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Abstract5

In this paper, we consider a nonlocal advection model for two populations on a bounded domain.6

The first part of the paper is devoted to the existence and uniqueness of solutions and the associated7

semi-flow properties. By employing the notion of solution integrated along the characteristics, we8

rigorously prove the segregation property of solutions. Furthermore, we construct an energy func-9

tional to investigate the asymptotic behavior of solutions. To resolve the lack of compactness of the10

positive orbits, we obtain a description of the asymptotic behavior of solutions by using the narrow11

convergence in the space of Young measures. The last section of the paper is devoted to numerical12

simulations, which confirm and complement our theoretical results.13

1 Introduction14

In this work, we study a two-species model with nonlocal advection15 {
∂tu1(t, x) + div

(
u1(t, x)v(t, x)

)
= u1(t, x)h1(u1(t, x), u2(t, x))

∂tu2(t, x) + div
(
u2(t, x)v(t, x)

)
= u2(t, x)h2(u1(t, x), u2(t, x))

t > 0, x ∈ RN . (1.1)16

The velocity field v = −∇P is derived from pressure P17

P (t, x) := (ρ ∗ (u1 + u2)(t, ·)) (x),18

where ∗ is the convolution in RN . Suppose system (1.1) is supplemented with a periodic initial distribu-19

tion20

u0(x) :=

(
u1(0, x)
u2(0, x)

)
∈ R2

+ where u0 is a 2π–periodic function in each direction. (1.2)21

We consider the solutions of system (1.1) which are periodic in space. Here a function u(x) is said to be22

2π-periodic in each direction (or for simplicity periodic) if23

u(x+ 2kπ) = u(x), for any k ∈ ZN , x ∈ RN .24

When u(x) is periodic, we can reduce the convolution to the N–dimensional torus TN := RN/2πZN by25

the following observation26

(ρ ∗ u) (x) =

∫
RN

ρ(x− y)u(y) dy

=
∑
k∈ZN

∫
[0,2π]N

ρ(x− (y + 2kπ))u(y + 2kπ) dy

=
∑
k∈ZN

∫
[0,2π]N

ρ(x− y − 2kπ)u(y) dy.

27
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Hence, we can reformulate as28

(ρ ∗ u) (x) =
1

(2π)N

∫
[0,2π]N

K(x− y)u(y) dy,29

where K is again 2π–periodic in each direction and defined by30

K(x) = (2π)N
∑
k∈ZN

ρ(x+ 2πk), x ∈ RN .31

The fast decay of ρ is necessary to ensure the convergence of the above series (see Remark 1.3 for details).32

We can rewrite the velocity field v as follows:33

v(t, x) = −∇ [K ◦ (u1 + u2)(t, ·)] (x), (1.3)34

where ◦ denotes the convolution on the N–dimensional torus TN := RN/2πZN ' [0, 2π]N . For any35

2π-periodic and measurable function ϕ and ψ, it is defined by36

(ϕ ◦ ψ) (x) = |TN |−1

∫
TN

ϕ(x− y)ψ(y) dy.37

Our motivation for this problem comes from a cell monolayer co-culture experiment in the study of38

human breast cancer cells. In [26, Figure 1], two types of cells grow into segregated islets over 7 days39

and the cell growth stops when they are locally saturated.40

In this work, we model this mechanism by using a nonlocal advection system with contact inhibition.41

As we will see, our model captures the finite propagating speed in cell co-culture. In the context of cell42

sorting, the impact of cell adhesion and repulsion on pattern formation has been studied by many43

authors. We refer to the work of Armstrong, Painter and Sherratt [1] and Painter et al. [25]. From a44

more general perspective, our study is connected to cell segregation and border formation. Taylor et al.45

[31] concluded that the heterotypic repulsion and homotypic cohesion account for cell segregation and46

border formation. We also refer the readers to Dahmann et al. [10] and the references therein for more47

about boundary formation with its application. These observations and results in biological experiments48

lead us to a nonlocal advection system which is able to explain the phenomena such as cell propagation49

and segregation. The segregation property was brought up in the 80’s by Shigesada, Kawasaki and50

Teramoto [30] and Mimura and Kawasaki [23] through the models with cross-diffusion. Since then, the51

cross-diffusion models have been widely studied and we refer to Lou and Ni [18, 19] for more results52

about this subject.53

The well-posedness of nonlocal advection models with nonlinear diffusion has been considered by54

Bertozzi and Slepcev [6] and Bedrossian et al. [3] on a bounded domain Ω ⊂ RN with non-flux boundary55

condition. Bertozzi et al. [5, 4] studied the finite time blowup property and the well-posednees in Lp56

spaces of such nonlocal advection system in high dimensional space. For the studies of the asymptotic57

behavior of nonlocal equations, we refer to Bodnar and Velazquez [8] and Raoul [28]. The traveling58

wave solutions of such nonlocal system with or without linear diffusion were also considered by many59

authors. We refer the readers to [2, 21, 22] for models concerning swarms. Hamel and Henderson [16]60

investigated the existence of traveling fronts under a general assumption on the kernel with logistic61

source f(u) = u(1− u). We also mention that system (1.1) is also related to the hyperbolic Keller-Segel62

equations (see Perthame and Dalibard [27]).63

A single-species version of system (1.1) has been studied by Ducrot and Magal [13] (see the derivation64

of the model therein). Compared to [13], one of the technical difficulties in this work is that, a priori65

L2-uniform boundedness of solutions is missing. This is because the nonlinear function h is more general66

(see Assumptions 1.1 and 4.1). This difficulty obliges us to find another method to prove the L∞67

uniform boundedness of solutions (see Lemma 4.9, Remark 4.11 and Theorem 4.10). Moreover, we prove68

the segregation property of the two species by employing the notion of solutions integrated along the69

characteristics. In addition, the positivity of Fourier coefficients in Assumption 4.4 enables to construct70

a decreasing energy functional, this condition has also been considered in [2] and [13]. With the help of71

this property, we can prove the L∞ convergence of the sum of two species when the initial distribution72

is strictly positive (see Corollary 4.12). Furthermore, the segregation property preserves when t tends to73

infinity in the sense of narrow convergence (see Lemma 5.15).74

We first specify the assumption on the reaction terms hi, i = 1, 2, in system (1.1).75
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Assumption 1.1 For i = 1, 2, suppose hi : R2
+ → R are of class C1 satisfying76

sup
u1,u2≥0

hi(u1, u2) <∞, sup
u1,u2≥0

∂ujhi(u1, u2) <∞, j = 1, 2.77

An example of function hi is78

hi(u1, u2) = λi(1− (u1 + u2)).79

Therefore, ui hi(u1, u2) is of Lotka-Volterra type. Another example of function hi which fits Assumption80

1.1 is81

hi(u1, u2) =
bi

1 + γi (u1 + u2)
− µi.82

Such a choice is motivated by Ducrot et al. [11] where hi is used to describe the contact inhibition83

phenomenon (i.e. cells stop growing when they are locally saturated). The parameter bi > 0 represents84

the division rate, µi > 0 is the mortality rate and γi > 0 is the coefficient relating to the dormant phase85

of cells (see [11] for details). Notice that hi is bounded from below. Therefore, we cannot apply the same86

arguments as in [13] to obtain an L∞ bound of solutions. Hence, we extend the results in [13] to a more87

general class of nonlinear functions.88

Assumption 1.2 The kernel K : RN → R is a TN–periodic function of class Cm on RN for some89

integer m ≥ N+5
2 .90

Remark 1.3 The above regularity Assumption 1.2 can be reduced to m ≥ 3 in the proof of the existence91

and uniqueness of solutions. The higher regularity is mainly for Lemma 4.9. For the dimension N ≤ 3,92

the regularity condition in Assumption 1.2 is always satisfied when K ∈ C4. As for the choice of ρ in93

(1.1), it suffices to choose ρ ∈ Cm(RN ) satisfying for any ε > 0 and multi-index α with |α| ≤ m, there94

exists M > 0 such that for any |x| ≥M95

|Dαρ(x)| ≤ C/|x|N+ε,96

where C is a positive constant. For each multi-index α with |α| ≤ m, the series97

x 7−→
∑
k∈ZN

Dαρ(x+ 2πk)98

is uniformly converging on TN . Hence, K satisfies Assumption 1.2.99

The paper is organized as follows. In Section 2, we investigate the existence and uniqueness of100

solutions integrated along the characteristics. In Section 3, we prove the segregation property. In Sections101

4 and 5, the asymptotic behavior of solutions will be studied using Young measures (a generalization of102

L∞ weak ∗–convergence). Section 6 is devoted to numerical simulations and these numerical simulations103

complement our analysis.104

2 Solutions integrated along the characteristics105

In this section, we study the existence and uniqueness of solution for (1.1)-(1.3) with initial data106

u0 ∈ L∞per
(
RN
)2. Before going further, let us introduce some notations. For each k ∈ N, Ckper

(
RN
)

107

denotes the Banach space of functions of class Ck from RN into R and [0, 2π]N–periodic endowed with108

the usual supremum norm109

‖ϕ‖Ck =

k∑
p=0

sup
x∈RN

|Dpϕ(x)| .110

For each p ∈ [1,+∞], Lpper
(
RN
)
denotes the space of measurable and [0, 2π]N–periodic functions from111

RN to R such that112

‖ϕ‖Lp := ‖ϕ‖Lp((0,2π)N) < +∞.113

Then Lpper
(
RN
)
endowed with the norm ‖ϕ‖Lp is a Banach space. We also introduce its positive cone114

Lpper,+
(
RN
)
consisting of all the functions in Lpper

(
RN
)
that are almost everywhere positive.115
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Remark 2.1 When we study the product space Ckper
(
RN
)n
, Lpper

(
RN
)n with n ∈ N, for simplicity, we116

use the same notation ‖ · ‖Ck and ‖ · ‖Lp for the norm in product space.117

Lemma 2.2 Let Assumption 1.2 be satisfied. Let ui ∈ C
(
[0, τ ] , L1

per

(
RN
))
, i = 1, 2 be given. Then118

for each s ∈ [0, τ ] and each z ∈ RN , setting v(t, x) = −∇ [K ◦ (u1 + u2)(t, ·)] (x), the following non-119

autonomous system120 {
∂tΠv(t, s; z) = v(t,Πv(t, s; z)), for each t ∈ [0, τ ]
Πv(s, s; z) = z,

(2.1)121

generates a unique non-autonomous continuous flow {Πv(t, s)}t,s∈[0,τ ], i.e.,122

Πv(t, r; Πv(r, s; z)) = Πv(t, s; z), for any t, s, r ∈ [0, τ ] , and Πv(s, s; .) = I123

and the map (t, s, z)→ Πv(t, s; z) is continuous. Moreover for each t, s ∈ [0, τ ] , we have124

Πv(t, s; z + 2πk) = Πv(t, s; z) + 2πk, for any z ∈ RN, k ∈ ZN ,125

the map z → Πv(t, s; z) is continuously differentiable and furthermore, for the determinant of the Jaco-126

bian matrix127

det(∂zΠv(t, s; z)) = exp

(∫ t

s

divv(l,Πv(l, s; z))dl

)
. (2.2)128

Proof. By Assumption 1.2, one has v(t, x) ∈ C
(

[0, τ ] , C1
per

(
RN
)N) which implies the following129

estimates130

‖v(t, ·)‖C0 ≤ ‖∇K‖C0 ‖(u1 + u2)(t, ·)‖L1 ,

‖divv(t, ·)‖C0 ≤ ‖∆K‖C0 ‖(u1 + u2)(t, ·)‖L1 .
131

Therefore, the first part of the results follows by using classical arguments in ordinary differential equa-132

tions. For the proof of (2.2), note that133 {
∂t∂zΠv(t, s; z) = ∂xv(t,Πv(t, s; z))∂zΠv(t, s; z) t ∈ [0, τ ] ,
∂zΠv(s, s; z) = I.

