h; is
hi(ul,u2) = )\1(1 - (U1 -+ ’U,Q))

Therefore, u; h;(u1,u2) is of Lotka-Volterra type. Another example of function h; which fits Assumption
1.11is

hi(u1,us) = b,

(U1, U2 1+’}/1 (Ul +’U,2) Mo -

Such a choice is motivated by Ducrot et al. [11] where h; is used to describe the contact inhibition
phenomenon (i.e. cells stop growing when they are locally saturated). The parameter b; > 0 represents
the division rate, p; > 0 is the mortality rate and ; > 0 is the coefficient relating to the dormant phase
of cells (see [11] for details). Notice that h; is bounded from below. Therefore, we cannot apply the same
arguments as in [13] to obtain an L bound of solutions. Hence, we extend the results in [13] to a more
general class of nonlinear functions.

Assumption 1.2 The kernel K : RN — R is a TN —periodic function of class C™ on RN for some
integer m > %

Remark 1.3 The above reqularity Assumption 1.2 can be reduced to m > 3 in the proof of the existence
and uniqueness of solutions. The higher regularity is mainly for Lemma 4.9. For the dimension N < 3,
the regularity condition in Assumption 1.2 is always satisfied when K € C*. As for the choice of p in
(1.1), it suffices to choose p € C™(RYN) satisfying for any € > 0 and multi-index o with |a| < m, there
exists M > 0 such that for any |x| > M

|D%p()| < C/|a] 7,
where C is a positive constant. For each multi-index o with || < m, the series

T —> Z D%p(x + 27k)
kezN

is uniformly converging on TV . Hence, K satisfies Assumption 1.2.

The paper is organized as follows. In Section 2, we investigate the existence and uniqueness of
solutions integrated along the characteristics. In Section 3, we prove the segregation property. In Sections
4 and 5, the asymptotic behavior of solutions will be studied using Young measures (a generalization of
L weak *—convergence). Section 6 is devoted to numerical simulations and these numerical simulations
complement our analysis.

2 Solutions integrated along the characteristics

In this section, we study the existence and uniqueness of solution for (1.1)-(1.3) with initial data
ug € L2 (RN )2. Before going further, let us introduce some notations. For each k € N, CF (RN )

per per
denotes the Banach space of functions of class C* from RY into R and [0, 27]¥-periodic endowed with

the usual supremum norm
k

lllor =Y sup [DPp(a)].

p—=0 z€RN

For each p € [1,+00], L&, (RY) denotes the space of measurable and [0, 2]V -periodic functions from
RY to R such that

H(pHLp = H(PHLP((O,2T()N) < +00.

Then L5, (RY) endowed with the norm |||, is a Banach space. We also introduce its positive cone
LP

per + (RN ) consisting of all the functions in L? (RN ) that are almost everywhere positive.

per
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Remark 2.1 When we study the product space C* (RN)n , LP (RN)n with n € N, for simplicity, we

per per
use the same notation || - ||cx and || - || for the norm in product space.
Lemma 2.2 Let Assumption 1.2 be satisfied. Let u; € C ([0,7] Lier (RY)),i = 1,2 be given. Then

for each s € [0,7] and each z € RN, setting v(t,z) = —V [K o (u1 +u2)(t,-)] (z), the following non-
autonomous system

{ Ol (¢, s;2) = v(t, Iy (¢, s;2)), for eacht € [0, 7] (2.1)

Iy (s, s;2) = 2,
generates a unique non-autonomous continuous flow {Ily (¢, s)}t’se[o’ﬂ, i.e.,
I, (¢, 75 Iy (1, 83 2)) = Iy (E, 85 2), for any t,s,r € [0,7], and Iy (s,s;.) =1
and the map (t,s,z) — Iy (t, s;2) is continuous. Moreover for each t,s € [0,7], we have
I, (t, s; 2 4+ 2nk) = 1L (t, 5; 2) + 27k, for any z € RY, k € ZV,

the map z — Iy (¢, s; 2) is continuously differentiable and furthermore, for the determinant of the Jaco-
bian matrix

det(9.11y (L, 5;2)) = exp ( / t divv(l, Ty (1, s: z))dl) . (2.2)

per

Proof. By Assumption 1.2, one has v(t,xz) € C ([077} ,C1 (RN)N) which implies the following

estimates

Iv(E o < IVEgo l[(ur +uz) ()l
[divv(t, )l co < 1AK|co lI(ur +u2)(t, )] 11 -

Therefore, the first part of the results follows by using classical arguments in ordinary differential equa-
tions. For the proof of (2.2), note that

0:0. 10y (t, 85 2) = O, v(t, Iy (¢, 55 2))0. 1y (¢, s;2) t€[0,7],
0.1y (s,8;2) = 1.

For any matrix-valued C'! function A : ¢ — A(t), the Jacobi’s formula reads

% det A(t) = det A(t)tr (Al(t)th(t)> .

Hence, we obtain

% det 0,11, (t, s; 2) = det 9,11y (¢, s; 2) x tr (O, v(t, Iy (¢, s;2))) .

Note that tr (9, v(t, Iy (¢, s;2))) = div v(¢, 11y (¢, s; 2)), the result follows. |

To precise the notion of solution in this work, we first assume that

u = (u1,up) € C* (0,7 x RY,R)* n C ([0,7],C,, . (RY))*

p

is a classical solution of (1.1)-(1.3). We consider the solution with each component u;(¢,-) along the
characteristic II (¢, 0; ) respectively, we obtain for i = 1,2,

% (ui(t, I, (£, 0; z)) — i (1, Ty (£, 0; 2)) + Vg (£, Ty (£, 0; 2)) - v (2, Ty (£, 0; 2))

= w111 (£,0;2)) | = div (£, T (05 2)) + hi(u(t, T (£,0;2))]

where h;(u(t, Iy (¢,0; 2)) = h;(ui (¢, Iy (¢, 0; 2), ua (¢, Iy (¢, 0; 2)). Hence a classical solution of (1.1)-(1.3)
(i.e. C! in time and space) must satisfy

u; (t, Iy (¢,0; 2)) = exp (/0 hi(u(l, 1y (1,0;2)) — div v(l,HV(l,O;z))dl> u; (0,2),i=1,2, (2.3)



149

150

153

154

155

156

162

165

167

168

169

170

171

or equivalently

u;(t,z) = exp (/Ot hi(u(l,1,(1,t; 2))) — div V(Z,Hv(l,t;z))dl> u; (0,11y(0,¢ 2)) , 6 = 1,2, (2.4)

where )
v(t,z) = —7N/ VEK(x—y)(us + ug)(t, y) dy. (2.5)
[TN] Jow
The above arguments yield the following definition of solutions.

Definition 2.3 (Solutions along the characteristics) Let ug € Lyg, (RN)Q, 7 > 0 be given. A

functionu € C ([0,7], Ly, , (RN))2 NL> ((0,7),L52, ; (RN))2 is said to be a solution integrated along

the characteristics of (1.1)-(1.3) if u; satisfies (2.4) for i = 1,2, with v defined in (2.5).

We use a fixed point theorem to prove the existence and uniqueness of the solutions integrated along the
characteristics. Consider

w = (wy,ws), w;(t,x):=u;(t,Uy(¢,0;2)), i =1,2, (2.6)
we will construct a fixed point problem for the pair (w,v).

If there exists a solution integrated along the characteristics, then by (2.3) we have
w;(t, ) = exp (/Ot hi(w(l,z)) — div V(Z,HV(Z,O;x))dl) u;(0,x),1=1,2, (2.7)
where h;(w(t,x)) = h; (w1 (¢, z), ws(t,z)) for i = 1,2. From the definition of v
v(t.o) =~ [ VK@ =) +u)t ) dy

=— Vo(z —y)(ur + u2)(t, y) dy

RN
= 7/ Vo (x — 1y (¢,0; 2)) Z ui(t, Ty (t,0; 2)) det 9. (ILy (¢, 0; 2)) dz (2.8)
Y i=1,2
- 7/RN Vp (= Ty (t,0;2)) Y wilt, 2) det 0. (TTy (¢, 0; 2)) dz,
i=1,2

where we used the change of variables y = Il (¢, 0; z). Replacing the determinant of Jacobian matrix by
(2.2) and using (2.7), we deduce that

w;(t, z) det 0, (Il (¢,0;2)) = eo hilw(l.2)) dly, (0,2),i=1,2.

Thus, equation (2.8) writes

v(t,r) = — o Vp(x =TI (£,0;2)) Y eJo hiwl2)dly (0, 2) dz
i=1,2
1

= o [, VK@= T(0:2) 37 elo hitwb:2Ndly, (0, 2) de.
1=1,2

(2.9)

Therefore, incorporating equations (2.7) and (2.9), the fixed point problem can be formulated as follows

w;(t,x) = exp (/Ot hi(w(l, z)) — divv(l,Hv(l,O;x))dl> u; (0,2) 1=1,2,
(2.10)

1 ¢
v(t,z) = — VK (z —IIy(t,0; 2)) Z elo i (w(l’z)))dlui (0, 2) d=.
[TN] Jpw S

We observe the following estimation

<t(h+|vler),i=1,2,
LOO

/t hi(w(l, ) — divv(l, I, (1, 0;2))dl
0
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where h := sup,,, ,,>0 2_i—1 2 Pi(u1,u2). Hence we can choose a proper space for (w,v)

w:(wl,wg)EC’([O,T] per+(RN)) . vec(o,r],Ccl (RMN),

per

We reformulate our fixed point problem as follows

() (b ERRD) wa ()= (5),
wherein w! and v! are defined by

exp fot hy(w(l,z)) — div v ([, 1Ly (1,05 z))dl ) ug (0, z)

Wl(t, ) ,
exp fg ho (W(l, :v)) — divvi(l, 11, (1,0;2))dl ) us (O,x) (2.11)
vi(t,z) = TN Jow VEK(x —1I(¢,0; 2) Z J§ i (i) i (0, 2) dz.
1=1,2

Theorem 2.4 Let Assumption 1.1 and Assumption 1.2 be satisfied. For eachug € Lyg,. | (RN)2 , system
(1.1)-(1.3) has a unique solution integrated along the characteristics

t— U(t)uo in C ([O, +OO) peT + (RN))2 n L?ooc ([Ov OO) per + (RN))

Moreover {U(t)}, is a continuous semiflow on LPETJr (RN)2, i.e.,
(1) URU(s)=U(t+s), for any t,s >0 and U(0) =
(ii) The map (t,uo) — U(t)ug maps every bounded set of [0,+00) x L2, | (RN)2 into a bounded set
2
Of Lper—i— (RN) ;
(iii) If a sequence {t,}, oy (C [0,400)) converges to a finite time t and {ug}, o is bounded sequence in
L (RN)2 such that ||ug —uoll,. — 0 as n — 400, then

per,+

|U(tn)ug — U(t)ugl/,» — 0 as n — +oo,

where the norm is the product norm of L}, | (R N)2 (see Remark 2.1).

