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Abstract
With the spread of COVID-19 across the world, a large amount of data on reported cases has become

available. We are studying here a potential bias induced by the daily number of tests which may be
insufficient or vary over time. Indeed, tests are hard to produce at the early stage of the epidemic and can
therefore be a limiting factor in the detection of cases. Such a limitation may have a strong impact on the
reported cases data. Indeed, some cases may be missing from the official count because the number of tests
was not sufficient on a given day. In this work, we propose a new differential equation epidemic model which
uses the daily number of tests as an input. We obtain a good agreement between the model simulations and
the reported cases data coming from the state of New York. We also explore the relationship between the
dynamic of the number of tests and the dynamics of the cases. We obtain a good match between the data
and the outcome of the model. Finally, by multiplying the number of tests by 2, 5, 10, and 100 we explore
the consequences for the number of reported cases.

1 Introduction
The epidemic of novel coronavirus (COVID-19) infections began in China in December 2019 and rapidly

spread worldwide in 2020. Since the early beginning of the epidemic, mathematicians and epidemiologists
have developed models to analyze the data and characterize the spread of the virus, and attempt to project
the future evolution of the epidemic. Many of those models are based on the SIR or SEIR model which is
classical in the context of epidemics. We refer to [26, 28] for the earliest articles devoted to such a question
and to [1, 3–7, 10, 12, 13, 20, 25] for more models. In the course of the COVID-19 outbreak, it became clear
for the scientific community that covert cases (asymptomatic or unreported infectious case) play an important
role. An early description of an asymptomatic transmission in Germany was reported by Rothe et al. [24]. It
was also observed on the Diamond Princess cruise ship in Yokohama in Japan by Mizumoto et al. [19] that
many of the passengers were tested positive to the virus, but never presented any symptoms. We also refer to
Qiu [21] for more information about this problem. At the early stage of the COVID-19 outbreak, a new class of
epidemic models was proposed in Liu et al. [14] to take into account the contamination of susceptible individuals
by contact with unreported infectious. Actually, this class of models was presented earlier in Arino et al. [2].
In [14] a new method to use the number of reported cases in SIR models was also proposed. This method and
model was extended in several directions by the same group in [15–17] to include non-constant transmission
rates and a period of exposure. More recently the method was extended and successfully applied to a Japanese
age-structured dataset in [11]. The method was also extended to investigate the predictability of the outbreak
in several countries including China, South Korea, Italy, France, Germany and the United Kingdom in [18].
The application of the Bayesian method was also considered in [9].

In parallel with these modeling ideas, Bayesian methods have been widely used to identify the parameters
in the models used for the COVID-19 pandemic (see e.g. Roques et al. [22,23] where an estimate of the fatality
ratio has been developed). A remarkable feature of those methods is to provide mechanisms to correct some of
the known biases in the observation of cases, such as the daily number of tests. Here we embed the data for
the daily number of tests into an epidemic model and compare the number of reported cases produced by the
model and the data. Our goal is to understand the relationship between the data for the daily number of tests
(which is an input of our model) and the data for the daily number of reported cases (which is an output of our
model).
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The plan of the paper is the following. In Section 2, we present a model involving the daily number of tests.
In Section 3, we apply the method presented in [14] to our new model. In Section 4, we present some numerical
simulations and compare the model with the data. The last section is devoted to the discussion.

2 Epidemic with testing data
Let n(t) be the number of tests per unit of time. Throughout this paper, we use one day as the unit of time.

Therefore n(t) can be regarded as the daily number of tests at time t. The function n(t) is actually coming
from a database for the New York State [29]. Let N(t) be the cumulative number of tests from the beginning
of the epidemic. Then

N ′(t) = n(t), for t ≥ t1 and N(t1) = N1. (2.1)

Remark 2.1 Section 4 is devoted to numerical simulations. We use n(t) as a piecewise constant function that
varies day by day. Each day, n(t) is equal to the number of tests that were performed that day. So n(t) should
be understood as the black curve in Figure 4.