134

For any matrix-valued C1 function A : t 7→ A(t), the Jacobi’s formula reads135

d

dt
detA(t) = detA(t)tr

(
A−1(t)

d

dt
A(t)

)
.136

Hence, we obtain137

d

dt
det ∂zΠv(t, s; z) = det ∂zΠv(t, s; z)× tr (∂xv(t,Πv(t, s; z))) .138

Note that tr (∂xv(t,Πv(t, s; z))) = div v(t,Πv(t, s; z)), the result follows.139

140

To precise the notion of solution in this work, we first assume that141

u = (u1, u2) ∈ C1
(
[0, τ ]× RN ,R

)2 ∩ C ([0, τ ], C0
per,+(RN )

)2
142

is a classical solution of (1.1)-(1.3). We consider the solution with each component ui(t, ·) along the143

characteristic Πv(t, 0;x) respectively, we obtain for i = 1, 2,144

d

dt

(
ui(t,Πv(t, 0; z)

)
= ∂tui(t,Πv(t, 0; z)) +∇ui(t,Πv(t, 0; z)) · v(t,Πv(t, 0; z))

= ui(t,Πv(t, 0; z))
[
− divv(t,Πv(t, 0; z)) + hi(u(t,Πv(t, 0; z))

]
,

145

where hi(u(t,Πv(t, 0; z)) = hi(u1(t,Πv(t, 0; z), u2(t,Πv(t, 0; z)). Hence a classical solution of (1.1)-(1.3)146

(i.e. C1 in time and space) must satisfy147

ui(t,Πv(t, 0; z)) = exp

(∫ t

0

hi
(
u(l,Πv(l, 0; z))− divv(l,Πv(l, 0; z))dl

)
ui (0, z) , i = 1, 2, (2.3)148
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or equivalently149

ui(t, z) = exp

(∫ t

0

hi
(
u(l,Πv(l, t; z))

)
− divv(l,Πv(l, t; z))dl

)
ui (0,Πv(0, t; z)) , i = 1, 2, (2.4)150

where151

v(t, x) = − 1

|TN |

∫
TN
∇K(x− y)(u1 + u2)(t, y) dy. (2.5)152

The above arguments yield the following definition of solutions.153

Definition 2.3 (Solutions along the characteristics) Let u0 ∈ L∞per,+
(
RN
)2, τ > 0 be given. A154

function u ∈ C
(
[0, τ ] , L1

per,+

(
RN
))2 ∩L∞ ((0, τ), L∞per,+

(
RN
))2 is said to be a solution integrated along155

the characteristics of (1.1)-(1.3) if ui satisfies (2.4) for i = 1, 2, with v defined in (2.5).156

We use a fixed point theorem to prove the existence and uniqueness of the solutions integrated along the157

characteristics. Consider158

w = (w1, w2), wi(t, x) := ui(t,Πv(t, 0;x)), i = 1, 2, (2.6)159

we will construct a fixed point problem for the pair (w,v).160

If there exists a solution integrated along the characteristics, then by (2.3) we have161

wi(t, x) = exp

(∫ t

0

hi
(
w(l, x)

)
− divv(l,Πv(l, 0;x))dl

)
ui(0, x), i = 1, 2, (2.7)162

where hi(w(t, x)) = hi(w1(t, x), w2(t, x)) for i = 1, 2. From the definition of v163

v(t, x) = − 1

|TN |

∫
TN
∇K(x− y)(u1 + u2)(t, y) dy

= −
∫
RN
∇ρ(x− y)(u1 + u2)(t, y) dy

= −
∫
RN
∇ρ (x−Πv(t, 0; z))

∑
i=1,2

ui(t,Πv(t, 0; z)) det ∂z(Πv(t, 0; z)) dz

= −
∫
RN
∇ρ (x−Πv(t, 0; z))

∑
i=1,2

wi(t, z) det ∂z(Πv(t, 0; z)) dz,

(2.8)164

where we used the change of variables y = Πv(t, 0; z). Replacing the determinant of Jacobian matrix by165

(2.2) and using (2.7), we deduce that166

wi(t, z) det ∂z(Πv(t, 0; z)) = e
∫ t
0
hi(w(l,z)) dlui (0, z) , i = 1, 2.167

Thus, equation (2.8) writes168

v(t, x) = −
∫
RN
∇ρ (x−Πv(t, 0; z))

∑
i=1,2

e
∫ t
0
hi(w(l,z))dlui (0, z) dz

= − 1

|TN |

∫
TN
∇K(x−Πv(t, 0; z))

∑
i=1,2

e
∫ t
0
hi(w(l,z))dlui (0, z) dz.

(2.9)169

Therefore, incorporating equations (2.7) and (2.9), the fixed point problem can be formulated as follows170 
wi(t, x) = exp

(∫ t

0

hi
(
w(l, x))− divv(l,Πv(l, 0;x))dl

)
ui (0, x) i = 1, 2,

v(t, x) = − 1

|TN |

∫
TN
∇K(x−Πv(t, 0; z))

∑
i=1,2

e
∫ t
0
hi

(
w(l,z))

)
dlui (0, z) dz.

(2.10)171

We observe the following estimation172 ∥∥∥∥∫ t

0

hi
(
w(l, x))− divv(l,Πv(l, 0;x))dl

∥∥∥∥
L∞
≤ t
(
h̄+ ‖v‖C1

)
, i = 1, 2,173
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where h̄ := supu1,u2≥0

∑
i=1,2 hi(u1, u2). Hence we can choose a proper space for (w,v)174

w = (w1, w2) ∈ C
(
[0, τ ] , L∞per,+

(
RN
))2

, v ∈ C([0, τ ], C1
per(RN )N ).175

We reformulate our fixed point problem as follows176 (
w
v

)
∈
(
C
(
[0, τ ] , L∞per,+

(
RN
))2

C([0, τ ], C1
per(RN )N )

)
and T

(
w
v

)
=

(
w1

v1

)
,177

wherein w1 and v1 are defined by178

w1(t, x) =

exp
(∫ t

0
h1

(
w(l, x)

)
− divv1(l,Πv(l, 0;x))dl

)
u1 (0, x)

exp
(∫ t

0
h2

(
w(l, x)

)
− divv1(l,Πv(l, 0;x))dl

)
u2 (0, x)

 ,

v1(t, x) = − 1

|TN |

∫
TN
∇K(x−Πv(t, 0; z))

∑
i=1,2

e
∫ t
0
hi

(
w(l,z))

)
dlui (0, z) dz.

(2.11)179

Theorem 2.4 Let Assumption 1.1 and Assumption 1.2 be satisfied. For each u0 ∈ L∞per,+
(
RN
)2
, system180

(1.1)-(1.3) has a unique solution integrated along the characteristics181

t 7→ U(t)u0 in C
(
[0,+∞) , L1

per,+

(
RN
))2 ∩ L∞loc ([0,∞), L∞per,+

(
RN
))2

.182

Moreover {U(t)}t≥0 is a continuous semiflow on L1
per,+

(
RN
)2, i.e.,183

(i) U(t)U(s) = U(t+ s), for any t, s ≥ 0 and U(0) = I;184

(ii) The map (t,u0) → U(t)u0 maps every bounded set of [0,+∞) × L∞per,+
(
RN
)2 into a bounded set185

of L∞per,+
(
RN
)2;186

(iii) If a sequence {tn}n∈N (⊂ [0,+∞)) converges to a finite time t and {un0}n∈N is bounded sequence in187

L∞per,+
(
RN
)2 such that ‖un0 − u0‖L1 → 0 as n→ +∞, then188

‖U(tn)un0 − U(t)u0‖L1 → 0 as n→ +∞,189

where the norm is the product norm of L1
per,+

(
RN
)2 (see Remark 2.1).190

The semiflow U also satisfies the two following two properties191

U(t)u0 ≥ 0, for any u0 ≥ 0, t ≥ 0, (2.12)192

193

‖U(t)u0‖L1 ≤ eth̄ ‖u0‖L1 , for any t ≥ 0, (2.13)194

where we define195

h̄ := sup
u1,u2≥0

∑
i=1,2

hi(u1, u2). (2.14)196

We need the following lemma before we prove Theorem 2.4.197

Lemma 2.5 Suppose v, ṽ ∈ C([0, τ ], C1
per(RN )N ). Then for any τ > 0, we have198

sup
t∈[0,τ ]

‖Πv(t, 0; ·)−Πṽ(t, 0; ·)‖L∞ ≤ τ sup
t∈[0,τ ]

‖v(t, ·)− ṽ(t, ·)‖L∞eτ supt∈[0,τ] ‖v(t,·)‖C1 .199

Proof. For any fixed t ∈ [0, τ ], from (2.1)200

∂t (Πv(t, 0;x)−Πṽ(t, 0;x)) = v(t,Πv(t, 0;x))− ṽ(t,Πṽ(t, 0;x)),201

which is equivalent to202

Πv(t, 0;x)−Πṽ(t, 0;x) =

∫ t

0

v(l,Πv(l, 0;x))− ṽ(l,Πṽ(l, 0;x)) dl.203
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We have the following estimate204

‖Πv(t, 0; ·)−Πṽ(t, 0; ·)‖L∞

=

∥∥∥∥∫ t

0

v(t,Πṽ(l, 0; ·))− ṽ(t,Πṽ(l, 0; ·)) + v(l,Πv(l, 0; ·))− v(t,Πṽ(l, 0; ·)) dl

∥∥∥∥
L∞

≤ t‖v(t, ·)− ṽ(t, ·)‖L∞ +

∫ t

0

‖v(t, ·)‖C1‖Πv(l, 0; ·)−Πṽ(l, 0; ·)‖L∞ dl.

205

By Gronwall inequality, we obtain206

sup
t∈[0,τ ]

‖Πv(t, 0; ·)−Πṽ(t, 0; ·)‖L∞ ≤ τ sup
t∈[0,τ ]

‖v(t, ·)− ṽ(t, ·)‖L∞eτ supt∈[0,τ] ‖v(t,·)‖C1 .207

The result follows.208

209

Proof of Theorem 2.4. We prove this theorem by showing that the contraction mapping theorem applies210

for T as long as τ > 0 is small enough. This ensures that the local existence and uniqueness of solutions.211

To that aim, we fix τ > 0 which will be chosen later and we define Banach space Z by Z := X×Y where212

X := C
(
[0, τ ] , L∞per

(
RN
))2

, Y := C([0, τ ], C1
per(RN )N )213

endowed with the norm:214 ∥∥∥∥(wv
)∥∥∥∥

Z

= ‖w‖X + ‖v‖Y ,215

where216

‖w‖X = ‖w1‖C([0,τ ],L∞per(RN )) + ‖w2‖C([0,τ ],L∞per(RN )).217

We also introduce the closed subset X+ ⊂ X defined by:218

X+ = C
(
[0, τ ] , L∞per,+

(
RN
))2

,219

and define Z+ = X+ × Y . Note that due to (2.11) one has220

T (Z+) ⊂ Z+. (2.15)221

For each given
(
w
v

)
∈ X and κ > 0, let BZ

((
w
v

)
, κ

)
be the closed ball in Z centered at

(
w
v

)
with222

radius κ. Now for any κ > 0 and any initial distribution223

u0 = (u1(0, ·), u2(0, ·)) ∈ X+, v0 = −∇K ◦ ((u1 + u2)(0, ·)),224

we claim that there exists τ̂ > 0 such that for each τ ∈ (0, τ̂)225

T
(
Z+ ∩BZ

((
u0

v0

)
, κ

))
⊂ Z+ ∩BZ

((
u0

v0

)
, κ

)
. (2.16)226

To prove this claim, for any
(
w
v

)
∈ Z+ ∩ BZ

((
u0

v0

)
, κ

)
, we estimate component w,v separately.227

Recalling the definition of w in (2.11), one obtains228

‖w1(t, ·)− u0(·)‖L∞

=

∥∥∥∥exp

(∫ t

0

h1

(
w(l, ·)

)
− divv1(l,Πv(l, 0; ·))dl

)
u1 (0, ·)− u1 (0, ·)

∥∥∥∥
L∞

+

∥∥∥∥exp

(∫ t

0

h2

(
w(l, ·)

)
− divv1(l,Πv(l, 0; ·))dl

)
u2 (0, ·)− u2 (0, ·)

∥∥∥∥
L∞

≤ ‖u0‖L∞
∑
i=1,2

∥∥∥∥exp

(∫ t

0

hi
(
w(l, ·)

)
− divv1(l,Πv(l, 0; ·))dl

)
− 1

∥∥∥∥
L∞

.

229
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Note that by the classic inequality |ex − 1| ≤ |x|e|x| for any x ∈ R, we can deduce that230

sup
t∈[0,τ ]

‖w1(t, ·)− u0(·)‖L∞ ≤ ‖u0‖L∞θ(τ)eθ(τ), (2.17)231

where232
2∑
i=1

∫ τ

0

‖hi
(
w(l, x)

)
− divv(l,Πv(l, 0; ·))‖L∞ dl ≤ τ (hκ + ‖v‖Y )

≤ τ(hκ + κ+ ‖v0‖Y ) := θ(τ),

233

and we set234

hκ := sup
0≤u1,u2≤κ+‖u0‖L∞

∑
i=1,2

|hi(u1, u2)|. (2.18)235

On the other hand,236

sup
t∈[0,τ ]

‖v1(t, ·)− v0(·)‖C1

≤ ‖u0‖L∞
1

|TN |
sup
t∈[0,τ ]

∥∥∥∥∥∥
∫
TN
∇K(· −Πv(t, 0; z))

∑
i=1,2

e
∫ t
0
hi(w(l,z)) dl −∇K(· − z)dz

∥∥∥∥∥∥
C1

≤ ‖u0‖L∞
1

|TN |
sup
t∈[0,τ ]

∥∥∥∥∥
∫
TN
∇K(· −Πv(t, 0; z))

∑
i=1,2

e
∫ t
0
hi(w(l,z)) dl −∇K(· −Πv(t, 0; z))

+∇K(· −Πv(t, 0; z))−∇K(· − z)dz

∥∥∥∥∥
C1

≤ ‖u0‖L∞
{

(‖K‖C1 + ‖K‖C2) |eτhκ − 1|+ (‖K‖C2 + ‖K‖C3) sup
t∈[0,τ ]

‖Πv(t, 0; ·)− ·‖L∞
}

≤ 2‖u0‖L∞‖K‖C3

{
|eτhκ − 1|+ sup

t∈[0,τ ]

‖Πv(t, 0; ·)−Πv0
(t, 0; ·)‖L∞ + sup

t∈[0,τ ]

‖Πv0
(t, 0; ·)− ·‖L∞

}
.

(2.19)237

Recalling Lemma 2.5, we have238

sup
t∈[0,τ ]

‖Πv(t, 0; ·)−Πv0
(t, 0; ·)‖L∞ ≤ τ sup

t∈[0,τ ]

‖v(t, ·)− v0(t, ·)‖L∞eτ supt∈[0,τ] ‖v(t,·)‖C1

≤ τκeτ(κ+‖v0‖Y ).

239

Therefore, we rewrite equation (2.19)240

sup
t∈[0,τ ]

‖v1(t, ·)− v0(·)‖C1

≤ 2‖u0‖L∞‖K‖C3

{
|eτhκ − 1|+ τκeτ(κ+‖v0‖Y ) + sup

t∈[0,τ ]

‖Πv0
(t, 0; ·)− ·‖L∞

}
.