The semiflow U also satisfies the two following two properties

U(t)ug > 0, for any ug > 0,t >0, (2.12)
U@l < e [fuoll, for any t >0, (2.13)

where we define
h:= sup Z hi(ug,us). (2.14)

Uy u2>01 1,2

We need the following lemma before we prove Theorem 2.4.

Lemma 2.5 Suppose v,v € C([0,7],CL..(RMN)N). Then for any 7 > 0, we have

per

sup ||y (¢,0;-) — g(¢,0;)||ne <7 sup [|[v(t,:) — V(t, )| pee” S"Ptel0.m] vt lier
tel0,7] te[0,7]

Proof. For any fixed t € [0, 7], from (2.1)

O (TTy(t,0; ) — I (¢,0;2)) = v(t, Iy (¢, 0; ) — v (¢, e (¢, 0; z)),
which is equivalent to

I, (t,0;2) — g (t,0;x) = /tv(l,Hv(l,O;x)) —v(1,II(1,0;z)) di.
0
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We have the following estimate
||HV(t7 07 ) - Hf’(ta Oa ')HLDQ

/75 V(ta H\?(la O; )) - {’(t7H‘7(l,0; )) + V(Za Hv(la O; )) - V(taHC’(l’O; )) dl
0

Lo

t
< tlfv(t,) = vt )l +/O [v(t, a1, 05 +) — g (1, 05 -) [ o dL.
By Gronwall inequality, we obtain

sup ||IIy(¢,0;-) — g (¢,0;)|lpe <7 sup ||V(¢,-) — V(¢t,-)||pwe” 3 Peelo) vt et
te[0,7] te[0,7]

The result follows. [
Proof of Theorem 2.4. We prove this theorem by showing that the contraction mapping theorem applies

for T as long as 7 > 0 is small enough. This ensures that the local existence and uniqueness of solutions.
To that aim, we fix 7 > 0 which will be chosen later and we define Banach space Z by Z := X xY where

X :=C([0,7], L2, (RY))?, Y = C((0,7], CL., (RN)N)

per per

"I = wlx + (vl
v Z* X Y,

Iwllx = lwille o7, Loz, )y + Iw2llo (o7, 50, @Y))-

per

endowed with the norm:

where

We also introduce the closed subset X C X defined by:

X, =c([0,7],L, , (RY))?,

per,+
and define Z, = X, x Y. Note that due to (2.11) one has
T(Zy) C Zy. (2.15)
. w — w . w .
For each given (v) € X and k > 0, let Bz ((v) ,/@) be the closed ball in Z centered at <v> with
radius k. Now for any x > 0 and any initial distribution
up = (u1(0,-),u2(0,-)) € X4, vo=—=VEK o ((u1 +u2)(0,)),

we claim that there exists 7 > 0 such that for each 7 € (0,7)

(208 (%) ) € 225 () ). 10

To prove this claim, for any (:IV) € Z.NBy ((3()) ,n), we estimate component w,v separately.
0
Recalling the definition of w in (2.11), one obtains

[w?(,) — a0 ()|

exp (/Ot hi(w(l,-)) — divv' (], IL,(Z, 0; ~))dl) up (0,-) —uy (0,-)

Lo

+ ||exp (/0 ha(w(l,-)) — div v(1, I, (1, 0; -))dl) uz (0,) —us2 (0,-) .
< uoflz= > |lexp </0 hi(w(l,-)) —divv (LHV(Z,O;-))dl) -1 .

i=1,2
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Note that by the classic inequality |e* — 1| < |z|e®! for any = € R, we can deduce that

sup [|wh(t,-) = uo() || e < [uol|L~0(r)e’” ™, (2.17)
te(0,7]
where
2
Z/ [hi (w(l,z)) — divv(l, Iy (1,0;))| g dl < 7 (R + [[V]]y)
i=170
< 7(hys + &+ ||volly) := 0(7),
and we set

hy = sup Z [hi(u, ug)l. (2.18)

0<ur,uz<rtlluollLee ;=7 o

On the other hand,

sup [[v(t,-) = vo(-)[len

te(0,7]
1 ¢
< Nuollze oy sup | [ VE(—T0(1,0:2) 37 i MO 9R (-~ 2
[TV tefo,7] ||/TN i=1,2 o1
1 ¢
< ||z s sup / VE (-~ Iy (t,0;2)) 3 s MWD U gR( 11, (1,0;2))
TN sefo,r || S i—1,2

+VEK(-—11,(¢,0;2)) — VK(- — 2z)dz

o1
< [Jao|[ e~ {(||K||01 K c2) e = 1] + (| Klloz + [ K]les) sup [Ty (¢, 0;-) — ~||Loo}
te|0,7

[Ty (2,05 ) = Ty, (£, 05 ) [ e~ + sup MLy (£, 0;+) = [l e
te

[0,7

< 2u0|Loo||K||Cs{|eTh”’ — 1|+ sup
tel0,7]

(2.19)
Recalling Lemma 2.5, we have

sup |1y (#,05-) = Iy, (8,0; )|z < 7 sup [v(t,-) = vo(t,-)|[pee™ > Pretomt IVEDlen

tc[0,7] telo,7]

< rreTEFvolly)

Therefore, we rewrite equation (2.19)

sup [[vi(t,-) = vo(-)[len
te(0,7]

< 2fJug[z= | K]lcs {|€Th” — 1|+ 7remUHIVO) 4 sup [Ty, (4,0;-) — ’|L°C} :
te(0,7]

Since we have

sup |y, (¢,0;+) — |lpe < / [Ivo(l, Ty, (1,0;))||p dl — 0, as T — 0.
tel0,7] 0

Incorporating (2.15), (2.17) and (2.19), the above estimations implies (2.16) by choosing a 7 small enough.

() (3) ez () ),

w(t,z) = u(t, I, (¢, 0;2)), w(t, z) = a(t, g (¢, 0;2)),

We now claim that for any

where
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there exists 7* € (0,7) such that for each 7 € (0,7*) we can find some L(7) €

To prove this claim, as before we estimate each component separately. For any given 7 € (0, 7*)

sup ||wh(t,-) —wh(t

tel0,7]

2
_ Z o sup Hefc: hi(w(l,))—div v(1,ITy (1,05)) di
i—1 0,7]

te|

< L(7)
z

(- C)

) -C)

Z

’.)HLW

< ||U-0||L ( T(k+||volly) Z sup ||€f0 i(w(l,))dl _ efo hi (W (1, ))leL

+e™ sup |le”

te(0,7]

i—1 t€[0,7]

I
b div v(1,I1y (1,05-)) dl — [tdivv(l,Ig(1,0;)) dl
0 — €é 0 ||Loo .

II

(0,1) such that

_ elo hi(W (1) —div ¥ (1,115(1,0;-)) ),

Estimation for I: Since for any z,y € R, we have |e® — e¥| < em@{lzLlvl}z — y|. Thus

eJo hi(w(l))dl _ o fg hi(W(1,1)) dl

S

<e

0 T] HLoo

W(l7 )) — h; (V~V(l, )) di

< 7eT" | Vh|lw — Wl|x,

Ioe

where |Vh,| = Zz 1SUPyy use0, o]l oo +#] | VRi(u1,u2)| and hy; is defined in (2.18).

Estimation for II: For the second term, we obtain

sup |[le”

tel0,7]

< rem (v HIvolly) sup || div v (¢, Ty (¢, 0;-)) — div v (¢, I (L,

Jg div v (1,1, (1,0;-)) di

— e~ o divIUIe o)Al

te(0,7]

While due to the form of v in (2.9) we can estimate the last term

sup ||div v (¢, (¢, 0;-)) — divv(t, g (¢,0; )| o

te[0,7]

TN| Z sup

/ AK (I, (t,0;-) — Ty (¢, 0; 2))elo i

1 t€[0,7]

0;)) | o=

wi(l,z))dl

= AK(Tg(t,05-) = Ty (t, 05 2))els VDA Q]| fug]|p»

< ol {12 3 sup

2
elo

i—1 t€[0,7]

+ 2™ ||K||cs sup ||Hv(t,0;')—Hv(ta0%')Lw}’

where the first part can be estimated by (2.21).

v,V € By (vg, k) we have

te(0,7]

sup [y (£,0;-) = Mg (2,05 )| <7 sup |[v(t,-) = V(¢ )] z~e

t€(0,7]

te[0,7]

Fhi(w(l) dl_  fy hi(W(1) le

Lo

r(stlvolly)

(2.20)

(2.21)

As for the second part, recalling Lemma 2.5 and

(2.22)

Incorporating the estimation in (2.21), we can find some L;(7) with lim, o L1(7) = 0 satisfying the

following estimation

[wh =% < Li(m)(Iw = Wlix + [Iv = V]ly).