The model consists of the following ordinary differential equation

S′(t) = −τS(t)[I(t) + U(t) +D(t)],
E′(t) = τS(t)[I(t) + U(t)] +D(t)]− αE(t),
I ′(t) = αE(t)− νI(t),
U ′(t) = ν (1− f) I(t) + n(t) (1− σ) g D(t)− ηU(t),
D′(t) = ν f I(t)− n(t) g D(t)− ηD(t),
R′(t) = n(t)σ gD(t)− ηR(t).

(2.2)

This system is supplemented by initial data (which are all non negative)

S(t1) = S1, E(t1) = E1, I(t1) = I1, U(t1) = U1, D(t1) = D1 and R(t1) = R1. (2.3)

The time t1 corresponds to the time where the tests started to be used constantly. Therefore the epidemic
started before t1.

Here t ≥ t1 is the time in days. S(t) is the number of individuals susceptible to infection. E(t) is the number
of exposed individuals (i.e. who are incubating the disease but not infectious). I(t) is the number of individuals
incubating the disease, but already infectious. U(t) is the number of undetected infectious individuals (i.e. who
are expressing mild or no symptoms), and the infectious that have been tested with a false negative result, are
therefore not candidates for testing. D(t) is the number of individuals who express severe symptoms and are
candidates for testing. R(t) is the number of individuals who have been tested positive to the disease. The flux
diagram of our model is presented in Figure 1.
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Exposed (E)

Asymptomatic infectious (I)

Undetected Infectious (U) Detectable Infectious (D)

Reported (R)Removed

τS(I +U +D)
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Figure 1: Flow chart of the epidemic model with tests (2.2). In this diagram n(t) is the daily number of tests
at time t. We consider a fraction (1 − σ) of false negative tests and a fraction σ of true positive tests. The
parameter g reflects the fact that the tests are devoted not only to the symptomatic patients but also to a large
fraction of the population of New York state.

Susceptible individuals S(t) become infected by contact with an infectious individual I(t), U(t) or D(t).
When they get infected, susceptibles are first classified as exposed individuals E(t), that is to say that they
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are incubating the disease but not yet infectious. The average length of this exposed period (or noninfectious
incubation period) is 1/α days.

After the exposure period, individuals are becoming asymptomatic infectious I(t). The average length of
the asymptomatic infectious period is 1/ν days. After this period, individuals are becoming either mildly
symptomatic individuals U(t) or individuals with severe symptoms D(t). The average length of this infectious
period is 1/η days. Some of the U -individuals may show no symptoms at all.

In our model, the transmission can occur between a S-individual and an I-, U - orR-individual. Transmissions
of SARS-CoV-2 are described in the model by the term τS(t)[I(t) + U(t) + D(t)] where τ is the transmission
rate. Here, even though a transmission from R-individuals to a S-individuals is possible in theory (e.g. if a
tested patient infects its medical doctor), we consider that such a case is rare and we neglect it.
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Figure 2: Key time periods of COVID-19 infection: the latent or exposed period before the onset of symptoms and
transmissibility, the incubation period before symptoms appear, the symptomatic period, and the transmissibility
period, which may overlap the asymptomatic period.

The last part of the model is devoted to the testing. The parameter σ is the fraction of true positive tests
and (1− σ) is the fraction of false negative tests. The quantity σ has been estimated at σ = 0.7 in the case of
nasal or pharyngeal swabs for SARS-CoV-2 [27].

Among the detectable infectious, we assume that only a fraction g are tested per unit of time. This fraction
corresponds to individuals with symptoms suggesting a potential infection to SARS-CoV-2. The fraction g is
the frequency of testable individuals in the population of New York state. We can rewrite g as

g = 1
κP

(2.4)

where P is the total number of individuals in the population of the state of New York and 0 ≤ κ ≤ 1 is the
fraction total population with mild or sever symptoms that may induce a test.