241

Since we have242

sup
t∈[0,τ ]

‖Πv0
(t, 0; ·)− ·‖L∞ ≤

∫ τ

0

‖v0(l,Πv0
(l, 0; ·))‖L∞ dl→ 0, as τ → 0.243

Incorporating (2.15), (2.17) and (2.19), the above estimations implies (2.16) by choosing a τ̂ small enough.244

We now claim that for any245 (
w
v

)
,

(
w̃
ṽ

)
∈ Z+ ∩BZ

((
u0

v0

)
, κ

)
,246

where247

w(t, x) = u(t,Πv(t, 0;x)), w̃(t, x) = ũ(t,Πṽ(t, 0;x)),248
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there exists τ∗ ∈ (0, τ̂) such that for each τ ∈ (0, τ∗) we can find some L(τ) ∈ (0, 1) such that249 ∥∥∥∥T (wv
)
− T

(
w̃
ṽ

)∥∥∥∥
Z

≤ L(τ)

∥∥∥∥(wv
)
−
(
w̃
ṽ

)∥∥∥∥
Z

. (2.20)250

To prove this claim, as before we estimate each component separately. For any given τ ∈ (0, τ∗)251

sup
t∈[0,τ ]

∥∥w1(t, ·)− w̃1(t, ·)
∥∥
L∞

=

2∑
i=1

‖u0‖L∞ sup
t∈[0,τ ]

‖e
∫ t
0
hi(w(l,·))−div v(l,Πv(l,0;·)) dl − e

∫ t
0
hi(w̃(l,·))−div ṽ(l,Πṽ(l,0;·)) dl‖L∞

≤ ‖u0‖L∞
(
eτ(κ+‖v0‖Y )

2∑
i=1

sup
t∈[0,τ ]

‖e
∫ t
0
hi(w(l,·)) dl − e

∫ t
0
hi(w̃(l,·)) dl‖L∞︸ ︷︷ ︸

I

+ eτhκ sup
t∈[0,τ ]

‖e−
∫ t
0

div v(l,Πv(l,0;·)) dl − e−
∫ t
0

div ṽ(l,Πṽ(l,0;·)) dl‖L∞︸ ︷︷ ︸
II

)
.

252

Estimation for I: Since for any x, y ∈ R, we have |ex − ey| ≤ emax{|x|,|y|}|x− y|. Thus253

2∑
i=1

sup
t∈[0,τ ]

∥∥∥e∫ t0 hi(w(l,·)) dl − e
∫ t
0
hi(w̃(l,·)) dl

∥∥∥
L∞

≤ eτhκ
2∑
i=1

∥∥∥∥∫ t

0

hi
(
w(l, ·)

)
− hi

(
w̃(l, ·)

)
dl

∥∥∥∥
L∞

≤ τeτhκ |∇hκ|‖w− w̃‖X ,

(2.21)254

where |∇hκ| =
∑2
i=1 supu1,u2∈[0,‖u0‖L∞+κ] |∇hi(u1, u2)| and hκ is defined in (2.18).255

Estimation for II: For the second term, we obtain256

sup
t∈[0,τ ]

‖e−
∫ t
0

div v(l,Πv(l,0;·)) dl − e−
∫ t
0

div ṽ(l,Πṽ(l,0;·)) dl‖L∞

≤ τeτ(κ+‖v0‖Y ) sup
t∈[0,τ ]

‖divv(t,Πv(t, 0; ·))− div ṽ(t,Πṽ(t, 0; ·))‖L∞ .
257

While due to the form of v in (2.9) we can estimate the last term258

sup
t∈[0,τ ]

‖divv(t,Πv(t, 0; ·))− div ṽ(t,Πṽ(t, 0; ·))‖L∞

≤ 1

|TN |

2∑
i=1

sup
t∈[0,τ ]

∥∥∥∫
TN

∆K(Πv(t, 0; ·)−Πv(t, 0; z))e
∫ t
0
hi(w(l,z)) dl

−∆K(Πṽ(t, 0; ·)−Πṽ(t, 0; z))e
∫ t
0
hi(w̃(l,z)) dl dz

∥∥∥
L∞
‖u0‖L∞

≤ ‖u0‖L∞
{
‖K‖C2

2∑
i=1

sup
t∈[0,τ ]

∥∥∥e∫ t0 hi(w(l,·)) dl − e
∫ t
0
hi(w̃(l,·)) dl

∥∥∥
L∞

+ 2eτhκ‖K‖C3 sup
t∈[0,τ ]

‖Πv(t, 0; ·)−Πṽ(t, 0; ·)‖L∞
}
,

259

where the first part can be estimated by (2.21). As for the second part, recalling Lemma 2.5 and260

v, ṽ ∈ BY (v0, κ) we have261

sup
t∈[0,τ ]

‖Πv(t, 0; ·)−Πṽ(t, 0; ·)‖L∞ ≤ τ sup
t∈[0,τ ]

‖v(t, ·)− ṽ(t, ·)‖L∞eτ(κ+‖v0‖Y ). (2.22)262

Incorporating the estimation in (2.21), we can find some L1(τ) with limτ→0 L1(τ) = 0 satisfying the263

following estimation264 ∥∥w1 − w̃1
∥∥
X
≤ L1(τ)

(
‖w− w̃‖X + ‖v − ṽ‖Y

)
. (2.23)265
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To complete the proof, notice that266 ∥∥v1 − ṽ1
∥∥
Y

= sup
t∈[0,τ ]

∥∥v1(t, ·)− ṽ1(t, ·)
∥∥
C1

=
1

|TN |
sup
t∈[0,τ ]

‖
∫
TN
∇K(· −Πv(t, 0; z))

∑
i=1,2

e
∫ t
0
hi(w(l,z)) dlui(0, z) dz

−
∫
TN
∇K(· −Πṽ(t, 0; z))

∑
i=1,2

e
∫ t
0
hi(w̃(l,z)) dlui(0, z)dz‖C1

≤ ‖u0‖L∞
{

2eτhκ (‖K‖C2 + ‖K‖C3) sup
t∈[0,τ ]

‖Πv(t, 0; ·)−Πṽ(t, 0; ·)‖L∞

+ (‖K‖C1 + ‖K‖C2)

2∑
i=1

sup
t∈[0,τ ]

‖e
∫ t
0
hi(w(l,·)) dl − e

∫ t
0
hi(w̃(l,·)) dl‖L∞

}
.

(2.24)267

Using (2.21) and (2.22), we can find some L2(τ) with limτ→0 L2(τ) = 0 satisfying268 ∥∥v1 − ṽ1
∥∥
Y
≤ L2(τ)

(
‖w− w̃‖X + ‖v − ṽ‖Y

)
269

Let L(τ) := L1(τ) + L2(τ) and together with (2.23) and (2.24) we complete the proof of (2.20).270

Finally, one concludes from (2.16) and (2.20) that for τ small enough, the contraction mapping the-271

orem applies to operator T . Hence the operator T has a unique fixed point in Z+ ∩ BZ
((

u0

v0

)
, κ

)
.272

Recalling (2.6), this ensures the existence and uniqueness of a local solution integrated along the charac-273

teristic of (1.1). The positivity property (2.12) follows from the property (2.16). The semiflow property274

in Theorem 2.4-(i) follows by a standard uniqueness argument. Next we show that the semiflow is globally275

defined and the properties (ii) and (iii) of the semiflow. In fact, one can see that276

ui(t, x) = exp

(∫ t

0

hi
(
u(l,Πv(l, t;x)))− divv(l,Πv(l, t;x)) dl

)
ui (0,Πv(0, t;x)) . (2.25)277

Therefore, one has278

ui(t, x) ≤ exp
(
th̄
)

exp

(∫ t

0

−divv(l,Πv(l, t;x)) dl

)
ui (0,Πv(0, t;x)) , i = 1, 2,279

then integrating over TN and using the change of variable x = Πv(t, 0, z) to right hand side, which280

completes the estimation of u in L1 norm (2.13), i.e.,281

‖ui(t, ·)‖L1 ≤ eth̄‖ui(0, ·)‖L1 , i = 1, 2, for any t ≥ 0. (2.26)282

Moreover, recall the definition h̄ in (2.14) we have283

sup
t∈[0,τ ]

‖u(t, ·)‖L∞ ≤ eτ
(
h̄+‖∆K‖L∞eτh̄‖u0‖L∞

)
‖u0‖∞, for any τ ≥ 0. (2.27)284

The result (ii) follows. Lastly, we study the L1 continuity of the semiflow. For any 0 ≤ s ≤ t,285

‖U(t)u0 − U(s)u0‖L1 ≤ esh̄‖U(t− s)u0 − u0‖L1

= esh̄
2∑
i=1

‖e
∫ t−s
0

hi(u(l,Πv(l,t−s;·)))−div v(l,Πv(l,t−s;·)) dlui(0,Πv(0, t− s; ·))− ui(0, ·)‖L1 .
(2.28)286

Since287
2∑
i=1

‖
∫ t−s

0

hi(u(l,Πv(l, t− s; ·)))− divv(l,Πv(l, t− s; ·)) dl‖L∞ ≤ J(t− s),288

where289

J(τ) := τ
(
h̄+ ‖∆K‖C0eτh̄‖u0‖L∞

)
,290
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we can rewrite (2.28) as291

‖U(t)u0 − U(s)u0‖L1

≤ esh̄‖u0(Πv(0, t− s; ·))− u0‖L1eJ(t−s) + esh̄‖u0‖L1

∣∣∣eJ(t−s) − 1
∣∣∣→ 0, s→ t.

(2.29)292

If {un0}n∈N is a bounded sequence in L∞per,+
(
RN
)
such that ‖un0 − u0‖1 → 0 as n → +∞, then by293

(2.26), we have294

‖U(t)un0 − U(t)u0‖L1 → 0, n→ +∞,295

together with (2.29), we have proved the continuity of the semiflow in (iii).296

297

Proposition 2.6 Let Assumption 1.1 and Assumption 1.2 be satisfied. In addition, u0 ∈ W 1
per

(
RN
)2,298

then U(·)u0 ∈ C1
(
[0,+∞) , L1

per

(
RN
))2. Moreover, if u0 ∈ C1

per

(
RN
)2 then u(t, x) = U(t)u0(x) belongs299

to C1
(
[0,+∞)× RN

)2 and u(t, x) is a classical solution of system (1.1)-(1.3).300

Sketch of the proof. If u0 ∈ W 1
per(RN )2, we claim U(·)u0 ∈ C1([0,∞), L1

per(RN ))2. In fact, we define301

for i = 1, 2,302

wi(t, x) = e
∫ t
0
hi(w(l,x))−div v(l,Πv(l,0;x)) dlui(0, x) =: e

∫ t
0
hi(w(l,x)) dlBi(t, x), (2.30)303

where Bi(t, x) := e
∫ t
0
−div v(l,Πv(l,0;x)) dlui(0, x) is C([0, τ ],W 1

per(RN )) by our assumption. Define the304

formal derivative w̃i(t, ·) = ∇xwi(t, ·), solving the following fixed point problem305

T

w̃1(t, x)
w̃2(t, x)

v

 =


(∫ t

0

∑2
j=1 ∂ujh1(w(l, x))w̃j(l, x) dl B1(t, x) +∇xB1(t, x)

)
e
∫ t
0
h1(w(l,x)) dl(∫ t

0

∑2
j=1 ∂ujh2(w(l, x))w̃j(l, x) dl B2(t, x) +∇xB2(t, x)

)
e
∫ t
0
h2(w(l,x)) dl

− 1
|TN |

∫
TN ∇K(x−Πv(t, 0; z))

∑
i=1,2 e

∫ t
0
hi

(
w(l,z))

)
dlui (0, z) dz

 ,306

on space C([0, τ ], L∞per(RN )N )2 × C([0, τ ], C1
per(RN )N ) where ∂ujhi(u1, u2) is the partial derivative of307

hi. Similarly, one can show that the mapping T is from C([0, τ ], L∞per(RN )N )2×C([0, τ ], C1
per(RN )N ) to308

itself and is a contraction if τ is small. Therefore,309

w̃i(t, x) =

∫ t

0

2∑
j=1

∂ujhi(w(l, x))w̃j(l, x) dl Bi(t, x) +∇xBi(t, x)

 e
∫ t
0
hi(w(l,x)) dl, i = 1, 2,310

on [0, τ ]. Since by our assumption311

sup
u1,u2≥0

∂ujhi(u1, u2) <∞, i = 1, 2, j = 1, 2,312

applying Gronwall inequality, we have w̃ ∈ C([0,∞), L1
per(RN )N )2 for any positive time.313

By definition we have for i = 1, 2, wi(t,Πv(0, t;x)) = ui(t, x), and314

∂tui(t, x) = ∂twi(t,Πv(0, t;x)) + w̃i(t, x) · ∂tΠv(0, t;x) ∈ C([0,∞);L1
per(RN )).315

If u0 ∈ C1(RN )2, then Bi(t, x) ∈ C1
(
[0,+∞)× RN

)
and by (2.30) we have w ∈ C1([0,∞) × RN )2.316

Therefore, u is a classical solution.317

318

Remark 2.7 (Conservation law) The above computations imply the following conservation law: for319

each Borel set A ⊂ TN and each 0 ≤ s ≤ t:320 ∫
Πv(t,s;A)

ui(t, x) dx =

∫
A

exp

[∫ t

s

hi (u (l,Πv(l, s; z))) dl

]
ui(s, z) dz, i = 1, 2.321
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3 Segregation property322

Our next theorem will show that the solutions along the characteristics can easily prove the segregation323

property.324

Theorem 3.1 Suppose u = u(t, x) is the solution of (1.1)-(1.3) given by Theorem 2.4. For any initial325

distribution with u1(0, x)u2(0, x) = 0 for all x ∈ TN . Then u1(t, x)u2(t, x) = 0 for any t > 0 and x ∈ TN .326

Proof. We argue by contradiction. Assuming that there exist t1 > 0, x1 ∈ TN such that327

u1(t1, x1)u2(t1, x1) > 0.328

Since z → Πv(t, s; z) is invertible from RN → RN , then there exists some x0 ∈ RN such that Πv(t1, 0;x0) =329

x1. Denote x0 = x̃0 + 2πk0 for some x̃0 ∈ TN and k0 ∈ ZN , thus by Lemma 2.2 we have330

0 < ui(t1,Πv(t1, 0;x0)) = ui(t1,Πv(t1, 0; x̃0) + 2πk0) = ui(t1,Πv(t1, 0; x̃0)).331

Thus, for any i = 1, 2,332

ui(t1,Πv(t1, 0; x̃0)) = exp

(∫ t1

0

hi
(
u(l,Πv(l, 0; x̃0))− divv(l,Πv(l, 0; x̃0)) dl

)
ui (0, x̃0) > 0,333

which implies ui (0, x̃0) > 0. This is a contradiction.334

335

Remark 3.2 We give an illustration (see Figure 1) of the segregation of solutions integrated along the336

characteristics ui(t,Πv(t, 0;x)) for i = 1, 2 when the dimension N = 1. In fact, if there exists for some337

x0 such that ui(0, x0) = 0 for i = 1, 2. Then from equation (2.3) we obtain338

u1(t,Πv(t, 0;x0)) = 0 = u2(t,Πv(t, 0;x0)), for any t > 0.339

Therefore, the characteristics t 7→ Πv(t, 0;x0) forms a segregation barrier for the two cell populations.340

t0

t

Πv(t0, 0; x0)0 2π

t1

Πv(t, 0; x0)

Figure 1: The shaded areas represent the supports of two populations (red and green) evolving along time.
Notice that if one starts with two separated supports and choose x0 where ui(0, x0) = 0 for i = 1, 2, then
the characteristic t 7→ Πv(t, 0;x0) forms a segregation “wall” between the two cell populations, which
indicates no matter how close they are, they stay separated.