(2.23)



266

267

269

277

278

279

280

281

282

285

To complete the proof, notice that

Hvl — g1||y = Ssup ||V1(t’ ) - Vl(t ')Hcl
te[0,7]

= —— sup | VK (- —1I,(t,0; 2)) elo hilw(l.2)) dly (0, 2) dz
TN tepo,r] Jov i:ZLQ

- VEK(- —1Il(t,0; 2)) eJo hi® @) dly (0 2Vdz|| e
™ ) i=z1;2 (0:2)2 (2.24)

< [lugl| {267}” (IKlc> + [ Kllcs) sup MLy (2,05 ) = Ig (£, 05 )| Lo
tel0,T
2 t t ~
+(|Kllor + 1K llo2) Y sup [lelo mED b elo hatwdry, 4
i—1 t€[0,7]
Using (2.21) and (2.22), we can find some Lo(7) with lim,_,¢ Lo(7) = 0 satisfying
vt =¥y < La(n)(lw = Wlx + v = ¥y)
Let L(7) := L1(7) + La2(7) and together with (2.23) and (2.24) we complete the proof of (2.20).
Finally, one concludes from (2.16) and (2.20) that for 7 small enough, the contraction mapping the-

orem applies to operator 7. Hence the operator 7 has a unique fixed point in Z, N By ((30> ,/<;>.
0

Recalling (2.6), this ensures the existence and uniqueness of a local solution integrated along the charac-
teristic of (1.1). The positivity property (2.12) follows from the property (2.16). The semiflow property
in Theorem 2.4-(i) follows by a standard uniqueness argument. Next we show that the semiflow is globally
defined and the properties (ii) and (iii) of the semiflow. In fact, one can see that

u;(t, ) = exp (/0 hi(u(l, Iy (L, t; 2))) — divv(l, Iy (1, t; 2)) dl) u; (0,11,(0,¢; 2)) . (2.25)

Therefore, one has
- ¢
u;(t,z) < exp (th) exp (/ —divv(l, Iy (1, t; z)) dl> u; (0,11,(0,¢;2)) 4 = 1,2,
0

then integrating over TV and using the change of variable z = II,(t,0,2) to right hand side, which
completes the estimation of v in L! norm (2.13), i.e.,

[l (t, ) || pr < eth||ui(0, Mg, i =1,2,for any ¢t > 0. (2.26)

Moreover, recall the definition h in (2.14) we have

sup [[ut, |pe < e FHIAKIL e oll) o1 for any 7 > 0. (2.:27)
te[0,7]

The result (ii) follows. Lastly, we study the L! continuity of the semiflow. For any 0 < s < t,

U (t)ag — U(s)uolrr < e Ut — s)ug — uo| 11

o s IR , (2.28)
_ esh Z Hefo hi(u(l,0y (L,t—s;-)))—div v(L,IIy (I,t—s;-)) dlui(o7 Hv(O,t — s )) N UZ(O, ')”Ll-
=1

Since
S

Z_;|/o hi(u(l, Iy (It — s;-))) — divv(l, Iy (I, t — s;-)) dl|| Lo < J(t — 5),

where

J(7) =7 (4 [ AK]|ooe™ o 1 )

10
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we can rewrite (2.28) as

1U(H)uo — U(s)uo|l 1

o o R (2.29)
< eM|ug(ITy (0, — ;) — ug[L1e’ ™) 4+ &% |lug | 11

elt=s) _ 1‘ —0, s—t.

If {uf},cy is a bounded sequence in LS9
(2.26), we have

per,+ (RY) such that [[uf —ug|l;, — 0asn — +oo, then by

U — U(t)ugl|r — 0, n — +o0,

together with (2.29), we have proved the continuity of the semiflow in (iii). ]

Proposition 2.6 Let Assumption 1.1 and Assumption 1.2 be satisfied. In addition, ug € W (RN)Q,

per

then U(-)ug € C* ([0, +00) , L., (RN))Q. Moreover, ifug € C},,. (R )2 then u(t,z) = U(t)ug(z) belongs

per

to C* ([0, +00) x RN)Z and u(t,x) is a classical solution of system (1.1)-(1.3).

Sketch of the proof. If ug € W) .(RN)?, we claim U(-)ug € C*([0,00), L},,.(RN))?. In fact, we define
fori=1,2,

wi(t,z) = elo MWl =divv(LI 0@ dly ) = efo hitwla)dip, (¢ 2, (2.30)

where B;(t,x) = efo —div (LI, (1,0:2)) diy, :(0,2) is C([0,7], WL, (RY)) by our assumption. Define the

per
formal derivative w;(t,-) = V,w;(t, ), solving the following fixed point problem

By (t ) [ S22 By ha(w(l, @) (1, @) dl B (t, @) + VB (t,x) ) elo lw@a)dl
1\4 .
T @a(t,x) | = | (3 72, 0u,ha(w(l,2))i;(1, ) dl Bo(t, @) + V,Ba(t,x) ) efo h2(wbe) dl
v *W Jon VK (z — 1Ly (t,0; 2)) dim12 eo hi (w(t.2)) 4 (0, 2) dz

on space C([0, 7], L2, (RN )V)2 x C([0, 7], C},.(RN)N) where Oy, hi(u1,uz) is the partial derivative of

h;. Similarly, one can show that the mapping 7 is from C([0, 7], Lg‘jT(RN) )% x C([0,7], Ch..(RM)N) to
itself and is a contraction if 7 is small. Therefore,

/ Zﬁujh (1, 2))@; (1, 2) Al Bi(t,x) + Vo Bi(t,z) | efo hilwEm)dl 4 —q 9

on [0, 7]. Since by our assumption

sup Oy, hi(ui,uz) <oo, i=1,2,j=1,2,

u1,u2 >0

applying Gronwall inequality, we have w € C([0,00), L., (RNV)N)2 for any positive time.

per
By definition we have for ¢ = 1,2, w;(¢,IIy(0, t; x)) = u;(t, z), and
Dru;(t, ) = Opw; (t, Ty (0, t; ) + W (t, ) - DL, (0, t; ) € C([0,00); LL., (RY)).

per

If ug € C*(RM)?, then B;(t,z) € C* ([0,+00) x RY) and by (2.30) we have w € C([0,00) x RY)2.
Therefore, u is a classical solution. [

Remark 2.7 (Conservation law) The above computations imply the following conservation law: for
each Borel set A C TN and each 0 < s < t:

t
/ u;(t,z)de = / exp [/ h; (w ([, (1, s;2))) dl| ui(s,z)dz,i=1,2.
I, (¢t,s;A) A s

11
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3 Segregation property

Our next theorem will show that the solutions along the characteristics can easily prove the segregation
property.

Theorem 3.1 Suppose u = u(t, ) is the solution of (1.1)-(1.3) given by Theorem 2.4. For any initial
distribution with uy (0, x)ua(0,z) = 0 for all x € TN. Then uy(t, z)us(t,z) =0 for anyt > 0 and z € TV.

Proof. We argue by contradiction. Assuming that there exist t; > 0,27 € TV such that
ul(tl,xl)m(tl,xl) > 0.

Since z — II, (¢, 5; ) is invertible from RY — R then there exists some 2y € RY such that II, (1, 0;2) =
z1. Denote zg = &g + 2mkq for some &g € TN and ky € ZV, thus by Lemma 2.2 we have

0 < u;(ty, Iy (t1,0;20)) = wi(ts, Iy (t1,0; To) + 2mko) = u;(t1, Iy (t1,0; Zo)).

Thus, for any i =1, 2,

t1
ui(tl, Hv(tl, 0; i‘())) = exp (/ h; (u(l, Hv(l7 0; i’o)) —div V(l, Hv(l, 0; ,’io)) dl) Uq (07 .’fo) >0,
0

which implies u; (0, Zo) > 0. This is a contradiction. |

Remark 3.2 We give an illustration (see Figure 1) of the segregation of solutions integrated along the
characteristics u;(t, Iy (¢,0;x)) for i = 1,2 when the dimension N = 1. In fact, if there exists for some
xo such that u;(0,z0) = 0 for i =1,2. Then from equation (2.3) we obtain

ul(t7HV(t70;x0)) =0= U’Q(tvnv(ta 07-730))7 fOT any t>0.

Therefore, the characteristics t — 1y (t,0;20) forms a segregation barrier for the two cell populations.

t
I, (t, 0; o)
0 HV(t(h 05 IO) 2m

Figure 1: The shaded areas represent the supports of two populations (red and green) evolving along time.
Notice that if one starts with two separated supports and choose xo where u;(0,z9) = 0 for i = 1,2, then
the characteristic t — Il (t,0;xq) forms a segregation “wall” between the two cell populations, which
indicates no matter how close they are, they stay separated.

4 Asymptotic behavior
In the rest of the work, we always assume that the initial distributions for the two populations are
separated.

o0

2
per.+ (]RN) , we assume that

Assumption 4.1 For initial value ug € L

u1 (0, 2)uz(0,2) = 0, for any x € TV.

12
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Furthermore, we suppose that h; in equation (1.1) has the following form
hi(u17u2) = hi(ul + u2)7 1= 172a
with hi(r;) =0 for somer; >0,i=1,2, and

hi(u) > 0, for any uw € [0,7;), hi(u) <0, for any u > r;, limsuph;(u) <0,i=1,2.

uU— 00
Moreover, u — uh;(u) is a concave function for i =1,2.

Remark 4.2 Notice that the segregation property in Theorem 3.1 implies the following equality:
wi(t, x)hi(uy () + ug(t,2)) = wit, ©)hi(ui(t, ), i = 1,2, for any (t,x) € [0,00) x TV. (4.1)

Lemma 4.3 Let Assumptions 1.1, 1.2 and 4.1 be satisfied. Suppose u = u(t,x) is a solution of (1.1)-
(1.3). Then we have

(1) sup;s [ui(t, )|z < max{[|ui (0, )|z, [TV}, i = 1,2.
(i) v(t,z) := (VK o (uy +us)(t,-))(x) satisfies v.€ L>=((0,00), WEL*RN))N and

per

Iv(t, Mler < 2] K le2 max{us (0, ) 21, Ju2(0, )|z, [TV}

Proof. To prove above estimates (i) and (ii), we first assume u is a classical solutions. Due to segregation
property in (4.1), equation (1.1) can be rewritten as

agui + div (UiV) = u,hz(ul), 1= 17 2. (42)

By Assumption 4.1 the function f;(u) = wh;(u) is concave for each 4, integrating (4.2) over TV and using
Jensen’s inequality, we have for classical solution

d it )l = 1 (it Dl < f (it )llz) -

Then the result follows using the usual ODE arguments with Assumption 4.1, where we can prove

§1>1P||uz( Wiy < max{[lui(0,) [, [TV}, i = 1,2.

Let up € L2, | (RY )2 be given and u be the corresponding solution integrated along the character-
istics. Consider a sequence {uy},>o in C’per+(RN) such that ||uf — ugl/zr — 0 as n — +o00. Then

denote u™ the solutions corresponding to uf, from Theorem 2.4 we have ||u™(t,-) — u(¢,-)||z: — 0 and

u(t,-) € Lyg, | (RY ) Therefore, by using Lebesgue convergence theorem, result (i) follows. Then result

(ii) is a direct consequence of (i). ]

4.1 Energy functional
Assumption 4.4 The Fourier’s coefficients of function K on TV denoted by {c,,[K]},,cqn satisfy cn[K] >
0, for any n € ZN \ {0}. The Fourier coefficients are defined by
enK] = |']I‘N|_1/ "MK (x)dx, for anyn € ZN.
N
Remark 4.5 If Fourier transformation p(€) > 0 for all £ € RN, then for kernel K in system (1.1), we
have c,[K] > 0 for all n € ZN. This implies Assumption 4./.