Symbol Interpretation Method
t1 Date when the tests start to be used extensively fixed
S1 Number of susceptible at time t1 fixed
E1 Number of exposed at time t1 fitted
I1 Number of asymptomatic infectious at time t1 fitted
U1 Number of undetectable infectious at time t1 fitted
D1 Number of detectable infectious at time t1 fitted
R1 Number of reported (tested positive) cases at time t1 fitted
τ Transmission rate fitted
n(t) Number of tests per unit of time fixed
1/α Average length of exposure fixed
1/ν Average length of asymptomatic infectiousness fixed
1/η Average length of symptomatic infectiousness fixed
f Frequency of infectious with sever symptoms fixed
σ Fraction of true positive tests fixed
g Frequency of testable individuals fixed

Table 1: Parameters and initial conditions of the model.

Individuals who were tested positive R(t) are infectious on average during a period of 1/η days. But we
assume that they become immediately isolated and do not contribute to the epidemic anymore. In this model we
focus on the testing of the D-individuals. The quantity n(t)σ gD is a flux of successfully tested D-individuals
which become R-individuals. The flux of tested D-individuals which are false negatives is n(t) (1−σ) g D which
go from the class of D-individuals to the U -individuals. The parameters of the model and the initial conditions
of the model are listed in Table 1.
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Before describing our method we need to introduce a few useful identity. The cumulative number of reported
cases is obtained by using the following equation

CR′(t) = n(t)σ gD(t). (2.5)

The daily number of reported cases DR′(t) is given by

DR(t)′ = n(t)σ gD(t)−DR(t). (2.6)

The cumulative number of detectable cases is given by

CD′(t) = νfI(t), (2.7)

and the cumulative number of undetectable cases is given by

CU ′(t) = ν(1− f)I(t) + n(t)(1− σ)gD(t). (2.8)

Symbol Interpretation Equation
t Time (in days)

S(t) Number of susceptible at time t (2.2)
E(t) Number of exposed at time t (2.2)
I(t) Number of asymptomatic infectious at time t (2.2)
U(t) Number of undetectable infectious at time t (2.2)
D(t) Number of detectable infectious at time t (2.2)
R(t) Number of reported (tested infectious) cases at time t (2.2)
CR(t) Cumulative number of reported (tested infectious) cases at time t (2.5)
DR(t) Daily number of reported (tested infectious) cases at time t (2.6)
CD(t) Cumulative number of detectable infectious at time t (2.7)
CU(t) Cumulative number of undetectable infectious at time t (2.8)

Table 2: Variables used in the model.

3 Method to fit the cumulative number of reported cases
In order to deal with data, we need to understand how to set the parameters as well as some components of

the initial conditions. In order to do so, we extend the method presented first in [14]. The main novelty here
concerns the cumulative number of tests which is assumed to grow linearly at the beginning. This property is
satisfied for the New York State data as we can see in Figure 3. The black curve in this figure is close to a line
from March 15 to April 15. Figure 4 shows day-by-day fluctuations of the number of tests while in Figure 3
the day-by-day fluctuations are not visible and the cumulative data allow to understand the growth tendency
of the number of tests.
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Figure 3: In this figure, we plot the cumulative number of tests for the New York State. The black curve, orange
curve, and blue curve correspond respectively to the number of tests, the number of positive tests, and the number
of negative tests. We can see that at the early beginning of the epidemic, the cumulative number of tests (black
curve) grows linearly from mid-March to mid-April.
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Figure 4: In this figure, we plot the daily number of tests for the New York State. The black curve, orange curve,
and blue curve correspond respectively to the number of tests, the number of positive tests, and the number of
negative tests.

Phenomenological models for the tests : We fit a line to the cumulative number of tests in a suitable
interval of days [t1, t2]. This means that we can find a pair of numbers a and b such that

N(t) = a× (t− t1) +N1, for t1 ≤ t ≤ t2. (3.1)

where a the daily number of tests and N1 is the cumulative number of tests on day t1.
By using the fact that N(t)′ = n(t) we deduce that

n(t) = a, for t1 ≤ t ≤ t2. (3.2)

Remark 3.1 In the simulations we fit a line to the cumulative number of tests from mid-March to mid-April.
Figure 3 shows that the linear growth assumption is reasonable for the New York State cumulative testing data.