4 Asymptotic behavior341

In the rest of the work, we always assume that the initial distributions for the two populations are342

separated.343

Assumption 4.1 For initial value u0 ∈ L∞per,+
(
RN
)2, we assume that344

u1(0, x)u2(0, x) = 0, for any x ∈ TN .345
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Furthermore, we suppose that hi in equation (1.1) has the following form346

hi(u1, u2) = hi(u1 + u2), i = 1, 2,347

with hi(ri) = 0 for some ri > 0, i = 1, 2, and348

hi(u) > 0, for any u ∈ [0, ri), hi(u) < 0, for any u > ri, lim sup
u→∞

hi(u) < 0, i = 1, 2.349

Moreover, u 7−→ uhi(u) is a concave function for i = 1, 2.350

Remark 4.2 Notice that the segregation property in Theorem 3.1 implies the following equality:351

ui(t, x)hi(u1(t, x) + u2(t, x)) = ui(t, x)hi(ui(t, x)), i = 1, 2, for any (t, x) ∈ [0,∞)× TN . (4.1)352

Lemma 4.3 Let Assumptions 1.1, 1.2 and 4.1 be satisfied. Suppose u = u(t, x) is a solution of (1.1)-353

(1.3). Then we have354

(i) supt≥0 ‖ui(t, ·)‖L1 ≤ max{‖ui(0, ·)‖L1 , |TN |}, i = 1, 2.355

(ii) v(t, x) := (∇K ◦ (u1 + u2)(t, ·))(x) satisfies v ∈ L∞((0,∞),W 1,∞
per (RN ))N and356

‖v(t, ·)‖C1 ≤ 2‖K‖C2 max{‖u1(0, ·)‖L1 , ‖u2(0, ·)‖L1 , |TN |}.357

Proof. To prove above estimates (i) and (ii), we first assume u is a classical solutions. Due to segregation358

property in (4.1), equation (1.1) can be rewritten as359

∂tui + div
(
uiv
)

= uihi(ui), i = 1, 2. (4.2)360

By Assumption 4.1 the function fi(u) = uhi(u) is concave for each i, integrating (4.2) over TN and using361

Jensen’s inequality, we have for classical solution362

d

dt
‖ui(t, ·)‖1 = ‖f(ui(t, ·))‖1 ≤ f (‖ui(t, ·)‖L1) .363

Then the result follows using the usual ODE arguments with Assumption 4.1, where we can prove364

sup
t≥0
‖ui(t, ·)‖L1 ≤ max{‖ui(0, ·)‖L1 , |TN |}, i = 1, 2.365

Let u0 ∈ L∞per,+
(
RN
)2 be given and u be the corresponding solution integrated along the character-366

istics. Consider a sequence {un0}n≥0 in C1
per,+(RN )2 such that ‖un0 − u0‖L1 → 0 as n → +∞. Then367

denote un the solutions corresponding to un0 , from Theorem 2.4 we have ‖un(t, ·) − u(t, ·)‖L1 → 0 and368

u(t, ·) ∈ L∞per,+
(
RN
)2. Therefore, by using Lebesgue convergence theorem, result (i) follows. Then result369

(ii) is a direct consequence of (i).370

371

4.1 Energy functional372

Assumption 4.4 The Fourier’s coefficients of function K on TN denoted by {cn[K]}n∈ZN satisfy cn[K] >373

0, for any n ∈ ZN \ {0}. The Fourier coefficients are defined by374

cn[K] = |TN |−1

∫
TN

e−in·xK(x) dx, for any n ∈ ZN .375

Remark 4.5 If Fourier transformation ρ̂(ξ) > 0 for all ξ ∈ RN , then for kernel K in system (1.1), we376

have cn[K] > 0 for all n ∈ ZN . This implies Assumption 4.4.377

We construct the functional for ui, i = 1, 2, as378

Ei[ui(t, ·)] =
1

|TN |

∫
TN

Gi(ui(t, x)) dx,379

where Gi : [0,∞)→ [0,∞) is defined by380

Gi(u) := u ln

(
u

ri

)
− u+ ri. (4.3)381
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Notice that G′i(u) = ln(u/ri) for u > 0 and we define the energy functional as382

E[(u1, u2)(t, ·)] :=
∑
i=1,2

Ei[ui(t, ·)]. (4.4)383

384

Theorem 4.6 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x) is a solution of385

(1.1)-(1.3). Then for any t, τ > 0 set u := u1 + u2 we have386

E[(u1, u2)(t+ τ, ·)]− E[(u1, u2)(t, ·)]

= −
∫ t+τ

t

∑
k∈ZN

|k|2ck[K] |ck[u(s, ·)]|2 ds− 1

|TN |

∫ t+τ

t

∫
TN

∑
i=1,2

ui

∣∣∣∣hi(ui) ln

(
ui
ri

)∣∣∣∣ dx ds.
(4.5)387

Proof. For any δ > 0, as before we first suppose u = (u1, u2) to be the classical solution. Setting388

u = u1 + u2 ≥ 0, recalling the segregation property in (4.1) we have389

d

dt
Ei[(ui + δ)(t, ·)] =

1

|TN |

∫
TN

ln

(
ui + δ

ri

)
∂tui dx

=
1

|TN |

∫
TN

ln

(
ui + δ

ri

)[
div [ui∇(K ◦ u)] + uihi(ui)

]
dx

=
1

|TN |

∫
TN

u2
i

ui + δ
∆(K ◦ u) + ui∇K ◦ u · ∇

(
ui

ui + δ

)
dx

+
1

|TN |

∫
TN

uihi(ui) ln

(
ui + δ

ri

)
dx.

390

Therefore, for any t, τ > 0 we obtain391

Ei[(ui + δ)(t+ τ, ·)]− Ei[(ui + δ)(t, ·)]

=
1

|TN |

∫ t+τ

t

∫
TN

u2
i

ui + δ
∆(K ◦ u) + ui∇K ◦ u · ∇

(
ui

ui + δ

)
dxds

+
1

|TN |

∫ t+τ

t

∫
TN

uihi(ui) ln

(
ui + δ

ri

)
dxds.

392

Now by letting δ → 0 we can see that393

Ei[ui(t+ τ, ·)]− Ei[ui(t, ·)]

=
1

|TN |

∫ t+τ

t

∫
TN

ui∆(K ◦ u) dx ds+
1

|TN |

∫ t+τ

t

∫
TN

uihi(ui) ln

(
ui
ri

)
dx ds.

394

Summing up the two functionals Ei, i = 1, 2, we obtain395

E[(u1, u2)(t+ τ, ·)]− E[(u1, u2)(t, ·)]

=
1

|TN |

∫ t+τ

t

∫
TN

u∆(K ◦ u) dxds+
1

|TN |

∫ t+τ

t

∫
TN

∑
i=1,2

uihi(ui) ln

(
ui
ri

)
dxds.

396

On the other hand, for each φ ∈ L2
per(RN ), one has φ(x) =

∑
k∈ZN ck[φ]ein·x almost everywhere which397

implies398

1

|TN |

∫
TN

φ∆(K ◦ φ) dx =
∑
k∈ZN

1

|TN |

∫
TN

ck[φ]ein·x∆(K ◦ φ) dx

=
∑
k∈ZN

ck[φ]ck[∆K ◦ φ]

= −
∑
k∈ZN

|k|2ck[K]ck[φ]2.

399

Therefore, by the above calculation and by the fact that hi(u) ln(u/ri) < 0, i = 1, 2, we have400

E[u(t+ τ, ·)]− E[u(t, ·)]

= −
∫ t+τ

t

∑
k∈ZN

|k|2ck[K] |ck[u(s, ·)]|2 ds− 1

|TN |

∫ t+τ

t

∫
TN

∑
i=1,2

ui

∣∣∣∣hi(ui) ln

(
ui
ri

)∣∣∣∣ dxds.
401
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The usual limiting procedure as in Lemma 4.3 allows us to extend the estimation to the solutions inte-402

grated along the characteristics.403

404

Remark 4.7 By Theorem 4.6, we can see that the energy functional E is non-negative and is decreasing,405

by letting t→ +∞ we deduce from (4.5) that406

lim
t→+∞

∫ t+τ

t

∑
k∈ZN

|k|2ck[K] |ck[u(s, ·)]|2 ds = 0, (4.6)407

and408

lim
t→+∞

∫ t+τ

t

∫
TN

ui

∣∣∣∣hi(ui) ln

(
ui
ri

)∣∣∣∣ dxds = 0, i = 1, 2. (4.7)409

We need Lemmas 4.8 and 4.9 to prove the L∞ boundedness of the solution for all t ≥ 0, i.e.,410

sup
t≥0
‖ui(t, ·)‖L∞ <∞, i = 1, 2.411

Lemma 4.8 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x) is a solution of412

(1.1)-(1.3). Then for any k ∈ ZN and for each i = 1, 2, the mapping413

t 7−→ ck[ui(t, ·)]414

is a C1 function. Here ck[ui(t, ·)], k ∈ ZN are the Fourier coefficients. Moreover,415

sup
t≥0

∣∣∣∣ d

dt
ck[ui(t, ·)]

∣∣∣∣ <∞.416

Proof. For any k ∈ ZN , suppose u = (u1, u2) is a classical solution. Then we have417

d

dt
ck[ui(t, ·)] =

1

|TN |

∫
TN

e−ik·x [−div (uiv) + uihi(ui)] dx

=
1

|TN |

∫
TN

ui∇
(
e−ik·x

)
· v + e−ik·xuihi(ui) dx.

418

Therefore, applying Jensen’s inequality to fi(u) = uhi(u), we derive419 ∣∣∣∣ d

dt
ck[ui(t, ·)]

∣∣∣∣ ≤ |k|‖ui(t, ·)‖1‖v(t, ·)‖C0 + f(‖ui(t, ·)‖L1).420

The result follows by using Lemma 4.3. The case for the solutions integrated along the characteristics421

can be proved by applying a classical regularization procedure.422

423

The regularity condition for kernel K defined in Assumption 1.2 serves mainly for the following result.424

Lemma 4.9 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x) is a solution of425

(1.1)-(1.3) and define u := u1 + u2. Then for v(t, x) = (∇K ◦ u(t, ·)) (x) we have426

lim
t→+∞

‖divv(t, ·)‖C0 = 0.427

Proof. By Assumption 1.2, K ∈ Cmper(RN ) with m ≥ N+5
2 . Thus, from Temam [32, page. 50] one has428 ∑

k∈ZN
(1 + |k|2)

N+5
2 ck[K]2 <∞. (4.8)429

Moreover, we can deduce from (4.6) that for each k ∈ ZN\{0}430

lim
t→+∞

∫ t+τ

t

|ck[u(s, ·)]|2 ds = lim
t→+∞

∫ τ

0

|ck[u(s+ t, ·)]|2 ds = 0.431
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By the last equality together with the results in Lemma 4.8, we can deduce432

lim
t→+∞

ck[u(t, ·)] = 0, k ∈ ZN\{0}. (4.9)433

We can compute that434

divv(t, x) = − 1

|TN |

∫
TN

∆K(x− y)u(t, y) dy

= − 1

|TN |

∫
TN

∆K(x− y)
∑
k∈ZN

e−ik·yck[u(t, ·)] dy

= − 1

|TN |

∫
TN

∑
k∈ZN

∆K(z)eik·(z−x)ck[u(t, ·)] dz

=
∑
k∈ZN

|k|2ck[K]ck[u(t, ·)]e−ik·x.