We construct the functional for u,;,7 = 1,2, as

1
Eilu(t,-)] = TN Jow Gi(ui(t, z)) dz,
where G; : [0,00) — [0, 00) is defined by
Gi(u) :=uln (:) —u+r;. (4.3)

13
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Notice that G}(u) = In(u/r;) for u > 0 and we define the energy functional as

El(ur,u2)(t,)] := > Eilui(t,)]. (4.4)

1=1,2
Theorem 4.6 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t,x) is a solution of
(1.1)-(1.3). Then for any t,7 > 0 set u := u; + us we have
El(u1,u2)(t + 7,-)] = El(u1, u2)(t, )]

= [ et et a5 = e [ 5

kezZN i=1,2

i (2 aras. 4

Proof. For any 6 > 0, as before we first suppose u = (u1,u2) to be the classical solution. Setting
u = uy + ug > 0, recalling the segregation property in (4.1) we have

1 u; + 6
B0 = [ (S5 g
1 u; + 0 .
= 7|’1I‘N| o In ( - ) [le [u; V(K o u)] + uihi(ui)] dz
1 u2

(173
A(K VK
|TN| TNuz+6 ( OU)"‘UV ou- V(u2+6> dx

u; + 0
+7\TN| /11‘N uihi(ui)ln( - ) dz.

Therefore, for any ¢, 7 > 0 we obtain

E;l(u; +0)(t+7,-)] — Ei[(u; + 9)(¢, )]
1 u? (15
:W/ /TNUi+6A(Kou)-&-uiVKou-V(ur’_é)dxds

t+7 uz—I—(S
|TN|/ /TNuz (u;) ( )dxds

Now by letting § — 0 we can see that
Eilui(t + 7,)] — Eifui(t, -)]

1 t+7 1 t+7 s
o foaucewardss g [ [ o () asas

Summing up the two functionals F;,7 = 1,2, we obtain

El(ur, u2)(t +7,-)] = E(u1, u2)(t, )]

t+1 t+1
TN|/ /TNuAKou )dads + TN|/ /TN,ZUZ (u;) ln< >dxds

(RN), one has ¢(x) = Y, cpn ck[@le™” almost everywhere which

On the other hand, for each ¢ € L?

implies "
T%/ PA(K o ¢)dx = Z TLN cr[ple™TA(K o ¢)dx
[T Jow 2, TN Jow
= Z Ck[ ]Ck[AKO ¢]
kezZN
== > [klPe[K]ex[6].
kezZN

Therefore, by the above calculation and by the fact that h;(u)In(u/r;) < 0,i = 1,2, we have

Blu(t +7.)] - Elu(t.")]
i(ui) In <T1>‘ dx ds.

t+1 ) 2 1 t+1
= - |k|ck [ K] |eku(s, -)]]” ds — —/ / w;
[ X T, o 2

keZN i=1,2

14
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The usual limiting procedure as in Lemma 4.3 allows us to extend the estimation to the solutions inte-
grated along the characteristics. ]

Remark 4.7 By Theorem 4.6, we can see that the energy functional E is non-negative and is decreasing,
by letting t — 400 we deduce from (4.5) that

t+7 9
1im/t > [kPer[K] [erfu(s, )]* ds =0, (4.6)

t——+oo
kezN

t+71
lim U;
t—+4o0 t T~

We need Lemmas 4.8 and 4.9 to prove the L> boundedness of the solution for all t > 0, i.e.,

and

hi(u;)In il deds=0,7=1,2. 4.7
r

Sup Huz(ta ')||L°° <oo, =12
>0

Lemma 4.8 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t,z) is a solution of
(1.1)-(1.3). Then for any k € ZN and for each i = 1,2, the mapping

t— cplui(t, )]

is a O function. Here cx[u;(t,-)], k € Z are the Fourier coefficients. Moreover,

sup
>0

%ck[ui(t, )]‘ < 0.

Proof. For any k € Z", suppose u = (uy,us) is a classical solution. Then we have

d 1 , .
e [ui(t, )] = W o e~ [—div (u;v) 4 uihi(ug)] do
1 . )
= W w;V (e_””) v 4 e_lk'xuihi(ui) dz.
TN

Therefore, applying Jensen’s inequality to f;(u) = uh;(u), we derive
d
el (]| < [kl )l (E lleo + FllluiE, )llzs)-

The result follows by using Lemma 4.3. The case for the solutions integrated along the characteristics
can be proved by applying a classical regularization procedure. [

The regularity condition for kernel K defined in Assumption 1.2 serves mainly for the following result.
Lemma 4.9 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t,z) is a solution of
(1.1)-(1.3) and define u := uy + ug. Then for v(t,z) = (VK o u(t,-)) (z) we have

Jlim[divv(t, )l|s = 0.

Proof. By Assumption 1.2, K € C™ (RY) with m > TJFS Thus, from Temam [32, page. 50] one has

per
ST+ R el K)? < . (4.8)
kezZN

Moreover, we can deduce from (4.6) that for each k € ZN\{0}
t+7 T
lim leelu(s, ][> ds = lim / ler[u(s +t,-)]*ds = 0.
0

t—+oo ¢ t—+oo
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By the last equality together with the results in Lemma 4.8, we can deduce

tl}inoo crlu(t, )] =0, keZN\{0}. (4.9)
We can compute that
. 1
divv(t,r) = — AK(z —y)u(t,y)dy
[TN] Jon
_ 1 —ik-y
=T Jow AK(z Z e crlu(t, )] dy
kezZN
_ 1 ik (2—2)
=11 Jow Z AK(z)e cxlu(t, )] dz
kezZN
= Z k|2er[K]ex[ult, -)]e e,
kezZN

By Lemma 4.3, we can find a constant M > 0 such that for each k € Z" we have
lek[u(t, )] < ||u(t,)||lLr < M, for any ¢t > 0.
Therefore,

Y [kfPer[Klexlult, e ™

|div v (¢, z)||co =

kezZN Co
<MY kPalK] =M Y ol K]
kezN kezZN\{0}
. 3 3
N+5 2
<M Z T[N Z k| ek [K] ;
kezZN\{0} kezZN\{0}

and due to (4.8), this last series converges. Hence, by Lebesgue dominated convergence theorem and
(4.9) we have

hmsup||d1vv(t x)||co < limsup Z |k[?cx[K]|exlu(t, )] = 0.

T kezN

The result follows. [}

As a consequence of Lemma 4.9, we obtain Theorem 4.10 and Corollary 4.12 which are the main
results of this section.

Theorem 4.10 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t,z) is a solution of
(1.1)-(1.3). Then we have for each i =1,2,

sup Jus(t, )| 1= < +o0o,
t>0

and more precisely we have
hmiup llw; (t, ) poe < 740

Moreover, for any x € RN such that u;(0,x) > 0, the solution integrated along the characteristics
converges point-wisely to the positive equilibrium r; for i = 1,2. That is, for any x € U; where U; = {x €
RN : ul(O,x) > 0}

lim w; (¢, I, (¢,0;2)) = ;.

t—o0

Or equivalently, for any x € RN we have

wi(t, Iy (t,0; ) 2255 rily (2),  ast — oo. (4.10)
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Remark 4.11 Notice from the Theorem 4.10, we automatically obtain the following L? uniform bound-
edness of the solution v = uy + us, that is

sup |lu(t, )|z < co.
>0

Moreover, for any sequence {t, }n>0 which tends to infinity, one has

lim cxfu(tn,-)] =0, for any k € ZV\{0}.

n—roo

Therefore, by Banach-Alaoglu-Bourbaki theorem, we deduce that there exists a subsequence {t,, }1>0 such
that

u(tn,,-) — cin L?
where ¢ is a constant which depends on the choice of the subsequence. With the above argument we can

deduce
Tim [[v(t, ) o = 0. (4.11)

In fact, for any sequence {t,}n>0 with t, — 00 as n — 0o, we can find a subsequence such that

Vb 2) = | VE(x — y)ultn, y)dy — / VK (z — y)dy =0,
TN TN

where the last equation is follows since K is periodic. Thus, equation (4.11) follows.

Proof of Theorem 4.10. Suppose that u = (uj,us) is a classical solution. The usual limiting procedure
allows us to extend the estimation to solutions integrated along the characteristics. We recall the notation
in (2.6) where w; (¢, x) := u;(t, Iy (t,0;)), i = 1,2, and for any z € RY we have

dw;(t, )

P w;(t, z) [—div v(t, Oy (¢, 0;2)) + h; (w1 + w2)(t, )]
= w;(t, z) [=divv(t, IIy (¢, 0; 2)) + hi(wi(t, )],

where the second equation results from the segregation property. We compare the solution along the
characteristics with the solution of the following ordinary differential equation. For any 7 > 0, let w;(t)
to be the solution of the following Cauchy problem

dwi(t)  _ w;(t) [sup ||div v(t,-)|[co + hi(ws(t))| ¢ >,
dt t>7
T(r) = ()l

Then we note that

limsup; (t) < ®;(7) := inf{z > r; : sup ||divv(t,-)||co + hi(y) <0, for any y > z}.
t>7

t——+o0
If the set is empty, then ®;(7) = +00. By comparison principle, for any 7 > 0 we have

lim sup ||w;(t, -) ||z < limsupw;(t) < ®;(7),
t—4o00 t—+o00

while due to Assumption 4.1 where for any u > r;, h;(u) < 0, limsup,,_, . h;(u) < 0 and

75_lg_krnOO |div v (¢, -)|[co =0

in Lemma 4.9, the limit lim,_, ;o ®;(7) = r;. Thus, we have

limsup ||u;(t, v (¢, 0;-)) || e < 75. (4.12)

t——+oo
Since z + II,(¢,0; ) is invertible on R, we have

limsup lui (¢, )|~ < 7.
t——+oo
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Together with the L estimation of u in finite time in (2.27) , we can see that

sup [Ju;(t, )| L < oc.
t>0

Now we prove the second part of the theorem. For any fixed z € R with u;(0, ) > 0, from the definition
of solutions integrated along the characteristics (2.10)

w;(t, ) = u; (¢, Iy (¢,0;2)) > 0, for any ¢t > 0.

For any 7 > 0, define w,(t) to be the solution of the following Cauchy problem

dwTit(t) =w,(t) |- §1>113 [divv(t, )llco + hi(w;(t))
wilr) = wiro) >0,

Then we note that

liminfw,(t) > ®,(7) :=sup{z > 0: —sup||divv(¢t,-)||co + h;i(y) > 0, for any y < z}.
t>7

t——+oo

If the set is empty, then ®,(7) = —oo0. As before we use the comparison principle, for any 7 > 0 and any
r € {x € RN : 4;(0,2) > 0} we have

lim inf w; (¢, z) > lminf w, (t) > ®,(7).

t——+oo t—+oo
Due to Assumption 4.1 where h;(u) > 0 for any u € [0,7;), one has lim,_, - ®,(7) = r; thus we have

for any x € {x € RV : u;(0,2) > 0},

lim inf w; (¢, I (¢,0; x)) > ry,

t—+4o00

together with (4.12) the result (4.10) follows. |

Next corollary is a consequence of Theorem 4.10.