Phenomenological models for the reported cases: At the early stage of the epidemic, we assume that all
the infected components of the system grow exponentially while the number of susceptible remains unchanged
during a relatively short period of time t ∈ [t1, t2]. Therefore, we assume that

E(t) = E1e
χ2(t−t1), I(t) = I1e

χ2(t−t1), D(t) = D1e
χ2(t−t1) and U(t) = U1e

χ2(t−t1). (3.3)

We deduce that the cumulative number of reported cases satisfies

CR(t) = CR(t1) +
∫ t

t1

aσgD(θ)dθ (3.4)

hence by replacing D(t) by the exponential formula (3.3)

CR(t) = CR(t1) + aσg

χ2
D1

(
eχ2(t−t1) − 1

)
(3.5)

and it makes sense to assume that CR(t)− CR(t1) has the following form

CR(t)− CR(t1) = χ1e
χ2(t−t1) − χ3. (3.6)

By identifying (3.5) and (3.6) we deduce that

χ1 = χ3 = a σ g

χ2
D1. (3.7)

Moreover by using (3.2) and the fact that the number of susceptible S(t) remains constant equalling S1 on the
time interval t ∈ [t1, t2], the E-equation, I-equation, U -equation and D-equation of the model (2.2) become

E′(t) = τS1[I(t) + U(t) +D(t)]− αE(t),
I ′(t) = αE(t)− νI(t),
U ′(t) = ν (1− f) I(t) + a (1− σ) g D(t)− ηU(t),
D′(t) = ν f I(t)− a g D(t)− ηD(t).
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By using (3.3) we obtain 
χ2E1 = τS1[I1 + U1 +D1]− αE1,
χ2I1 = αE1 − νI1,
χ2U1 = ν (1− f) I1 + a (1− σ) g D1 − ηU1,
χ2D1 = ν f I1 − a g D1 − ηD1.

Computing further, we get 

E1 = τ1S1(I1 + U1 +D1)
χ2 + α

I1 = αE1

χ2 + ν

U1 = νI1 + a (1− σ) g D1

χ2 + η

D1 = ν f I1

χ2 + a g + η
.

(3.8)

Finally by using (3.7)
D1 = χ2 χ3

σ a g
. (3.9)

and by using (3.8) we obtain

I1 = χ2 + a g + η

νf
D1 = χ2 + a g + η

ν
× χ2 χ3

f σ a g

U1 = νI1 + (1− σ) a g D1

χ2 + η
= (χ2 + η + [1 + f(1− σ)] a g)

χ2 + η
× χ2 χ3

f σ a g

E1 = (χ2 + ν)
α

I1 = (χ2 + ν)
α

× (χ2 + a g + η)
ν

× χ2 χ3

f σ a g

τ1 = (χ2 + α)
S1(I1 + U1 +D1)E1

= (χ2 + α) (χ2 + ν) (χ2 + η) (χ2 + a g + η)

αS1

(
[χ2 + a g + η + ν(f + 1)] (χ2 + η) + ν [1 + f(1− σ)] a g

) ,
(3.10)

where I1 is the number of incubating infectious individuals at time t1, U1 is the number of unreported infectious
individuals at time t1, E1 is the number of incubating non-infectious individuals at time t1 (see (3.3)), and
finally τ1 is the transmission rate at time t1.

4 Numerical simulations
We assume that the transmission coefficient takes the form

τ(t) = τ0
(
(1− γ) exp(−µ(t− Tm)+) + γ

)
, (4.1)

where τ0 > 0 is the initial transmission coefficient, Tm > 0 is the time at which the social distancing starts in
the population, and µ > 0 controls the speed at which this social distancing is taking place.

To take into account the effect of social distancing and public measures, we assume that the transmission
coefficient τ(t) can be modulated by γ. Indeed by closing schools and non-essential shops and by imposing
social distancing in New York State, the number of contacts per day is reduced. This effect was visible on the
news during the first wave of the COVID-19 epidemic in New York city since the streets were almost empty
at some point. The parameter γ > 0 is the percentage of the number of transmissions that remain after a
transition period (depending on µ), compared to a normal situation. A similar non-constant transmission rate
was considered by Chowell et al. [8].