435

By Lemma 4.3, we can find a constant M > 0 such that for each k ∈ ZN we have436

|ck[u(t, ·)]| < ‖u(t, ·)‖L1 ≤M, for any t ≥ 0.437

Therefore,438

‖divv(t, x)‖C0 =

∥∥∥∥∥ ∑
k∈ZN

|k|2ck[K]ck[u(t, ·)]e−ik·x
∥∥∥∥∥
C0

≤M
∑
k∈ZN

|k|2ck[K] = M
∑

k∈ZN\{0}

|k|−
N+1

2 |k|2+N+1
2 ck[K]

≤M

 ∑
k∈ZN\{0}

1

|k|N+1

 1
2
 ∑
k∈ZN\{0}

|k|N+5ck[K]2

 1
2

,

439

and due to (4.8), this last series converges. Hence, by Lebesgue dominated convergence theorem and440

(4.9) we have441

lim sup
t→+∞

‖divv(t, x)‖C0 ≤ lim sup
t→+∞

∑
k∈ZN

|k|2ck[K]|ck[u(t, ·)]| = 0.442

The result follows.443

444

As a consequence of Lemma 4.9, we obtain Theorem 4.10 and Corollary 4.12 which are the main445

results of this section.446

Theorem 4.10 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x) is a solution of447

(1.1)-(1.3). Then we have for each i = 1, 2,448

sup
t≥0
‖ui(t, ·)‖L∞ < +∞,449

and more precisely we have450

lim sup
t→+∞

‖ui(t, ·)‖L∞ ≤ ri.451

Moreover, for any x ∈ RN such that ui(0, x) > 0, the solution integrated along the characteristics452

converges point-wisely to the positive equilibrium ri for i = 1, 2. That is, for any x ∈ Ui where Ui = {x ∈453

RN : ui(0, x) > 0}454

lim
t→∞

ui(t,Πv(t, 0;x)) = ri.455

Or equivalently, for any x ∈ RN we have456

ui(t,Πv(t, 0;x))
p.w.−−−→ ri1Ui(x), as t→∞. (4.10)457
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Remark 4.11 Notice from the Theorem 4.10, we automatically obtain the following L2 uniform bound-458

edness of the solution u = u1 + u2, that is459

sup
t≥0
‖u(t, ·)‖L2 <∞.460

Moreover, for any sequence {tn}n≥0 which tends to infinity, one has461

lim
n→∞

ck[u(tn, ·)] = 0, for any k ∈ ZN\{0}.462

Therefore, by Banach-Alaoglu-Bourbaki theorem, we deduce that there exists a subsequence {tnl}l≥0 such463

that464

u(tnl , ·) ⇀ c in L2,465

where c is a constant which depends on the choice of the subsequence. With the above argument we can466

deduce467

lim
t→∞

‖v(t, ·)‖C0 = 0. (4.11)468

In fact, for any sequence {tn}n≥0 with tn →∞ as n→∞, we can find a subsequence such that469

v(tnl , x) =

∫
TN
∇K(x− y)u(tnl , y)dy → c

∫
TN
∇K(x− y)dy = 0,470

where the last equation is follows since K is periodic. Thus, equation (4.11) follows.471

Proof of Theorem 4.10. Suppose that u = (u1, u2) is a classical solution. The usual limiting procedure472

allows us to extend the estimation to solutions integrated along the characteristics. We recall the notation473

in (2.6) where wi(t, x) := ui(t,Πv(t, 0;x)), i = 1, 2, and for any x ∈ RN we have474

dwi(t, x)

dt
= wi(t, x) [−divv(t,Πv(t, 0;x)) + hi((w1 + w2)(t, x))]

= wi(t, x) [−divv(t,Πv(t, 0;x)) + hi(wi(t, x))] ,
475

where the second equation results from the segregation property. We compare the solution along the476

characteristics with the solution of the following ordinary differential equation. For any τ > 0, let wi(t)477

to be the solution of the following Cauchy problem478 
dwi(t)

dt
= wi(t)

[
sup
t≥τ
‖divv(t, ·)‖C0 + hi(wi(t))

]
t > τ,

wi(τ) = ‖wi(τ, ·)‖L∞ .
479

Then we note that480

lim sup
t→+∞

wi(t) ≤ Φi(τ) := inf{z > ri : sup
t≥τ
‖divv(t, ·)‖C0 + hi(y) ≤ 0, for any y ≥ z}.481

If the set is empty, then Φi(τ) = +∞. By comparison principle, for any τ > 0 we have482

lim sup
t→+∞

‖wi(t, ·)‖L∞ ≤ lim sup
t→+∞

wi(t) ≤ Φi(τ),483

while due to Assumption 4.1 where for any u > ri, hi(u) < 0, lim supu→∞ hi(u) < 0 and484

lim
t→+∞

‖divv(t, ·)‖C0 = 0485

in Lemma 4.9, the limit limτ→+∞Φi(τ) = ri. Thus, we have486

lim sup
t→+∞

‖ui(t,Πv(t, 0; ·))‖L∞ ≤ ri. (4.12)487

Since x 7→ Πv(t, 0;x) is invertible on RN , we have488

lim sup
t→+∞

‖ui(t, ·)‖L∞ ≤ ri.489
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Together with the L∞ estimation of u in finite time in (2.27) , we can see that490

sup
t≥0
‖ui(t, ·)‖L∞ <∞.491

Now we prove the second part of the theorem. For any fixed x ∈ RN with ui(0, x) > 0, from the definition492

of solutions integrated along the characteristics (2.10)493

wi(t, x) = ui(t,Πv(t, 0;x)) > 0, for any t > 0.494

For any τ > 0, define wi(t) to be the solution of the following Cauchy problem495 
dwi(t)

dt
= wi(t)

[
− sup
t≥τ
‖divv(t, ·)‖C0 + hi(wi(t))

]
wi(τ) = wi(τ, x) > 0.

496

Then we note that497

lim inf
t→+∞

wi(t) ≥ Φi(τ) := sup{z > 0 : − sup
t≥τ
‖divv(t, ·)‖C0 + hi(y) ≥ 0, for any y ≤ z}.498

If the set is empty, then Φi(τ) = −∞. As before we use the comparison principle, for any τ > 0 and any499

x ∈ {x ∈ RN : ui(0, x) > 0} we have500

lim inf
t→+∞

wi(t, x) ≥ lim inf
t→+∞

wi(t) ≥ Φi(τ).501

Due to Assumption 4.1 where hi(u) > 0 for any u ∈ [0, ri), one has limτ→+∞ Φi(τ) = ri thus we have502

for any x ∈ {x ∈ RN : ui(0, x) > 0},503

lim inf
t→+∞

ui(t,Πv(t, 0;x)) ≥ ri,504

together with (4.12) the result (4.10) follows.505

506

Next corollary is a consequence of Theorem 4.10.507

Corollary 4.12 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x) is a solution of508

(1.1)-(1.3). If for some constant δ > 0 and u(0, x) =
∑
i=1,2 ui(0, x) ≥ δ > 0 for a.e. x ∈ TN . Moreover,509

we assume r1 = r2 =: r in Assumption 4.1. Then510

lim
t→∞

‖u(t, ·)− r‖L∞ = 0.511

Proof. Here again we only prove the convergence when u = (u1, u2) is a classical solution. We use the512

same notations as in Theorem 4.10 and define513

w(t, x) := w1(t, x) + w2(t, x).514

Due to estimation (4.12) in Theorem 4.10 and segregation property, we have515

lim sup
t→+∞

sup
x∈RN

w(t, x) ≤ r. (4.13)516

Moreover, we can obtain517

dw(t, x)

dt
= −w(t, x)divv(t,Πv(t, 0;x)) +

2∑
i=1

wihi(wi).518

In order to use comparison principle, we set h(u) = minu≥0{h1(u), h2(u)} and by the separation property519

in Theorem 3.1 we have520

w1h1(w1) + w2h(w2) ≥ w1h(w1) + w2h(w2) = (w1 + w2)h(w1 + w2).521
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Hence,522

dw(t, x)

dt
≥ w(t, x)

[
− sup
t≥τ
‖divv(t, ·)‖C0 + h(w(t, x))

]
, t ≥ τ.523

For any τ > 0, we have infx∈RN w(τ, x) > 0. In fact, by our assumption, u(0, x) ≥ δ > 0 on TN ,524

thus u(0, x) ≥ δ > 0 on RN and by equation (2.10) we have w(τ, x) > 0 for any x ∈ RN and since525

w(t, x + 2π) = w(t, x) for any x ∈ RN , we have infx∈RN w(τ, x) ≥ δ̃ > 0 for some positive δ̃. Thus, for526

any τ > 0, we define w(t) to be the solution of the following ordinary differential equation527 
dw(t)

dt
= w(t)

[
− sup
t≥τ
‖divv(t, ·)‖C0 + h(w(t))

]
w(τ) = infx∈RN w(τ, x) > 0.

528

By similar arguments as in Theorem 4.10, we can see that529

lim inf
t→+∞

inf
x∈RN

w(t, x) ≥ lim inf
t→+∞

w(t) ≥ r.530

Together with (4.13), we have531

lim
t→∞

‖w(t, ·)− r‖L∞ = 0.532

Since for any t > 0, the mapping t 7→ Πv(t, 0; ·) is a bijection, we have533

‖w(t, ·)− r‖L∞ = ‖u(t,Πv(t, 0; ·))− r‖L∞ = ‖u(t, ·)− r‖L∞ .534

Thus, we obtain535

lim
t→∞

‖u(t, ·)− r‖L∞ = 0.536

The result follows.537

538

Remark 4.13 Note that in Corollary 4.12, we only assume the roots of two different reaction functions539

h1, h2 to be the same to obtain the convergence in L∞.540

5 Young measures541

In Corollary 4.12, we have the L∞ convergence of the solution u(= u1 + u2) when the initial distri-542

bution is strictly positive. Then one would like to know about the convergence of the solution when the543

initial distribution admits zero values.544

We first introduce the notion of Young measures. The basic idea of Young measures is to replace the545

map (t, x)→ u(t, x) = u1(t, x) + u2(t, x) by the map546

(t, x)→ δu(t,x)547

from [0,∞)× TN into a probability space. Namely, for some fixed t and x, the Dirac mass δu(t,x) is re-548

garded as an element of the dual space the continuous functions C([0, γ],R) (where γ := ‖u‖L∞([0,∞)×TN ))549

by using the following mapping550

f 7−→
∫

[0,γ]

f(λ)δu(t,x)( dλ) = f(u(t, x)).551

This means that the map (t, x)→ δu(t,x) is identified to an element of552

L∞
(
[0,∞)× TN , C([0, γ],R)?

)
.553

The goal of this procedure is to use the weak ?−topology to regard Young measure as an element the554

dual space of555

L1
(
[0,∞)× TN , C([0, γ],R)

)
.556

The space of Young measures in our specific context is nothing but L∞
(
[0,∞)× TN ,P ([0, γ])

)
(where557

P ([0, γ]) is the space of probabilities on [0, γ]) endowed with the weak ?−topology.558
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Theorem 5.1 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied. Suppose u = u(t, x) is a solution of559

(1.1)-(1.3) given by Theorem 2.4. Furthermore, suppose we have560

r1 = r2 = r561

in Assumption 4.1 and define562

E∞ := lim
t→∞

E[(u1, u2)(t, ·)],563

where E[(u1, u2)(t, ·)] is the energy functional defined in (4.4).564

Then for each i = 1, 2 and each t ≥ 0 the Dirac measure δ(u1+u2)(t,x) belongs to the space of Young565

measures Y
(
TN ; [0, γ]

)
(γ :=

∑
i=1,2 ‖ui‖L∞([0,∞)×TN )), i.e.,566

(u1 + u2)(t, x) ∈ [0, γ], for all t ≥ 0 and almost every x ∈ RN ,567

568 ∫
A×[0,γ]

η(λ)δ(u1+u2)(t,x)( dλ) dx =

∫
A

η((u1 +u2)(t, x)) dx, for any A ∈ B(TN ), for any η ∈ C([0, γ],R).569

Moreover, we can prove570

r ≤ E∞ ≤ 2r571

and572

lim
t→∞

δ(u1+u2)(t,x) = (E∞/r − 1)δ0 + (2− E∞/r)δr,573

in the sense of the narrow convergence topology of Y (TN ; [0, γ]). This means that for each continuous574

function η : [0, γ]→ R and for any A ∈ B(TN )575

lim
t→∞

∫
A

η((u1 + u2)(t, x)) dx =

∫
A

(E∞/r − 1)η(0) + (2− E∞/r)η(r) dx.576

Remark 5.2 Under the same assumptions as in Theorem 5.1, let {tn}n≥0 be any sequence tending to577

∞ as n→∞. Then the sequence {(u1 + u2)(tn, ·)}n≥0 ⊂ L∞per(RN ) is relatively compact in L1
per(RN ) if578

and only if579

E∞ = r or E∞ = 2r.580

The above result is a direct consequence of Young measure properties (see [9, Corollary 3.1.5]), which581

says if the sequence of Young measures {δ(u1+u2)(tn,x)}n≥0 converges in the narrow sense to a Young582

measure ν(x, ·) and ν(x, ·) is a single Dirac measure δφ(x)(·) for almost all x ∈ TN . Then we have583

(u1 + u2)(tn, x)
L1

−−→ φ(x), n→∞.584

In our case, when E∞ = r (resp. = 2r), then585

(u1 + u2)(tn, x)
L1

−−→ r (resp. 0), n→∞.586

Remark 5.3 When E∞ lies strictly in the interval (r, 2r), then δ(u1+u2)(t,x) converges to two Dirac587

measures as t → ∞. To illustrate the notion of narrow convergence to two Dirac measures, one may588

consider the following example. For each n ∈ N,589

un(x) =

{
1 x ∈ ∆x [j, j + p),

0 x ∈ ∆x [j + p, j + 1).
, j = 0, 1, . . . , n, p ∈ (0, 1), ∆x =

2π

n+ 1
.590

Then one can prove that591

lim
n→∞

δun(x) = pδ1 + (1− p)δ0592

in the sense of narrow convergence. Indeed, for any η ∈ Cb([0, 1]) and ϕ ∈ L1(0, 2π) one has593 ∫
[0,2π]