Corollary 4.12 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t,x) is a solution of
(1.1)-(1.3). If for some constant § >0 and u(0,x) = > ,_, ,ui(0,2) >0 >0 for a.e.x € TN. Moreover,
we assume r1 = ro =: r in Assumption 4.1. Then

Jim Ju(t, )~ ]z~ = 0.

Proof. Here again we only prove the convergence when u = (u1,us) is a classical solution. We use the
same notations as in Theorem 4.10 and define

w(t,z) :=wy(t, x) + wa(t, x).
Due to estimation (4.12) in Theorem 4.10 and segregation property, we have

limsup sup w(t,x) <r. (4.13)
t—400 zeRN

Moreover, we can obtain

= —w(t,z)divv(t, Ty (t,0;2)) + Y wihs(w;).

=1

dw(t, z)
dt

In order to use comparison principle, we set h(u) = min,>o{h1(u), hz2(u)} and by the separation property
in Theorem 3.1 we have

wihy(wy) +wah(wa) > wih(wy) + wah(ws) = (w1 + wa)h(wy + ws).
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Hence,
dw(t, z)

i > w(t,x) [ sup ldivv(¢,-)||co + h(w(t, ))} ,t> T

For any 7 > 0, we have inf,cg~ w(r,z) > 0. In fact, by our assumption, u(0,z) > § > 0 on TV,
thus u(0,2) > 6 > 0 on RY and by equation (2.10) we have w(r,z) > 0 for any z € RY and since

w(t,z + 27) = w(t, z) for any 2 € RN, we have inf,cpn w(r,2) > § > 0 for some positive §. Thus, for
any 7 > 0, we define w(t) to be the solution of the following ordinary differential equation

U — i) |- sup v v, loo + )]
w(r) = infen w(r. ) > 0.

By similar arguments as in Theorem 4.10, we can see that

liminf inf w(t, ) > liminfw(t) > r.
t—+o00 zeRN t—+o0

Together with (4.13), we have

Jim [u(t, ) — rllz~ = 0.

Since for any ¢t > 0, the mapping ¢ — I, (¢,0; ) is a bijection, we have
[w(t, ) = rllLee = ult, v (t,0;-)) = rllLe = [lu(t, ) —7|[L~.

Thus, we obtain

The result follows. [}

Remark 4.13 Note that in Corollary 4.12, we only assume the roots of two different reaction functions
h1, hs to be the same to obtain the convergence in L*°.

5 Young measures

In Corollary 4.12, we have the L convergence of the solution u(= wu; 4+ uz) when the initial distri-
bution is strictly positive. Then one would like to know about the convergence of the solution when the
initial distribution admits zero values.

We first introduce the notion of Young measures. The basic idea of Young measures is to replace the
map (¢,2) = u(t,z) = uy(t, ) + uz(t, z) by the map

(t7 x) — 5u(t,r)

from [0,00) x T? into a probability space. Namely, for some fixed ¢ and z, the Dirac mass Ou(t,e) 18 TE-
garded as an element of the dual space the continuous functions C'([0, 7], R) (where 7y := ||u| Lo (0,00) xT}))
by using the following mapping

f — f( ) u(tac)(d/\) = f(u(tax))

[0,7]

This means that the map (¢, ) — 0y, is identified to an element of
> ([0,00) x TV, C([0,7],R)*) .

The goal of this procedure is to use the weak x—topology to regard Young measure as an element the
dual space of
L' ([0,00) x TV, C([0,7],R)) .

The space of Young measures in our specific context is nothing but L* ([0,00) x TV, P ([0,7])) (where
P ([0,~]) is the space of probabilities on [0,~]) endowed with the weak x—topology.
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Theorem 5.1 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t,x) is a solution of
(1.1)-(1.3) given by Theorem 2.4. Furthermore, suppose we have

mm =To=rT

in Assumption 4.1 and define
Ey = tlg(r)lo El(uy,u2)(t, )],

where El(uy,u2)(t,-)] is the energy functional defined in (4.4).

Then for each i = 1,2 and each t > 0 the Dirac measure §(y, 4u,)(t,z) belongs to the space of Young
measures ¥ (TV;310,7]) (7 = Sy 5 ltill o (0,00 7)) s e

(uy 4 ug)(t,x) € [0,7], for all t >0 and almost every x € RY,

/ N(N)0(uy 4uz) (t,2) (dA) dz = / n((u1 +u2)(t, ) dz, for any A € B(’]I‘N)7 for any n € C([0,~],R).
Ax[0,7] A

Moreover, we can prove
r< FEy <2r

and
lim 5(u1+uz)(t,z) = (Eoo/’l“ — 1)50 + (2 — EOO/T)ér,

t—o0

in the sense of the narrow convergence topology of Y (TN ;[0,7]). This means that for each continuous
function 1 : [0,7] = R and for any A € B(TV)

lim [ n((u; +u2)(t,x))de = /A(Eoo/r —1)n(0) + (2 — Ex/r)n(r) dz.

t—o00 A

Remark 5.2 Under the same assumptions as in Theorem 5.1, let {t,}n>0 be any sequence tending to
0o as n — oo. Then the sequence {(uy + u2)(tn, ) nz0 C Log, (RY) is relatively compact in Ly, (RY) if
and only if

FEew=1r or FEs=2r

The above result is a direct consequence of Young measure properties (see [9, Corollary 3.1.5]), which
says if the sequence of Young measures {0(u, +us)(t,,z) fn>0 converges in the narrow sense to a Young
measure v(x,-) and v(zx,-) is a single Dirac measure Sy(;)(+) for almost all x € TN . Then we have

(u1 + u2)(tn,x) L—1> o(x), n— oo.

In our case, when Eo, =1 (resp. = 2r), then

1
(u1 + u2)(tn, x) Ly (resp. 0), n — 0.

Remark 5.3 When E lies strictly in the interval (r,2r), then 8y, 1u,)@,a) converges to two Dirac
measures as t — oo. To illustrate the notion of narrow convergence to two Dirac measures, one may
consider the following example. For each n € N,

up(x) = L xeAm[j:,j—Fp), , 7=0,1,....n, pe(0,1), Az = 277.
0 zelAx[j+p,j+1). n+1

Then one can prove that
Jlim_ 6y, () = pd1 + (1 = p)do

in the sense of narrow convergence. Indeed, for any n € Cy([0,1]) and ¢ € L'(0,27) one has

/[o,zﬂ #le) /[071]W<A>5un<w>(dA>dx / () (un () da

[0,27]
S e [ om0 i

= Aalj+pj+1)

and the result follows when n — oo.
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Next, we introduce the notion of Young measures and the notion of narrow convergence topology in a
general case.

Definition 5.4 (Young measure) Let (S,d) be a separable metric space and let P(S) be the set of
probability measures on (S,d). Let (Q, A, u) be a finite measure space endowed with o—algebra A (in
our case p is a Lebesque measure). A map v : Q@ — P(S) (i.e. the map v maps each x € Q to a
probability B — v(x,B) on §) is said to be a Young measure if for each Borel set B € B(S) the
function x — v(z, B) is measurable from (Q, A) into [0,1]. The set of all Young measures from ({2, .A)
into S is denoted by Y (Q, A; S).

Definition 5.5 (Narrow convergence topology) The setY (9, A;S) is endowed with narrow conver-
gence topology which is the weakest topology on Y (Q, A; S) such that for each functional from Y (Q, A; S)

into R defined by
1/»—>// v(z, d\)u(dx)

is continuous whenever A € A and n € Cp(S;R).

Remark 5.6 Note that a sequence {v"}nen C Y (2, A;S) narrowly converges to v € Y(Q, A;S) if and
only if for any n € Cy(S;R) and A € A

7}1—{20// (z, d\)p(dx) // v(z, d\)u(dx).

For the sake of simplicity, we use Y (€;8) to denote Y (Q, A;S) if A= B(R).

Since the time variable ¢ is in a unbounded domain, we introduce the local narrow convergence topology.

Definition 5.7 (Local narrow convergence topology) Let (S,d) be a separable metric space and
let (Q, A, p) be a finite measure space (in practice p will be a Lebesgue measure in our case). The set
Y (R x Q,B(R)® A;S) is endowed with the local narrow convergence topology denoted by Tio. which is
defined as the weakest topology on' Y (R x Q, B(R) ® A;S) such that for each functional from Y (Q, A;S)
into R defined by

v | (/S n(\v(t,z, d)\)) (dt @ p(dx)),

is continuous for each bounded interval I CR, A € A and n € Cp(S;R).
For our case, we consider Q =TV, A =B (TN ) is the Borel o— algebra and p is the Lebegues measure,

the set S = [0,7] endowed with Euclidean norm. To simplify the notations, we set

Y(TV;10,7)) = Y/(TV, B(T™); [0,7]).

We define Y, (R x TN [0,7]) to be the topological space Y (R x TN; [0,’7]) endowed with the local
narrow convergence topology Tj,.. Furthermore, let us consider the probability space P (TN X [O,ﬂ)
and let us recall that the usual weak x—topology on P (']I‘N x [0, 7]) is metrizable by using the so-called
bounded dual Lipschitz metric (Wasserstein metric W, when p = 1) defined for each 1, v € P (']I‘N x [0, 7])
by

O (u,v) = sup{

/jrlv 0 ]f(x,)\) (1 —v)(da, dN)| f € Lip (T x [0,7]), [|fllLip < 1}.
Y.

Recall that the Lipschitz norm for metric space (X, d) is defined as follows

o 1) — fw)
Il = sup [F@)I+ - swp ey

, for any f € Lip(X).

We refer to Dudley [12, Theorem 18] for the equivalence between the weak x—topology on P (T x [0,4])
and the topology induced by © (-,-). In the following, the probability space P (TV x [0,7]) is always en-
dowed with the metric topology induced by © without further precision. Let {t, },,>0 be a given increasing
sequence tending to co as n — co. Using the above definition, we can prove the following lemma.
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Lemma 5.8 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied and T > 0. The sequence of maps
{t— Mﬁt}neN from [=T,T] to P (TN x [0,7]) (endowed with the above metric ©) and defined by

/ glx,y)ul(de, dy) = |’]I‘N\_1/ g (z,u;(t + tn,z)) da, for any g € C (']I‘N X [0,7];R) ,
TN x[0,7] ’ ™~

is relatively compact in C ([=T,T);P (TV x [0,7])).