In Figure 5 we consider a constant transmission rate τ(t) ≡ τ0 which corresponds to γ = 1 in (4.1). In order
to evaluate the distance between the model and the data, we compare the distance between the cumulative
number of cases CR produced by the model and the data (see the orange dots and orange curve in Figure
5-(a)). In Figure 5-(c) we observe that the cumulative number of cases increases up more than 14 millions of
people, which indeed is not realistic. Nevertheless by choosing the parameter g = 3.08 × 10−7 = 1/

(
S0
6
)
in

Figure 5-(d) we can see that the orange dots and the blue curve match very well.
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Figure 5: Best fit of the model without confinement (or social distancing) measures (i.e. γ = 1). Fitted
parameters: The transmission rate τ(t) ≡ τ0 is constant according to the formula (4.1) with γ = 1 and τ0
is fixed to the value τ1 computed by using (3.10). Parameter values: S0 = 19453561, α = 1, ν = 1/6,
η = 1/7, σ = 0.7, f = 0.8 and g = 6/S0 = 3.08 × 10−7. t1 = march 18, t2 = march 29, a = 1.4874 × 104,
b = −2.1781 × 105, χ1 = 2.8814 × 104, χ2 = 0.1013, χ3 = 2.9969 × 104. In figure (a) we plot the cumulative
number of tests (black dots), the cumulative number of positive cases (red dots) for the state of New York and the
cumulative number of cases CD(t) (yellow curve) obtained by fitting the model to the data. In figures (b)–(c)
we plot the number of cases obtained from the model. We observe that most of the cases are unreported. In
figure (d) we plot the daily number of tests (black dots), the daily number of positive cases (red dots) for the
state of New York and the daily number of cases DD(t) obtained from the data.

In the rest of this section, we focus on the model with confinement (or social distancing) measures. We
assume that such social distancing measures have a strong impact on the transmission rate by assuming that
γ = 0.2 < 1. It means that only 20% of the transmissions remain after a transition period.

In Figure 6-(c) we can observe that the cumulative number of cases increases up to 800 000 (blue curve)
while the cumulative number reported cases goes up to 350 000. In Figure 6-(d) we can see that the orange dots
and the blue curve match very well again. In order to get this fit we fix the parameter g = 10−5.
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Figure 6: Best fit of the model with confinement (or social distancing) measures. Parameter values: Same
as in Figure 5, except the transmission coefficient which is not constant in time with γ = 0.2, Tm = 15 Mar
(starting day of public measures), µ = 0.0251, g = 10−5 and τ0 is fixed at the value τ1 computed by using (3.10).
In figure (a) we plot the cumulative number of tests (black dots), the cumulative number of positive cases (red
dots) for the state of New York and the cumulative number of cases CD(t) (yellow curve) obtained by fitting
the model to the data. In figures (b)–(c) we plot the corresponding number of cases obtained from the model.
With this set of parameters we observe that most of the cases are unreported. In figure (d) we plot the daily
number of tests (black dots), the daily number of positive cases (red dots) for the state of New York and the
daily number of cases DD(t) obtained from the data.

Figure 7 (a) and (b), we aim at understanding the connection between the daily fluctuations of the number
of reported cases (epidemic dynamic) and the daily number of tests (testing dynamics). The combination of
the testing dynamics and the infection dynamics gives indeed a very complex curve parametrized by the time.
It seems that the only reasonable comparison that we can make is between the cumulative number of reported
cases and the cumulative number of tests. In Figure 7 (c) and (d), the comparison of the model and the data
gives a very decent fit. In Figure 7, all the curves are time dependent parametrized curves. The abscissa
is the number of tests (horizontal axis) and the ordinate is the number of reported cases (vertical axis). It
corresponds (with our notations) to the parametric functions t → (ndata(t), DR(t)) in figures (a) and (b) and
their cumulative equivalent t→ (Ndata(t), CR(t)) in figures (c) and (d). In figures (a) and (c) we use only the
data, that is to say that we plot t→ (ndata(t), DRdata(t)) and t→ (Ndata(t), CRdata(t)). In figures (b) and (d)
we use only the model for the number of reported cases, that is to say that we plot t→ (ndata(t), DRmodel(t))
and t→ (Ndata(t), CRmodel(t)).
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Figure 7: In this figure we plot the curves of the number of reported cases as a function of the number of tests
parametrized by the time. The top figures (a) and (b) correspond to the daily number of cases and the bottom
figures (c) and (d) correspond to the cumulative number of cases. On the left-hand side we plot the data (a)
and (c) while on the right-hand side we plot the model (b) and (d). Parameter values: Same as in Figure 6.
In figure (a) we plot the daily number of cases coming from the data as a function of the daily number of tests.
In figure (b) we plot the daily number of cases given by the model as a function of the daily number of tests
coming from the data. In figure (c) we plot the cumulative number of cases coming from the data as a function
of the cumulative number of tests. In figure (d) we plot the cumulative number of cases coming from the model
as a function of the cumulative number of tests from the data.