ϕ(x)

∫
[0,1]

η(λ)δun(x)(dλ)dx =

∫
[0,2π]

ϕ(x)η(un(x)) dx

=

n∑
j=0

∫
∆x[j,j+p)

ϕ(x)η(1)dx+

∫
∆x[j+p,j+1)

ϕ(x)η(0) dx,

594

and the result follows when n→∞.595
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Next, we introduce the notion of Young measures and the notion of narrow convergence topology in a596

general case.597

598

Definition 5.4 (Young measure) Let (S, d) be a separable metric space and let P(S) be the set of599

probability measures on (S, d). Let (Ω,A, µ) be a finite measure space endowed with σ−algebra A (in600

our case µ is a Lebesgue measure). A map ν : Ω → P(S) (i.e. the map ν maps each x ∈ Ω to a601

probability B → ν(x,B) on S) is said to be a Young measure if for each Borel set B ∈ B(S) the602

function x 7→ ν(x,B) is measurable from (Ω,A) into [0, 1]. The set of all Young measures from (Ω,A)603

into S is denoted by Y (Ω,A;S).604

Definition 5.5 (Narrow convergence topology) The set Y (Ω,A;S) is endowed with narrow conver-605

gence topology which is the weakest topology on Y (Ω,A;S) such that for each functional from Y (Ω,A;S)606

into R defined by607

ν 7−→
∫
A

∫
S
η(λ)ν(x, dλ)µ( dx)608

is continuous whenever A ∈ A and η ∈ Cb(S;R).609

Remark 5.6 Note that a sequence {νn}n∈N ⊂ Y (Ω,A;S) narrowly converges to ν ∈ Y (Ω,A;S) if and610

only if for any η ∈ Cb(S;R) and A ∈ A611

lim
n→∞

∫
A

∫
S
η(λ)νn(x, dλ)µ( dx) =

∫
A

∫
S
η(λ)ν(x, dλ)µ( dx).612

For the sake of simplicity, we use Y (Ω;S) to denote Y (Ω,A;S) if A = B(Ω).613

Since the time variable t is in a unbounded domain, we introduce the local narrow convergence topology.614

615

Definition 5.7 (Local narrow convergence topology) Let (S, d) be a separable metric space and616

let (Ω,A, µ) be a finite measure space (in practice µ will be a Lebesgue measure in our case). The set617

Y (R× Ω,B(R)⊗A;S) is endowed with the local narrow convergence topology denoted by Tloc which is618

defined as the weakest topology on Y (R× Ω,B(R)⊗A;S) such that for each functional from Y (Ω,A;S)619

into R defined by620

ν 7−→
∫
I×A

(∫
S
η(λ)ν(t, x, dλ)

)
( dt⊗ µ( dx)) ,621

is continuous for each bounded interval I ⊂ R, A ∈ A and η ∈ Cb(S;R).622

For our case, we consider Ω = TN , A = B
(
TN
)
is the Borel σ– algebra and µ is the Lebegues measure,623

the set S = [0, γ] endowed with Euclidean norm. To simplify the notations, we set624

Y (TN ; [0, γ]) := Y (TN ,B(TN ); [0, γ]).625

We define Yloc
(
R× TN ; [0, γ]

)
to be the topological space Y

(
R× TN ; [0, γ]

)
endowed with the local626

narrow convergence topology Tloc. Furthermore, let us consider the probability space P
(
TN × [0, γ]

)
627

and let us recall that the usual weak ∗−topology on P
(
TN × [0, γ]

)
is metrizable by using the so-called628

bounded dual Lipschitz metric (Wasserstein metricWp when p = 1) defined for each µ, ν ∈ P
(
TN × [0, γ]

)
629

by630

Θ (µ, ν) = sup

{∣∣∣∣∣
∫
TN×[0,γ]

f(x, λ) (µ− ν)( dx, dλ)

∣∣∣∣∣ f ∈ Lip
(
TN × [0, γ]

)
, ‖f‖Lip ≤ 1

}
.631

Recall that the Lipschitz norm for metric space (X, d) is defined as follows632

‖f‖Lip = sup
x∈X
|f(x)|+ sup

(x,y)∈X2, x 6=y

|f(x)− f(y)|
d(x, y)

, for any f ∈ Lip(X).633

We refer to Dudley [12, Theorem 18] for the equivalence between the weak ?−topology on P
(
TN × [0, γ]

)
634

and the topology induced by Θ (·, ·). In the following, the probability space P
(
TN × [0, γ]

)
is always en-635

dowed with the metric topology induced by Θ without further precision. Let {tn}n≥0 be a given increasing636

sequence tending to ∞ as n→∞. Using the above definition, we can prove the following lemma.637
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Lemma 5.8 Let Assumptions 1.1, 1.2, 4.1 and 4.4 be satisfied and T > 0. The sequence of maps638 {
t 7−→ µni,t

}
n∈N from [−T, T ] to P

(
TN × [0, γ]

)
(endowed with the above metric Θ) and defined by639 ∫

TN×[0,γ]

g(x, y)µni,t( dx, dy) = |TN |−1

∫
TN

g (x, ui(t+ tn, x)) dx, for any g ∈ C
(
TN × [0, γ];R

)
,640

is relatively compact in C
(
[−T, T ];P

(
TN × [0, γ]

))
.641

Remark 5.9 In the following, we use the notation642

µni,t( dx, dy) = |TN |−1 dx⊗ δui(t+tn,x)( dy).643

Proof. Let us first consider the classical solutions. For each g ∈ C1(TN × R)644 ∫
TN

g(x, ui(t, x)) dx−
∫
TN

g(x, ui(s, x)) dx =

∫ t

s

d

dl

∫
TN

g(x, ui(l, x)) dxdl.645

Since ui is bounded, we have646

d

dt

∫
TN

g(x, ui(t, x)) dx =

∫
TN

∂ug(x, ui(t, x))∂tui(t, x) dx

=

∫
TN

∂ug(x, ui(t, x)) (−div(uiv) + uihi(ui)) dx

=

∫
TN

ui∇x [∂ug(x, ui(t, x))] · v + ∂ug(x, ui(t, x))uihi(ui) dx,

(5.1)647

where the last equality is obtained by applying Green’s formula together with periodic boundary condi-648

tion. We can see that649

ui(t, x)∇x [∂ug(x, ui(t, x))] = ∇x [ui(t, x)∂ug(x, ui(t, x))− g(x, ui(t, x))] + p(x, ui(t, x)),650

where p(x, u) = ∇xg(x, u).651

By substituting the last formula into (5.1) and by using again the periodicity we derive that652

d

dt

∫
TN

g(x, ui(t, x)) dx = −
∫
TN

[ui(t, x)∂ug(x, ui(t, x))− g(x, ui(t, x))] divv(t, x) dx

+

∫
TN

p(x, ui(t, x)) · v(t, x) dx

+

∫
TN

∂ug(x, ui(t, x))ui(t, x)hi(ui(t, x)) dx.

(5.2)653

The formula (5.1) extends to the solution integrated along the characteristics by usual density arguments.654

Incorporating the estimation of supt≥0 ‖u(t, ·)‖L∞ in Theorem 4.10, the estimation of v in Lemma 4.3655

and the above equality (5.2), we deduce that there exists a constant M > 0 such that656 ∣∣∣∣∫
RN

g(x, ui(t, x)) dx−
∫
RN

g(x, ui(s, x)) dx

∣∣∣∣ ≤M‖g‖Lip(TN×[0,γ])|t− s|.657

From the definition of the metric on Θ (µ, ν), we can see that658

Θ
(
µni,t, µ

n
i,s

)
≤M |t− s|.659

This implies that the mapping t → µni,t is continuous from [−T, T ] to P
(
TN × [0, γ]

)
. By Prohorov’s660

compactness theorem [7, Theorem 5.1], the space P
(
TN × [0, γ]

)
endowed with the metric Θ is a compact661

metric space. Therefore, we can apply Arzela-Ascoli theorem and the result follows.662

663

Since u is uniformly bounded, one can deduce the following compact result in the space of Young664

measures (see [29, Theorem 9.15]).665

Lemma 5.10 Suppose u = (u1, u2) is a solution of (1.1)-(1.3), the sequence
{
δui(t+tn,x)

}
n≥0

is relatively666

compact in the local narrow convergence topology of Yloc
(
R× TN ; [0, γ]

)
for each i = 1, 2.667
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Using the above Lemma 5.8 and Lemma 5.10, up to a subsequence, one can assume that there exists668

a Young measure ν ≡ νi,t(x, ·) ∈ Y
(
R× TN ; [0, γ]

)
such that669

lim
n→∞

δui(t+tn,x) = νi,t(x, ·) in the topology of Yloc
(
R× TN ; [0, γ]

)
. (5.3)670

and671

lim
n→∞

µni,t = µ∞i,t (5.4)672

where the limit holds in the locally uniformly continuous topology of C
(
R;P

(
TN × [0, γ]

))
. Note that673

the limits µ∞i,t and νi,t(x, ·) depend on the choice of subsequence.674

For each continuous function f ∈ C
(
TN × [0, γ];R

)
and each n ≥ 0, one has from definition that675 ∫

TN×[0,γ]

f(x, y)µni,t( dx, dy) = |TN |−1

∫
TN

∫
[0,γ]

f (x, y) δui(t+tn,x)( dy) dx.676

From (5.3) and (5.4), passing to the limit n→∞ yields to677 ∫
TN×[0,γ]

f(x, y)µ∞i,t( dx, dy) = |TN |−1

∫
TN

∫
[0,γ]

f (x, y) νi,t(x, dy) dx.678

This can be rewrite as679

µ∞i,t( dx, dy) = |TN |−1 dx⊗ νi,t(x, dy). (5.5)680

The following Lemmas 5.11 and 5.12 show more properties about the family of measures νi,t(x, ·).681

Our next result describes the support of νi,t(x, ·).682

Lemma 5.11 Under the same assumptions of Lemma 5.8, for i = 1, 2, there exist measurable maps683

ai : R× TN → R such that 0 ≤ ai(t, x) ≤ 1 a.e. (t, x) ∈ R× TN and684

νi,t(x, ·) = (1− ai(t, x)) δ0(.) + ai(t, x)δri(.), a.e. (t, x) ∈ R× TN .685

Proof. Define Fi(u) := u |hi(u) ln(u/ri)| for u ∈ [0,∞) and recall that from equation (4.7), for any τ > 0686

we have687

lim
t→+∞

∫ t+τ

t

∫
TN

Fi(ui(s, x)) dxds = 0, i = 1, 2.688

Therefore, for i = 1, 2 and from equations (5.4) and (5.5)689

0 = lim
n→∞

∫ τ

0

∫
TN

Fi(ui(t+ tn, x)) dx dt

= lim
n→∞

|TN |
∫ τ

0

∫
TN×[0,γ]

Fi(λ)µni,t( dx, dλ) dt

=

∫ τ

0

∫
TN×[0,γ]

Fi(λ)νi,t(x, dλ) dx dt.

690

Since the map u 7→ Fi(u) is non-negative and only vanishes at u = 0 and u = ri one obtains that691

supp νi,t(x, ·) ⊂ {0} ∪ {ri}, a.e. (t, x) ∈ R× TN .692

The above characterization of the support allows us to rewrite693

νi,t(x, ·) = νi,t (x, {0}) δ0(.) + νi,t (x, {ri}) δri(.), a.e. (t, x) ∈ R× TN .694

Setting ai(t, x) ≡ νi,t(x, {ri}) and recalling that (t, x) 7→ νi,t(x, ·) is measurable with value as a proba-695

bility measure, thus νi,t (x, {0}) = 1−νi,t (x, {ri}) and (t, x) 7→ a(t, x) is measurable, the result follows.696

697

Our next result shows the measurable function ai(t, x) is independent of the time variable t.698
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Lemma 5.12 Under the same assumptions of Lemma 5.8, there exists a measurable map ci : TN → TN699

such that ai ≡ ai(t, x) given by Lemma 5.11 satisfies700

ai(t, x) ≡ ci(x), a.e. x ∈ TN , for any t > 0, i = 1, 2.701

Moreover, for any t ∈ R,702

νi,t(x, ·) = (1− ci(x))δ0(.) + ci(x)δri(.), a.e. x ∈ TN , i = 1, 2,703

for some measurable functions ci : TN → TN , i = 1, 2.704

Furthermore, we have705

lim
n→∞

δui(t+tn,x) = (1− ci(x))δ0 + ci(x)δri , (5.6)706

in the sense of the narrow convergence and where the limit depends on the choice of subsequence.707

Proof. Suppose that u = (u1, u2) is a classical solution. For any {tn}n≥0 with tn → ∞ as n → 0 and708

any φ ∈ C1
c (TN ),709 ∫

TN
φ(x)∂tui(t+ tn, x) dx+

∫
TN

φ(x)div(u(t+ tn, x)v(t+ tn, x)) dx

=

∫
TN

φ(x)ui(t+ tn, x)hi(ui(t+ tn, x)) dx.

710

Since φ has compact support, we have711 ∫
TN

φ(x)∂tui(t+ tn, x) dx

=

∫
TN
∇φ(x) · v(t+ tn, x)u(t+ tn, x) dx+

∫
TN

φ(x)ui(t+ tn, x)hi(ui(t+ tn, x)) dx.