Remark 5.9 In the following, we use the notation

pi(de, dy) = [TV 71 dz @ Oy, t4t,,0) ( dy).-
Proof. Let us first consider the classical solutions. For each g € C1(TY x R)

/TN gz, ui(t,z)) de — /TN gz, ui(s,z)) de = /: % /TN gz, wi(l, z)) dz dl.

Since u; is bounded, we have

d

A et 2)) de = / Bug (i, us(t, x))yus (¢, 2) d
dt TN TN

= /TN Oug(,u;(t, x)) (—div(u;v) + uihi(u;)) de

(5.1)

= [, 0 Dugo (b)) v + Dl b)) da

where the last equality is obtained by applying Green’s formula together with periodic boundary condi-

tion. We can see that

u,(t,x)Vx [8ug(x,uz(t,x))] = vx [uz(t,x)aug(x, ul(t? I‘)) - g(x,ul(t,x))] + p(JU,’UJZ(t,CU)),

where p(z,u) = V,g(z,u).

By substituting the last formula into (5.1) and by using again the periodicity we derive that

4
dt TN

+ /TN p(z,u;(t,x)) - v(t,z)dzx

+ /TN Oug(, ui(t, x))u;(t, x)hi(u; (¢, x)) de.

gt de = = [ ut,2)0u9(e. w(t.2) - oot div vit,z) da

The formula (5.1) extends to the solution integrated along the characteristics by usual density arguments.
Incorporating the estimation of sup, [[u(t,-)|[z~ in Theorem 4.10, the estimation of v in Lemma 4.3

and the above equality (5.2), we deduce that there exists a constant M > 0 such that

/ o, uit, 2)) d — / gl ui(s, 7)) dz| < Mgllupe xionplt — -
RN RN

From the definition of the metric on © (p, V), we can see that

O (', pits) < Mt —s].

This implies that the mapping ¢ — p', is continuous from [-T,T] to P (T x [0,7]). By Prohorov’s

compactness theorem [7, Theorem 5.1], the space P (']TN x [0, v]) endowed with the metric © is a compact

metric space. Therefore, we can apply Arzela-Ascoli theorem and the result follows.

Since u is uniformly bounded, one can deduce the following compact result in the space of Young

measures (see [29, Theorem 9.15]).

Lemma 5.10 Suppose u = (u1,us) is a solution of (1.1)-(1.3), the sequence {6ui(t+tn,$)}n>0

compact in the local narrow convergence topology of Yiee (]R x TN: 0, 'y]) for each i =1,2.
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Using the above Lemma 5.8 and Lemma 5.10, up to a subsequence, one can assume that there exists
a Young measure v = v;4(z,-) € Y (R x TV; [0, ]) such that

le Ous (t-+tn,2) = Vit (7, ) in the topology of Y. (R x TN;[0,4]) . (5.3)

and
lim /‘?,t = [y (5.4)
where the limit holds in the locally uniformly continuous topology of C' (R;P (T¥ x [0,7])). Note that

the limits x5 and v; ¢(z,-) depend on the choice of subsequence.

For each continuous function f € C (TN x [0,7]; R) and each n > 0, one has from definition that

[, s ) =m0 [ ] @) bur.n(d) de
TN x[0,7] T J10,7]

From (5.3) and (5.4), passing to the limit n — oo yields to

/ Fay)uss(de, dy) = [TV / F () o, dy) da.
TN x[0,7] TN J[0,7]

This can be rewrite as
pie(de, dy) = TV |~ tdz ® vz, dy). (5.5)

The following Lemmas 5.11 and 5.12 show more properties about the family of measures v; ((z, ).
Our next result describes the support of v; 4 (z, -).

Lemma 5.11 Under the same assumptions of Lemma 5.8, for i = 1,2, there exist measurable maps
a; : R x TV — R such that 0 < a;(t,z) <1 a.e. (t,x) € R x TV and

vii(r,-) = (1 —ai(t,z)) do(.) + ai(t,z)d,,(.), a.e.(t,x) € R x TV.
Proof. Define F;(u) := u|h;(u) In(u/r;)| for u € [0, 00) and recall that from equation (4.7), for any 7 > 0

we have rir
lim / Fi(ui(s,z))dxds =0,i=1,2.
TN

t—+oo t

Therefore, for i = 1,2 and from equations (5.4) and (5.5)

0= lim / / Fi(ui(t 4 tn,z)) dedt
n—,oo TN
= lim \TN|/ / Mty (de, dX) dt
nee TNX[OKY]

// A, (z, dX) dz dt.
0 ’]1‘N><[O'y]

Since the map u — F;(u) is non-negative and only vanishes at «w = 0 and u = r; one obtains that

supp Vi ¢(z,) C {0y U {r;}, ae.(t,z) € R x TV.
The above characterization of the support allows us to rewrite
Vit(x, ) = vig (2,{0}) 60(.) + vis (x,{r:i}) 6., (), ae. (t,x) € R x TV,

Setting a;(¢, ) = v (z, {r;}) and recalling that (¢,z) — v;(x,-) is measurable with value as a proba-
bility measure, thus v; 4 (z,{0}) = 1—v; (z, {r;}) and (¢, z) — a(t, z) is measurable, the result follows. m

Our next result shows the measurable function a;(t,z) is independent of the time variable ¢.
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Lemma 5.12 Under the same assumptions of Lemma 5.8, there exists a measurable map c; : TV — TN
such that a; = a'(t,x) given by Lemma 5.11 satisfies

ai(t,x) = ¢i(z), ae. z € TN, foranyt>0,i=1,2.
Moreover, for any t € R,
Vit(x, ) = (1 — ci(2)00(.) + ci(2)0,, (), ae. x €TV, i=1,2,
for some measurable functions ¢; : TN — TV, i=1,2.

Furthermore, we have
im Oy, (444,,2) = (1 = ci(x))do + ci(x)dy,, (5.6)

n—oo

in the sense of the narrow convergence and where the limit depends on the choice of subsequence.

Proof. Suppose that u = (ug,u2) is a classical solution. For any {t,},>0 with ¢, — oo as n — 0 and
any ¢ € C2(TV),

(2)Opui(t + tp, ) dz + (x)div(u(t + tn, 2)v(t + tp,x)) da
TN TN

= (@)ui(t + t, 2)hi (us(t + by, 2)) da.
TN

Since ¢ has compact support, we have
(2)Opui(t + ty, x) dz
TN

= Vo(x) vt + tn, x)u(t + ty, ) do + (@)ui(t + tn, )i (ui (t + tp, x)) de.
TN TN

Given any T € R and § > 0, integrating both sides over (T, T + §) leads to

(@) (i (T + 6 + tn, ) — u; (T + tn, x)) dz
TN

T+5
= / Vo(x) v(t+tn, z)u(t + t,,x) dedt (5.7)
T TN

T+6
—|—/ d(x)ui (t + tn, 2)hi (ui(t + tp, x)) da dt.
T ™

Now equation (5.7) is also true for any solution integrated along the characteristics. In fact, we can
apply Theorem 2.4 (iii). Since the semiflow is continuous in L' norm, that is, for any ¢ € [T, T + 4],
l[ui(t, z;907) — ui(t, 2;90)[[ L2 — 0, as n — oo,
where {¢'},>0 C C1(TY) with
n LI(TN) oo (N
e —— @, € L°(T).
Hence, we can pass the limit to both sides of (5.7). For the right-hand-side of (5.7), due to

Jin v (#,-)[[co =0

in Remark 4.11, we have for the first term

lim
n—oo

T+0
/ Vo(x) v(t+tn, z)u(t + tn, x) dedt
T TN

< lim O[TV (@]l sup st )1 [[V(E + ) co = 0.
n—oo t>0
While the second term writes

T+6
/ O(x)u;(t + tn, z)hi(u;i(t + t,, z)) dedt
T ™

T+06
- [ [ o [ | 5u,.(t+tn,x)<dx>] ddt.
T ™ [0,7]
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Letting n — oo yields

T+6

lim d(@)u;(t + tn, x)hi(w;i(t + t,, z)) dedt

n— oo

_ /TM /TN 6(x) VM rihi (m)ai(t,x)] dzdt = 0.

Therefore, by (5.8) and (5.9) we deduce

lim O(@) (ui (T + 6 + tn, @) — ui(T + ty,z)) da

n—r oo TN

T+5T :
= / / o(x) [/ Ah; (A) [(1 = a;(t, 2)) do + a;(t,2)0,,] (dA) | dzdt
T ™ [0,7]

=T (z) (ai(T +0,x) — a;(T, x)) dr = 0.

TN

Hence we have

¢(z)(ai(T +6,2) — a;(T,z)) dz = 0, for any ¢(z) € CL(T"V).

TN
Since T' € R and d > 0 is arbitrary, we deduce for any ¢ € R

ai(t,z) = ¢i(z), a.e.x € TV,

(5.9)

(5.10)

where ¢; : TNV — TV is a measurable function. The last part of the lemma now follows by the above

equation (5.10) and Lemma 5.11.

Next, we study the narrow convergence of the measure d(y, 4u,)(t+t,,2) 88 N — 0.

Corollary 5.13 Let {t,}n>0 be a given increasing sequence tending to co as n — co. Then, up to a

subsequence, we have two measurable functions ¢;(x) € [0,1] for i = 1,2, such that for any t > 0,

lim 6(u1+u2)(t+tn,z) =(1- Z C,(.Qf) 0o + Z cl(x)én

n—oo
i=1,2

in the sense of narrow convergence.

Proof. From segregation property in Theorem 3.1, for any n € C([0,~]) we have

1 (ur(t, 2) +us(t, 2)) +n(0) = n(ur (X, 2)) + n(ua(t, v)),

which is equivalent to

i=1,2

for any (¢,x) € Ry x TV,

00 + Ouy+us)(t,2) = Ous (t,2) T Ous(t,2)-

Therefore, for any ¢ € L!(TV), we have

n—0oo Jpn

m [ () /[ N 0+ B, ) ()
0,

n— oo

= lim / @(x)/[ ]77(>\) (Our (410 .2) T Ous(t4t,.2)) (AN) da
™ 0,y

_ /T () /M a0 [ (2= 3 @) ] do+ 3 cal@)sn, | (dn)da.

i=1,2

By subtracting the term Jp from each side, we deduce that

lim 6(u1+u2)(t+tn,w) = 1-— Z Cz(l‘) 60 + Z ci(x)ém

n— o0 .
1=1,2

i=1,2

in the sense of the narrow convergence topology of Y (T;[0,7]).
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Lemma 5.14 Under the same assumptions as in Lemma 5.8, the following equality holds
rici(x) +roca(x) =11 + 19 — Ex, a.e. T € TV,

where Eoo := limy_ o0 F [(u1,u2)(t, )] in (4.4).