In Figure 8, our goal is to investigate the effect of a change in the testing policy in the New York State. We
are particularly interested in estimating the effect of an increase of the number of tests on the epidemic. Indeed
increasing the number of tests may be thought as beneficial to reduce the number of cases. Here we challenge
this idea by comparing an increase in the number of tests to the quantitative output of our model. In Figure
8, we replace the daily number of tests ndata(t) (coming from the data for New York’s state) in the model by
either 2× ndata(t), 5× ndata(t), 10× ndata(t) or 100× ndata(t).

As expected, an increase of the number of tests is helping to reduce the number of cases at first. However,
after increasing 10 times the number of tests, there is no significant difference (in the number of reported)
between 10 times and 100 times more tests. Therefore there must be an optimum between increasing the
number of tests (which costs money and other limited resources) and being efficient to slow down the epidemic.
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Figure 8: Cumulative number of cases for different testing strategies: Original (blue curve), doubled (red curve),
multiplied by 5 (yellow curve), multiplied by 10 (purple line) and multiplied by 100 (green curve). The trans-
mission coefficient depends on the time, according to the formula (4.1) with γ = 0.2, and τ0 is fitted by using
(3.10). Parameter values: they are the same as in Figure 6. In figure (a) we plot the cumulated number of
cases CR(t) as a function of time. In figure (b) we plot the cumulative number of undetectable cases CU(t)
as a function of time. In figure (c) we plot the cumulative number of cases (including covert cases) CD(t) as
a function of time. Note that the total number of cases (including covert cases) is reduced by 35% when the
number of tests is multiplied by 100.

5 Discussion
In this article, we proposed a new epidemic model involving the daily number of tests as an input of the

model. The model itself extends our previous models presented in [11, 14–18]. We proposed a new method to
use the data in such a context based on the fact that the cumulative number of tests grows linearly at the early
stage of the epidemic. Figure 3 shows that this is a reasonable assumption for the New York State data from
mid-March to mid-April.

Our numerical simulations show a very good concordance between the number of reported cases produced
by the model and the data in two very different situations. Indeed, Figures 5 and 6 correspond respectively to
an epidemic without and with public intervention to limit the number of transmissions. This is an important
observation since this shows that testing data and reported cases are not sufficient to evaluate the real amplitude
of the epidemic. To solve this problem, the only solution seems to include a different kind of data to the models.
This could be done by studying statistically representative samples in the population. Otherwise, biases can
always be suspected. Such a question is of particular interest in order to evaluate the fraction of the population
that has been infected by the virus and their possible immunity.

In Figure 7, we compared the testing dynamic (day to day variation in the number of tests) and the reported
cases dynamic (day to day variation in the number of reported). Indeed, the dynamics of daily cases is extremely
complex, but we also obtain a relatively robust curve for the cumulative numbers. Our model gives a good fit
for this cumulative cases.

In Figure 8, we compared multiple testing strategies. By increasing 2, 5, 10 and 100 times the number of
tests, we can project the efficiency of an increase in the daily number of tests. We observe that it is efficient
to increase this number up to 10 but the relative gain in absolute number of infected individuals rapidly drops
after that. In particular, our projections do not show a big difference between a 10-times increase in the number
of tests and a 100-times increase. Therefore there is a balance to find between the number of test and the
efficiency in the evaluation of the number of cases, the optimal strategy being dependent on other factors like
the monetary cost of the tests.
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