712

Given any T ∈ R and δ > 0, integrating both sides over (T, T + δ) leads to713 ∫
TN

φ(x)
(
ui(T + δ + tn, x)− ui(T + tn, x)

)
dx

=

∫ T+δ

T

∫
TN
∇φ(x) · v(t+ tn, x)u(t+ tn, x) dxdt

+

∫ T+δ

T

∫
TN

φ(x)ui(t+ tn, x)hi(ui(t+ tn, x)) dxdt.

(5.7)714

Now equation (5.7) is also true for any solution integrated along the characteristics. In fact, we can715

apply Theorem 2.4 (iii). Since the semiflow is continuous in L1 norm, that is, for any t ∈ [T, T + δ],716

‖ui(t, x;ϕni )− ui(t, x;ϕi)‖L1 → 0, as n→∞,717

where {ϕni }n≥0 ⊂ C1(TN ) with718

ϕni
L1(TN )−−−−−→ ϕi ∈ L∞(TN ).719

Hence, we can pass the limit to both sides of (5.7). For the right-hand-side of (5.7), due to720

lim
t→∞

‖v(t, ·)‖C0 = 0721

in Remark 4.11, we have for the first term722

lim
n→∞

∣∣∣∣∣
∫ T+δ

T

∫
TN
∇φ(x) · v(t+ tn, x)u(t+ tn, x) dx dt

∣∣∣∣∣
≤ lim
n→∞

δ|TN |‖φ‖C1 sup
t≥0
‖ui(t, ·)‖L∞‖v(t+ tn, ·)‖C0 = 0.

(5.8)723

While the second term writes724 ∫ T+δ

T

∫
TN

φ(x)ui(t+ tn, x)hi(ui(t+ tn, x)) dx dt

=

∫ T+δ

T

∫
TN

φ(x)

[∫
[0,γ]

λhi (λ) δui(t+tn,x)( dλ)

]
dx dt.

725
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Letting n→∞ yields726

lim
n→∞

∫ T+δ

T

∫
TN

φ(x)ui(t+ tn, x)hi(ui(t+ tn, x)) dx dt

=

∫ T+δ

T

∫
TN

φ(x)

[∫
[0,γ]

λhi (λ) [(1− ai(t, x)) δ0 + ai(t, x)δri ] ( dλ)

]
dxdt

=

∫ T+δ

T

∫
TN

φ(x)

[∫
[0,γ]

rihi (ri) ai(t, x)

]
dxdt = 0.

(5.9)727

Therefore, by (5.8) and (5.9) we deduce728

lim
n→∞

∫
TN

φ(x)
(
ui(T + δ + tn, x)− ui(T + tn, x)

)
dx

= ri

∫
TN

φ(x)
(
ai(T + δ, x)− ai(T, x)

)
dx = 0.

729

Hence we have730 ∫
TN

φ(x)
(
ai(T + δ, x)− ai(T, x)

)
dx = 0, for any φ(x) ∈ C1

c (TN ).731

Since T ∈ R and δ > 0 is arbitrary, we deduce for any t ∈ R732

ai(t, x) = ci(x), a.e. x ∈ TN , (5.10)733

where ci : TN → TN is a measurable function. The last part of the lemma now follows by the above734

equation (5.10) and Lemma 5.11.735

736

Next, we study the narrow convergence of the measure δ(u1+u2)(t+tn,x) as n→∞.737

Corollary 5.13 Let {tn}n≥0 be a given increasing sequence tending to ∞ as n → ∞. Then, up to a738

subsequence, we have two measurable functions ci(x) ∈ [0, 1] for i = 1, 2, such that for any t ≥ 0,739

lim
n→∞

δ(u1+u2)(t+tn,x) =

1−
∑
i=1,2

ci(x)

 δ0 +
∑
i=1,2

ci(x)δri740

in the sense of narrow convergence.741

Proof. From segregation property in Theorem 3.1, for any η ∈ C([0, γ]) we have742

η (u1(t, x) + u2(t, x)) + η(0) = η(u1(t, x)) + η(u2(t, x)), for any (t, x) ∈ R+ × TN ,743

which is equivalent to744

δ0 + δ(u1+u2)(t,x) = δu1(t,x) + δu2(t,x).745

Therefore, for any ϕ ∈ L1(TN ), we have746

lim
n→∞

∫
TN

ϕ(x)

∫
[0,γ]

η(λ)
(
δ0 + δ(u1+u2)(t+tn,x)

)
( dλ) dx

= lim
n→∞

∫
TN

ϕ(x)

∫
[0,γ]

η(λ)
(
δu1(t+tn,x) + δu2(t+tn,x)

)
( dλ) dx

=

∫
TN

ϕ(x)

∫
[0,γ]

η(λ)

2−
∑
i=1,2

ci(x)

 δ0 +
∑
i=1,2

ci(x)δri

 ( dλ) dx.

747

By subtracting the term δ0 from each side, we deduce that748

lim
n→∞

δ(u1+u2)(t+tn,x) =

1−
∑
i=1,2

ci(x)

 δ0 +
∑
i=1,2

ci(x)δri (5.11)749

in the sense of the narrow convergence topology of Y (TN ; [0, γ]).750

751
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Lemma 5.14 Under the same assumptions as in Lemma 5.8, the following equality holds752

r1c1(x) + r2c2(x) ≡ r1 + r2 − E∞, a.e. x ∈ TN ,753

where E∞ := limt→∞E [(u1, u2)(t, ·)] in (4.4).754

Proof. Recall equation (4.3) where we have Gi(0) = ri, G(ri) = 0, we can see that755

lim
n→∞

Ei [ui(t+ tn, ·)] = lim
n→∞

1

|TN |

∫
TN

Gi(ui(t+ tn, x)) dx

= lim
n→∞

1

|TN |

∫
TN×[0,γ]

Gi(λ)δui(t+tn,x)( dλ) dx

= lim
n→∞

1

|TN |

∫
TN×[0,γ]

Gi(0)(1− ci(x)) +Gi(ri)ci(x) dx

= ri −
1

|TN |

∫
TN

rici(x) dx.

(5.12)756

Meanwhile, from (4.9) the Fourier coefficients satisfy757

lim
t→∞

ck [(u1 + u2)(t, ·)] = 0, for any k ∈ ZN\{0}.758

On the other hand, we have for all k ∈ ZN\{0}759

lim
n→∞

ck [(u1 + u2)(t+ tn, ·)] = lim
n→∞

1

|TN |

∫
TN

e−ikx(u1 + u2)(t+ tn, x) dx

= lim
n→∞

1

|TN |

∫
TN×[0×γ]

e−ikxλ
(
δu1(t+tn,x) + δu1(t+tn,x)

)
( dλ) dx

=
1

|TN |

∫
TN

e−ikx(r1c1(x) + r2c2(x)) dx.

760

Since c1, c2 ∈ L∞(TN ) ⊂ L2(TN ) and {e−ikx}k∈Z is a basis of L2(TN ). This implies that r1c1(x)+r2c2(x)761

is a constant function. Recall that762

E∞ = lim
n→∞

∑
i=1,2

Ei [ui(t+ tn, ·)] = r1 + r2 −
1

|TN |

∫
TN

∑
i=1,2

rici(x)dx,763

thus the result follows.764

765

Lemma 5.15 (Segregation at t =∞) Under the same assumptions as in Lemma 5.8, the following766

equation holds767

c1(x)c2(x) = 0, a.e., x ∈ TN .768

Moreover when r1 = r2 = r, then769

r ≤ E∞ ≤ 2r.770

Proof. By using the segregation property in Theorem 3.1, for any η ∈ Cb([0, γ]) we can see that771

η
(

(u1(t, x) + u2(t, x))
2 )

= η
(
u2

1(t, x) + u2
2(t, x)

)
, for any t ∈ R+, a.e. x ∈ TN .772

Therefore, for any Borel set A ∈ B(TN ), we deduce773 ∫
A×[0,γ]

η(λ2)δ(u1+u2)(t+tn,x)( dλ) dx

=

∫
A×[0,γ]2

η(λ2
1 + λ2

2)δu1(t+tn,x)( dλ1)δu2(t+tn,x)( dλ2) dx.

(5.13)774

By equation (5.6) and (5.11), we let n→∞, then for the left-hand-side (L.H.S.) of equation (5.13)775

lim
n→∞

L.H.S. of (5.13) =

∫
A×[0,γ]

η(λ2)

1−
∑
i=1,2

ci(x)

 δ0( dλ) +
∑
i=1,2

ci(x)δri( dλ)


=

∫
A

η(0)

1−
∑
i=1,2

ci(x)

+
∑
i=1,2

η(r2
i )ci(x) dx.

776
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Then for the right-hand-side (R.H.S.) of equation (5.13)777

lim
n→∞

R.H.S. of (5.13) =

∫
A×[0,γ]2

η(λ2
1 + λ2

2)
∏
i=1,2

[(1− ci(x)) δ0( dλi) + ci(x)δri( dλi)] dx

=

∫
A

(
η(0)

∏
i=1,2

(1− ci(x)) + η(r2
1)c1(x)(1− c2(x))

+ η(r2
2)c2(x)(1− c1(x)) + η(r2

1 + r2
2)c1(x)c2(x)

)
dx.

778

Comparing the two limits and noticing that A ∈ B(TN ) is arbitrary, we conclude that779

c1(x)c2(x)

[
η(0) + η(r2

1 + r2
2)− η(r2

1)− η(r2
2)

]
= 0, for a.e. x ∈ TN .780

Furthermore, since η ∈ Cb([0, γ]) is any given function, we can choose an η such that781

η(0) + η(r2
1 + r2

2)− η(r2
1)− η(r2

2) 6= 0,782

thus783

c1(x)c2(x) = 0, a.e., x ∈ TN . (5.14)784

Since by Lemma 5.11 and 5.12, one has 0 ≤ ci(x) ≤ 1 for any x ∈ TN . Hence, one can deduce from785

Lemma 5.14786

0 ≤ E∞ ≤ r1 + r2.787

Moreover, one can deduce from (5.14) that788

min{r1, r2} ≤ E∞ ≤ r1 + r2.789

If we assume r1 = r2 = r, then790

r ≤ E∞ ≤ 2r,791

the result follows792

793

Proof of Theorem 5.1. By Lemma 5.10, the sequence {δui(t+tn,x)}n≥0 is relatively compact in Yloc
(
R× TN ; [0, γ]

)
794

with locally narrow topology, thus, up to a sequence, we have795

lim
n→∞

δui(t+tn,x) = νi,t(x, ·) in the topology of Yloc
(
R× TN ; [0, γ]

)
.796

The key arguments of the proof lies in the two consequences of the decreasing energy functional, namely,797

equation (4.6) and equation (4.7). Lemma 5.11 is a consequence of the first equation (4.6) by which we798

can determine the support of νi,t(x, ·), i.e., there exists measurable functions ai(t, x) such that799

νi,t(x, ·) = (1− ai(t, x))δ0(.) + ai(t, x)δri(.), a.e. x ∈ TN , i = 1, 2.800

Moreover, Lemma 5.8 and Lemma 5.12 enable us to write ai(t, x) ≡ ci(x), i = 1, 2. Thus, we have801

lim
n→∞

δui(t+tn,x) = (1− ci(x))δ0 + ci(x)δri in the topology of Yloc
(
R× TN ; [0, γ]

)
802

Applying the segregation property, we have803

δ0 + δ(u1+u2)(t,x) = δu1(t,x) + δu2(t,x).804

Hence by Corollary 4.12,805

lim
n→∞

δ(u1+u2)(t+tn,x) =

1−
∑
i=1,2

ci(x)

 δ0 +
∑
i=1,2

ci(x)δri (5.15)806

If in addition, assume that r1 = r2 = r, applying Lemma 5.14 where we used the decay property of807

Fourier coefficients in equation (4.7), which yields808

2∑
i=1

ci(x) = 2− E∞
r
.809
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Together with equation (5.15) we obtain810

lim
n→∞

δ(u1+u2)(t+tn,x) = (E∞/r − 1)δ0 + (2− E∞/r)δr,811

in the sense of the narrow convergence topology of Y (TN ; [0, γ]) and by Lemma 5.15 we have E∞ ∈ [r, 2r].812

Now the limit does not depend on t and the choice of the subsequence. Since {tn}n≥0 is any given813

sequence that tends to infinity and
(
TN ,B(TN )

)
is a countably generated σ−algebra, then the topology814

Y (TN ; [0, γ]) is metrizable (see for instance [34, Theorem 1] or the monograph [9]). Therefore, we815

conclude that816

lim
t→∞

δ(u1+u2)(t,x) = (E∞/r − 1)δ0 + (2− E∞/r)δr.817

As a result, Theorem 5.1 follows.818

819

6 Discussion and numerical simulations820

In this section we study system (1.1) for the one dimensional case with numerical simulations. Our821

original motivation is coming from two species of cells growing in a petri dish.822

Here we will focus on the coexistence and the exclusion principle for these two species. From Theorem823

5.1, we deduce that824

lim
t→∞

δ(u1+u2)(t,x) = (E∞/r − 1)δ0 + (2− E∞/r)δr, in the sense of narrow convergence.825

Therefore, the limit E∞ := limt→∞E[(u1, u2)(t, ·)] is an important index to determine whether the826

Dirac measure δu1+u2
converges to a Young measure in the sense of narrow convergence or to a constant827

function in L1 norm (see Remark 5.2). To that aim, we trace the curve t 7−→ E[(u1, u2)(t, ·)] in numerical828

simulations, which has been analytically proved decreasing in Theorem 4.6. Moreover, we also plot the829

curve t 7−→ Ei[ui(t, ·)], i = 1, 2, respectively. This will help us to understand the limit for each species830

ui.831

In the numerical simulations, we focus on the convergence of the energy functional which implies the832

convergence of the total number for each species. In fact, by using (5.6) we obtain833

lim
t→∞

1

|T|

∫
T
ui(t, x)dx = lim

t→∞

1

|T|

∫
T

∫
[0,γ]