Proof. Recall equation (4.3) where we have G;(0) = r;, G(r;) = 0, we can see that

. . 1
nh—>I{>lo E; [ui(t+tna')] = nh—>n<§0W N Gi(ui<t+tmx)>dx
= lim — Gi(N)Ou, (t4t, o) (dN) dz
ey o0 |TN| TN x[0] ( ) (t+tn,z)
, (5.12)
= lim —— G;(0)(1 —¢;(x)) + Gi(ri)ei(x) dz
n=oo |TN| Jrny(0,4]
|
=r;,— rici(z) de.
TN Jpw
Meanwhile, from (4.9) the Fourier coefficients satisfy
tli)m cr [(ur +ug)(t,-)] =0, for any k € Z™¥\{0}.
On the other hand, we have for all k € ZN\{0}
1 A
nl;rglo ek [(ur +u2)(t + tn, )] = nhﬁngo TV Jox e R (uy 4 up) (t + t, x) dz
1 .
= lim —— RN (6 o+ ») (dN)d
no ITN] 1w x[ox+] ‘ Curtertns +ouatesenn) (1) d
1

—ikx
= T Jow e " (r1e1 () + roce(x)) da.

Since c1,co € L=®(TN) € L2(TV) and {e~*%} ¢ is a basis of L2(T). This implies that ryc; (x)+72c2(7)
is a constant function. Recall that
. 1

thus the result follows. [}

Lemma 5.15 (Segregation at t = co) Under the same assumptions as in Lemma 5.8, the following
equation holds
c1(x)ea(r) =0, ae,x €TV,

Moreover when r1 = ro = r, then
r< FEy <2r.

Proof. By using the segregation property in Theorem 3.1, for any n € C([0,~]) we can see that
n((w(t,z)+ uz(t,x))2) = n(ui(t,z) + uj(t,z)), for any t € Ry, a.e.x € TV,

Therefore, for any Borel set A € B(T), we deduce

‘/1 % [0,4] 77(>‘ )6(u1+u2)(t tnaI)(d)\) dx
Y.

d (5.13)

~/A [0,7]? n(Al )\2) u (¢ tmm)(dAl)éﬂw(t tn,m)( )\2)d$.
X107 +

By equation (5.6) and (5.11), we let n — oo, then for the left-hand-side (L.H.S.) of equation (5.13)

lim LILS. of (5.13) = /A Lo (1 S @) | do(an) + 3 cilw)dn, (V)

i=1,2 i=1,2

= [0 (1= e |+ X adiaa) .

i=1,2 i=1,2
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Then for the right-hand-side (R.H.S.) of equation (5.13)

lim R.H.S. of (5.13) = /A o (A2 + \3) H [(1 = ci(2)) do(dN;) + ci(x)dy, (dN;)] d

= [ (30) T] (1= o))+ ntr)er (@)1 = o)
i=1,2

+n(rd)ea(@)(1 = cx(x)) + (i + 7"5)01@)62(1')) da.

Comparing the two limits and noticing that A € B(TY) is arbitrary, we conclude that
c1(z)ea(x) [17(0) +n(r? +r2) —n(r}) — n(r%)] =0, for a.e. z € TV,

Furthermore, since n € Cy(]0,7]) is any given function, we can choose an n such that

17(0) +n(r? +73) —n(r}) —n(r3) #0,

thus
c1(x)ca(z) =0, ae., xeTV. (5.14)

Since by Lemma 5.11 and 5.12, one has 0 < ¢;(x) < 1 for any € TV. Hence, one can deduce from
Lemma 5.14
0< Eoo <71 +72.

Moreover, one can deduce from (5.14) that
min{ry,re} < Ee <11 + 1o

If we assume r| = ro = r, then
r < Foo < 2r,

the result follows [
Proof of Theorem 5.1. By Lemma 5.10, the sequence {0y, (44+,,.z) }n>0 is relatively compact in Yo, (R x TN [0, fy])
with locally narrow topology, thus, up to a sequence, we have

lim 6y, (¢4+,,5) = Vi,t(, ) in the topology of Y, (R x TN [0, 7]) .

n—oo

The key arguments of the proof lies in the two consequences of the decreasing energy functional, namely,
equation (4.6) and equation (4.7). Lemma 5.11 is a consequence of the first equation (4.6) by which we
can determine the support of v; ;(z,-), i.e., there exists measurable functions a;(t, z) such that

vii(r,-) = (1 — a;(t,z))do(.) + a;(t, )6, (.), ae.xeTV, i=1,2.
Moreover, Lemma 5.8 and Lemma 5.12 enable us to write a;(¢,2) = ¢;(z), i = 1,2. Thus, we have
nh_}n;o Sus(t4tn,2) = (1 — €i(2))d0 + ¢;(z)6,, in the topology of Yie. (R x TN;[0,7])
Applying the segregation property, we have
00 + Oy +us) () = Ous (t,2) + Ous (t,2)-
Hence by Corollary 4.12,
Hm Sy, ) () = (1 D ) | do+ Y cila)dy, (5.15)
i=1,2 i=1,2

If in addition, assume that r; = ro = r, applying Lemma 5.14 where we used the decay property of
Fourier coeflicients in equation (4.7), which yields

Zcz(x) =2— Eﬁ

T
i=1
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Together with equation (5.15) we obtain
nh—>HOIO 5(u1+uQ)(t+tn,£) = (Eoo/r - 1)60 + (2 - EOO/T)(ST’

in the sense of the narrow convergence topology of Y (T?;[0,+]) and by Lemma 5.15 we have E., € [r, 2r].
Now the limit does not depend on ¢ and the choice of the subsequence. Since {t,}n>0 is any given
sequence that tends to infinity and (TN , B(TN )) is a countably generated o—algebra, then the topology
Y (T¥;[0,7]) is metrizable (see for instance [34, Theorem 1| or the monograph [9]). Therefore, we
conclude that

0 S, sy (ta) = (Boo/T = 1)d0 + (2 = Eoo /7) 57

As a result, Theorem 5.1 follows. [

6 Discussion and numerical simulations
In this section we study system (1.1) for the one dimensional case with numerical simulations. Our
original motivation is coming from two species of cells growing in a petri dish.

Here we will focus on the coexistence and the exclusion principle for these two species. From Theorem
5.1, we deduce that

tlim O(us4us)(t,e) = (Foo /T — 1)00 + (2 = Eo/7)d,, in the sense of narrow convergence.
— 00

Therefore, the limit Eo := lim; oo E[(u1,u2)(t, )] is an important index to determine whether the
Dirac measure 0y, 1, converges to a Young measure in the sense of narrow convergence or to a constant
function in L' norm (see Remark 5.2). To that aim, we trace the curve t — E[(u1, u2)(t, )] in numerical
simulations, which has been analytically proved decreasing in Theorem 4.6. Moreover, we also plot the
curve t — Ej;u;(t,-)], i = 1,2, respectively. This will help us to understand the limit for each species
Uj-

In the numerical simulations, we focus on the convergence of the energy functional which implies the
convergence of the total number for each species. In fact, by using (5.6) we obtain

1 1 T4
lim —/ui(t,z)dx: lim —// Ay, (t.2) (dN)dx = —Z// ci(z)dx.
t—oo |T| Jp t—oo |T| Jr Jio,9] (t) T JrJo

Hence by using (5.12) one has

tlggo Eilu;(t,)] = (1 - |11T|/Tci(x)dx> =r; — lim ﬁ /’H“Ui(t’ x)dz. (6.1)

t—o0

This means that the energy functional is related to the asymptotic total number of individuals for each
species. We mainly investigate the following properties by numerical experiments.

Coexistence: If r; = 1y = r, then c¢;(x),ca(z) € (0,1), a.e., z € TN. For each species, the following
limits exist

lim st ) os = 7‘/ co(@)de € (0,), i = 1,2,
t—o00 TN

We will see that the relative location of each species has an impact on the asymptotic number in each
species. Moreover, we have

1
(u1 + ug)(t, ) Lort— o

Exclusion Principle: If r; > ry (resp. 1 < r3), then ¢1(z) = 1, ca(x) = 0 (resp. c1(z) =0, ca(z) = 1)
a.e., z € TV | which implies that

Lt Lt Lt Lt
u(t,x) —=r1, us(t,xr) =0, (resp.uy(t,z) =— 0, wua(t,z) = r3),

and .
(u1 + ug)(t, x) L, max{ry,ra}, t = oco.
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6.1 The case r; = ry implies the coexistence

Our first scenario is to present the results in Theorem 5.1. It is interesting to notice that in Theorem
5.1, we only assume the equilibrium of the corresponding ODE system for each species to be the same
without imposing any other condition on h, which means that the dynamics for these two species can be
different. Hence, we will use the following two different reaction functions for two species

b
U1h1<ul + UQ) = U < ! ) - [L), UQhQ(U] + ’LLQ) = bous (1 — (62)

I S uy +up
1+ vy(ur + usg '

K

One can verify that h, satisfies Assumption 1.1 and Assumption 4.1 with their roots (i.e., h;(r;) =
0,i=1,2) as

by —
ry = ! u, To = K.
TH
Our kernel p in the simulation is chosen as
p(x) = e’“'“"Q, z €R, (6.3)

which is a Gaussian kernel. Therefore, due to Remark 1.3 and Remark 4.5, Assumption 1.2 and As-
sumption 4.4 are satisfied.

We set the initial distributions for two species to be of compact supports and separated. From
Theorem 3.1, we can observe the segregation property of the two species as time evolves. Our parameters
in system (1.1) are given as

bi=by=12u=1,v=1, K =0.2. (6.4)
Hence one can calculate that
TN =T = 0.2.

Now we trace the curve t — E[(u1,us2)(t,)] in numerical simulations. We also plot the curve ¢t —
E;[u;(t,-)], i = 1,2, respectively. Moreover, we plot the variation of the mean value of the total number
of individuals for each species, that is

27
t— — u; (t, x)dx, i=1,2.
Qﬂ' o Z( )
(a) (b)
— E[(u1, u)(t, )]
0.35 Eqfuy(t,-)] 1 0.1+
— Blus(t,-)]
0.3 H .
0.25 1 0.08 |
0.2 +
0.15 1 0.06
01 - J —ifoh uy (¢, x)dx
—a fUZTr uy(t, z)dz
0.05 : : : : 0.04 : : : :
0 20 40 60 80 100 0 20 40 60 80 100
t t

Figure 2: (a). The energy functionals t — E;[u;(t,-)], i = 1,2, and t — Eluy,u2)(t,-)] under system
(1.1). Parameters are set as in (6.4). Thus, one has r1 =ry = 0.2. (b). Evolution of the mean value of
individuals for each species.

From Figure 2, we can see that the limit F, exists and equals to r = 0.2. From Theorem 5.1 and
Remark 5.2, the limit E,, = r implies

1
(uy + u2)(t, ) Lo to o
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Moreover, from the simulation we note that each limit E; oo := limy_,o0 E;fu, (2, )] exists for ¢ = 1,2.

From (6.1) we have
1
Eie=r <1 - — / ci(:r)dx) , i=1,2.
IT| Jr

By our simulation, we can see that F o, E2 oo € (0,7) while Ey o + F2 o = 7, together with equation
(6.5) we can deduce that ¢1(z), ca(z) € (0,1), c1(x) 4 ca(x) = 1. Notice that c1(z), co(z) € (0,1) implies
the limits

(6.5)

lim 6y, (¢,,2) = (1 — ¢i(2))do + ci(z)dr,

n—oo

i=1,2,

is not a single Dirac measure. Therefore, using Young measure and the weak compactness in Y (T; [0,~])

helps us to understand the limit of the solution.

Now we plot the evolution of two populations under system (1.1) in Figure 3.

0.8 0.3
t=0 :Zi 0.4 t=1 =2
0.6
0.3 0.2
0.4
0.2
0.1
0.2 0.1
0 0 0
0 w2 ™ 32 2T /2 T 32w 27 2 ™ 32 2T
T T T
t=3 t=5 0.3 [t =10
0.25 0.25
0.2
0.2 0.2
0.15 0.15
0.1 0.1 0.1
0.05 0.05
0 0 0
0 2 ™ 32w 2T 2 T 32w 27 w2 ™ 32w 2
T T T
2
0.25 t =30 t =50 t =100
0.2 0.2 0.2
0.15 0.15 0.15
0.1 0.1 0.1
0.05 0.05 0.05
0 0 0
0 2 ™ 32m 2T /2 T 32w 27 2 ™ 327 2T

T

xT

T

Figure 3: The evolution of the two populations of system (1.1). Parameters are set as in (6.4). One has
r1 = ro = 0.2 which implies the coexistence of the two species. After t = 100, the distributions of the two
species stay the same.

For the asymptotic behavior of two populations, we can see from Figure 3 that the sum of two species
u1 + ug reaches a steady state at ¢ = 100. From the pattern at each moment ¢, we can see two species
keep segregated in stead of being mixed (as opposite to the case with linear diffusion).

6.2 Initial location matters

Consider two different initial distributions ug = (u1(0, z),u2(0,z)) and G = (u1(0, x), 42(0, z)) and
assume that their L' norms are the same, that is

/Tui(O,x)dx: /Tﬂi(O,x)dx,

30

i=1,2.
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Under the same set of parameters, define

1 ~ 1
Ui oo == lim —/ui(t,x)dx, Ui oo == lim —/ﬂi(t,x)dx, 1=1,2, (6.6)
IT| Jr IT| Jr

t—o0 t—o0

we are interested in whether the limits U; o and Ui,oo will be the same or not.

In the real biological experiments, this situation corresponds to the case where experimentalists
use the same quantity of cells for each species for two separate petri dishes. Supposing the intrinsic
mechanisms of cell populations for these two groups are the same, the only difference is the initial cell
distributions in two petri dishes. We are interested in whether the final total mass for each population
are the same. Before our simulation, we plot two different initial distributions as in Figure 4.

@ | (®)

08 F T T T 3 08 F

t =0 —n t=0 ——n
07t “ 07 “
0.6 H ﬂ 1 0.6 ﬂ
0.5 (‘ 1 0.5 ﬂ
0.4 B 0.4
0.3 1 0.3
0.2 1 0.2 -
0.1 1 0.1 -

0 - - - 0 - - -
0 2 T 32w 27 0 2 ™ 32w 2w
T x

Figure 4: (a) and (b) correspond to the initial distributions ug and Qg respectively. In (a), we shift a
part of us population at position in between 3/21 and 27 to the position in between 7/2 to w. Hence, the
number individuals for each species is conserved.

0.2

0.18

0.16

0.14 A

0.12

0.1 r

0.08

Figure 5: The evolution of energy functional (a) and the mean value of individuals (b) corresponding
to two sets of different initial distributions in Figure 4. The dashed lines correspond to the simulation
with initial distribution as in Figure 4 (a) and solid lines correspond to initial distribution as in Figure
4 (b). The parameters are the same as in (6.4).

In Figure 5, we plot the energy functionals and the number of individuals corresponding to each
initial distribution in Figure 4. Since the limits U; o, and U; o have a significant difference from Figure
5 (b), thus we conclude the final total mass depends on the position of the initial value.
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025 t=3 0.25 t=b 03 t =10
0.2
0.2 0.2
0.15 ’
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0.1 01 o1
0.05 0.05
0 0 0
w2 T 327 27 /2 T 327 27 w2 T 327 27
x X x
0.25
0.25 [t =30 t =50 t =100
0.2 0.2
0.2 '
0.15
0.15 0.15
01 0.1 0.1
0.05 0.05 0.05
0 0 0
2 ™ 327 2T 2 T 32w 27 2 ™ 32w 2T

x

xT

x

Figure 6: The evolution of the two populations of system (1.1). The initial condition is set as Figure 4
(b). Parameters are set as in (6.4). After t = 100, the distributions of the two species stay the same.

Now we give the evolution of the two populations under system (1.1). As for the simulation in Figure
6, we can see that the same coexistence as in Figure 3 and the sum of the two populations

1
(uy + u2)(t, ) L, r, t— o0.

However, the final patterns of two species at ¢ = 100 in Figure 6. (i) and Figure 3. (i) are evidently
different.

6.3 The case r; # r; implies exclusion principle

Our second scenario complements the results in Theorem 5.1. Without loss of generality, we allow
r1 > r9. This means species wu; is favored in the environment. Our parameters for the reaction functions
(6.2) are given as

Hence we can calculate that
1 =0.5 > T9 =0.2.

As before, we trace the curve t — F[(u1,us2)(t,-)] in numerical simulation and we also plot the curve
t — E;fui(t, )], ¢ = 1,2, respectively. Moreover, we plot the variation of the mean value of the total
number of individuals for each species.
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05 ¢
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03¢
0.2
0.2 ¢
0.1t ] 0.1y —#fozﬁul(t,z)dx
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0 20 40 60 80 100 0 20 40 60 80 100
t t

Figure 7: (a). The energy functionals t — E;u;(t,-)], i = 1,2, and t — Eluy,ug)(t,-)]. Parameters
are set as in (6.7). In such case, one has r1 = 0.5 > ro = 0.2. (b). Ewvolution of the mean value of
individuals for each species.

By tracing the curve ¢t — E[(u1,uz2)(t,-)], we can see from Figure 7 that it is strictly decreasing
and it confirms again the result which has been proved in Theorem 4.6. We can also see that the curve
t — Eq[uy(t,-)] is decreasing while ¢t — Es[us(t, )] is not monotone decreasing and their limits are

tll}?o E1 [Ul(t7 )] = 0, tlizgo E2 [’U,l (t, )] =T9.

If we have Ei oo = 0, B3 oo = T2, since ¢;(z) € [0,1], a.e.z € T for i = 1,2 and by equation (6.5) one
obtains ¢;(x) = 1, co(x) = 0. Therefore, we have ¢i(x) + c2(x) = 1, a.e.z € T and the convergence in
Theorem 5.1 is in the sense of L' (see Remark 5.2)

L Lt
up(t,z) — ry, wus(t,z) =— 0, t — oo,
and )
(ug + ug)(t, ) Lyt — co.

This means if 1y > ry (resp. 79 > r1), the species u; will exclude ug (resp. wus will exclude uy) when ¢
tends to infinity. Therefore, we can conclude the exclusion principle as in the beginning of this section.
We plot the evolution of the solution as follows.
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Figure 8: The evolution of the two populations of system (1.1) with reaction functions as (6.2) and kernel
p as Gaussian in (6.3). Parameters are set as in (6.7). In such case, one has r; = 0.5 > rq = 0.2 which
implies the exclusion principle.

In the simulations of Figure 8, species u; shows its dominance over us when ¢t = 5. As for the
asymptotic behavior, in the last figure when ¢ = 100, we can see that species u; crowds out species us
completely.

Acknowledgment The authors would like to express their gratitude to Corentin Prigent (Ph.D student
at the Institute of Mathematics of Bordeaux) for his suggestions in the numerical schema.

7 Appendix

For simplicity, we give the numerical scheme for the following single-species and one dimensional
model with periodic boundary condition

Opu + Oy (uv) ed2u+uh(u) t>0,z€T,
—0x(K ou(t,))(x)

uo(z) € L., (T).

v(t,x) =
u(0,z) =

The numerical method is based on finite volume scheme. We briefly illustrate our numerical scheme.
The approximation of the convolution term is

(o ult, ) = [

i u(t,y)K(z —y)dy =~ Z K(z — zj)u(t,z;)Az.

In addition, we define
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fori=1,2,...,M, n=0,1,2,...,N. We use the numerical scheme as illustrated in [33] to deal with
the nonlocal convection and the scheme reads as follows

At

uptt = + N (uiy = 2uf ™ +u)
At — - ont

- Fx ((;5(11,?_,"_1,’[1,?7 ) - (;S(U:L’ 7u?—71)) + Atu?h(u?%

i=1,2...,M, n=0,1,2,...,N,

with ¢(uf,,ui) defined as

o L u™mt >0
¢wﬁp¢”>wg>ﬂ#+@ﬂ>qﬂ{’*z e T
2

1 1 -
1 it i+1 n n,— n
Uipatipy U a <0
where n n
n o i+1 [ _
oy =P i M
and 1
u?’_ = ’U,::L — §minm0d(u?+1 - 'U/:;L, U;L - u?;l)
1 1= 17 2, . ,M - 13
uT =P + —minmod(u?_, — u®, u? —u?_,)
i = u; 2 i+1 30 W 1—1

where the function minmod(a, b) is defined as

sign(a) min{a, b} sign(a) = sign(b),

minmod(a,b) = .
0 Otherwise.

By the periodic boundary condition, let vt = v}, 1 and uf = ujy,, ui = ufy; ;. Thus,
2 2

M+
n,t _  n,+ n,2d+ _  n,+
Uq =Upr 5 Uy = UM+17

the conservation law holds when the reaction term equals zero.
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