λδui(t,x)(dλ)dx =
ri
|T|

∫
T

∫
[0,γ]

ci(x)dx.834

Hence by using (5.12) one has835

lim
t→∞

Ei[ui(t, ·)] = ri

(
1− 1

|T|

∫
T
ci(x)dx

)
= ri − lim

t→∞

1

|T|

∫
T
ui(t, x)dx. (6.1)836

This means that the energy functional is related to the asymptotic total number of individuals for each837

species. We mainly investigate the following properties by numerical experiments.838

Coexistence: If r1 = r2 = r, then c1(x), c2(x) ∈ (0, 1), a.e., x ∈ TN . For each species, the following839

limits exist840

lim
t→∞

‖ui(t, ·)‖L1 = r

∫
TN

ci(x)dx ∈ (0, r), i = 1, 2.841

We will see that the relative location of each species has an impact on the asymptotic number in each842

species. Moreover, we have843

(u1 + u2)(t, x)
L1

−−→ r, t→∞.844

Exclusion Principle: If r1 > r2 (resp. r1 < r2), then c1(x) = 1, c2(x) = 0 (resp. c1(x) = 0, c2(x) = 1)845

a.e., x ∈ TN , which implies that846

u1(t, x)
L1

−−→ r1, u2(t, x)
L1

−−→ 0, (resp. u1(t, x)
L1

−−→ 0, u2(t, x)
L1

−−→ r2),847

and848

(u1 + u2)(t, x)
L1

−−→ max{r1, r2}, t→∞.849
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6.1 The case r1 = r2 implies the coexistence850

Our first scenario is to present the results in Theorem 5.1. It is interesting to notice that in Theorem851

5.1, we only assume the equilibrium of the corresponding ODE system for each species to be the same852

without imposing any other condition on h, which means that the dynamics for these two species can be853

different. Hence, we will use the following two different reaction functions for two species854

u1h1(u1 + u2) = u1

(
b1

1 + γ(u1 + u2)
− µ

)
, u2h2(u1 + u2) = b2u2

(
1− u1 + u2

K

)
. (6.2)855

One can verify that hi satisfies Assumption 1.1 and Assumption 4.1 with their roots (i.e., hi(ri) =856

0, i = 1, 2) as857

r1 :=
b1 − µ
γµ

, r2 = K.858

Our kernel ρ in the simulation is chosen as859

ρ(x) = e−π|x|
2

, x ∈ R, (6.3)860

which is a Gaussian kernel. Therefore, due to Remark 1.3 and Remark 4.5, Assumption 1.2 and As-861

sumption 4.4 are satisfied.862

We set the initial distributions for two species to be of compact supports and separated. From863

Theorem 3.1, we can observe the segregation property of the two species as time evolves. Our parameters864

in system (1.1) are given as865

b1 = b2 = 1.2, µ = 1, γ = 1, K = 0.2. (6.4)866

Hence one can calculate that867

r1 = r2 = 0.2.868

Now we trace the curve t 7−→ E[(u1, u2)(t, ·)] in numerical simulations. We also plot the curve t 7−→869

Ei[ui(t, ·)], i = 1, 2, respectively. Moreover, we plot the variation of the mean value of the total number870

of individuals for each species, that is871

t 7−→ 1

2π

∫ 2π

0

ui(t, x)dx, i = 1, 2.872
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Figure 2: (a). The energy functionals t 7−→ Ei[ui(t, ·)], i = 1, 2, and t 7−→ E[u1, u2)(t, ·)] under system
(1.1). Parameters are set as in (6.4). Thus, one has r1 = r2 = 0.2. (b). Evolution of the mean value of
individuals for each species.

From Figure 2, we can see that the limit E∞ exists and equals to r = 0.2. From Theorem 5.1 and873

Remark 5.2, the limit E∞ = r implies874

(u1 + u2)(t, x)
L1

−−→ r, t→∞.875
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Moreover, from the simulation we note that each limit Ei,∞ := limt→∞Ei[ui(t, ·)] exists for i = 1, 2.876

From (6.1) we have877

Ei,∞ = r

(
1− 1

|T|

∫
T
ci(x)dx

)
, i = 1, 2. (6.5)878

By our simulation, we can see that E1,∞, E2,∞ ∈ (0, r) while E1,∞ + E2,∞ = r, together with equation879

(6.5) we can deduce that c1(x), c2(x) ∈ (0, 1), c1(x) + c2(x) = 1. Notice that c1(x), c2(x) ∈ (0, 1) implies880

the limits881

lim
n→∞

δui(tn,x) = (1− ci(x))δ0 + ci(x)δr, i = 1, 2,882

is not a single Dirac measure. Therefore, using Young measure and the weak compactness in Y (T; [0, γ])883

helps us to understand the limit of the solution.884

Now we plot the evolution of two populations under system (1.1) in Figure 3.885
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Figure 3: The evolution of the two populations of system (1.1). Parameters are set as in (6.4). One has
r1 = r2 = 0.2 which implies the coexistence of the two species. After t = 100, the distributions of the two
species stay the same.

For the asymptotic behavior of two populations, we can see from Figure 3 that the sum of two species886

u1 + u2 reaches a steady state at t = 100. From the pattern at each moment t, we can see two species887

keep segregated in stead of being mixed (as opposite to the case with linear diffusion).888

6.2 Initial location matters889

Consider two different initial distributions u0 = (u1(0, x), u2(0, x)) and ũ0 = (ũ1(0, x), ũ2(0, x)) and890

assume that their L1 norms are the same, that is891 ∫
T
ui(0, x)dx =

∫
T
ũi(0, x)dx, i = 1, 2.892
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Under the same set of parameters, define893

Ui,∞ := lim
t→∞

1

|T|

∫
T
ui(t, x)dx, Ũi,∞ := lim

t→∞

1

|T|

∫
T
ũi(t, x)dx, i = 1, 2, (6.6)894

we are interested in whether the limits Ui,∞ and Ũi,∞ will be the same or not.895

In the real biological experiments, this situation corresponds to the case where experimentalists896

use the same quantity of cells for each species for two separate petri dishes. Supposing the intrinsic897

mechanisms of cell populations for these two groups are the same, the only difference is the initial cell898

distributions in two petri dishes. We are interested in whether the final total mass for each population899

are the same. Before our simulation, we plot two different initial distributions as in Figure 4.900
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Figure 4: (a) and (b) correspond to the initial distributions u0 and ũ0 respectively. In (a), we shift a
part of u2 population at position in between 3/2π and 2π to the position in between π/2 to π. Hence, the
number individuals for each species is conserved.

0 20 40 60 80 100
0.08

0.1

0.12

0.14

0.16

0.18

0.2
(a)

0 20 40 60 80 100
0.04

0.06

0.08

0.1

0.12
(b)

Figure 5: The evolution of energy functional (a) and the mean value of individuals (b) corresponding
to two sets of different initial distributions in Figure 4. The dashed lines correspond to the simulation
with initial distribution as in Figure 4 (a) and solid lines correspond to initial distribution as in Figure
4 (b). The parameters are the same as in (6.4).

In Figure 5, we plot the energy functionals and the number of individuals corresponding to each901

initial distribution in Figure 4. Since the limits Ui,∞ and Ũi,∞ have a significant difference from Figure902

5 (b), thus we conclude the final total mass depends on the position of the initial value.903
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Figure 6: The evolution of the two populations of system (1.1). The initial condition is set as Figure 4
(b). Parameters are set as in (6.4). After t = 100, the distributions of the two species stay the same.

Now we give the evolution of the two populations under system (1.1). As for the simulation in Figure904

6, we can see that the same coexistence as in Figure 3 and the sum of the two populations905

(u1 + u2)(t, x)
L1

−−→ r, t→∞.906

However, the final patterns of two species at t = 100 in Figure 6. (i) and Figure 3. (i) are evidently907

different.908

6.3 The case r1 6= r2 implies exclusion principle909

Our second scenario complements the results in Theorem 5.1. Without loss of generality, we allow910

r1 > r2. This means species u1 is favored in the environment. Our parameters for the reaction functions911

(6.2) are given as912

b1 = 1.5, b2 = 1.2, µ = 1, γ = 1, K = 0.2. (6.7)913

Hence we can calculate that914

r1 = 0.5 > r2 = 0.2.915

As before, we trace the curve t 7−→ E[(u1, u2)(t, ·)] in numerical simulation and we also plot the curve916

t 7−→ Ei[ui(t, ·)], i = 1, 2, respectively. Moreover, we plot the variation of the mean value of the total917

number of individuals for each species.918
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Figure 7: (a). The energy functionals t 7−→ Ei[ui(t, ·)], i = 1, 2, and t 7−→ E[u1, u2)(t, ·)]. Parameters
are set as in (6.7). In such case, one has r1 = 0.5 > r2 = 0.2. (b). Evolution of the mean value of
individuals for each species.

By tracing the curve t 7−→ E[(u1, u2)(t, ·)], we can see from Figure 7 that it is strictly decreasing919

and it confirms again the result which has been proved in Theorem 4.6. We can also see that the curve920

t 7−→ E1[u1(t, ·)] is decreasing while t 7−→ E2[u2(t, ·)] is not monotone decreasing and their limits are921

lim
t→∞

E1[u1(t, ·)] = 0, lim
t→∞

E2[u1(t, ·)] = r2.922

If we have E1,∞ = 0, E2,∞ = r2, since ci(x) ∈ [0, 1], a.e. x ∈ T for i = 1, 2 and by equation (6.5) one923

obtains c1(x) = 1, c2(x) = 0. Therefore, we have c1(x) + c2(x) = 1, a.e. x ∈ T and the convergence in924

Theorem 5.1 is in the sense of L1 (see Remark 5.2)925

u1(t, x)
L1

−−→ r1, u2(t, x)
L1

−−→ 0, t→∞,926

and927

(u1 + u2)(t, x)
L1

−−→ r1, t→∞.928

This means if r1 > r2 (resp. r2 > r1), the species u1 will exclude u2 (resp. u2 will exclude u1) when t929

tends to infinity. Therefore, we can conclude the exclusion principle as in the beginning of this section.930

We plot the evolution of the solution as follows.931

33



0 /2 3/2 2
0

0.2

0.4

0.6

0.8

0 /2 3/2 2
0

0.1

0.2

0.3

0.4

0.5

0 /2 3/2 2
0

0.1

0.2

0.3

0 /2 3/2 2
0

0.1

0.2

0.3

0 /2 3/2 2
0

0.1

0.2

0.3

0.4

0.5

0 /2 3/2 2
0

0.2

0.4

0.6

0 /2 3/2 2
0

0.2

0.4

0.6

0 /2 3/2 2
0

0.2

0.4

0.6

0 /2 3/2 2
0

0.2

0.4

0.6

Figure 8: The evolution of the two populations of system (1.1) with reaction functions as (6.2) and kernel
ρ as Gaussian in (6.3). Parameters are set as in (6.7). In such case, one has r1 = 0.5 > r2 = 0.2 which
implies the exclusion principle.

In the simulations of Figure 8, species u1 shows its dominance over u2 when t = 5. As for the932

asymptotic behavior, in the last figure when t = 100, we can see that species u1 crowds out species u2933

completely.934
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7 Appendix937

For simplicity, we give the numerical scheme for the following single-species and one dimensional938

model with periodic boundary condition939 
∂tu+ ∂x (u v) = ε∂2

xu+ uh(u) t > 0, x ∈ T,

v(t, x) = −∂x(K ◦ u(t, ·))(x)

u(0, x) = u0(x) ∈ L1
per(T).

940

The numerical method is based on finite volume scheme. We briefly illustrate our numerical scheme.941

The approximation of the convolution term is942

(K ◦ u(t, ·))(x) =

∫
T
u(t, y)K(x− y)dy ≈

∑
j

K(x− xj)u(t, xj)∆x.943

In addition, we define944

pni :=

M∑
j=1

K(xi − xj)u(tn, xj)∆x,945
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for i = 1, 2, . . . ,M, n = 0, 1, 2, . . . , N . We use the numerical scheme as illustrated in [33] to deal with946

the nonlocal convection and the scheme reads as follows947

un+1
i = uni + ε

∆t

∆x2

(
un+1
i+1 − 2un+1

i + un+1
i−1

)
− ∆t

∆x

(
φ(un,−i+1 , u

n,+
i )− φ(un,−i , un,+i−1)

)
+ ∆t uni h(uni ),

i = 1, 2, . . . ,M, n = 0, 1, 2, . . . , N,

948

with φ(uni+1, u
n
i ) defined as949

φ(un,−i+1 , u
n,+
i ) = (vni+ 1

2
)+un,+i − (vni+ 1

2
)−un,−i+1 =

{
vn
i+ 1

2

un,+i vn
i+ 1

2

≥ 0,

vn
i+ 1

2

un,−i+1 vn
i+ 1

2

< 0.
950

where951

vni+ 1
2

= −
pni+1 − pni

∆x
, i = 1, 2, · · · ,M − 1,952

and953

un,−i = uni −
1

2
minmod(uni+1 − uni , uni − uni−1)

un,+i = uni +
1

2
minmod(uni+1 − uni , uni − uni−1)

i = 1, 2, · · · ,M − 1,954

where the function minmod(a, b) is defined as955

minmod(a, b) =

{
sign(a) min{a, b} sign(a) = sign(b),

0 Otherwise.
956

By the periodic boundary condition, let vn1
2

= vn
M+ 1

2

and un0 = unM , u
n
1 = unM+1. Thus,957

un,±0 = un,±M , un,±1 = un,±M+1,958

the conservation law holds when the reaction term equals zero.959
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